KRONECKER 0.166-9

Reference Manual

G. Lecerf

Copyright (© 1999-2002, G. Lecerf, Centre National de la Recherche Scientifique.
Université de Versailles St-Quentin-en-Yvelines,

45 avenue des Etats-Unis, Batiment Fermat,

78035 Versailles, France.

Chapter 1: Introduction 1

1 Introduction

1.1 Overview

Kronecker is a package for the Magma computer algebra system to solve
polynomial systems of equations and inequations. It is a prototype resulting
of a long term research by many people organized around the TERA project
(http://tera.medicis.polytechnique.fr).

This version of Kronecker has been tested with Magma, 2.9-2.

To begin smoothly with Kronecker read Getting Started with Kronecker
(http://kronecker.medicis.polytechnique.fr/doc/getstarted/getstarted.html).

1.2 Credits

The present package has been originally designed by M. Giusti, G. Lecerf and B. Salvy,
and written in Magma by G. Lecerf. The current main algorithm is the one presented in
G. Lecerf’s Phd thesis. The code contains contributions from E. Schost and L. Lehmann.
A. Steel improved the basic arithmetic for bivariate polynomials in the Magma kernel. X.
Suraud contributed to the MathML support.

1.3 Copying

The program Kronecker currently being distributed is to be used within the Magma
computer algebra system distributed by the University of Sydney (Australia).

The Kronecker related packages are "free"; this means that everyone is free to use them
and free to redistribute them on a free basis. The Kronecker related programs are not in the
public domain, they belong to the CNRS (Centre National de la Recherche Scientifique).

ik THIS PACKAGE COMES WITH NO WARRANTY ***

Chapter 2: Blackbox polynomials 2

2 Blackbox polynomials

This package provides a blackbox polynomial domain and is due to L. Lehmann. The
verbose flag is BbpVerbose.

2.1 Creation of a blackbox polynomial algebra

BlackboxPolynomialAlgebra (R:Rng, n:RngIntElt) -> RngMPol intrinsic
It returns a ring of multivariate blackbox polynomials over R in n variables.

2.2 Creation of elements

Var (x:RngMPolElt) -> Rec intrinsic
It returns the blackbox polynomial element corresponding to x.

Cst (E:RngMPol, c) -> Rec intrinsic
e FE is a domain returned by BlackboxPolynomialAlgebra.

e ¢ is an element of the base ring of R.

It returns the blackbox polynomial corresponding to c.

2.3 Arithmetic operations

All elementary ring operations are supported.

’+> (x:Rec) -> Rec intrinsic
+’ (x:Rec, y) -> Rec intrinsic
+’ (y, x::Rec) -> Rec intrinsic
-7 (x:Rec) -> Rec intrinsic
-’ (x:Rec, y) -> Rec intrinsic
- (y, x:Rec) -> Rec intrinsic
»*? (x:Rec, y) -> Rec intrinsic
»*? (y, x:Rec) -> Rec intrinsic
’/? (x:Rec, ¢) -> Rec intrinsic

¢ must be invertible.

>’ (x:Rec, n::RngIntElt) -> Rec intrinsic
n must be a non-negative integer.

Chapter 2: Blackbox polynomials 3

Add (E:RnglMPol, I::[Rec]) -> Rec intrinsic
e FE, returned by BlackboxPolynomialAlgebra.

e | a sequence.
It returns the sum of the element of L

Product (E:RngMPol, I::[Rec]) -> Rec intrinsic
e FE, returned by BlackboxPolynomialAlgebra.

e 1 a sequence.

It returns the product of the element of 1.

2.4 Equality tests

Equality test corresponds to the test on the representations: two blackbox polynomials
are equal iff their address is the same.

IsZero (e:Rec) -> BoolElt intrinsic
Tells whether the expression e is the constant 0 or not.

IsOne (e:Rec) -> BoolElt intrinsic
Tells whether the expression e is the constant 1 or not.

2.5 Evaluation

ClearRememberTableValues (~E:RngMPol) intrinsic
It clears the remember table of the current evaluation process.

Evaluate (F:Rec, x:[]) -> . intrinsic

Evaluate (F::[Rec], x:[]) -> . intrinsic
It returns the sequence of the values of the elements of F' when the i-th variable is
specialized to x[i], for 7 from 1 to #x. If F is empty then it returns [Universe(x) |].
Error conditions:

#x must equal the rank of the polynomial domain.

InitializeEvaluation (F':[Rec]) intrinsic
e F a nonempty sequence of expressions.

It initializes the evaluation process that will serve to evaluate the element of F' only.

ChangeUniverseValues (~E:RngMPol, R::Rng, f::UserProgram) intrinsic
e E, a domain returned by BlackboxPolynomialAlgebra.

e R, aring
e f, map into R.

It applies f onto the remember table of the current evaluation process.

Chapter 2: Blackbox polynomials 4

Derivative (e:Rec, i:RngIntElt: algorithm:="backward") -> Rec intrinsic
The derivative of e wrt its i-th variable.

Gradient (e:Rec: algorithm:="backward") -> [] intrinsic

Gradient (F::[Rec]: algorithm:="backward") -> || intrinsic
Sequence of the partial derivatives. The parameter algorithm can be "backward" (for
Baur-Strassen) or "forward".

ClearRememberTableGradients (~E:RngMPol) intrinsic
It clears the remember tables used for gradient storage.

2.6 Degree, coefficients

ConvertToPolynomial (e:Rec) -> . intrinsic
ConvertToPolynomial (e::[Rec]) -> . intrinsic
e ¢ is an expression or a sequence of expressions.

It returns the multivariate polynomial elements represented by e.

IsHomogeneous (e:Rec) -> BoolElt intrinsic
It tells whether e is homogeneous (w.r.t. to grading on the variables of its polynomial
ring). It is not probabilistic.

TotalDegree (e::Rec: Strategy:="UpperBound") -> RngIntElt intrinsic

TotalDegree (F:[Rec]: Strategy:="UpperBound") -> . intrinsic
It returns the total degrees of the mulivariate polynomial represented by F.
Parameter: Strategy can be either "Deterministic" or "Probabilistic". Strategy
can also be "UpperBound" in order to compute a deterministic upper bound only.

2.7 Linear algebra

The following linear algebra functionalities are based on Berkowitz’ algorithm.

CharacteristicPolynomialBerkowitz (A) -> . intrinsic
e A, sequence of sequences of expressions, viewed as a square matrix.

It returns the sequence of coefficients of the characteristic polynomial of A, the last
element being the coefficient of degree 0.

DeterminantBerkowitz (A) -> . intrinsic
e A, sequence of sequences of Expressions, viewed as a square matrix.

It returns the determinant of A.

Chapter 2: Blackbox polynomials

2.8 Printing

PrintBbp (s:]])

PrintBbp (e:Rec)

It prints the expression represented by e.

intrinsic

intrinsic

Chapter 3: Lifting fiber 6

3 Lifting fiber

This package provides functions for manipulating lifting libers. Lifting fibers encode
equidimensional algebraic varieties.
Before all, a BlackboxPolynomialAlgebra domain must have been built this way:

E,z[1],...,z[n]:= BlackboxPolynomialAlgebra(F,n);

where F' is either the field of the rational numbers or a prime field. Note that it may work
with other fields as soon as the characteristic is big enough and a factorization function
exists in F[T]. A fiber encoding an r-equidimensional algebraic variety V is the following
record:

e ResolutionField, a field K over which the resolution is defined. There must exist a
coercion from F to K.

e LiftingSystem, a lifting system F' for V| it is a sequence of blackbox polynomials.

e PrimitiveElement, a linear form u in the z[i]’s over K, it is a multivariate polynomial
in variables.

e MinimalPolynomial, a sequence g of monic univariate polynomials in K[T], of size s.
e Denominator, a sequence p of univariate polynomials in K[T'] of size s.

e Parametrization, a sequence w of size s of sequences of elements of K[T'] of size n —r.
e MagicPoint, a sequence P of elements in K of size r.

e ChangeOfVariables, arecord <LinearPart,AffinePart>, LinearPart is an invertible

square matrix M of size and AffinePart is a vector b of size n. Booth have entries in
K.

e IsMultiple, boolean flag telling if V' is multiple as a solution of F' = 0.
e GenericTrace, generic trace of the deflation process.
e ParentBbp points to E.

Let y be the new variables defined by z = M.y+b, the following properties hold:
e V is a subvariety of the set of roots of F' = 0.
e The variables y are in projective Noether position with respect to V.
e y[l] = P[1],...,y[r] = P[r] defines a finite fiber V' of V.
e The primitive element u separates the points of this fiber V.
e The elements of ¢ are monic and squarefree.
e The fiber V' is the union of the set of points described by the parametrizations:
q[l)(T) = 0, p[l)(T)y[r+1] = v[I|(T), . . .,p[](T)y[n] = v[n|(T), for I in [1,...,s].

We say the fiber is isolated if V' is an isolated subvariety in the set of roots of the system
F = 0. We say that the magic point is a lifting point if it satisfies the smoothess hypothesis
of the fast deflation algorithm. The parametrization of is in the Kronecker presentation if
pll] = ¢'[!] for all [and is in the Shape-lemma if p[l] = 1 for all [.

3.1 Creation of lifting fibers

LiftingFiber () -> Cat intrinsic
It returns the record format used to store lifting fibers.

Chapter 3: Lifting fiber 7

WholeSpaceLF (E, K: GenericLinearChangeOfVariables:=true) -> . intrinsic
e FE, a domain created by BlackboxPolynomialAlgebra.
e K, a field.

It returns a lifting fiber of the ambient space with resolution field K.
Parameter: If GenericLinearChangeOfVariables is set then a generic affine change of
the coordinates is performed.

3.2 Getting properties

If denotes a lifting fiber and IIf a sequence of lifting fibers.

CodimensionLF (If:Rec) -> RngIntElt intrinsic
It returns the codimension of the variety encoded by If.

CodimensionLF (Iif:[]) -> RngIntElt intrinsic
It returns the minimum of the codimensions of the elements of IIf.
Error condition: 1If must not be empty.

DegreeLF (If:Rec) -> RngIntElt intrinsic
It returns the degree of the variety represented by If.

DegreeLF (lif:[]) -> RngIntElt intrinsic
It returns the sum of the degrees of the element of IIf.

DimensionLF (If) -> RngIntElt intrinsic
See RankLF.
HasKroneckerParametrizationLF (If::Rec) -> BoolElt intrinsic

It returns true if If has a Kronecker parametrization.

HasKroneckerParametrizationLF (IIf:[]) -> BoolElt intrinsic
It returns true if all the elements of IIf have a Kronecker parametrization.

HasShapeLemmaParametrizationLF (If:Rec) -> BoolElt intrinsic
It returns true if If has a shape lemma parametrization.

HasShapeLemmaParametrizationLF (IIf:]]) -> BoolElt intrinsic
It returns true if all the elements of If have a shape lemma parametrization.

IsEmptyLF (If:Rec) -> BoolElt intrinsic
It returns a boolean telling whether the variety represented by If is empty or not.

IsEmptyLF (Iif:]]) -> BoolElt intrinsic
It returns a boolean telling whether all the elements of IIf represent the empty variety
or not.

Chapter 3: Lifting fiber 8

IsMultipleLF (If:Rec) -> BoolElt intrinsic
It returns a boolean telling whether If is a multiple component or not.

IsWholeSpaceLF (If:Rec) -> BoolElt intrinsic
It returns whether If represents the ambient space or not.

IsWholeSpaceLF (IIf:[]) -> BoolElt intrinsic
It returns whether at least one of the elements of lIf represents the ambient space or
not.

NumberOfVariablesLF (If:Rec) -> RngIntElt intrinsic

It returns the dimension of the ambient space in which If lives.

NumberOfFactorsLF (If:Rec) -> RngIntElt intrinsic
It returns the number of factors If, that is the cardinal of If ‘MinimalPolynomial.

ParentBbpLF (If:Rec) -> Cat intrinsic
It returns the Multivariate Polynomial Algebra associated to the blackbox polynomial
domain of the lifting system of If.

RankLF (If:Rec) -> RngIntElt intrinsic
It returns the dimension of the variety encoded by If.

RankLF (Iif:[]) -> RngIntElt intrinsic
It returns the maximum of the dimensions of the elements of IIf.
Error condition: IIf must not be empty.

3.3 Basic operations

If denotes a lifting fiber and IIf a sequence of lifting fibers.

ChangeResolutionFieldLF (~If:Rec, K) intrinsic
e If, aLiftingFiber.
e K, a field.
If there exists a coercion from If ‘ResolutionField to K, then it modifies If to be a

resolution over K.
Error condition: There must exist a coercion from If ‘ResolutionField to K.

ChangeResolutionFieldLF (~Iif:[], K) intrinsic
It iterates ChangeResolutionFieldLF over IIf.
ChangeResolutionFieldLF (~If:Rec, K, f) intrinsic
e If, aLiftingFiber.
e K a field.

e f, a homomorphism from If ‘ResolutionField to K.

Applies f on If ‘ResolutionField to coerce it to K via f, so that in return If is a
resolution over K.

Chapter 3: Lifting fiber 9

ChangeResolutionFieldLF ("Iif:]], K, f) intrinsic
It iterates ChangeResolutionFieldLF over IIf.

MakeKroneckerParametrizationLF (~If:Rec) intrinsic
If is changed to a Kronecker parametrization.

MakeKroneckerParametrizationLF (~IIf::]]) intrinsic
It iterates MakeKroneckerParametrizationLF over each element of lIf.

MakeMonicLF (~If:Rec) intrinsic
It makes If ‘MinimalPolynomial monic.

MakeMonicLF (~IIf:]) intrinsic
It iterates MakeMonicLF over each element of IIf.

MakeShapeLemmaParametrizationLF (~If:Rec) intrinsic
It changes the parametrization of If into a Shape Lemma form.
Error condition: If If ‘Denominator is not invertible modulo If ‘MinimalPolynomial.
then If contains a string in return.

MakeShapeLemmaParametrizationLF (~IIf:]) intrinsic
It iterates MakeShapelemmaParametrizationLF over each element of lIf.

3.4 Changes of fibers

ChangeAlgebraicVariablesLF (“If:Rec, N, c) intrinsic
e If, a LiftingFiber of dimension r in a n-dimensional space.
e N, a square matrix of size n — r with rational numbers entries.

e ¢, an — r-vector with rational numbers entries.

Let M and b be 1f‘ChangeOfVariables, such that £ = My+b. The procedure
changes the coordinates of If in the following way: M := M.(Idr|N) and b :=
M.(0|c)+b. This change of algebraic variables is applied in consequence to the
parametrization and the primitive element so that If remains consistent.

Error condition: The procedure raises an error if N is not invertible.

ChangeAlgebraicVariablesLF (~1if:[], N, c) intrinsic
It applies ChangeAlgebraicVariablesLF to each element of IIf.

ChangeBackAlgebraicVariablesLF (~If::Rec) intrinsic
e If, a LiftingFiber.

In return If has the identity for the part of the change of variables corresponding to
the algebraic variables.

Chapter 3: Lifting fiber

ChangeBackAlgebraicVariablesLF (~1If:]) intrinsic
It applies ChangeBackAlgebraicVariablesLF to each element of IIf.

ChangeBackFreeVariablesLF (~If:Rec) intrinsic
e Jf a LiftingFiber.

In return If has the identity in the part of its change of variables corresponding to
the free variables.

ChangeBackFreeVariablesLF (~IIf:]) intrinsic
It iterates ChangeBackFreeVariablesLF on each element of IIf.

ChangePrimitiveElementLF (~If:Rec, u) intrinsic
e If, a LiftingFiber of dimension r in a n-dimensional space.

e 1, a linear form given as a multivariate polynomial.
It Changes 1f ‘PrimitiveElement to u, if it is actually a primitive element.

Error condition: The procedure returns "Bad primitive element" in If if u is not a
primitive element.

ChangePrimitiveElementLF (~IIf:[], u) intrinsic
It applies ChangePrimitiveElementLF to each element of IIf.

TranslateKthFreeVariableToZeroLF (~If:Rec, k) intrinsic
e If, aLiftingFiber.

Let y[k] be the kth free variable of If, the procedure modifies If ChangeOfVariables
replacing y[k] by y[k]+1f‘MagicPoint[k]. Then 1f ‘MagicPoint [k] is set to 0.

TranslateKthFreeVariableToZeroLF (~1If:], k) intrinsic
It iterates TranslateKthFreeVariableToZeroLF on each element of IIf.

Translate AllFreeVariablesToZeroLF (~If:Rec) intrinsic
It applies TranslateKthFreeVariableToZeroLF to all the free variables of If.

TranslateAllFreeVariablesToZeroLF (~lif:]) intrinsic
It applies TranslateAllFreeVariablesToZeroLF to each element of IIf.

TranslateLastFreeVariableToZeroLF (~If:Rec) intrinsic
It applies TranslateKthFreeVariableToZeroLF to all the last free variables of If.

TranslateLastFreeVariableToZeroLF (~Iif:]) intrinsic
It applies TranslateLastFreeVariableToZeroLF to each element of IIf.

Chapter 3: Lifting fiber

3.5 Evaluation

If denotes a lifting fiber and IIf a sequence of lifting fibers.

EvaluateLF (If:Rec, f:Rec, x) -> . intrinsic

EvaluateLF (If:Rec, f:[Rec], x:]) -> . intrinsic
e If, a LiftingFiber.

e f, a sequence of black box polynomials.

e x, a sequence of values.
It returns the sequence of the values of f evaluated on the point x.
Error conditions:

- #x must be equal to NumberOfVariablesLF (If).

- BaseRing(ParentBbpLF (If)) must be coercible to Universe(x).

VerifyLF (If:Rec: Strategy:="Probabilistic") -> BoolElt intrinsic
It returns true iff the parametrization of If satisfies its lifting system modulo its
MinimalPolynomial.

Parameter: Strategy, string:
e "" the verification is perfomed over If ‘ResolutionField.

e "Probabilistic", the verification is probabilistic. Computations are done mod-
ulo a random prime number if the resolution field is the field of the rational
numbers. If the resolution field is a rational function field, the variables are
specialized at random.

VerifyLF (IIf:[]: Strategy:="Probabilistic") -> BoolElt intrinsic
It tells whether all the elements of 1If satisfies their lifting systems.

3.6 Splittings

SplitLF (If:Rec, f:[Rec]) -> Rec,Rec intrinsic

SplitLF (If:Rec, f:Rec) -> Rec,Rec intrinsic
e If a lifting fiber.
e f, an element of BlackboxPolynomialAlgebra.

It returns two fibers Ifz, Ifnz. The first one represents the points of If satisfying f=0
and the second one the other points.

CleanLF (~If:Rec, inegs::Rec) intrinsic
Removes the points of If satisfying ineqs=0.

CleanLF (~If:Rec, ineqgs:]) intrinsic
Removes the points of If satisfying ineqs=0.

Chapter 3: Lifting fiber

CleanLF (~IIf:], inegs) intrinsic
It iterates CleanLF over each element of IIf.

FactorizationLF (~If:Rec) intrinsic
If is factorized.
Error condition: The parametrization must be shape lemma.

CombineLF (~If:Rec: Parametrization:="Unknown") intrinsic
It combines the factors of If. The parameter can be "Unknown" (default),
"ShapeLemma" or "Kronecker" according to the properties known about If.

MergeLF (Iif:[]) -> Rec intrinsic
It merges the elements of IIf into one.
Error conditions:

- The elements of IIf must share the same ResolutionField, LiftingSystem, Prim-
itiveElement, MagicPoint, ChangeOfVariables, GenericTrace and ParentBbp.

- IIf must not be empty.

3.7 Printing

PrintLF (If:Rec) intrinsic
It prints If on stdout.

PrintLF (IIf:]) intrinsic
Prints IIf on stdout.

Chapter 4: Lifting

4 Lifting

This package provides an implementation of the global Newton lifting algorithm. Its
verbose flag is HenselVerbose.

4.1 Splitting before lifting

LiftSplitLF (If:Rec) -> SeqEnum intrinsic
e If is an isolated lifting fiber.

It returns a sequence of isolated lifting fibers corresponding to different subvarieties
behaving differently wrt the the lifting process. This splitting must be achieved before
performing any lifting.

4.2 Lift curves

Common requirements for all the lifting functions:
e If must be shape lemma.
e The variety must be isolated wrt to the If ‘LiftingSystem.

e If must be irreducible with respect to the lifting process.

LiftCurveLF (~If:Rec, destpoint::SeqEnum, precision:: RngIntElt) intrinsic
e If, an isolated lifting fiber.

e destpoint, destination point.
e precision, integer.
This procedure lifts the curve from the lifting point to the destination point destpoint

and up to precision.
Error condition: cf. common requirements above.

LiftCurveLF (~Iif:[], destpoint::SeqEnum, precision: RngIntElt) intrinsic
It iterates LiftCurveLlF over each element of IIf.

LiftLastFreeVariableLF (~If:Rec) intrinsic
e If, an isolated lifting fiber.

This procedure lifts the last free variable of If. If ‘ResolutionField becomes an
univariate rational function field over the resolution field.
Error condition: cf. common requirements above.

LiftLastFreeVariableLF (~IIf:]) intrinsic

It iterates LiftLastFreeVariableLF over each element of IIf.

Chapter 4: Lifting

4.3 Change the magic point

ChangeMagicPointLF (~If:Rec, magicpoint) intrinsic
e If, an isolated lifting fiber.
e magicpoint, the destination magic point.
Computes the lifting fiber for the magic point magicpoint and returns it in If.
Error conditions:
- #magicpoint must be equal to the dimension of If

- cf. common requirements above.

ChangeMagicPointLF (~IIf::[], magicpoint) intrinsic
It iterates ChangeMagicPointLF over each element of IIf.

4.4 Check lifting

HasLiftingPointLF (If:Rec) -> BoolElt intrinsic
e If, an isolated fiber.

It tells whether the magic point is a lifting point. If the variety is multiple wrt its
lifting system then its generic trace must be known.
Error conditions:

- cf. common requirements above.

HasLiftingPointLF (IIf:[]) -> BoolElt intrinsic
It iterates HasLiftingPointLF over each element of IIf.

Chapter 5: Equidimensional decomposition

5 Equidimensional decomposition

This section provides functionalities to handle equidimensional decomposition. The ver-
bose flag is GeometricSolveVerbose.

5.1 Inclusion of components

IsIncludedIrreducibleLF (Ifl, I, If2:Rec) -> BoolElt intrinsic
e Ifl is a fiber.

e]is an integer.

e If2 is an isolated lifting fiber.

The function tells whether the Ith irreducible factor of IfI is included in If2 or not. If
it is detected that If2 is not an isolated lifting fiber then a string is returned.

IsIncludedIrreducibleLF (If, I, lif::SeqEnum) -> BoolElt intrinsic

The function iterates IsIncludedIrreducibleLlF over each element of IIf and tells
whether If [1] is included in IIf.

5.2 Set difference

DifferenceLF (~Ifl, If2::Rec) intrinsic
e Ifl is a fiber.

e If2 is an isolated lifting fiber.

In return Ifl contains its only components that are not included in If2.
Error condition: If it is detected that If2 is not an isolated lifting fiber then IfI
contains a string in return.

DifferenceLF (~If, lif::SeqEnum) intrinsic
The procedure iterates DifferenceLF over each element of IIf, so that If only contains
its components that are not included in IIf in return.

5.3 Minimization

MinimizeLLF (~IIf: RemoveMultipleComponents:=false) intrinsic
IIf is an equidimenstional decomposition that may be redundant. In return IlIf does
not contain redundant components. It is important that IIf [i] contains the compo-
nents of dimension i+1. In case of bugs lIf may contain a string in return.

Chapter 5: Equidimensional decomposition

5.4 Intersection

IntersectLF (lIf::SeqEnum, f:Rec, h:[Rec]: intrinsic
RemoveMultipleComponents:=false) -> SeqEnum
e]If, a minimal sequence of sequences lifting fibers encoding an equidimensional
decomposition of an algebraic variety.
e f, a blackbox polynomial.

e h, a sequence of blackbox polynomials.
It returns the minimal equidimensional decomposition for the intersection of the input

variety given by IIf with the hypersurface defined by f = 0 and outside h = 0.
Error condition: In case of problems (bug or unlucky choices) a string is returned.

Chapter 6: Geometric Solve

6 Geometric Solve

6.1 Introduction

This package provides the main functionalities of Kronecker. The verbose flag is

GeometricSolveVerbose.

6.2 Verbosity

KroneckerInformations ()

It displays informations about Kronecker package: version, author, date...

KroneckerVersion () -> MonStgElt

KroneckerSetVerbose (I::RngIntElt)
Make Kronecker verbose. Argument I is an integer between 0 and 5.

KroneckerSetVerbose ()
Set to default verbosity 2.

KroneckerSetMathMLVerbose ()
Make Kronecker verbose via MathML.

KroneckerUnsetMathMLVerbose ()
Stop Kronecker verbose via MathML.

6.3 Geometric solve functionalities

GeometricSolve (equations::SeqEnum, inequations::SeqEnum, K:
GenericLinearChangeOfVariables:= true,
RemoveMultipleComponents:=false) -> Rec

e equations.

e inequations.

o K, field.

intrinsic

intrinsic

intrinsic

intrinsic

intrinsic

intrinsic

intrinsic

It returns a sequence of sequences IIf of lifting fibers. 1If describes the variety defined
by the equations outside the inequations, if everything goes right. The computations

are performed over K.

Error condition: Since the algorithm is probabilistic an error can be raised.

GeometricSolve (equations::SeqEnum, inequations::SeqEnum) -> Rec

GeometricSolve (equations::SeqEnum) -> Rec

intrinsic

intrinsic

Function Index

Function Index

)

T e 2
R 2
L0 2
T e 2
SO 2
A

Add 3
B

BlackboxPolynomialAlgebra 2
C
ChangeAlgebraicVariablesLF................. 9
ChangeBackAlgebraicVariablesLF 9, 10
ChangeBackFreeVariablesLF 10
ChangeMagicPointLF......................... 14
ChangePrimitiveElementLF 10
ChangeResolutionFieldLF.................. 8,9
ChangeUniverseValues........................ 3
CharacteristicPolynomialBerkowitz.......... 4
CleanLF ... 11, 12
ClearRememberTableGradients 4
ClearRememberTableValues 3
CodimensionLF coiiiin... 7
CombineLF, 12
ConvertToPolynomial.............ouuiuivunnnnn 4
L 2
D

DegreeLFttt 7
Derivative 4
DeterminantBerkowitz........................ 4
DifferencelF 15
DimensionLF il 7
E
Evaluate............oiiiiiioiiiiinanaaaan. 3
EvaluateLF ooiiiiiiiiinnn.. 11
F

FactorizationLF............................ 12

G

GeometricSolve, 17
Gradient.......... ..ot 4

H

HasKroneckerParametrizationLF.............. 7
HasLiftingPointLF.......................... 14
HasShapeLemmaParametrizationLF............. 7

I

InitializeEvaluation........................ 3
IntersectLF 16
ISEmptyLF. i 7
ISHOMOZENEOUS vvv i e e 4
IsIncludedIrreduciblelF 15
IsMultipleLF 8
IsOneot 3
IsWholeSpacelF 8
ISZEYO . ettt e 3

KroneckerInformations 17
KroneckerSetMathMLVerbose 17
KroneckerSetVerbose................c.covunn. 17
KroneckerUnsetMathMLVerbose 17
KroneckerVersion........................... 17

L

LiftCurveLFcciiiii i 13
LiftingFiber, 6
LiftLastFreeVariableLF 13
LiftSplitLF ... 13

M

MakeKroneckerParametrizationLF............. 9
MakeMonicLFot 9
MakeShapelLemmaParametrizationLF............ 9
MergeLF...... ...t 12
MinimizeLLF, 15

N

NumberOfFactorsLF.............c.ccivvinvnnn.. 8
NumberQfVariablesLF......................... 8

Function Index

P

ParentBbpLF
PrintBbp...... ...
PrintLF...... i
Product............l

TotalDegreec.ouuiiiiiiiiaanannn 4
TranslateAllFreeVariablesToZeroLF......... 10
TranslateKthFreeVariableToZeroLF.......... 10
TranslateLastFreeVariableToZeroLF......... 10
R 2
VerifyLF.. 11
WholeSpaceLF 7

Table of Contents

1 Introduction................... ..., 1
1.1 OVEIVIEW . ottt e et e e e e e e et e 1
1.2 Creditso 1
1.3 COPYINgG . . o oottt e 1
2 Blackbox polynomials...................... 2
2.1 Creation of a blackbox polynomial algebra 2
2.2 Creation of elements.coiiiiiin ... 2
2.3 Arithmetic operations i 2
24 Equality tests...........cciii 3
2.5 Evaluation.......... ... 3
2.6 Degree, coefficients 4
2.7 Linearalgebra 4
2.8 Printing ...)
3 Liftingfiber.................. 6
3.1 Creation of lifting fibers, 6
3.2 Getting properties.t 7
3.3 Basicoperations............ ... 8
3.4 Changesoffibers......... ... i 9
3.5 Evaluation........... 11
3.6 SpHttings........oeeiii 11
3.7 Printingo 12
4 Liftingciiuiiii .. 13
4.1 Splitting before liftingl 13
4.2 Lift curves. 13
4.3 Change the magic point, 14
44 Check liftingo o 14
5 Equidimensional decomposition............ 15
5.1 Inclusion of components 15
5.2 Setdifference............ .. 15
5.3 Minimization 15
54 Intersection........... ... i 16
6 GeometricSolve................ ..ot 17
6.1 Introductionooiiiiiiiii i 17
6.2 Verbosityiii 17
6.3 Geometric solve functionalities.......................... 17

Function Indexcciiiiieieeeeenennn. 18

