
NEW RECOMBINATION ALGORITHMS FOR BIVARIATE
POLYNOMIAL FACTORIZATION BASED ON HENSEL LIFTING

GRÉGOIRE LECERF

Abstract. We present new faster deterministic and probabilistic recombina-
tion algorithms to compute the irreducible decomposition of a bivariate poly-

nomial via the classical Hensel lifting technique. For the dense bi-degree poly-

nomial representation, the costs of our recombination algorithms are essentially
sub-quadratic.

Introduction

Throughout this paper K denotes a commutative field of characteristic p, and
F is a polynomial in K[x, y] of bi-degree (dx, dy), which means degree dx in x and
dy in y. We are interested in the complexity of the computation of the irreducible
factors F1, . . . , Fr of F together with their respective multiplicities e1, . . . , er for
the dense polynomial representation, which means that a polynomial of bi-degree
(dx, dy) is stored as the vector of its coefficients in the basis of the monomials of
bi-degree at most (dx, dy). In this model, the size of F is precisely (dx+ 1)(dy + 1).

Main Results. For the cost analysis we use the computation tree model and the
classical O and Õ (read “soft Oh”) notation in the neighborhood of infinity as de-
fined in [GG03, Chapter 25.7]: f(d) ∈ Õ(g(d)) means that f(d) ∈ g(d)(log2(3 +
g(d)))O(1). The factorization algorithms presented in this paper work for any char-
acteristic but the coefficient field K must satisfy a few requirements: its cardinality
must be sufficiently large, irreducible factorization in K[y] must be computable;
when in positive characteristic, pth root extraction in K must be computable, and
the Fp-algebra structure of K must be effective. Herein Fp represents the prime
subfield of K. These requirements are detailed in Section 2.1.

For the sake of simplicity we will provide the reader only with a complete cost
analysis in two cases: (a) in characteristic 0 in terms of the number of arithmetic
operations in K; (b) when K is the finite field Fpk in terms of the number of
arithmetic operations in Fp.

The constant ω used below represents a feasible matrix multiplication exponent.
We require that 2 < ω ≤ 3 (see Section 2.1). The first theorem summarizes the
cost of our deterministic reduction from two to one variables:

Theorem 1. Assume that K has cardinality at least 2dxdy+max(dx, dy)+1. Then
the computation of the irreducible decomposition (F1, e1), . . . , (Fr, er) of F reduces
to the computation of irreducible decompositions of polynomials in K[y] whose degree
sum is at most dx + dy, plus

a. in characteristic 0, Õ((dxdy)(ω+1)/2) arithmetic operations in K;

Date: Preliminary version of June 27, 2007. Revised version of January 21, 2010.
2000 Mathematics Subject Classification. Primary 12Y05, 68W30; Secondary 11Y16, 12D05,

13P05.
Key words and phrases. Polynomial factorization, Hensel lifting.
This work was partly supported by the French Research Agency via the Gecko project

(http://gecko.inria.fr).

1

2 G. LECERF

b. if K := Fpk , Õ(k(dxdy)(ω+1)/2) arithmetic operations in Fp.

Our second theorem yields a faster reduction but with a probability of failure.
Therein the function R, defined in Section 2.1, is related to the cost of random
subsets generation.

Theorem 2. Assume that K has cardinality at least 10dxdy. Then the computa-
tion of the irreducible decomposition (F1, e1), . . . , (Fr, er) of F can be done with a
probabilistic algorithm which performs irreducible factorizations of polynomials in
K[y] whose degree sum is at most dx + dy, plus

a. in characteristic 0, O((dxdy)1.5) operations in K and R(O(dxdy));
b. if K := Fpk , Õ(k(dxdy)1.5) operations in Fp and R(O(dxdy)).

The algorithm outputs either nothing or a correct result with a probability at least
1/2.

The proofs of these two theorems are given at the end of Section 3.2. Informally
speaking, if we consider that an arithmetic operation in K is not cheaper than k
operations in Fp, then the costs in parts (a) and (b) of the above theorems are of
the same order of magnitude.

The mathematical ingredients of our algorithms are presented in the first section.
Then the second section describes the core algorithms. The third section is devoted
to the whole factorization algorithm.

Overview of the Algorithms. The algorithms underlying Theorems 1 and 2
both decompose into the two following stages:

1. Reduction to the separable case. Up to exchanging x and y we can assume
that dy ≤ dx. We compute the separable decomposition of F in y by means
of the algorithm presented in [Lec08].

2. Factorization of the separable components. In this stage F is assumed to be
separable in y. Assuming that the cardinality of K is sufficiently large, a
suitable shift of the variable x reduces the problem to the normalized case
defined as follows:

(N)

deg(F (0, y)) = dy,

Res
(
F (0, y), ∂F∂y (0, y)

)
6= 0,

F is primitive when seen in K[x][y],

where Res(A,B) denotes the resultant of the two univariate polynomials A
and B. In this case we can use the classical Hensel lifting strategy: from
the irreducible factors F1(0, y), . . . ,Fs(0, y) of F (0, y), we compute the ir-
reducible analytic decomposition F1, . . . ,Fs of F in K[[x]][y] to a certain
finite precision. Then we discover how these analytic factors recombine into
F1, . . . , Fr.

The algorithms underlying Theorems 1 and 2 require a precision of the series only
(xdx+1). In characteristic 0 or sufficiently large, these results are to be compared to
the ones of [Lec06] where the required precision is (x2d) with d being the total degree
of F . In positive characteristic, we improve the best previously known recombina-
tion algorithm designed in [BHKS09] that requires a precision (xdx(2dy−1)+1) in the
worst case [BHKS09, Theorem 5.2].

Related Works. The first polynomial time multivariate factorization algorithms
are due to Kaltofen in the beginning of the eighties [Kal82b, Kal82c, Kal85]: they
were derived from the algebraic approximant technique invented by A. K. Lenstra,
H. W. Lenstra, and Lovász in 1982 to factor univariate polynomials over Q in poly-
nomial time. Then Chistov, von zur Gathen, Grigoriev, Kaltofen, and A. K. Lenstra

NEW RECOMBINATION ALGORITHMS 3

substantially contributed to this subject in order to reach polynomial time for all
the usual fields. In 2003, Gao accomplished an important breakthrough with the
design of a softly quadratic time probabilistic reduction of the factorization prob-
lem from two to one variable whenever the characteristic of the coefficient field is
zero or sufficiently large [Gao03]. For more historical details we refer the reader
to [Kal82a, Gat84, Kal90, Kal92, Zip93, Kal95, Kal03, GG03, Gao03, CG05].

The Hensel lifting strategy was popularized in computer algebra by Zassenhaus
in 1969 in the context of factoring in Q[y] via a p-adic completion of Q. For
a long time, in the bivariate case, the cost of this approach has been remaining
exponential in the number s of the analytic factors to recombine. Yet, as proved
by Gao and Lauder, the cost of the recombination process is indeed softly linear
in average [GL02] over finite fields, which explains the practical efficiency of this
approach.

Of course a polynomial time factorization algorithm solves the recombination
problem in polynomial time, but, to the best of our knowledge, the first polynomial
time natural solution to this problem is due to van Hoeij for Q[y] [Hoe02], and
to Belabas, van Hoeij, Klüners and Steel in the more general setting of global
fields, that includes K(x)[y] [BHKS09]: the key idea is to recombine the logarithmic
derivatives of the lifted factors. We refer to [Lec06] for a detailed historical survey
on recombination algorithms.

In [BLS+04, Lec06, Lec07] we presented recombination algorithms with a sub-
quadratic cost in terms of the total degree, for the dense representation, and when
the characteristic of K is 0 or sufficiently large. In the present paper we improve and
generalize these results: our new algorithms require a smaller lifting precision and
work whatever the characteristic of K is. In addition, instead of the total degree
we deal with the bi-degree.

1. Reduction of the Recombination Problem to Linear Algebra

Throughout this section we assume that Hypothesis (N) holds. We explain how
the recombination problem efficiently reduces to linear system solving. We separate
the case when p is 0 or large enough to the specific case when p > 0. Yet we will
see that the latter case makes use of the former case. The separation between these
two cases is precisely given by the following condition:

(C) K has characteristic 0 or at least dx(2dy − 1) + 1.

1.1. Main Notation. Let c ∈ K[x] (respectively, ci ∈ K[x] for each i ∈ {1, . . . , r})
denote the leading coefficient of F (respectively, of Fi) when seen in K[x][y]. For
convenience we assume that c, c1, . . . , cr are all monic (i.e. their leading coefficients
equal 1), so that we can write F = F1 · · ·Fr. Recall that F1, . . . ,Fs represent the
monic irreducible factors of F seen in K[[x]][y]. Then, to each i ∈ {1, . . . , r}, we
associate the vector µi ∈ {0, 1}s, uniquely defined by

Fi = ci

s∏
j=1

F
µi,j

j . (1)

Since the µi have entries in {0, 1} and have pairwise distinct supports, up to a
unique permutation, they form a reduced echelon basis, which means that the r× s
matrix whose ith row is µi is in the row-reduced echelon form. From now on we
assume that µ1, . . . , µr are actually ordered so that they form a reduced echelon
basis. In this setting the recombination problem reformulates as follows: from the
knowledge of the Fi to a sufficient finite precision, compute all the vectors µi. Then
it is classical that the knowledge of the µi suffices to recover F1, . . . , Fr efficiently
(see Algorithm 3 in Section 2.4).

4 G. LECERF

If A :=
∑
i,j≥0 ai,jx

iyj denotes a polynomial in K[[x]][y] then we write dAel and

[A]lk respectively for the following projections to K[x, y]:

dAel :=
∑

0≤i≤l−1, j≥0

ai,jx
iyj , [A]lk :=

∑
k≤i≤l−1, j≥0

ai,jx
iyj .

We also introduce the following partial products:

F̂i :=
r∏

j=1,j 6=i

Fj =
F

Fi
and F̂i := c

s∏
j=1,j 6=i

Fj =
F

Fi
.

Finally, the central objects of our recombination process are the following:

Gi :=
⌈
F̂i
∂Fi

∂y

⌉dx+1

, for all i ∈ {1, . . . , s}.

The recombination algorithms will only make use of these objects, so that the only
lifting to precision (xdx+1) is necessary.

Throughout this paper F denotes a subfield of K, and the space of the bivariate
polynomials over K of bi-degree at most (k, l) is written K[x, y]k,l. Our goal will be
the computation of the following F-vector space:

LF :=

{
(`1, . . . , `s) ∈ Fs |

s∑
i=1

`iGi ∈
〈
F̂1
∂F1

∂y
, . . . , F̂r

∂Fr
∂y

〉
F

}
,

where
〈
F̂1

∂F1
∂y , . . . , F̂r

∂Fr

∂y

〉
F

represents the vector space spanned by the polyno-

mials F̂1
∂F1
∂y , . . . , F̂r

∂Fr

∂y over F. It turns out that the knowledge of LF solves the
recombination problem:

Lemma 1. µ1, . . . , µr is the reduced echelon basis of LF.

Proof. Let i ∈ {1, . . . , r}. By taking the logarithmic derivative in y and by multi-
plying by F both sides of (1), we obtain that:

F̂i
∂Fi
∂y

=
s∑
j=1

µi,jF̂j
∂Fj

∂y
.

Since degy(F1) + · · ·+ degy(Fr) = dy, degy
(
∂Fi

∂y

)
≤ degy(Fi)− 1, degx(F1) + · · ·+

degx(Fr) = dx, and degx
(
∂Fi

∂y

)
≤ degx(Fi), we obtain F̂i

∂Fi

∂y ∈ K[x, y]dx,dy−1, and
deduce that:

F̂i
∂Fi
∂y

=
⌈
F̂i
∂Fi
∂y

⌉dx+1

=

s∑
j=1

µi,jF̂j
∂Fj

∂y

dx+1

=
s∑
j=1

µi,jGj . (2)

Since µi ∈ {0, 1}s ⊆ Fs, it follows that µi ∈ LF.
By Hypothesis (N), G1(0, y), . . . ,Gs(0, y) are linearly independent over F, so are

G1, . . . ,Gs. By the same argument, F̂1
∂F1
∂y , . . . , F̂r

∂Fr

∂y are also linearly independent
over F. Therefore LF has dimension r, which concludes the proof. �

1.2. Partial Fraction Decomposition. Let (`1, . . . , `s) be a vector in Fs, let
G :=

∑s
i=1 `iGi, and let K̄ denote the algebraic closure of K. In order to construct

a set of linear equations over F whose solution set is LF, we consider the partial
fraction decomposition of G/F in K̄[[x]]. Let φ1, . . . , φdy represent the roots of F
in K̄[[x]], and let ρi := G(x, φi)/∂F∂y (x, φi), for all i ∈ {1, . . . , dy}, so that we have:

G

F
=

dy∑
i=1

ρi
y − φi

. (3)

NEW RECOMBINATION ALGORITHMS 5

This partial fraction decomposition is well defined over K̄[[x]] thanks to Hypothe-
sis (N).

Lemma 2. If (`1, . . . , `s) ∈ LF then ρ1, . . . , ρdy all belong to F. Conversely, if
ρ1, . . . , ρdy all belong to K̄ then (`1, . . . , `s) ∈ LF.

Proof. By definition, if (`1, . . . , `s) ∈ LF then G is a F-linear combination of the
F̂1

∂F1
∂y , . . . , F̂r

∂Fr

∂y . Since, for all i, the residues of F̂i ∂Fi

∂y /F = ∂Fi

∂y /Fi are all in
{0, 1}, we obtain that all the ρi belong to F. Conversely, assume that all the ρi are
in K̄. By substituting 0 for x in (3) and in the definition of G, we obtain

G(0, y)
F (0, y)

=
dy∑
i=1

ρi(0)
y − φi(0)

=
s∑
j=1

`j

∂Fj

∂y (0, y)

Fj(0, y)
,

so that Hypothesis (N) implies that ρi = ρi(0) = `j whenever Fj(0, φi(0)) = 0,
whence

G =
s∑
j=1

`jF̂i
∂Fi

∂y
.

Now let i and j in {1, . . . , s} be such that Fi and Fj both divide the same irreducible
factor Fk of F for some k ∈ {1, . . . , r}. By construction, Fi and Fj respectively
divide `i ∂F∂y −G and `j

∂F
∂y −G in K[[x]][y]. Since the two latter expressions are in

K[x, y], they are multiple of Fk. It follows that Fi divides `j ∂F∂y − G in K[[x]][y],
hence that `i = `j since ∂F

∂y is invertible modulo Fi by Hypothesis (N). Therefore
(`1, . . . , `s) is a F-linear combination of the µi and the conclusion thus follows from
Lemma 1. �

1.3. Characteristic Zero or Large Enough. We carry on with the notation:
(`1, . . . , `s) ∈ Fs, G :=

∑s
i=1 `iGi, and ρ1, . . . , ρdy

are the residues of G/F defined
in (3). In characteristic 0, in order to ensure that all the ρi are in K̄, it suffices to
ensure that all the ρ′i are zero. Letting

D̃ : K[x, y]dx,dy−1 → K[x, y]3dx−1,3dy−3

G 7→
(
∂G

∂x

∂F

∂y
− ∂G

∂y

∂F

∂x

)
∂F

∂y
−
(
∂2F

∂xy

∂F

∂y
− ∂2F

∂y2

∂F

∂x

)
G,

it is classical that ρ′i can be calculated as follows:

ρ′i =
d

dx

(
G(x, φi(x))
∂F
∂y (x, φi(x))

)

=
∂G
∂x (x, φi(x)) + ∂G

∂y (x, φi(x))φ′i(x)
∂F
∂y (x, φi(x))

−
∂2F
∂xy (x, φi(x)) + ∂2F

∂y2 (x, φi(x))φ′i(x)
∂F
∂y (x, φi(x))2

G(x, φi(x))

=
D̃(G)(x, φi(x))
∂F
∂y (x, φi(x))3

,

since φ′i(x) = −∂F∂x (x, φi(x))/∂F∂y (x, φi(x)). Testing the vanishing of all the ρ′i thus
becomes equivalent to testing if F divides D̃(G) in K[[x]][y]. Recall that the division
is well-defined since c is invertible in K[[x]] by Hypothesis (N). The following lemma
will lead us to an efficient algorithm for the latter test.

6 G. LECERF

Lemma 3. Let Q and R respectively denote the quotient and remainder of D̃(G)
divided by F in K[[x]][y], so that we have D̃(G) = QF +R, with degy(R) ≤ dy − 1.
Then F divides D̃(G) in K[[x]][y] if, and only if, [Q]3dx

2dx
= dRe3dx = 0.

Proof. Let us assume that F divides D̃(G) in K[[x]][y]. Then is it clear that R = 0
and D̃(G) = QF hold in K[[x]][y]. Since D̃(G) and F are polynomials then Q ∈
K(x)[y] and D̃(G) = QF holds in K(x)[y]. Let a ∈ K[x] and A ∈ K[x, y] be such
that Q = A/a, so that we can write aD̃(G) = AF in K[x][y]. Since F is primitive
by Hypothesis (N), the classical Gauss lemma [Lan02, Chapter IV, Theorem 2.1]
implies that a divides the content of A. It follows that Q actually belongs to K[x, y],
whence degx(Q) ≤ 2dx − 1.

Conversely, let us assume that [Q]3dx

2dx
= dRe3dx = 0. Then D̃(G) = dQe2dxF

holds in K[[x]]/(x3dx)[y]. Since degx(dQe2dxF) ≤ 3dx − 1, we deduce that D̃(G) =
dQe2dxF holds in K[x, y], hence that F divides D̃(G) in K[[x]][y]. �

For any p > 0 we write K̄[[xp]] for the series algebra in xp over K̄. When p = 0,
by convention we let K̄[[x0]] := K̄. Lemma 3 motivates us to define the following
maps:

D : K[x, y]dx,dy−1 → K[x, y]dx−1,2dy−3 ×K[x, y]3dx−1,dy−1

G 7→ ([Q]3dx

2dx
/x2dx , dRe3dx),

DF : Fs → K[x, y]dx−1,2dy−3 ×K[x, y]3dx−1,dy−1

(`1, . . . , `s) 7→ D

(
s∑
i=1

`iGi

)
.

Proposition 1. The inclusion 〈µ1, . . . , µr〉F ⊆ ker(DF) always holds. Conversely,
if (`1, . . . , `s) belongs to ker(DF) then ρ1, . . . , ρdy

all belong to K̄[[xp]]. In addition,
if (C) holds then µ1, . . . , µr is the reduced echelon basis of ker(DF).

Proof. Lemma 3 reformulates as follows: (`1, . . . , `s) belongs to ker(DF) if, and only
if, ρ1, . . . , ρdy

all belong to K̄[[xp]]. If (`1, . . . , `s) = µj then we have that G = F̂j
∂Fj

∂y

by (2), hence that the ρj belong to {0, 1}, whence the inclusion 〈µ1, . . . , µr〉F ⊆
ker(DF).

Let (`1, . . . , `s) ∈ ker(DF) and assume that (C) holds. In order to prove that
(`1, . . . , `s) ∈ 〈µ1, . . . , µr〉F, it is sufficient to prove that all the ρi belong to K̄, by
Lemmas 1 and 2. The case when p = 0 is immediate so that we can now assume
that p ≥ dx(2dy−1)+1. Here we could directly invoke [Gao03, Lemma 2.4] in order
to conclude the proof, but, for completeness, let us briefly repeat the arguments.
Let i ∈ {1, . . . , dy} and let A ∈ K̄[x, y] denote the unique irreducible factor of F in
K̄[x, y] such that A(x, φi)=0. By construction the resultant

B := Resy

(
A, ρi(0)

∂F

∂y
−G

)
∈ K̄[x]

has degree at most dx(2dy − 1) and belongs to (xp), hence it is zero since p ≥
deg(B) + 1. It follows that A divides ρi(0)∂F∂y − G in K̄[[x]][y], whence ρi(0) =
G(x, φi)/∂F∂y (x, φi) = ρi. �

1.4. Small Positive Characteristic. Proposition 1 reduces the recombination
problem to linear algebra under Hypothesis (C). Until the end of this section, we
focus on the situation when (C) does not hold, and F exclusively denotes the prime
field Fp of K. We shall use the following F-linear maps, respectively reminiscent

NEW RECOMBINATION ALGORITHMS 7

of Berlekamp’s and Niederreiter’s univariate factorization algorithms (for instance,
see [GG03, Chapter 14]):

B : K[x, y]dx,dy−1 → K(x)[y]/(F) N : K[x, y]dx,dy−1 → K[x, yp]pdx,dy−1

G 7→ Gp −
(
∂F

∂y

)p−1

G G 7→ Gp +
∂p−1

∂yp−1

(
F p−1G

)
.

Here K[x, yp]pdx,dy−1 is to be understood as the space of the polynomials in x and
yp of degrees at most pdx in x and at most dy−1 in yp. One can easily see that N is
well defined since ∂

∂yN(G) = 0. For convenience, Appendix A gathers the classical
properties needed in the sequel. As for DF, we will be interested in the kernels of
the following F-linear maps:

BF : Fs → K(x)[y]/(F) NF : Fs → K[x, yp]pdx,dy−1

(`1, . . . , `s) 7→ B

(
s∑
i=1

`iGi

)
(`1, . . . , `s) 7→ N

(
s∑
i=1

`iGi

)
.

We carry on with the notation: (`1, . . . , `s) denotes a vector in Fs, G :=
∑s
i=1 `iGi,

and ρ1, . . . , ρdy
represent the residues of G/F as defined in (3).

Proposition 2. µ1, . . . , µr is the reduced echelon basis of ker(BF) = ker(NF).

Proof. Proposition 11 of Appendix A applied with F seen in K(x)[y] and E :=
K̄((x)) (the fraction field of K̄[[x]]) gives us that ker(BF) = ker(NF), and that
(`1, . . . , `s) belongs to these kernels if, and only if, all the ρi belong to F. The
conclusion thus follows from Lemmas 1 and 2. �

Proposition 2 does not directly provide us with a satisfactory recombination
algorithm because the linear system to be solved involves a number of equations
that grows linearly with p. The key idea to cut down this dependency in p is to
combine NF with DF as follows:

Lemma 4. If (`1, . . . , `s) ∈ ker(DF) then NF(`1, . . . , `s) belongs to K[xp, yp]dx,dy−1.

Proof. If (`1, . . . , `s) ∈ ker(DF) then ρ1, . . . , ρdy all belong to K̄[[xp]] by Proposi-
tion 1. Therefore equality (8) of Appendix A.1 rewrites into

N(G) = F p

 dy∑
i=1

ρpi − ρi
(y − φi)p

 ,

whence NF(`1, . . . , `s) = N(G) ∈ K[xp, yp]dx,dy−1. �

Let ∆y(x) represent the discriminant of F in y, that is Resy
(
F (x, y), ∂F∂y (x, y)

)
.

We are now ready to present the test for the vanishing of N(G) and B(G) that will
be used in the algorithms:

Proposition 3. Let S be a set containing at least dx + 1 points in K̄ and assume
that (`1, . . . , `s) ∈ ker(DF). Then the following equivalence holds:

NF(`1, . . . , `s) = 0⇐⇒ ∀a ∈ S, NF(`1, . . . , `s)(a, y) = 0.

In addition, if c(a)∆y(a) 6= 0 for all a ∈ S, then the latter equivalence holds if we
replace NF by BF.

Proof. Since the map z 7→ zp is injective in K̄, the vanishing of N(G) can be tested
with only dx + 1 distinct specializations of x by Lemma 4. By Proposition 11 of
the appendix applied with F seen in K(x)[y], the equality B(G) = 0 is equivalent
to N(G) = 0. Finally by the same proposition 11 applied with F (a, y) seen in K̄[y],

8 G. LECERF

the equality B(G)(a, y) = 0 is equivalent to N(G)(a, y) = 0, for any a ∈ K̄ satisfying
c(a)∆y(a) 6= 0. �

2. Recombination Algorithms

In this section, we present a deterministic recombination algorithm and a faster
probabilistic one both derived from the results of the previous section. We still
assume that the normalization Hypothesis (N) holds. The subfield F is set to be K
if (C) holds and to be the prime field Fp of K otherwise.

2.1. Complexity Model. For our cost analysis, we use the computation tree
model [BCS97, Chapter 4] from the total complexity point of view. Roughly speak-
ing, this means that complexity estimates charge a constant cost for each arithmetic
operation (+, −, ×, ÷) and the equality test. Yet all the constants in the base fields
(or rings) of the trees are thought to be freely at our disposal.

2.1.1. Polynomial Arithmetic. A univariate polynomial of degree d is thought to
be represented as the vector of its coefficients of size d + 1. For each integer d,
we assume that we are given a computation tree that computes the product of
two polynomials of degree at most d with at most M(d) operations, independently
of the base ring. As in [GG03, Chapter 8.3], for any positive integers d1 and
d2, we assume that M satisfies the following properties: M(d1d2) ≤ d2

1M(d2) and
M(d1)/d1 ≤ M(d2)/d2 if d1 ≤ d2. In particular, this implies the super-additivity of
M, that is M(d1) + M(d2) ≤ M(d1 + d2).

During the cost analyzes we will appeal to the following classical results:
• The resultant and the extended greatest common divisor of two univari-

ate polynomials of degree at most d over a field K can be computed with
O(M(d) log(d)) operations in K [GG03, Chapter 11].

• The product of r univariate polynomials G1, . . . , Gr over a field K whose
degree sum is d takes O(M(d) log(r)) operations in K by means of the sub-
product tree technique [GG03, Chapter 10].

• If F ∈ K[y] has degree d then the remainders of F modulo all the Gi can
also be computed with O(M(d) log(r)) operations in K. This task is usu-
ally called the simultaneous reduction. The inverse problem, called Chinese
remaindering, also costs O(M(d) log(r))[GG03, Chapter 10].

If A is a commutative ring with unity, and if q ∈ A[z] is a monic polynomial of
degree d then an element of A[z]/(q(z)) is represented by its coordinate vector in
the usual basis 1, . . . , zd−1. Each arithmetic ring operation in A[z]/(q(z)) reduces
to O(M(d)) operations in A.

2.1.2. Linear Algebra. Concerning linear algebra, we assume that, for each n, we
are given a computation tree that computes the product of two n×n matrices with
at most O(nω) ring operations (i.e. without inversion nor division), for a fixed
constant ω. We require that 2 < ω ≤ 3 in order to use the following statement:

Lemma 5. [Sto00, particular case of Proposition 2.11] The computation of the
row reduced echelon form of a m × n matrix over K of rank r takes O(mnrω−2)
operations in K.

Corollary 1. If m ≥ n then the computation of the reduced echelon basis of the
kernel of a m× n matrix over K takes O(mnω−1) operations in K.

Proof. Let M be such a m×n matrix. Let M̃ denote the m×n matrix row mirrored
of M , that is M̃i,j = Mi,n−j+1 for all (i, j) ∈ {1, . . . ,m}×{1, . . . , n}. By the latter
lemma, the computation of the reduced echelon form of M̃ costs O(mnω−1). Then

NEW RECOMBINATION ALGORITHMS 9

the reduced echelon basis of the kernel of M can be directly read off from the latter
echelon form with O(n2) operations in K. �

2.1.3. Extensions for our Algorithms. In order to present a complete factorization
algorithm in Section 3, we need to enlarge the computational model with irreducible
factorization in K[y]. Separately we also count the number of pth root extractions
in K. By root extraction we mean testing if an element in K is a pth root, and
returning its casual root.

When (C) does not hold we further need to know the algebra structure of K over
its prime field F. Precisely we require that we can access to any component of any
element in some basis over F for free. We also assume that any element of F can be
sent into K for free. Our computational trees will thus contain operations both in
K and Fp. These assumptions are indeed not restrictive and cover the case when
K is explicitly finitely generated over Fp, that is considered in [DT81, Ste05].

For the cost analysis in positive characteristic, we will mainly focus on the case
when K is a finite field, that K := Fpk for some k ≥ 1. Such a finite field K is
supposed to be given as a quotient Fp[z]/q(z) with q being an irreducible polynomial
of degree k, so that each field operation in K amounts to O(M(k) log(k)) operations
in Fp. Over finite fields, we will exclusively use computation trees over Fp.

2.1.4. Probabilistic Algorithms. In order to modelize probabilistic algorithms, we
extend the computation tree model with a function that takes an integer n as
input, and that returns a random subset of a fixed set N of cardinality n, assuming
that the cardinality N of N is at least n. The cost of this operation is assumed
to be bounded by a super-additive function written R(n), that only depends on n.
The probability distribution is supposed to be uniform in the space of subsets of N
of cardinality n. Let us recall the following probability estimate:

Lemma 6. [Lec08, Lemma 9] Let M be a subset of N of cardinality M . For any
n ≤M , the density of subsets of N of cardinality 2n having at most n elements in
M is at least E(M,N), where:

E(M,N) :=
1

1 +
(

M
N−M

)2 , for N ≥ 2M

:= 0, for N < 2M.

Note that E(M,N) ≥ 1/2 whenever N ≥ 2M . Let us finally recall the classical
Schwartz-Zippel lemma: the density of points in N that do not annihilate a given
nonzero polynomial in n variables of degree d is at least Z(d,N) := 1−d/N [GG03,
Chapter 6, Section 9].

2.2. Deterministic Algorithm. Propositions 1, 2 and 3 naturally lead to the
following recombination algorithm:

Algorithm 1. Deterministic recombination.

Input: F ∈ K[x, y], and F1, . . . ,Fs to precision (xdx+1).
Output: µ1, . . . , µr.

1. For each i ∈ {1, . . . , s}, compute F̂i as the quotient of F by Fi to precision
(xdx+1).

2. Compute F̂1
∂F1
∂y , . . . , F̂s

∂Fs

∂y to precision (xdx+1) and deduce G1, . . . ,Gs.
3. Compute D(G1), . . . ,D(Gs).

10 G. LECERF

4. Compute the reduced echelon solution basis µ̃1, . . . , µ̃t of the following linear
system in the unknowns (`1, . . . , `s) ∈ Fs:

s∑
i=1

`iD(Gi) = 0. (4)

If (C) holds then return µ̃1, . . . , µ̃t.
5. For all i ∈ {1, . . . , t}, compute G̃i =

∑s
j=1 µ̃i,jGj .

6. If p divides dx + 1 then let e := dx + 2 else let e := dx + 1. Let ζ denote the
residue class of z in K[z]/(ze − 1). Compute N(G̃1)(ζ, y), . . . ,N(G̃t)(ζ, y).

7. Compute a solution basis ν1, . . . , νr of the following linear system in the
unknowns (`1, . . . , `t) ∈ Ft:

t∑
i=1

`iN(G̃i)(ζ, y) = 0. (5)

8. Compute and return the reduced echelon basis of the space 〈
∑t
j=1 νi,j µ̃j |

i ∈ {1, . . . , r}〉F.

Proposition 4. Under Hypothesis (N) Algorithm 1 works correctly as specified.
a. If (C) holds then Algorithm 1 performs O(dxdysω−1 + sM(dx)M(dy)) opera-

tions in K.
b. If (C) does not hold then Algorithm 1 performs

O
(
M(dx)

(
d2
ys
ω−2 + M(dy)(s log(s) + dy + log(dxdy)) + sdy log(dxdy)

))
operations in K plus O(max(eD, eN, s)sω−1) operations in Fp, where eD and
eN represent the number of equations in systems (4) and (5) respectively.

Proof. If (C) holds then Proposition 1 gives us that 〈µ̃1, . . . , µ̃t〉 = 〈µ1, . . . , µr〉.
If (C) does not hold then Proposition 1 gives us that 〈µ1, . . . , µr〉F ⊆ 〈µ̃1, . . . , µ̃t〉F,
so that 〈µ1, . . . , µr〉F is the kernel of the restriction of NF to 〈µ̃1, . . . , µ̃t〉F by Propo-
sition 2. Since e is chosen so that ze − 1 admits e ≥ dx + 1 distinct roots in K̄,
computing in K[z]/(ze − 1) is equivalent to computing with e distinct values of x
in parallel in Step 6. Therefore Proposition 3 implies that ν1, . . . , νr is a basis of
the kernel of the latter restriction expressed in the coordinates µ̃1, . . . , µ̃t, and the
reduced echelon basis returned in step 8 is actually µ1, . . . , µr.

Let us now analyze the cost of the algorithm. Testing whether (C) holds or not,
and obtaining the characteristic p of K when (C) does not hold, takes O(dxdy) op-
erations in K. Steps 1 to 3 take O(sM(dx)M(dy)) operations in K. If (C) holds then
the linear system in step 4 involves s unknowns and O(dxdy) equations. Therefore
its resolution over K takes O(dxdysω−1) operations in K by Corollary 1. We are
done with part (a).

Let us now assume that (C) does not hold. The resolution of the linear system in
step 4 now takes O(max(eD, s)sω−1) operations in F by Corollary 1. In step 5, the
computation of each G̃i can be done by means of the sub-product tree technique
with O(M(dx)M(dy) log(s)) operations in K.

By Proposition 13 the cost of step 6 belongs to

O
(
M(dx)

(
M(dy)(dy + log(p)) + d2

yt
ω−2 + tdy(log(dx) + log(p))

))
.

The resolution of the linear system in step 7 costs O(max(eN, t)tω−1) operations in
F by Corollary 1. In step 8 the matrix product and the reduced form computation
amount to O(sω) operations in F thanks to Lemma 5. Finally part (b) follows from
summing the costs of all steps, and taking into account that log(p) ∈ O(log(dxdy)).

�

NEW RECOMBINATION ALGORITHMS 11

Corollary 2. If K := Fpk then Algorithm 1 performs Õ(kdxdωy) operations in Fp.

Proof. This follows from the previous proposition since eD ∈ O(kdxdy) and eN ∈
O(kdxdy). �

2.3. Probabilistic Algorithm. When (C) holds, when s is close to dy, and when
ω is close to 3, the first bottleneck of Algorithm 1 is the resolution of the linear
system (4) that amounts to O(dxdωy) operations in K. When (C) does not hold,
and when t is close to dy, the second bottleneck is the evaluation of N in step 6
that also contributes to Õ(dxdωy).

In this section we improve Algorithm 1 by means of probabilistic techniques.
Concerning the first bottleneck we appeal to the following classical method for
overdetermined linear systems. From now on we let m := 5dxdy − 2dx and n :=
(dx + 1)dy. If (u2, . . . , um) ∈ Km−1, we write U for the following upper triangular
s×m Toeplitz matrix:

U :=

1 u2 u3 · · · um−1 um

1 u2 u3 · · · um−1

.
...

1 . . . um−s+1

 .

Similarly, if (v2, . . . , vn) ∈ Kn−1, we write V for the following upper triangular t×n
Toeplitz matrix:

V :=

1 v2 v3 · · · vn−1 vn

1 v2 v3 · · · vn−1

.
...

1 . . . vn−t+1

 .

The following lemma, derived from [KS91, Theorem 2], will provide us with a
probabilistic algorithm to solve the overdetermined linear systems (4) and (5):

Lemma 7. [Lec07, Lemma 9] Let A be a m×s matrix over K. For all (u2, . . . , um)
in Km−1 we have ker(A) ⊆ ker(UA). In addition, there exists a nonzero polynomial
P ∈ K[z2, . . . , zm] of total degree at most s such that the latter inclusion is an
equality whenever P(u2, . . . , um) 6= 0.

Concerning the second bottleneck we replace the operator N by B that can be
evaluated faster. The probabilistic algorithm thus proceeds as follows:

Algorithm 2. Probabilistic recombination
Input: F ∈ K[x, y], F1, . . . ,Fs to precision (xdx+1), and a finite subset N of K

of cardinality N .
Output: µ1, . . . , µr.

Do the same computations as in Algorithm 1, but replace steps 4, 6, and 7 respec-
tively by:

4. a. Take (u2, . . . , um) at random in Nm−1.
b. For all i ∈ {1, . . . , s}, compute Di := UD(Gi), where D(Gi) is seen as a

vector in Km.
c. Compute the reduced echelon solution basis µ̃1, . . . , µ̃t of the following

linear system in the unknowns (`1, . . . , `s) ∈ Fs:
s∑
i=1

`iDi = 0. (6)

If (C) holds then return µ̃1, . . . , µ̃t.
6. a. Take a finite subset of N at random with cardinality 2(dx + 1).

12 G. LECERF

b. If possible select dx + 1 points a0, . . . , adx
from the latter set such that

c(ai)∆y(ai) 6= 0. If not possible then stop the execution.
c. For all i ∈ {1, . . . , t}, compute the vector Ai in Kn whose jdy + k + 1th

entry is the coefficient of yk in B(G̃i)(aj , y), for all k ∈ {0, . . . , dy − 1}
and all j ∈ {0, . . . , dx}.

7. a. Take (v2, . . . , vn) at random in Nn−1.
b. For all i ∈ {1, . . . , t}, compute Bi := V Ai. Compute a solution basis

ν1, . . . , νr of the following linear system in the unknowns (`1, . . . , `t) ∈ Ft:
t∑
i=1

`iBi = 0. (7)

Proposition 5. The space spanned over F by the output of Algorithm 2 always
contains µ1, . . . , µr.

a. If (C) holds then Algorithm 2 takes O(s(M(dx)M(dy) + M(dxdy)) + sω) op-
erations in K, plus R(m− 1). The probability to obtain a correct result is at
least Z(s,N).

b. If (C) does not hold then Algorithm 2 takes O(s(M(dx)M(dy) log(dxdy) +
M(dxdy)) operations in K, plus R(2dx +m+n), plus O(max(fD, fB, s)sω−1)
operations Fp, where fD and fB represent the number of equations in sys-
tems (6) and (7) respectively. The probability to obtain a correct result is at
least E(2dxdy, N)Z(2s,N).

Proof. By Lemma 7, the solution space of system (6) always contains the solution
space of system (4), that is µ1, . . . , µr. If (C) does not hold then, for any i ∈
{1, . . . , r}, we can write µi = `1µ̃1 + · · · + `tµ̃t with (`1, . . . , `t) ∈ Ft so that we
have:

t∑
j=1

`jB(G̃j) = B

 t∑
j=1

`j

s∑
k=1

µ̃j,kGk

 = B

(
s∑

k=1

µi,kGk

)
= BF(µi) = 0,

where the last equality follows from Proposition 2. Therefore, by Lemma 7 again,
the space spanned by the output of the algorithm always contains µ1, . . . , µr.

Lemma 7 provides us with a polynomial P such that, for any (u2, . . . , um) outside
the zero locus of P, the systems (4) and (6) have the same solution sets. The
probability of success thus follows from the Schwartz-Zippel lemma.

If (C) does not hold, then the probability that at most dx + 1 points annihilate
c∆y comes from Lemma 6. Then Lemma 7 provides us with a nonzero polynomial
Q such that the solution set of (7) coincides with the solution set of the following
system:

t∑
i=1

`iAi = 0.

On the other hand, the solution set of the latter system coincides with the solution
set of system (5) by Proposition 3, whence the correctness of Algorithm 2. The
probability bound in part (b) follows from Z(s,N)2 ≥ Z(2s,N).

If (C) holds then step 4 performs O(sM(dxdy)) operations in K for the compu-
tation of all the Di, plus O(sω) operations in K for the resolution of system (6), by
Corollary 1. We are done with part (a).

Concerning part (b), the evaluation of c∆y at 2(dx + 1) values in step 6 can
be done with O(dyM(dx) log(dx) + dxM(dy) log(dy)). Then F (a0, y), . . . , F (adx

, y),
and each tuple (G̃i(a0, y), . . . , G̃i(adx

, y)) can be computed withO(dyM(dx) log(dx))
operations in K. Each B(G̃i)(aj , y) is then obtained as the remainder of G̃i(aj , y)p−
(F (aj , y)′)p−1G̃i(aj , y)p divided by F (aj , y) with O(M(dy) log(p)) operations in K.

NEW RECOMBINATION ALGORITHMS 13

Therefore the total cost of step 6 amounts toO(t(dyM(dx) log(dx)+dxM(dy) log(p)))
operations in K.

In step 7 the computation of all the Bi takes O(tM(dxdy)) operations in K,
and the resolution of the linear system costs O(max(fB, t)tω−1) operations in F, by
Corollary 1. The total cost follows from summing the costs of each step and taking
into account that p ∈ O(dxdy). �

Corollary 3. If K := Fpk then Algorithm 2 performs Õ(k(dxd2
y + dωy)) operations

in Fp, plus R(O(dxdy)). The probability to obtain a correct answer is at least
E(2dxdy, N)Z(2dy, N).

Proof. It suffices to set fD ∈ O(ks) and fB ∈ O(ks) in Proposition 5. �

2.4. Testing the Recombination and Recovering the Factors. In this sub-
section we describe how to test whether the output of Algorithm 2 is correct or
not. If correct then we also recover the irreducible factors of F . If not correct then
the execution is stopped. Let ν1, . . . , νt now represent the output of Algorithm 2.
From Proposition 5 we know that 〈µ1, . . . , µr〉F ⊆ 〈ν1, . . . , νt〉F.

Algorithm 3. Recovering the irreducible factors.

Input: F ∈ K[x, y], F1, . . . ,Fs to precision (xdx+1), and a reduced echelon
family ν1, . . . , νt in Fs such that 〈µ1, . . . , µr〉F ⊆ 〈ν1, . . . , νt〉F.

Output: F1, . . . , Fr.

1. If t = 1 then return F .
2. If the entries of the νi are not all in {0, 1} then stop the execution.
3. If the supports of ν1, . . . , νt do not form a partition of {1, . . . , s} of size t

then stop the execution.

4. For all i ∈ {1, . . . , t}, compute F̃i :=
⌈
c
∏s
j=1 F

νi,j

j

⌉dx+1

.

5. For all i ∈ {1, . . . , t}, compute F̌i as the primitive part of F̃i in y. Normalize
F̌i in K[x][y] so that its leading coefficient becomes monic.

6. If
∏t
i=1 F̌j = F then return F̌1, . . . , F̌t. Otherwise stop the execution.

Proposition 6. Algorithm 3 returns a correct answer if, and only if, t = r. Other-
wise the execution is stopped. The algorithm performs O(M(dx)M(dy) log(dxdy) +
s2) arithmetic operations in K.

Proof. Let us first examine the case when t = r. If r = 1 then the output is clearly
correct. If r ≥ 2 then, for all i ∈ {1, . . . , r}, we have that F̃i = c/ciFi because
degx(c/ci) + degx(Fi) ≤ degx(F1) + · · ·+ degx(Fr) = dx. Finally F̌i = Fi holds and
the algorithm returns a correct answer.

Let us now show that the algorithm always return a correct result. If t = 1 then
the algorithm exits at the first step with t = r. If the algorithm exits in step 2 or 3
then we necessary have t > r. If the algorithm reaches the last step then F admits
at least t ≥ r irreducible factors, whence t = r.

Steps 1 to 3 take O(st) operations in K. Letting di := degy(F̃i), each F̃i can
be computed by the sub-product tree technique with O(M(dx)M(di) log(di)) op-
erations, so that the total cost of step 4 amounts to O(M(dx)M(dy) log(dy)). In
step 5 each primitive part computation amounts to O(diM(dx) log(dx)) operations,
whence a total cost in O(dyM(dx) log(dx)) for this step. In step 6, one has to check
whether

∑t
i=1 degx(F̌i) = dx holds or not before computing the product. This way

the cost of step 6 drops to another O(M(dx)M(dy) log(dy)). �

14 G. LECERF

3. The Whole Factorization Algorithm

So far we have dealt with the factorization of normalized polynomials, namely
under Hypothesis (N). In this section we explain how to handle the general case
by means of successive reductions to (N). For the sake of simplicity, we use fast
multiplication everywhere, namely M(d) ∈ Õ(d).

3.1. Factorization of Separable Polynomials. Recall that a polynomial F is
said to be separable in y if its discriminant ∆y, is nonzero. The reduction of the
factorization of separable polynomials to normalized polynomials simply consists in
searching for a suitable shift of the variable x. The following algorithm summarizes
the main steps:

Algorithm 4. Factorization of separable polynomials.
Input: F ∈ K[x, y] primitive and separable in y.
Output: the irreducible factors F1, . . . , Fr of F .
1. Find b ∈ K such that F (b, y) is separable of degree dy. Replace F by
F (x+ b, y)

2. Compute the irreducible decomposition of F (0, y).
3. Compute F1, . . . ,Fs to precision (xdx+1) by means of Hensel lifting.
4. Recombine the lifted factors by means of the algorithms presented in the

previous section in order to obtain the irreducible factors F1, . . . , Fr of F
over K.

5. For all i ∈ {1, . . . , r} replace Fi by Fi(x− b, y).

With deterministic subroutines we obtain the following estimates:

Proposition 7. Assume that F is primitive and separable in y, and that K has
cardinality at least 2dxdy + 1. Algorithm 4 is correct and performs one irreducible
factorization in K[y] in degree dy, plus

a. if (C) holds, O(dxdωy) operations in K;
b. if K := Fpk , Õ(kdxdωy) operations in Fp.

Proof. Since deg(c∆y) ≤ 2dxdy, the assumption on the cardinality of K ensures us
to find a suitable b. This search can be done with Õ(dxd2

y) operations by means of
fast multi-point evaluation. Then the shift of the variable x can be done in softly
optimal time via evaluation/interpolation.

In steps 2 to 4 Hypothesis (N) holds. The computation of F1, . . . ,Fs to preci-
sion (xdx+1) from the irreducible factors of F (0, y) costs Õ(dxdy) operations in K
by [GG03, Theorem 15.18] (see also [BLS+04] for implementation details). Then
part (a) follows from Propositions 4 and 6. Then part (b) is completed thanks to
Corollary 2. �

As for the probabilistic version, we call Algorithm 2 in step 4. For doing so
we need to provide the algorithm with a subset N of K of cardinality N , used for
random element generation. With these modifications we obtain:

Proposition 8. Assume that F is primitive and separable in y, and that K has
cardinality at least 2dxdy + 1. Algorithm 4 either stop prematurely or returns a
correct answer. It takes one irreducible factorization in K[y] in degree dy, plus

a. if (C) holds, Õ(dxd2
y+dωy) operations in K and R(O(dxdy)), with a probability

of success at least Z(dy, N);
b. if K := Fpk , Õ(k(dxd2

y + dωy)) operations in Fp and R(O(dxdy)), with a
probability of success at least E(2dxdy,N)Z(2dy, N).

Proof. The proof is the same as for the deterministic case, except that we appeal
to Propositions 5 and Corollary 3. �

NEW RECOMBINATION ALGORITHMS 15

3.2. The General Case. In order to raise the separability assumption on F , we
use the separable factorization algorithm designed in [Lec08]. Let

B := {1, p, p2, p3, . . .}

be the set of the powers of p. If F is primitive in y, and if p > 0, then the separable
decomposition of F in y is defined to be the set

{(G1, q1,m1), . . . , (Gs, qs,ms)} ⊆ (K[x, y] \K[x])× B × N

satisfying the following properties:
(S1) F (y) =

∏s
i=1Gi(y

qi)mi ;
(S2) for all i 6= j in {1, . . . , s}, Gi(yqi) and Gj(yqj) are coprime;
(S3) for all i ∈ {1, . . . , s}, p does not divide mi;
(S4) for all i ∈ {1, . . . , s}, Gi is separable, primitive and of positive degree in y;
(S5) for all i 6= j in {1, . . . , s}, (qi,mi) 6= (qj ,mj).

If p = 0 then the separable decomposition of F is naturally defined to be the set
generated by all the triples (G, 1,m) such that G is a proper squarefree factor of F
with multiplicity m ≥ 1. For the existence, the uniqueness, and a short history of
the separable decomposition we refer the reader to [Lec08].

Under the assumption that K has sufficiently many elements we finally obtain
the following top level factorization algorithm:

Algorithm 5. Top level factorization algorithm.
Input: F ∈ K[x, y].
Output: the irreducible factors F1, . . . , Fr of F together with their respective

multiplicities e1, . . . , er.
1. Compute the content and the primitive part of F in y. Replace F by its

primitive part and initialize the list L with the irreducible decomposition of
the content.

2. Compute the separable decomposition (G1, q1,m1), . . . , (Gs, qs,ms) of F .
3. Compute the irreducible decomposition of G1, . . . , Gs.
4. For all i ∈ {1, . . . , s}, and for all irreducible factor E of Gi do:

If p = 0 then append (E,mi) to the list L,
else compute (H,h) ∈ K[x, y]× B such that Hh(yqi/h) = E(yqi), h ≤ qi
and h is as large as possible, and append (H(yqi/h), hmi) to L.

5. Return L.

By means of deterministic subroutines we obtain:

Proposition 9. Assume that K has cardinality at least 2dxdy + dx + 1. Then
Algorithm 5 performs irreducible factorizations of univariate polynomials over K
whose degree sum is at most dx + dy, plus

a. if (C) holds, O(dxdωy) arithmetic operations in K;
b. if K := Fpk , Õ(kdxdωy) arithmetic operations in Fp.

Proof. In Algorithm 5, the computation of the primitive part can be done in softly
optimal time. Then step 2 takes Õ(dxd2

y) by [Lec08, Proposition 8] thanks to the
hypothesis on the cardinality of K. Step 3 can be done by means of Algorithm 4:
Proposition 7(a) yields a total cost in O(dxdωy) operations in K. We are done with
part (a).

As for part (b), computing each pair (H,h) costs O(degx(E) degy(E)) extrac-
tions of pth roots in Fpk . One pth root extraction in Fpk requires O((k− 1) log(p))
arithmetic operations in Fpk . The conclusion thus follows from Proposition 7(b).

�

16 G. LECERF

In order to use probabilistic subroutines in Algorithm 5 we add an extra input
N that is a subset of K of cardinality N used for the random choices.

Proposition 10. Assume that K has cardinality at least 2dxdy + 1. Then Algo-
rithm 5 either returns a correct answer or stops prematurely. It performs irreducible
factorizations of univariate polynomials over K whose degree sum is at most dx+dy,
plus

a. if (C) holds, O(dxd2
y +dωy) arithmetic operations in K, plus R(O(dxdy)) with

a probability of success at least E(2dxdy, N)Z(dy, N);
b. if K := Fpk , Õ(k(dxd2

y + dωy)) arithmetic operations in Fp, plus R(O(dxdy))
for random set generation in K, with a probability of success at least

E(4dxdy,N)Z(2dy, N).

Proof. Step 2 of Algorithm 5 takes Õ(dxdy) operations in K plus R(O(dxdy)), with
a probability of success at least E(2dxdy, N) by [Lec08, Proposition 9]. The proof
thus follows as for the previous proposition thanks to Proposition 8. In part (b) the
probability bound makes use of E(2dxdy,N)2 ≥ E(4dxdy,N) [Lec08, Lemma 12].

�

Proof of Theorem 1. Without loss of generality we can assume that dy ≤ dx so that
we have Õ(dxdωy) ⊆ Õ((dxdy)(ω+1)/2). The conclusion thus follows from Proposi-
tion 9. �

Proof of Theorem 2. We also reduce to the case when dy ≤ dx so that we have
Õ(dxd2

y + dωy) ⊆ Õ((dxdy)1.5). Thanks to the hypothesis on the cardinality of K
we can take N with cardinality N = 10dxdy so that E(4dxdy,N)Z(2dy, N) > 1/2
holds. The conclusion follows from Proposition 10. �

Conclusion

Although the factorization algorithms presented in this paper have good worst
case complexity bounds their implementations require some care to make them very
efficient in practice. The first bottleneck of the algorithm underlying Theorem 2 is
the computation of the polynomials Gi. This bottleneck can be avoided by adapt-
ing the heuristic presented in [BLS+04, Lec06, Lec07]. Then the next practical
bottleneck really becomes the Hensel lifting. Although this lifting can be done in
softly optimal time, one interesting speedup consists in solving the recombination
problem progressively at each stage of the lifting in order to decrease the number of
the lifted factors and stop the lifting as soon as possible. Finally, in a good imple-
mentation, the worst case precision bound for the lifting is hardly never attained.
These heuristics and others have been implemented by Steel in Magma [Mag] on
the top of the algorithms designed in [Hoe02, BHKS09, Ste05]. Our new algorithms
are not intended to compete in general with Steel’s implementation. Instead they
sensibly improve the performances in very particular cases. Such cases are very
difficult to build. One example is provided by [BHKS09, Remark 5.5].

Acknowledgments

We thank the anonymous referees for their precious comments.

Appendix A. Berlekamp’s and Niederreiter’s Equations

This appendix gathers some classical properties of Berlekamp’s [Ber67, Ber70]
and Niederreiter’s [Nie94] operators used in Section 1, and contains a cost analysis of
the evaluation of Niederreiter’s operator used in Section 2. From now on K denotes

NEW RECOMBINATION ALGORITHMS 17

a field of characteristic p > 0, whose prime field is written F. For a comparaison
between Berlekamp’s and Niederreiter’s algorithms we refer the reader to [GG94].

A.1. Classical Properties. Let f be a monic separable polynomial of degree d in
K[x], and let g ∈ K[x] be of degree at most d− 1. Let E be a field extension of K
containing all the roots ϕ1, . . . , ϕd of f . The kth derivative of h ∈ K[x] is written
h(k).

Proposition 11. The following assertions are equivalent:
a. g(ϕi)/f ′(ϕi) ∈ F, for all i ∈ {1, . . . , d}.
b. gp − (f ′)p−1g ∈ (f) (Berlekamp’s operator).
c. gp + (fp−1g)(p−1) = 0 (Niederreiter’s operator).

Proof. In short let ρi represent g(ϕi)/f ′(ϕi) for each i ∈ {1, . . . , d}, so that the
partial fraction decomposition of g/f over E reads as:

g

f
=

d∑
i=1

ρi
x− ϕi

.

For any i ∈ {1, . . . , d} we have that (gp− (f ′)p−1g)(ϕi) = (f ′)p(ϕi)(ρ
p
i − ρi), which

gives the equivalence between parts (a) and (b). The equivalence between parts (a)
and (c) follows from the following calculation:

gp + (fp−1g)(p−1) = gp +
(
fp
g

f

)(p−1)

= gp + fp
(
g

f

)(p−1)

= fp

((
g

f

)p
+
(
g

f

)(p−1)
)

= fp

(
d∑
i=1

ρpi
(x− φi)p

+
d∑
i=1

−ρi
(x− φi)p

)
, (8)

where the latter equality makes use of Wilson’s theorem (namely, p divides (p −
1)! + 1). �

A.2. Complexity. Let A be any commutative ring with unity of characteristic
p, and let f be a polynomial in A[x] of degree d. We are to study the cost for
computing gp + (fp−1g)(p−1) for a given g ∈ A[x]d−1. In the latter expression,
the most difficult part is the computation of (fp−1g)(p−1). We thus focus on the
construction of the d × d matrix N of the following map expressed in the usual
monomial basis:

A[x]d−1 → A[xp]d−1

g 7→ (fp−1g)(p−1).

Recall that A[xp]d−1 denotes the space of polynomials in xp of degree at most d−1
in xp.

Proposition 12. If f is monic then N can be computed with O(M(d)(d+ log(p)))
operations in A.

Proof. We write coeff(A, xi) for the coefficient of xi in A ∈ A[x]. We aim to
compute − coeff(fp−1g, xip+p−1) for all i ∈ {0, . . . , d − 1}. Let rev(n, .) denote
the reversal endomorphism of A[x]n defined by rev(n,A) =

∑n
k=0 an−kx

k, for all
A :=

∑n
k=0 ak ∈ A[x]n. In fact we will compute

− coeff(rev(dp− 1, fp−1g), xip), for all i ∈ {0, . . . , d− 1}.

18 G. LECERF

Since f is monic of degree d, the constant term of rev(d, f) is 1. Hence we can
define

∑
i≥0 uix

i as the power series expansion of rev(d − 1, g)/ rev(d, f), so that
we have:

rev(dp− 1, fp−1g) = rev(d, f)p−1 rev(d− 1, g)

= rev(d, f)p rev(d− 1, g)/ rev(d, f)

= rev(d, f)p
∑
i≥0

uix
i.

Therefore we are led to compute u0, up, . . . , u(d−1)p. The computation of rev(d, f)p

takes O(d log(p)) operations in A, and then the product

rev(d, f)p
d−1∑
i=0

uipx
ip

costs O(M(d)). In order to compute u0, up, . . . , u(d−1)p, we are going to use the fact
that (ui)i∈N satisfies the following linear recurrence:

ui := −(fd−1ui−1 + · · ·+ f0ui−d), for i ≥ d,

where fj := coeff(f, xj) (recall that fd = 1). Of course the initial values u0, . . . , ud−1

can be computed from the power series expansion of rev(d− 1, g)/ rev(d, f) to pre-
cision (xd) with O(M(d)) operations in A.

For all i ≥ 0, if ad−1x
d−1 + · · · + a1x + a0 represents the remainder rem(xi, f)

in the division of xi by f , then it is classical that ui = a0u0 + · · ·+ ad−1ud−1. The
idea of using the latter formula to efficiently compute ui is due to Fiduccia [Fid85].
This formula expresses the fact that linear recurrence sequence extension is trans-
posed to the remainder operation (see [BLS03, Section 5] for details). Let B be
the d × d matrix whose ith column is rem(xp(i−1), f) expressed in the usual ba-
sis 1, x, . . . , xd−1. This is nothing else but the Petr-Berlekamp matrix arising in
univariate polynomial factorization over finite fields. The construction of B takes
O(M(d)(d+log(p))) operations in A. Finally we have shown that N can be factored
into N = H2B

tH1, where Bt is the transpose of B, and H1, H2 are the Hankel
matrices of the following maps:

H1 :A[x]d−1 → Ad

g 7→ (u0, . . . , ud−1),

H2 :Ad → A[xp]d−1

(u0, . . . , u(d−1)p) 7→ − rev

dp− 1,

⌈
rev(d, f)p

d−1∑
i=0

uipx
ip

⌉dp .

Recall that dAel represents the projection of the series A :=
∑
i≥0 aix

i ∈ K[[x]] to
the polynomial

∑l−1
i=0 aix

i ∈ K[x]l−1. Since H1 is symmetric, (BtH1)t = H1B can
be computed with O(dM(d)) operations in A. The second product H2(BtH1) also
costs O(dM(d)). �

The above decomposition N = H2B
tH1 was already stated in [Nie94, Theorem 1]

(in the more general setting of the Hasse-Teichmüller derivative). Unfortunately
the cost analysis made in [Nie94, Theorem 2] was pessimistic because it did not
take into account that left and right products by Hankel matrices could be done in
softly optimal time.

From now on we assume that A := K[z]/(q(z)), where q is a non-constant monic
separable polynomial in K[z] of degree n. Let g1, . . . , gt be a sequence of polynomials

NEW RECOMBINATION ALGORITHMS 19

in A[x]d−1 with 1 ≤ t ≤ d. We are interested in evaluating Niederreiter’s operator
simultaneously at each gi.

Proposition 13. The computation of gp1 + (fp−1g1)(p−1), . . . , gpt + (fp−1gt)(p−1)

takes
O
(
M(n)

(
M(d)(d+ log(p)) + d2tω−2 + td(log(n) + log(p))

))
operations in K.

Proof. Since p is the characteristic, the computation of gp1 , . . . , g
p
t can be done with

O(td log(p)) ring operations in A, which amounts to O(tdM(n) log(p)) operations
in K. We can now focus on the computation of (fp−1g1)(p−1), . . . , (fp−1gt)(p−1).
If f is monic then this computation can be achieved by means of the matrix N
of Proposition 12 that can be built with O(M(d)(d + log(p))) operations in A: it
suffices to calculate the product of N with the d× t matrix whose columns are the
coefficients of the gi. This product takes O(d2tω−2) operations in A. We are done
with the monic case.

If f is not monic then we decompose A into A1×· · ·×Ar so that f can be made
monic in each Ai. Each Ai is of the form Ai := K[z]/(qi(z)), where qi will be a
monic polynomial in K[z] if degree ni ≥ 1. We perform the computations in each
Ai and recover the result by means of Chinese remaindering. This decomposition is
obtained as follows. For all i ∈ {0, . . . , d}, let fi represent the canonical preimage
in K[z] of the coefficient of xi in f . We construct A1 := K[z]/(q1(z)) so that the
projection of f into A1[x] has an invertible leading coefficient. More precisely, q1
is obtained as q1 := q/ gcd(fd, q). Since q is separable, q/q1 is prime with q1. It
follows that fd is invertible in A1. Let k1 be the largest integer such that fk1 is
nonzero modulo q/q1. Of course we have k1 ≤ d − 1, and k1 can be found with
(d− k1)M(n) operations in K. From fk1 and q/q1 we can compute q2 such that fk1
is invertible in A2 = K[z]/(q2(z)) and reduces to zero modulo q/(q1q2). By iterating
this process we obtain the claimed decomposition with O(dM(n) log(n)) operations
in K.

By [GG03, Corollary 10.17] any element of A can be sent to A1 × · · · × Ar with
O(M(n) log(n)) operations in K. Therefore all the projections of f and the gi into
A1[x]× · · · × Ar[x] amounts to O(tdM(n) log(n)) operations in K.

Now let i ∈ {1, . . . , r} and let us analyze the computation of

(fp−1g1)(p−1), . . . , (fp−1gt)(p−1)

in Ai[x]. For each j ∈ {1, . . . , t} we introduce πj and ρj for the quotient and the
remainder of gj divided by f in Ai[x], so that gj = πjf + σj holds in Ai. By con-
struction the divisions are well defined since the leading coefficient of f is invertible
in Ai. The inversion of the leading coefficient of f in Ai takes O(M(ni) log(ni))
operations in K. Then the computation of all the πj and σj amounts to O(tM(d))
ring operations in Ai. For each j we thus have to compute

(fp−1gj)(p−1) = (fpπj)(p−1) + (fp−1σj)(p−1) = fpπ
(p−1)
j + (fp−1σj)(p−1).

The computation of all the (fp−1σj)(p−1) can be done with O(d2tω−2 + M(d)(d +
log(p))) ring operations in Ai. Computing all the fpπ

(p−1)
j costs O(d log(p) +

tM(d)) operations in Ai. The computation of (fp−1g1)(p−1), . . . , (fp−1gs)(p−1) thus
amounts toO(d2tω−2+M(d)(d+log(p))) ring operations in Ai plusO(M(ni) log(ni))
operations in K.

The sum of these costs over i ∈ {1, . . . , r} leads to O(M(n)(M(d)(d + log(p)) +
d2tω−2 +log(n))) thanks to the super-additivity of M. Finally, all the (fp−1gi)(p−1)

can be lifted into A[x] by Chinese remaindering with O(tdM(n) log(n)) operations
in K by [GG03, Corollary 10.23]. �

20 G. LECERF

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-

Verlag, 1997.

[Ber67] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J.,
46:1853–1859, 1967.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp., 24:713–

735, 1970.
[BHKS09] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel. Factoring polynomials over global

fields. Journal de Theorie des Nombres de Bordeaux, 21, 2009.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC ’03:

Proceedings of the 2003 international symposium on Symbolic and algebraic computa-

tion, pages 37–44. ACM Press, 2003.

[BLS+04] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in bi-

variate polynomial factorization. In ISSAC ’04: Proceedings of the 2004 international
symposium on Symbolic and algebraic computation, pages 42–49. ACM Press, 2004.

[CG05] G. Chèze and A. Galligo. Four lectures on polynomial absolute factorization. In A. Dick-

enstein and I. Z. Emiris, editors, Solving polynomial equations: foundations, algo-
rithms, and applica tions, volume 14 of Algorithms Comput. Math., pages 339–392.

Springer-Verlag, 2005.

[DT81] J. H. Davenport and B. M. Trager. Factorization over finitely generated fields. In
SYMSAC ’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic

computation, pages 200–205. ACM Press, 1981.

[Fid85] C. M. Fiduccia. An efficient formula for linear recurrences. SIAM J. Comput.,
14(1):106–112, 1985.

[Gao03] S. Gao. Factoring multivariate polynomials via partial differential equations. Math.

Comp., 72(242):801–822, 2003.
[Gat84] J. von zur Gathen. Hensel and Newton methods in valuation rings. Math. Comp.,

42(166):637–661, 1984.
[GG94] S. Gao and J. von zur Gathen. Berlekamp’s and Niederreiter’s polynomial factorization

algorithms. In Finite fields: theory, applications, and algorithms (Las Vegas, NV,

1993), volume 168 of Contemp. Math., pages 101–116. Amer. Math. Soc., Providence,
RI, 1994.

[GG03] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University

Press, second edition, 2003.
[GL02] S. Gao and A. G. B. Lauder. Hensel lifting and bivariate polynomial factorisation over

finite fields. Math. Comp., 71(240):1663–1676, 2002.

[Hoe02] M. van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory,
95(2):167–189, 2002.

[Kal82a] E. Kaltofen. Polynomial factorization. In B. Buchberger, G. Collins, and R. Loos,

editors, Computer algebra, pages 95–113. Springer-Verlag, 1982.
[Kal82b] E. Kaltofen. A polynomial reduction from multivariate to bivariate integral polynomial

factorization. In Proceedings of the 14th Symposium on Theory of Computing, pages
261–266. ACM, 1982.

[Kal82c] E. Kaltofen. A polynomial-time reduction from bivariate to univariate integral polyno-

mial factorization. In Proceedings of the 23rd Symposium on Foundations of Computer
Science, pages 57–64. IEEE, 1982.

[Kal85] E. Kaltofen. Sparse Hensel lifting. In EUROCAL’85, Vol. 2 (Linz, 1985), volume 204

of LNCS, pages 4–17. Springer-Verlag, 1985.
[Kal90] E. Kaltofen. Polynomial factorization 1982–1986. In Computers in mathematics (Stan-

ford, CA, 1986), volume 125 of Lecture Notes in Pure and Appl. Math., pages 285–309.
Dekker, 1990.

[Kal92] E. Kaltofen. Polynomial factorization 1987–1991. In LATIN ’92 (São Paulo, 1992),

volume 583 of Lecture Notes in Comput. Sci., pages 294–313. Springer-Verlag, 1992.

[Kal95] E. Kaltofen. Effective Noether irreducibility forms and applications. J. Comput. System
Sci., 50(2):274–295, 1995.

[Kal03] E. Kaltofen. Polynomial factorization: a success story. In ISSAC ’03: Proceedings of
the 2003 international symposium on Symbolic and algebraic computation, pages 3–4.
ACM Press, 2003.

[KS91] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear
systems. In H. F. Mattson, T. Mora, and T. R. N. Rao, editors, Proceedings of AAECC-

9, volume 539 of Lect. Notes Comput. Sci., pages 29–38. Springer-Verlag, 1991.

NEW RECOMBINATION ALGORITHMS 21

[Lan02] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, third

edition, 2002.

[Lec06] G. Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization. Math.
Comp., 75:921–933, 2006.

[Lec07] G. Lecerf. Improved dense multivariate polynomial factorization algorithms. J. Sym-
bolic Comput., 42(4):477–494, 2007.

[Lec08] G. Lecerf. Fast separable factorization and applications. Applicable Algebra in Engi-

neering, Communication and Computing, 19(2), 2008.
[Mag] The Magma computational algebra system for algebra, number theory and geometry.

http://magma.maths.usyd.edu.au/magma/. Computational Algebra Group, School of

Mathematics and Statistics, The University of Sydney, NSW 2006 Australia.
[Nie94] H. Niederreiter. Factoring polynomials over finite fields using differential equations and

normal bases. Math. Comp., 62(206):819–830, 1994.

[Ste05] A. Steel. Conquering inseparability: primary decomposition and multivariate factor-
ization over algebraic function fields of positive characteristic. J. Symbolic Comput.,

40(3):1053–1075, 2005.

[Sto00] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH, Zürich,
Switzerland, 2000.

[Zip93] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.

Grégoire Lecerf, Laboratoire de Mathématiques (UMR 8100 CNRS), Université de

Versailles Saint-Quentin, 45 avenue des États-Unis, 78035 Versailles, France

E-mail address: Gregoire.Lecerf@math.uvsq.fr

	Introduction
	Main Results
	Overview of the Algorithms
	Related Works

	1. Reduction of the Recombination Problem to Linear Algebra
	1.1. Main Notation
	1.2. Partial Fraction Decomposition
	1.3. Characteristic Zero or Large Enough
	1.4. Small Positive Characteristic

	2. Recombination Algorithms
	2.1. Complexity Model
	2.2. Deterministic Algorithm
	2.3. Probabilistic Algorithm
	2.4. Testing the Recombination and Recovering the Factors

	3. The Whole Factorization Algorithm
	3.1. Factorization of Separable Polynomials
	3.2. The General Case

	Conclusion
	Acknowledgments
	Appendix A. Berlekamp's and Niederreiter's Equations
	A.1. Classical Properties
	A.2. Complexity

	References

