
FAST SEPARABLE FACTORIZATION AND APPLICATIONS

GRÉGOIRE LECERF

Abstract. In this paper we show that the separable decomposition of a uni-
variate polynomial can be computed in softly optimal time, in terms of the
number of arithmetic operations in the coefficient field. We also adapt the clas-
sical multi-modular strategy that speeds up the computations for many coef-
ficient fields, and we analyze consequences of the new results to the squarefree
and the irreducible factorizations.

Introduction

Let A be a unique factorization domain, let L denote its field of fractions, and
let p be the characteristic of L. Let us recall that a polynomial G ∈ A[y] \A is said
to be separable if Res(G, G′) 6= 0 (Res(F,G) represents the resultant of F and G).
Equivalently this means that G has no multiple root in the algebraic closure L̄ of
L. If G is irreducible, then it is further equivalent to G′ 6= 0. By convention, any
constant polynomial is considered to be separable.

Throughout this paper B := {1, p, p2, p3, . . .} denotes the set of the powers of p,
and m mod p represents the remainder of m in the division by p. If F is a primitive
polynomial in A[y] of degree d ≥ 1, and if p > 0, then the separable decomposition
of F , written Sep(F), is defined to be the set

Sep(F) := {(G1, q1,m1), . . . , (Gs, qs,ms)} ⊆ (A[y] \ A)× B × N

satisfying the following properties:
(S1) F (y) =

∏s
i=1 Gi(yqi)mi ;

(S2) for all i 6= j in {1, . . . , s}, Gi(yqi) and Gj(yqj) are coprime;
(S3) for all i ∈ {1, . . . , s}, mi mod p 6= 0;
(S4) for all i ∈ {1, . . . , s}, Gi is separable, primitive and of positive degree;
(S5) for all i 6= j in {1, . . . , s}, (qi,mi) 6= (qj ,mj).

We follow the same terminology as in [GG03]: the separable decomposition is the
set Sep(F), while the separable factorization is the process of computing this set.

If p = 0 then the separable decomposition of F is naturally defined to be the set
generated by all the triples (G, 1,m) such that G is a proper squarefree factor of F
with multiplicity m ≥ 1. The existence and the uniqueness (the Gi being defined
up to units in A) of the separable decomposition are recalled in Proposition 4 of
Section 1. Note that the separable decomposition of F coincides with its squarefree
decomposition whenever p = 0 or p ≥ d + 1.

Example 1. With A := F3 and F := y2(y + 1)3(y + 2)4 = y9 + 2y8 + 2y3 + y2, we
have that Sep(F) = {(y, 1, 2), (y + 1, 3, 1), (y + 2, 1, 4)}.

Date: Preliminary version of June 6, 2007. Revised version of October 9, 2007.
2000 Mathematics Subject Classification. Primary 12Y05, 68W30; Secondary 11Y16, 12D05,

13P05.
Key words and phrases. Polynomial factorization, separable factorization, squarefree factor-

ization, irreducible factorization.
This work was partly supported by the French Research Agency via the Gecko project

(gecko.inria.fr).

1

2 G. LECERF

Example 2. With A := F3[x] and F := (y + 2x)7(y3 + 2x)3(y6 + x), we have that
Sep(F) = {(y + 2x, 1, 7), (y + 2x3, 9, 1), (y2 + x, 3, 1)}.

Overview. The goal of this article is to demonstrate that reducing the square-
free and the irreducible factorization problems to separable polynomials is a good
theoretical point of view that is also very efficient in practice.

For completeness, the existence and the uniqueness of the separable decompo-
sition are given in the first section. The second section is then devoted to the
separable factorization algorithm. Therein we show that the separable decomposi-
tion can be computed by means of arithmetic operations (+, ∗,−, exact division,
equality test, and gcd) in the coefficient ring A alone. Our approach naturally
extends Yun’s classical squarefree factorization for characteristic 0 [GG03, Algo-
rithm 14.21], and is softly optimal if A is a field. In Section 3 we adapt the multi-
modular strategy that is worthful whenever A is a multivariate polynomial ring
over a field with sufficiently many elements. Finally Section 4 is devoted to appli-
cations of the new results to the complexities of the squarefree and the irreducible
factorizations. We have implemented our algorithms within the Magma computer
algebra system [Mag]. Our package, called sepfact, is available for download from
http://www.math.uvsq.fr/~lecerf/software. We will report on performances
on the multi-modular approach in Section 3.4.

Related Works. The separable decomposition is classical in the study of the
irreducible factorization because its helps reducing the problem to separable poly-
nomials (see Section 4). Seminal works in polynomial factorization date back to
Kronecker in 1882 [Kro82]. Forty years later Hermann [Her26], followed by van
der Waerden [Wae30, Wae49], Fröhlich and Shepherdson [FS55, FS56] in the fifties,
and then Seidenberg [Sei70, Sei74, Sei78] and Richman [Ric81, MR82] solved all the
constructibility and calculability issues of irreducible factorization. The separable
factorization is present in the modern treatment of constructive mathematics by
Richman and his collaborators (see the book [MRR88]).

Application to the Squarefree Factorization. If A is a perfect field then our softly op-
timal separable factorization algorithm, namely Algorithm 3 of Section 2, essentially
coincides with the squarefree factorization algorithm of [GG03, Exercise 14.30]. In
general, when A is not perfect, to the best of our knowledge, the separable factor-
ization first clearly appeared in computer algebra in a work by Gianni and Trager
on the squarefree factorization [GT96]. Their algorithm is derived from Musser’s
one [Mus71], hence it has an inherent quadratic cost.

Application to the Irreducible Factorization. The computer algebra literature often
suggests that the irreducible factorization should be reduced to squarefree poly-
nomials ([DT81, Gat84, BM97],. . .). Although this point of view is well suited
to characteristic 0, several problems arise in positive characteristic, and one must
consider the separable decomposition instead of the squarefree one.

In fact, if A = K[x] is a univariate polynomial ring over some effective field
K. It is classical that the irreducible factorization in A[y] reduces to the one in
K[y] efficiently by means of the Hensel lifting strategy [GG03, Chapter 15]. If the
characteristic is 0 or is sufficiently large, and if F is squarefree then this strat-
egy begins with finding a specialization point a ∈ K such that F (a, y) remains
squarefree. Now if p > 0 this strategy behaves badly. For instance, consider
F := (yp + x)(y + xp) with with K being the algebraic closure of Fp (the field with
p elements). It is clear that F is squarefree, and that F (a, y) is not squarefree for
all a ∈ K. By symmetry the same holds even if x and y are swapped. On the other

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 3

hand Sep(F) = {(y + xp, 1, 1), (y + x, p, 1)}, and for all a ∈ K, the polynomials
y + ap and y + a are separable.

In the factorization algorithm of multivariate polynomials over finite fields de-
signed by Bernardin and Monagan in [BM97], this specialization problem in Hensel
lifting is solved by using the separable factorization in a hidden manner: it turns
out that their squarefree factorization algorithm, borrowed from [Ber97], internally
performs the separable one. However the explicit algorithmic use of the separable
factorization as a general pretreatment to the irreducible one first appeared in a
recent algorithm due to Steel [Ste05] that handles all coefficient field being explic-
itly finitely generated over its prime field. Such an algorithm had been previously
proposed by Davenport and Trager in [DT81], but it contained some gaps and
imprecision pointed out by Steel. It is important to mention that Steel showed
in [Ste05, Remark 3.4(1)] that the separable decomposition could be obtained by
modifying standard squarefree factorization algorithms. Our contributions in this
paper essentially concern the precise design of these modifications and the cost
analysis.

For generalities on the irreducible factorization we refer the reader to [GG03], to
Kaltofen’s surveys [Kal82, Kal90, Kal92], and to [Gao01, BHKS04, Lec07a, Ste05,
Lec06] for recent advances.

Further Related Works. Besides its impact towards the squarefree and the irre-
ducible factorizations, the separable decomposition is useful in other contexts, as
illustrated by Fortuna and Gianni with the computation of the Jordan normal form
of a matrix [FG99]. Finally let us mention that the multi-modular approach de-
veloped in our Section 3 had already been treated by Gerhard for the special case
when A = Z (where the separable and squarefree decompositions coincide) [Ger01].

1. Separable Factorization

Throughout this section, A is a unique factorization domain of characteristic p,
whose field of fractions is written L, and F is a primitive polynomial in A[y] of
degree d ≥ 1.

We write Sqr(F) for the squarefree decomposition of F , that is the set of pairs
(G, m) where G represents the squarefree factor of F with multiplicity m ≥ 1 (i.e.
the product of the irreducible factors of F with multiplicity m). We also define
Irr(F) to be the irreducible decomposition of F , that is the set of the pairs (G, m),
where G runs over the irreducible factors of F , and where m ≥ 1 is the multiplicity
of G in F , so that

F (y) =
∏

(G,m)∈Irr(F)

Gm.

The squarefree and irreducible factors are primitive and uniquely defined up to
units in A.

1.1. Separable and Inseparable Degrees. We write degi(F) for the inseparable
degree of F defined as the largest integer q in B such that F ∈ A[yq] \ A[ypq].

Proposition 1. Let F and G be primitive polynomials in A[y] \ A.
a. The inseparable degree of F is the largest power of p that divides all the

multiplicities of the roots of F .
b. degi(FG) ≥ min(degi(F),degi(G)) with equality whenever F and G are co-

prime.

Proof. If q ∈ B divides the multiplicities of all the roots of F , then F clearly belongs
to A[yq]. Conversely, if F rewrites into G(yq) with some q ∈ B, then the multiplicity

4 G. LECERF

of a root of F must be a multiple of q. This proves part (a), which directly implies
part (b). �

We define the separable degree of F ∈ A[y], written degs(F), as follows:

degs(F) :=
∑

(G,m)∈Irr(F)

deg(G)/ degi(G) =
∑

(G,m)∈Irr(F)

degs(G).

If G is irreducible then degi(G) (resp. degs(G)) corresponds to the inseparable
(resp. separable) degree of L[y]/(G(y)) seen as a field extension of L, so that
deg(G) = degi(G) degs(G) holds. From this remark derives the following proposi-
tion:

Proposition 2. Let F and G be primitive polynomials in A[y] \ A.

a. degs(F) equals the number of roots of F in L̄ without counting multiplicities.
b. F is separable if, and only if, degs(F) = deg(F).
c. For all q ∈ B, degs(F (yq)) = degs(F).
d. degs(FG) ≤ degs(F) + degs(G), with equality if, and only if, F and G are

coprime.
e. degs(F) =

∑
(G,q,m)∈Sep(F)

deg(G).

1.2. Deflation of Polynomials. For any F in A[y] \ A, let us write F̃ for the
deflated polynomial of F , that is uniquely defined by the following equality:

F̃ (ydegi(F)) := F (y).

Remark that the multiplicities of the roots of F̃ are the ones of F divided by
degi(F), whence the terminology “deflation”. Since F̃ belongs to A[y] \ A[yp], the
following map Φ is well-defined:

Φ : A[y] \ A → (A[y] \ A[yp])× B

F 7→ (F̃ ,degi(F)).

Now let Q be the set of the qth powers of an irreducible polynomial in A[y]\A with
q ∈ B, and let S be the set of the separable irreducible polynomials in A[y] \ A.

Proposition 3. Φ is a bijection, and restricts to a bijection from Q onto S × B.

Proof. The fact that Φ is bijective is clear from the definitions. If F ∈ A[y] is irre-
ducible, then F̃ is necessarily irreducible. From F̃ /∈ A[yp] follows the separability
of F̃ . Since the deflated polynomial of F q coincides with the one of F̃ q for all q ∈ B,
Lemma 1 below implies that Φ(Q) is actually included in S × B.

Conversely, let (G, q) ∈ S × B. We shall show that F (y) := G(yq) belongs to
Q, and that degi(F) = q. The latter equality is already clear since G is separable.
Now let h ≤ q be the largest element of B such that G(yh) is a hth power, and let
G̃ be the corresponding hth root, so that we have G̃h(y) = G(yh). By Lemma 1
below, G̃ is irreducible and separable. Proposition 1(b) thus implies that G̃(yq/h)
is irreducible, which concludes the proof since F (y) = G̃(yq/h)h. �

Lemma 1. Let F and G in A[y] \ A be such that G(yp) = F (y)p.

a. G is primitive if, and only if, F is primitive.
b. G is separable if, and only if, F is separable.
c. If G is irreducible then F is irreducible. The converse holds if F or G is

separable.

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 5

Proof. Part (a) is clear. The multiplicities of G(yp) (resp. F (y)p) are all p if, and
only if, G (resp. F) is separable. Part (b) thus follows from Proposition 2. As for
part (c), if G is irreducible, then for any irreducible proper factor A of F , we have
that Ap divides F p, hence that B divides G, where B is defined by B(yp) = A(y)p.
It follows that B is a unit of A, so is A. Conversely, assume that F is irreducible,
and let A be a proper irreducible factor of G. Since A(yp) divides F (y)p, the
polynomial A(yp) rewrites into F (y)α for some α ∈ {0, . . . , p − 1}. Differentiating
thus yields αF ′Fα−1 = 0, whence α = 0 whenever F is separable. �

1.3. Existence and Uniqueness of the Separable Decomposition. The proof
of the following proposition makes use of the irreducible decomposition. The re-
lationship between the irreducible and the separable decompositions established
herein will be turned into an algorithm in Section 4. For a constructive proof we
refer the reader to [MRR88, Chapter VI, Theorem 6.3].

Proposition 4. Any primitive polynomial F ∈ A[y] admits a unique (up to units
in A) separable decomposition.

Proof. Let (F1, e1), . . . , (Fr, er) represent the irreducible decomposition of F in
A[y]. For each i ∈ {1, . . . , s}, let ai be the largest power of p that divides ei,
and let mi := ei/ai. We then define (Gi, qi) := Φ(F ai

i). The triples

(G1, q1,m1), . . . , (Gs, qs,ms)

obtained in this way satisfy (S1), (S2) and (S3) (as defined in the introduction),
and property (S4) follows from Proposition 3. In order to obtain (S5) it suf-
fices to gather the triples sharing the same second and third entries as follows:
if (A1, q,m), . . . , (At, q,m) are such triples then merge them into (A1 · · ·Ar, q,m).
Properties (S1) to (S4) are preserved, which concludes the existence proof.

Let (G1, q1,m1), . . . , (Gs, qs,ms) satisfy (S1) to (S5), and let i ∈ {1, . . . , s}. Any
root in L̄ of Gi(yqi) has multiplicity qi, hence multiplicity qimi in F . Property (S5)
thus implies that the roots of Gi(yqi) are exactly those of F with multiplicity qimi,
which concludes the proof of the uniqueness. �

Corollary 1. If A is contained in a unique factorization domain B then the sep-
arable factorization of F seen in B[y] coincides with the extension to B[y] of the
separable factorization of F .

2. Computation of the Separable Decomposition

This section in devoted to our fast separable factorization algorithm. This algo-
rithm concerns any coefficient ring (that is a unique factorization domain) as soon
as the ring operations (equality test, exact division, and gcd) are effective. For
the cost analysis we will suppose that A is a field in order to benefit of the softly
optimal gcd algorithm and other such fundamental operations.

2.1. Computational Model. Formally speaking, for our cost analysis, we use the
computation tree model [BCS97, Chapter 4] from the total complexity point of view.
This means that complexity estimates charge a constant cost for each arithmetic
operation (+, −, ×, ÷) and the equality test. Yet all the constants in the base
fields (or rings) of the trees are thought to be freely at our disposal.

Everywhere, a univariate polynomial of degree d is thought to be represented
as the vector of its coefficients of size d + 1. For each integer d, we assume that
we are given a computation tree that computes the products of two polynomials
of degree at most d with at most M(d) operations, independently of the base ring.
As in [GG03, Chapter 8.3], for any positive integers d1 and d2, we assume that M
satisfies the following properties: M(d1d2) ≤ d2

1M(d2) and M(d1)/d1 ≤ M(d2)/d2

6 G. LECERF

if d1 ≤ d2. In particular, this implies the super-additivity of M, that is M(d1) +
M(d2) ≤ M(d1 + d2).

During the cost analyzes we will appeal to the following classical results without
explicit references to them:

• the resultant and the extended greatest common divisor of two univari-
ate polynomials of degree at most d over a field L can be computed with
O(M(d) log(d)) operations in L [GG03, Chapter 11];

• the product of r univariate polynomials G1, . . . , Gr over a field L whose de-
gree sum is d takesO(M(d) log(r)) operations in L by means of the subproduct
tree technique [GG03, Chapter 10];

• if F ∈ L[y] has degree d then the remainders of F modulo all the Gi can
also be computed with O(M(d) log(r)) operations in L. This task is usu-
ally called the simultaneous reduction. The inverse problem, called Chinese
remaindering, also costs O(M(d) log(r))[GG03, Chapter 10].

We will use the classical Õ (“soft Oh”) notation in the neighborhood of infinity
as defined in [GG03, Chapter 25.7]. Informally speaking, “soft Oh”s are used for
readability in order to hide logarithmic factors in cost estimates.

2.2. The Induction Step. The separable decomposition of F is to be obtained
by induction via the following Lemma:

Lemma 2. Assume that p > 0, and let F be a primitive polynomial in A[y]. There
exist unique (up to units in A) polynomials S0 and S1 in A[y] such that the following
properties hold:

• the irreducible factors of S0 are separable and with multiplicity at most p−1;
• F (y) = S0(y)S1(yp).

Proof. Let S0 ∈ A[y] be defined by its irreducible factorization as follows:

Irr(S0) := {(G, mmod p) | (G, m) ∈ Irr(F), G is separable and m mod p 6= 0}.
Any irreducible factor G of F/S0 is either inseparable or its multiplicity m in F is
a multiple of p. In both cases Gm belongs to A[yp], whence F/S0 ∈ A[yp]. We can
thus define S1 to be the unique polynomial such that S1(yp) = F (y)/S0(y). We are
done with the existence of the decomposition.

Let us now deal with the uniqueness. Let S0 and S1 be polynomials as in the
lemma, and let G be an irreducible factor of S0 with multiplicity e ≤ p− 1. Let m
denote the multiplicity of G in F , so that m− e is the multiplicity of G in S1(yp).
Then Proposition 1 implies that degi(Gm−e) ≥ 1, and thus that p divides m − e,
since G is separable. Finally from e ≤ p− 1 we deduce that e = m mod p. �

Example 3. With Example 1 we have that S0 = (y + 2)y2 and S1 = (y + 1)(y + 2).

Example 4. With Example 2 we have that S0 = y + 2x and S1 = (y2 + x)(y +
2x3)2(y + 2x)3.

2.3. Yun’s Algorithm Revisited. In this subsection S0 and S1 are the poly-
nomials defined in Lemma 2. We first show that Yun’s algorithm [GG03, Al-
gorithm 14.21] called with F actually returns Sqr(S0), that is also equivalent to
Sep(S0). Then we will proceed by induction in order to complete the separable
factorization of F .

Algorithm 1. Squarefree factorization of S0.
Input: a primitive polynomial F ∈ A[y] of degree d.
Output: Sqr(S0) and S1.
1. Let l := 1 and initialize L with the empty list.

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 7

2. Compute U := gcd(F, F ′), V := F/U , and W := F ′/U .
3. While deg(V) ≥ 1 do:

a. Compute H := gcd(V,W − V ′), W = (W − V ′)/H, and V := V/H.
b. If deg(H) ≥ 1 then append (H, l) to L.
c. Increment l by 1.

4. Compute S0 :=
∏

(H,l)∈L H l.
5. Compute F/S0 and let S1 be defined by S1(yp) = (F/S0)(y).
6. Return L and S1.

Lemma 3. Algorithm 1 works correctly as specified. If A is a field then it takes
O(M(d) log(d)) operations in A.

Proof. The proof is essentially the same as the one of Yun’s algorithm as done
in [GG03, Theorem 14.23] except that [GG03, Lemma 14.22] has to be replaced by
Lemma 4 below. However, for completeness, let us briefly recall this proof. Let
Vl and Wl denote the respective values of V and W when entering step l of the
while loop, and let Hl be the value of H computed during step l of the loop. Let
n be the value of l when exiting the loop. By convention we also let Vn and Wn

be the respective values of V and W when exiting the loop. We have to prove by
induction on l from 1 to n that the following properties hold:

Vl =
∏

(G,m)∈Sqr(S0)
m≥l

G, Wl =
∑

(G,m)∈Sqr(S0)
m≥l

(m− l + 1)
Vl

G
G′.

In step 2 we have:

U = gcd(S0, S
′
0)S1(yp), V =

S0

gcd(S0, S′0)
, W =

S′0
gcd(S0, S′0)

.

Let E0 denote the squarefree part of S0. From the squarefree decomposition of S0

we calculate:

gcd(S0, S
′
0) = gcd

 ∏
(G,m)∈Sqr(S0)

Gm,
∑

(G,m)∈Sqr(S0)

m
S0

G
G′


= gcd

E0,
∑

(G,m)∈Sqr(S0)

m
E0

G
G′

 ∏
(G,m)∈Sqr(S0)

Gm−1

=
∏

(G,m)∈Sqr(S0)

Gm−1.

The latter equality makes use of Lemma 4 below. It thus follows that the induction
hypothesis holds when l = 1. Let us now assume that the induction hypothesis
holds up to some l ∈ {1, . . . , n− 1}. Thanks to Lemma 4 again we obtain that:

Hl = gcd(Vl,Wl − V ′
l) = gcd

 ∏
(G,m)∈Sqr(S0)

m≥l

G,
∑

(G,m)∈Sqr(S0)
m≥l

(m− l)
Vl

G
G′


=

∏
(G,m)∈Sqr(S0)

m=l

G,

from which the formulas for Vl+1 and Wl+1 easily follow. Since n is the first integer
such that deg(Vn) = 0, we deduce that n− 1 is the largest multiplicity among the
irreducible factors of S0. Finally we have shown that L contains all the squarefree
factors of S0 at the end of the loop.

8 G. LECERF

Step 2 takes O(M(d) log(d)) operations in L. Step l of the while loop costs
O(M(deg(Vl)) log(deg(Vl))) since deg(Wl) ≤ deg(Vl) − 1. By the super-additivity
of M, step 3 thus amounts to O

(
M
(∑n−1

l≥1 deg(Vl)
)

log(d)
)

operations, and the

conclusion follows from
∏n−1

l=1 Vl = S0. Once Sep(S0) is computed, the computation
of S0 takes O(M(d) log(d)) operations, and then we need an extra O(M(d)) in order
to deduce S1. �

Lemma 4. Let G1, . . . , Gs be separable primitive polynomials in A[y] \A, let G :=
G1 · · ·Gs, and let (c1, . . . , cs) ∈ As. If G1, . . . , Gs are pairwise coprime then the
following equality holds:

gcd

(
G,

s∑
i=1

ci
G

Gi
G′

i

)
=
∏
ci=0

Gi.

Proof. A straightforward calculation gives:

gcd

(
G,

s∑
i=1

ci
G

Gi
G′

i

)
=

s∏
j=1

gcd

(
Gj ,

s∑
i=1

ci
G

Gi
G′

i

)
=

s∏
j=1

gcd
(

Gj , cj
G

Gj
G′

j

)
.

The latter gcd equals Gj if cj = 0 and is 1 otherwise since G′
j is prime with Gj . �

2.4. Main Algorithm. In order to obtain the separable decomposition of F , we
will compute Sqr(S0) and S1 by the preceding algorithm. Then we shall recursively
compute Sep(S1), and finally merge these two decompositions into Sep(F). Let us
start with explaining how this merging can be done fast. If

Sqr(S0) = {(G1,m1), . . . , (Gr,mr)},
Sep(S1) = {(H1, q1, n1), . . . , (Hs, qs, ns)},

then the next algorithm computes all the Ui,j := gcd(Gi,Hj(ypqj)) for i ∈ {1, . . . , r}
and j ∈ {1, . . . , s}. We will see that (Ui,j , 1,mi + pqjnj) is an element of Sep(F)
whenever deg(Ui,j) ≥ 1. In order to compute all these gcd fast we appeal to
simultaneous reductions. For this purpose we write

A pmodB := lc(B)max(0,deg(A)−deg(B))A modB

for the pseudo-remainder of A divided by B. Here lc(B) represents the leading
coefficient of B. Recall that the exact division in A is supposed to be effective.

Algorithm 2. Merging Sqr(S0) and Sep(S1).
Input: a primitive polynomial F ∈ A[y] of degree d, Sqr(S0) and Sep(S1).
Output: Sep(F).
1. If S1 ∈ A then return {(G1, 1,m1), . . . , (Gr, 1,mr)}.

Otherwise initialize L with the empty list.
2. For all i ∈ {1, . . . , r} do

a. For all j ∈ {1, . . . , s} compute Ri,j(y) := G̃i(y) pmodHj(yqj), where G̃i

is the deflated polynomial of Gi(y)p, so that G̃(yp) = Gi(y)p.
b. For all j ∈ {1, . . . , s} compute Si,j(y) := gcd(Ri,j(y),Hj(yqj)).
c. For all j ∈ {1, . . . , s} compute Ti,j(y) := Gi(y) pmodSi,j(yp).
d. For all j ∈ {1, . . . , s} compute Ui,j(y) := gcd(Ti,j(y), Si,j(yp)) and ap-

pend (Ui,j , 1,mi + pqjnj) to L if deg(Ui,j) ≥ 1.
e. Compute Vi(y) :=

∏s
j=1 Ui,j(y).

f. Compute Ui,0(y) := Gi(y)/Vi(y) and append (Ui,0, 1,mi) to L if
deg(Ui,0) ≥ 1.

3. For all j ∈ {1, . . . , s} do
a. Compute Wj(yqj) :=

∏r
i=1 Si,j(y)qj .

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 9

b. Compute U0,j(y) := Hj(y)/Wj(y) and append (U0,j , pqj , nj) to L if
deg(U0,j) ≥ 1.

4. Return L.

Lemma 5. Algorithm 2 works correctly as specified. If A is a field then it takes
O(M(d) log(d)) operations in A.

Proof. As for the correctness, by Proposition 4, we have to check that the returned
list L satisfies properties (S1) to (S5). For all i ∈ {1, . . . , r} and all j ∈ {1, . . . , s}
we have that

Ri,j(yp) = Gi(y)p pmodHj(ypqj), Si,j(yp) = gcd(Gi(y)p,Hj(ypqj)),

hence that:

Ui,j(y) = gcd(Gi(y), Si,j(yp)) = gcd(Gi(y), gcd(Gi(y)p,Hj(ypqj)))

= gcd(Gi(y),Hj(ypqj)).

At the end of step 2, for all i ∈ {1, . . . , r}, it is clear that Gi =
∏s

j=0 Ui,j , and that
the Ui,j are separable and pairwise coprime.

In step 3 we have that

Si,j(y)qj = gcd(G̃i(y)qj ,Hj(yqj)qj) = gcd(G̃i(y)qj ,Hj(yqj))

since G̃i is separable by Lemma 1. It follows that U0,j is well-defined, and that

Wj(ypqj) =
r∏

i=1

Si,j(yp)qj =
r∏

i=1

gcd(Gi(y)pqj ,Hj(ypqj)) =
r∏

i=1

Ui,j(y)pqj .

We deduce that Hj(ypqj) = U0,j(ypqj)
∏r

i=1 Ui,j(y)pqj holds for all j ∈ {1, . . . , s}.
Therefore F rewrites into:

F (y) = S0(y)S1(yp) =

 r∏
i=1

s∏
j=0

Ui,j(y)mi

 s∏
j=1

(
U0,j(ypqj)nj

r∏
i=1

Ui,j(y)pqjnj

)

=

 r∏
i=1

s∏
j=1

Ui,j(y)mi+pqjnj

(r∏
i=1

Ui,0(y)mi

) s∏
j=1

U0,j(ypqj)nj

 .

The decomposition returned in L thus satisfies (S1). The other properties are
immediately satisfied by construction. We are done with the correctness.

Let us now analyze the cost of the algorithm. If p ≥ d + 1 then S1 ∈ A,
and the algorithm does nothing. From now on we can assume that p ≤ d. The
following costs are direct consequences of the classical results recalled in Section 2.1,
the super-additivity of M, the inequality r ≤ p − 1, and deg(S0) + p deg(S1) = d.
Step 2a performs pth powering and simultaneous reductions. Its total cost amounts
to

O

(
r∑

i=1

deg(Gi) log(p) +
r∑

i=1

(
M(deg(S1)) log(s) + M(max(deg(Gi),deg(S1)))

))
⊆ O

(
deg(S0) log(d) + pM(S1) log(d) + M(deg(S0))

)
⊆ O(M(d) log(d)).

The total cost of the gcd computed in steps 2b belongs to

O

 r∑
i=1

s∑
j=1

M(deg(Hj(yqj))) log(deg(Hj(yqj)))


⊆ O (pM(deg(S1)) log(d)) ⊆ O(M(d) log(d)).

10 G. LECERF

The total cost of the simultaneous reductions of steps 2c amounts to

O

 r∑
i=1

M(deg(Gi)) + M

p

s∑
j=1

deg(Si,j)

 log(d)


⊆ O (M(deg(S0)) + M(p deg(S1)) log(d)) ⊆ O(M(d) log(d)).

The total cost of steps 2d belongs to

O

 r∑
i=1

s∑
j=1

M(p deg(Si,j)) log(d)

 ⊆ O(M(d) log(d)).

The subproduct trees and divisions in steps 2e and 2f cost

O

(
r∑

i=1

M(deg(Gi)) log(d)

)
⊆ O(M(d) log(d)).

Finally the cost of step 3 is in

O

 s∑
j=1

M(deg(Hj(yqj))) log(d)

 ⊆ O(M(d) log(d)).

�

Example 5. With Example 1 we enter Algorithm 2 with Sqr(S0) = {(y+2, 1), (y, 2)}
and Sep(S1) = {((y + 1)(y + 2), 1, 1)}, and obtain the following values of Ui,j :

i\j 0 1
0 (y + 1)
1 1 (y + 2)
2 y 1

Example 6. With Example 2 we enter Algorithm 2 with Sqr(S0) = {(y + 2x, 1)}
and Sep(S1) = {(y2+x, 1, 1), (y+2x3, 1, 2), (y+2x3, 3, 1)}, and obtain the following
values of Ui,j :

i\j 0 1 2 3
0 y2 + x 1 y + 2x3

1 1 1 (y + 2x) 1

We are now ready to complete the separable factorization algorithm:

Algorithm 3. Separable factorization.

Input: a primitive polynomial F ∈ A[y] of degree d.
Output: Sep(F).

1. Compute Sqr(S0) and S1 with Algorithm 1.
2. Recursively call the present algorithm in order to compute Sep(S1).
3. Call Algorithm 2 with Sqr(S0) and Sep(S1) on order to obtain Sep(F).

Proposition 5. Algorithm 3 works correctly as specified. If A is a field then it
takes O(M(d) log(d)) operations in A.

Proof. The proof is a direct consequence of Lemmas 3 and 5, and of the following
bound:

∑
k≥0 M(d/pk) log(d/pk) ∈ O(M(d) log(d)). �

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 11

3. Multi-modular Algorithm

If A is a multivariate polynomial ring over a field K then the separable factor-
ization algorithm of the preceding section performs several pseudo-divisions and
gcds. In practice, assuming that K has sufficiently many elements, such gcds com-
putations behave well when computed via the multi-modular algorithm [GG03,
Chapter 6], but the pseudo-divisions in Algorithm 3 provoke an expression swell
for non-monic polynomials. In order to remedy this behavior, in this section, we
propose a multi-modular separable factorization algorithm that even saves all the
intermediate evaluations and interpolations involved within the gcd computations.
In fact, and for a general unique factorization domain A, we will compute the sep-
arable factorization of F modulo sufficiently many maximal ideals of A, then the
Chinese remainder theorem will allow us to reconstruct the result over A. Of course
it is necessary to require that A contains sufficiently many maximal ideals. Let us
recall that the special case for when A = Z has already been treated in [Ger01].

Throughout this section, F still denotes a primitive polynomial in A[y], and
lc(F) ∈ A represents the leading coefficient of F . If m is a maximal ideal of A, then
we write F modm for the residue class of F in A/m[y]. For convenience, we say
that m is lucky if deg(F modm) = deg(F), and if the image of Sep(F) in A/m[y]
coincides with Sep(F modm), which precisely means that

Sep(F modm) = {(G modm, q,m) | (G, q,m) ∈ Sep(F)}.

Otherwise we say that m is unlucky.
We will consider both deterministic and probabilistic points of views. Our prob-

abilistic algorithms are seen as usual algorithms that depends on some parameters
given as extra input. They will be of type Las Vegas, which means that the output
is always correct. On the other hand the algorithm may stop prematurely without
returning any answer. In the latter case we say that the given values of the param-
eters are unlucky. Our cost bounds concern both lucky and unlucky behaviors.

3.1. Characterization of Lucky Ideals. Let L = {(G1, q1,m1), . . . , (Gs, qs,ms)}
be a subset of (A[y] \ A) × B × N with all the Gi being primitive, and such that
properties (S1), (S3) and (S5) hold, and let

E(L) :=
∏

(G,q,m)∈L

G(yq), D(L) :=
∑

(G,q,m)∈L

E(L)
G(yq)

G′(yq),

∆(L) := Res(E(L), D(L)).

Lemma 6. ∆(L) 6= 0 if, and only if, L = Sep(F).

Proof. By the multiplicativity of the resultant we have that (the following equalities
hold up to nonzero factors in A):

∆(L) =
∏

(G,q,m)∈L

Res
(

G(yq),
E(L)
G(yq)

G′(yq)
)

=
∏

(G,q,m)∈L

Res
(

G(yq),
E(L)
G(yq)

) ∏
(G,q,m)∈L

Res(G(yq), G′(yq)).

Therefore (S2) and (S4) are satisfied if, and only if, ∆(L) 6= 0. �

Lemma 7. A maximal ideal m is lucky if, and only if, lc(F)∆(Sep(F)) 6∈ m.

Proof. For convenience, let us write Sep(F) modm for

{(G modm, q,m) | (G, q,m) ∈ Sep(F)}.

12 G. LECERF

If lc(F) 6∈ m then none of the leading coefficients of the separable factors G of F
belongs to m, whence ∆(Sep(F))modm is proportional to ∆(Sep(F) modm). The
conclusion thus follows from the previous lemma and from the uniqueness of the
separable factorization (stated in Proposition 4). �

Proposition 6. For all maximal ideal m we have that degs(F modm) ≤ degs(F),
with equality if, and only if, m is lucky.

Proof. Let us first prove the lemma for when F = G(yq)m with q ∈ B, m mod p 6= 0,
and G being separable. In this case Proposition 2 provides us with degs(F modm) =
degs(G modm) ≤ deg(G) = degs(F), and

degs(G modm) =
∑

(H,e,n)∈Sep(G mod m)

deg(H).

From G modm =
∏

(H,e,n)∈Sep(G mod m)

H(ye)n, we deduce that the latter inequality

is an equality if, and only if, m is lucky for G.
Let us now deal with the general case. From Proposition 2 we have that:

degs(F modm) ≤
∑

(G,q,m)∈Sep(F)

degs(G modm)

≤
∑

(G,q,m)∈Sep(F)

degs(G) = degs(F).

The former inequality is an equality if, and only if, the G(yq) modm are pairwise
coprime. The latter inequality is an equality if, and only if, m is lucky for all the
G, which concludes the proof. �

3.2. Algorithm. Every finite setM of maximal ideals of A determines a projection

ρM : A[y] →
∏

m∈M
A/m[y]

G 7→ (G modm | m ∈M).

Assuming that ρM is effective, we say that a map σM from
∏

m∈M A/m[y] to
A[y] is an effective section of ρM if it is effective, and if ρMσM is the identity
map. For algorithmic purposes we shall assume that testing if an element of A
actually belongs to an ideal of A is effective. For instance, in the case of bivariate
polynomials treated in the next subsection, we will take A := K[x] and M will
be made of ideals of the form (x − a) with a ∈ K. Then ρM corresponds to the
evaluation at the points of M while σM will be taken as the usual interpolation.

Algorithm 4. Multi-modular separable factorization algorithm.

Input: a primitive polynomial F in A[y], and N a finite subset of maximal
ideals.

Output: Sep(F).

1. Initialize M with the subset of the ideals of N that do not contain lc(F).
2. For all m ∈M compute Lm := Sep(F modm).
3. Compute n := maxm∈M degs(F modm) by means of the formula in Proposi-

tion 2(e), and remove from M all the ideals m such that degs(F modm) < n.
4. If all the separable decompositions associated to the elements of M have

different degree patterns, then stop the execution. Otherwise, this means
that there exists a sequence of triples (di, qi,mi)i∈{1,...,s} such that: qimi

increases strictly, di ≥ 1 for all i, and for all m ∈ M the list Lm can be

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 13

reordered into [(Gm
1 , q1,m1), . . . , (Gm

s , qs,ms)], with deg(Gm
i) = di. Once

these data are reorganized in this way, for an effective section σM, compute:

L :=
[(

σM

(
lc(F) modm

lc(Gm
i)

Gm
i | m ∈M

)
, qi,mi

)
| i ∈ {1, . . . , s}

]
.

5. Replace each element (G, q,m) of L by (Ḡ, q,m), where Ḡ is computed as
the primitive part of G.

6. If the coefficients of
∏

(G,q,m)∈L G(yq)m and F are not all in the image of
σM then stop the execution.

7. If the ratio of lc(F) with
∏

(G,q,m)∈L lc(G)m is not a unit in A then stop the
execution.

8. Return L.

Proposition 7. Algorithm 4 either stops prematurely or returns a correct answer.

Proof. Assume that the algorithm finishes normally. Let L be the value of M
obtained at the end of step 3. By construction we have that

F/ lc(F) modm =
∏

(G,q,m)∈L

G(yq)m/ lc(G)m modm, for all m ∈ L.

Since lc(F) is guaranteed by step 7 to equal
∏

(G,q,m)∈L lc(G)m up to a unit factor
in A (that we discard for simplicity), we deduce that

F modm =
∏

(G,q,m)∈L

G(yq)m modm, for all m ∈ L.

Since all the coefficients of F and
∏

(G,q,m)∈L G(yq)m are in the image of σL, the
injectivity of σL imply that F =

∏
(G,q,m)∈L G(yq)m, that is property (S1). The

other properties (S2) to (S5) are clearly satisfied, which yields the correctness of
the output. �

3.3. Application to Bivariate Polynomials. Let us now analyze the cost of the
preceding multi-modular approach for when A := K[x]. For N we only consider
ideals of the form (x−a) with a ∈ K. For all M = {(x−a1), . . . , (x−an)} ⊆ N , we
set σM(b1, . . . , bn) to be the unique polynomial B of degree at most n−1 such that
B(ai) = bi for all i ∈ {1, . . . , n}. In order to avoid confusion we write dx := degx(F)
for the partial degree in x of F ∈ K[x][y], and dy := degy(F) for its degree in y.

Proposition 8. If K has cardinality at least dx(2dy + 1) + 1 then Sep(F) can be
computed with O(dy(dyM(dx) log(dx)+dxM(dy) log(dy))) or Õ(dxd2

y) operations in
K.

Proof. We call Algorithm 4 with N being a set of dx(2dy + 1) + 1 maximal ideals
in K[x] of the form (x − a). Let L be the value of M when entering step 4.
Since the number of roots of lc(F)∆(Sep(F)) ∈ K[x] is at most 2dxdy, Proposi-
tion 6 implies that L is made of lucky elements and has cardinality at least dx + 1.
On the other hand, for all (G, q,m) ∈ Sep(F), Lemma 8 below provides us with
degx(lc(F)G/ lc(G)) ≤ dx. It thus follows that L = Sep(F) when exiting step 5,
and that the remaining steps of are useless.

Let us now analyze the cost. The evaluation of F in x at O(dxdy) points takes
O(d2

yM(dx) log(dx)) operations in K. Then steps 1 and 2 cost O(dxdyM(dy) log(dy))
operations by Proposition 5. In step 4 it is sufficient to restrict to a subset of
M containing only dx + 1 elements. The interpolations can thus be done with
O(dyM(dx) log(dx)) operations. Finally the computation of the primitive parts
amounts to O(dyM(dx) log(dx)) more operations in K. �

14 G. LECERF

Lemma 8. If G divides F in K[x][y] then degx(lc(F)G/ lc(G)) ≤ degx(F).

Proof. The inequality follows from degx(lc(F)G/ lc(G)) = degx(F)+degx(lc(F))−
degx(lc(G))− degx(F/G) and degx(lc(F/G)) ≤ degx(F/G). �

The main drawback of the algorithm underlying Proposition 8 is the computation
of separable factorizations of F modm for too many m than actually needed to
interpolate the separable factors. In the next algorithm we appeal to a classical
probabilistic strategy to decrease the size of N at the price of introducing a casual
failure. The probabilities of success are to be formulated in terms of the following
function:

E(M,N) :=
1

1 +
(

M
N−M

)2 , for N ≥ 2M (1)

:= 0, for N < 2M.

Note that E(M,N) ≥ 1/2 whenever N ≥ 2M .

Proposition 9. If N is a set made of O(dx) maximal ideals of the form (x − a)
with a ∈ K, then Algorithm 4 performs O(dyM(dx) log(dx) + dxM(dy) log(dy)) or
Õ(dxdy) operations in K. If at least dx + 1 elements of N are lucky then the
algorithm finishes with the correct result. The density of the subsets N of a fixed
set made of N maximal ideals of the preceding form having cardinality 2(dx + 1)
and containing at least dx + 1 lucky ideals is at least E(2dxdy, N).

Proof. The proof of the first paragraph can be done mutatis mutandis as in the proof
of Proposition 8. Remark that step 6 only consists in testing if the cardinality of
M is at least dx + 1, and if

∑
(G,q,m)∈L qm degx(G) ≤ dx, which is negligible.

The probability estimate follows from Lemma 9 below, since we have already
seen that the number of unlucky ideals is at most 2dxdy by Lemma 7. �

In other words the latter proposition tells us that the separable decomposition of
a bivariate polynomial can be computed in softly optimal time by a probabilistic Las
Vegas algorithm with a uniformly bounded probability of failure. If the cardinality
of K is not sufficiently large then we can compute the separable decomposition of
F in a sufficiently large extension of K instead, by Corollary 1.

Lemma 9. Let M⊆ N be two sets of respective cardinalities M and N . For any
n ≤ M , the density of subsets of N of cardinality 2n having at most n elements in
M is at least E(M,N).

Proof. The case when N < 2M is immediate, so we can assume that N ≥ 2M from
now. The number of subsets of N of cardinality 2n with k ≤ n elements in M is(
M
k

)(
N−M
2n−k

)
. We set:

A :=
n∑

k=0

(
M
k

)(
N−M
2n−k

)(
N
2n

) and B :=
2n∑

k=n+1

(
M
k

)(
N−M
2n−k

)(
N
2n

) ,

so that A + B = 1 holds. We have to prove that A > E(M,N). Letting

C(M,N, n, k) :=
M · · · (M − k + 1)(N −M) · · · (N −M − (2n− k) + 1)

N · · · (N − 2n + 1)
,

A and B rewrite into:

A =
n∑

k=0

(
2n

k

)
C(M,N, n, k) and B =

2n∑
k=n+1

(
2n

k

)
C(M,N, n, k).

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 15

Table 1. Multi-modular speed-up

(dx, dy) F510(x)[y] (s) F510 [x][y] (s) pattern
(15,10) 0.010 0.040 (5, 1, 1), (1, 5, 1)
(30,20) 0.120 0.100 (10, 1, 1), (2, 5, 1)
(63,41) 3.300 0.470 (21, 1, 1), (4, 5, 1)

(126,107) 246.9 5.100 (42, 1, 1), (8, 5, 1), (1, 25, 1)

The terms in A vanish whenever k ≤ 2n−N + M − 1, while the ones in B are zero
whenever k ≥ M + 1. Since 2n−N + M ≤ 2n−M we have that

A =
n−1∑

k=max(0,2n−N+M)

(
2n

k

)
C(M,N, n, k) +

(
M
n

)(
N−M

n

)(
N
2n

)
>

n−1∑
k=max(0,2n−M)

(
2n

k

)
C(M,N, n, k), and

B =
n−1∑

k=max(0,2n−M)

(
2n

k

)
C(M,N, n, 2n− k).

For all k ∈ {max(0, 2n−M), . . . , n− 1}, since N −M ≥ M we obtain that

C(M,N, n, k)
C(M,N, n, 2n− k)

=
M · · · (M − k + 1)(N −M) · · · (N −M − (2n− k) + 1)
M · · · (M − (2n− k) + 1)(N −M) · · · (N −M − k + 1)

=
(N −M − k) · · · (N −M − (2n− k) + 1)

(M − k) · · · (M − (2n− k) + 1)
≥
(

N −M

M

)2(n−k)

≥
(

N −M

M

)2

,

whence A >
(

N−M
M

)2
B, which concludes the proof. �

When N = 2M we recover [GG03, Exercise 6.31], and the density bound is
sharp for n and N in the neighborhood of infinity. However, in general, numerical
experiments show that our bound could be refined.

3.4. Timings. We have implemented the algorithm underlying Proposition 9. In
Table 1 we report on our experiments for K := F510 on a Pentium (M) 1.8GHz
processor with Magma V2.11-14. Timings are given in seconds. The column K(x)[y]
means that we ran Algorithm 3 straightforwardly with A = K(x), while the second
column contains timings for the multi-modular algorithm. In the last column called
“pattern” we indicate ((degy(G), q,m) | (G, q,m) ∈ Sep(F)). As expected, we
observe that the multi-modular approach remedy the expression swell occurring in
the straightforward method.

4. Applications

This section is devoted to the reductions of the squarefree and the irreducible
factorizations to separable polynomials. These reductions are classical in charac-
teristic 0, hence we focus on positive characteristic p. Let us recall that, on the
contrary to the separable factorization, the squarefree and the irreducible ones can
not in general be computed by means of arithmetic operations in the coefficient ring
or field A alone. Indeed Fröhlich and Shepherdson have even shown that testing if
an element is a pth power is not decidable in general [FS56, Section 7] (see also the
example in [Gat84, Remark 5.10]). Therefore we need to extend our computational
model with pth root extraction. Precisely, we assume that we can test if an element

16 G. LECERF

of A is a pth power in A, and that we can compute the corresponding pth root
whenever it exists.

4.1. Squarefree Factorization. The relationship between the separable and the
squarefree factorizations has been precisely studied by Gianni and Trager in [GT96,
Section 4]. We are to revisit their results with a goal towards complexity improve-
ments.

Besides pth root extractions in A, we need to enlarge the computational model
with a routine called “basic split” that performs the following task: from any sepa-
rable primitive polynomial F ∈ A[y], compute Fi ∈ A[y], and Fs ∈ Ap[y] of maximal
possible degree such that F = FsFi. Here Ap stands for the pth powers of A. For
convenience we assume that the cost of “basic split” is bounded by a super-additive
function written S.

From [GT96, Proposition 16] we know that pth root extraction and “basic split”
are implied by Seidenberg’s condition P, which was introduced in [Sei70]. If A is
a field, by [MRR88, Theorem 3.1] the latter condition is equivalent to the extrac-
tion of pth roots in any explicitly finitely generated algebraic field extension of A,
which is further equivalent to the squarefree factorization over any explicitly finitely
generated algebraic field extension of A by [GT96, Theorem in p. 13].

The “basic split” of F mostly corresponds to the squarefree factorization of
F (yp). Precisely, after rewriting Fs(yp) into F̃s(y)p, we obtain that F (yp) =
Fi(yp)F̃s(y)p, whence Sqr(F) = {(Fi(yp), 1), (F̃s, p)}. Based on this “basic split”
we reach the general case via the following lemma:

Lemma 10. If F is a separable primitive polynomial in A[y], and if k ≥ 1, then
the squarefree factorization of F (ypk

) costs O(S(k deg(F))) plus O(k deg(F)) ex-
tractions of pth roots.

Proof. We follow [GT96, Proposition 13]. The case k = 1 is clear. If k ≥ 2 then we
write F (ypk

) = Fi(ypk

)F̃s(ypk−1
)p. The latter decomposition takes S(deg(F)) plus

O(deg(F)) pth root extractions. By [GT96, Corollary 4] Fi(ypk

) is squarefree and
we have that

Sqr(F (ypk

)) = {(Fi(ypk

), 1)} ∪ {(G, pq) | (G, q) ∈ Sqr(F̃s(ypk−1
))}.

By Lemma 1, F̃s is separable so that we can recursively compute the squarefree
decomposition of F̃s(ypk−1

). The cost follows from the super-additivity of S. �

Algorithm 5. Squarefree factorization.
Input: a primitive polynomial F ∈ A[y] of degree d.
Output: Sqr(F).
1. Compute the separable decomposition {(G1, q1,m1), . . . , (Gs, qs,ms)} of F .
2. For all i ∈ {1, . . . , s} compute the squarefree decomposition of Gi(yqi)

{(Gi,0(y), qi), (Gi,1(yp), qi/p), . . . , (Gi,logp(qi)(y
qi), 1)} := Sqr(Gi(yqi)).

Here logp represents the logarithm in base p.

3. Return
{(∏

qimi=npj Gi,j(ypj

), n
)
| n ∈ {1, . . . , d}

}
.

Proposition 10. Algorithm 5 works correctly as specified. If A is a field then it
costs O(M(d) log(d)) operations in A, O(S(d)) for “basic split”, and O(d) extrac-
tions of pth roots.

Proof. Step 1 takes O(M(d) log(d)) operations in A by Proposition 5. The cost
of step 2 follows the previous lemma and

∑s
i=1 logp(qi) deg(Gi) ≤ d. By means

of the subproduct tree technique, the last step amounts to O(M(d) log(d)) more
operations in A. �

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 17

The following corollary is an other solution of [GG03, Exercise 14.30], yet with
a slightly slower algorithm if one considers the constants hidden behind the O:

Corollary 2. If A is perfect field then the squarefree factorization of F can be
computed with O(M(d) log(d)) arithmetic operations in A and O(d) extractions of
pth roots in A. If A = Fq (the finite field with q elements) then the latter cost
amounts to O(M(d) log(d) + d log(q/p)) operations in Fq.

Proof. Since A is perfect, the “basic split” of a polynomial F returns Fi = 1 and
Fs = F , hence S is negligible. On the other hand, one pth root extraction in Fq

takes O(log(q/p)) operations in Fq via binary powering. �

With the notation being as in Section 3.3, let us now examine the case of bivariate
polynomials over perfect fields. We are to focus on fast probabilistic multi-modular
algorithms. We extend the computation tree model with a function that takes an
integer n and a finite subset N of K as input, and that returns a random subset of
N of cardinality n, assuming that the cardinality of N is at least n. The cost of
this operation is assumed to be bounded by a super-additive function written R(n),
that only depends on n. The probability distribution is supposed to be uniform in
the space of subsets of N of cardinality n. Until then end of this paper every tree
that is executable on a given input computes the expected result.

Over a perfect field, the “basic split” of the bivariate polynomial F (x, y) is simply
given by

Fs = gcd
(

F,
∂F

∂x

)
, Fi =

F

Fs
.

The cost of this operation is a consequence of the following classical proposition:

Proposition 11. For each bidegree (dx, dy), there exists a computation tree that
takes two polynomials F and G in K[x, y] of bidegree (dx, dy) as input, and returns
D := gcd(F,G), together with F/D and G/D. The tree takes O(dxM(dy) log(dy) +
dyM(dx) log(dx)) operations in K, plus R(2(dx +dy +1)) for one random set gener-
ation. If this set is taken at random in a set of cardinality N , then the probability
that the tree is executable on a given input is at least E((2dy + 1)dx, N).

Proof. The case dx = 0 or dy = 0 is trivial. Then the general result is derived
from [GG03, Algorithm 6.36] mutatis mutandis, with the help of Lemma 9. Note
that F/D and G/D are actually computed in [GG03, Algorithm 6.36]. �

Based on this proposition we can adapt Lemma 10 to our bivariate case.

Lemma 11. For each bidegree (dx, dy) and each integer k ≥ 1, there exists a
computation tree that takes a separable primitive polynomial F ∈ K[x][y] as input
and returns Sqr(F (ypk

)). The tree takes O(dxM(dy) log(dy) + dyM(dx) log(dx))
operations in K, plus O(dxdy) root extractions in K, and R(2k(dx + dy + 1)) for
generating random sets. If all these sets are taken uniformly at random in a subset
of K of cardinality N , then the probability that the tree is executable on a given
input F is at least E

(
pk−1

(p−1)pk−1 (2dy + 1)dx, N
)
.

Proof. We follow the notation and the induction of Lemma 10. For when k = 1
one needs to perform O(dxdy) root extractions in K. Then the degree in x of F̃s is
at most dx/p, which concludes the cost analysis since

∑k−1
i=0 1/pi = pk−1

(p−1)pk−1 ≤ 2.
The bound of the probability of success is a consequence of Lemma 12 below. �

Finally Algorithm 5 adapted to the bivariate case provides us with:

18 G. LECERF

Proposition 12. For each bidegree (dx, dy), there exists a computation tree that
takes a primitive polynomial F ∈ K[x][y] as input, and returns Sqr(F). The cost of
the tree amounts to O(dxM(dy) log(dy)+dyM(dx) log(dx)) or Õ(dxdy) operations in
K, plus O(dxdy) root extractions in K, and at most R(4dx +4dy +2) for generating
random sets. If all these sets are taken uniformly at random in a subset of K of
cardinality N , then the probability that the tree is executable on a given input is at
least E(2(3dy + 1)dx, N).

Proof. For step 1 of Algorithm 5 we use Proposition 9. For step 2 we appeal to
Lemma 11. The final step amounts to O(dxM(dy) log(dy) + dyM(dx) log(dx)) oper-
ations in K by the multi-modular subproduct tree technique. The total numbers of
operations in K and of pth root extractions easily follow. The cost for generating
random sets is

R(2(dx + 1)) +
s∑

i=1

R(2 logp(qi)(degx(Gi) + degy(Gi) + 1)) ≤ R(4dx + 4dy + 2).

The probability that the tree is executable on a given input is at least

E(2dxdy, N)
s∏

i=1

E(2(2 degy(Gi) + 1) degx(Gi), N) ≥ E(2(3dy + 1)dx, N),

by Lemma 12 below. �

Lemma 12. For all non-negative integers M1, M2, and N , we have that

E(M1, N)E(M2, N) ≥ E(M1 + M2, N).

Proof. The case when N < 2(M1 + M2) is trivial. The other case follows from a
straightforward calculation that we omit here for the sake of conciseness. �

4.2. Irreducible Factorization. In this subsection we revisit how the irreducible
factorization reduces to the separable case, with a special interest in efficiency. For
this purpose we enlarge our computational model with the irreducible factorization
of separable polynomials in A[y].

We are to turn into an algorithm the relationship between the separable and
the irreducible factorization seen in the proof of Proposition 4. We start with the
computation of Φ−1, as defined in Section 1.2.

Algorithm 6. Computation of Φ−1.
Input: (G, q) ∈ S × B.
Output: (H,h) ∈ A[y]× B with H irreducible and such that Hh = Φ−1(G, q).
1. Set G̃ := G and h := 1.
2. While G̃(yp) is a pth power and while h < q do

Replace G̃ by the pth root of G̃(yp) and multiply h by p.
3. Return (G̃(yq/h), h).

Lemma 13. Algorithm 6 works correctly as specified and costs O(deg(G) logp(q))
extractions of pth roots in A.

Proof. G̃ and h computed within the algorithm coincide to the one constructed in
the proof of Proposition 3. The cost analysis is immediate. �

Algorithm 7. Reduction of the irreducible factorization to the separable case.
Input: a primitive polynomial F ∈ A[y] of degree d.
Output: Irr(F).
1. Compute the separable decomposition Sep(F) of F .
2. For all (G, q,m) ∈ Sep(F) compute the irreducible factorization of G.

FAST SEPARABLE FACTORIZATION AND APPLICATIONS 19

3. Return ⋃
(G,q,m)∈Sep(F)

{
(H,h,m) |Hh := Φ−1(Ḡ, q),

for all irreducible factor Ḡ of G
}

.

Proposition 13. Algorithm 7 works correctly as specified. If A is a field, then it
performs irreducible factorizations of polynomials in A[y] whose degree sum is at
most d, plus O(M(d) log(d)) arithmetic operations in A and O(d) extractions of pth
roots in A.

Proof. The cost of the first step comes from Proposition 5 and the cost of the last
step follows from the previous lemma. �

Finally, let us mention that this reduction to the separable case is a central
ingredient of the irreducible bivariate polynomial factorization algorithm presented
in [Lec07b].

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-
Verlag, 1997.

[Ber97] L. Bernardin. On square-free factorization of multivariate polynomials over a finite
field. Theoret. Comput. Sci., 187(1-2):105–116, 1997.

[BHKS04] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel. Factoring polynomials over
global fields. Manuscript available at http://arxiv.org/abs/math.NT/0409510, Septem-
ber 2004.

[BM97] L. Bernardin and M. B. Monagan. Efficient multivariate factorization over finite fields.
In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997),
volume 1255 of Lecture Notes in Comput. Sci., pages 15–28. Springer, Berlin, 1997.

[DT81] J. H. Davenport and B. M. Trager. Factorization over finitely generated fields. In
SYMSAC ’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic
computation, pages 200–205. ACM Press, 1981.

[FG99] E. Fortuna and P. Gianni. Square-free decomposition in finite characteristic: an appli-
cation to Jordan form computation. SIGSAM Bull., 33(4):14–32, 1999.

[FS55] A. Fröhlich and J. C. Shepherdson. On the factorisation of polynomials in a finite
number of steps. Math. Z., 62:331–334, 1955.

[FS56] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans.
Roy. Soc. London. Ser. A., 248:407–432, 1956.

[Gao01] S. Gao. Absolute irreducibility of polynomials via Newton polytopes. J. Algebra,
237(2):501–520, 2001.

[Gat84] J. von zur Gathen. Hensel and Newton methods in valuation rings. Math. Comp.,
42(166):637–661, 1984.

[Ger01] J. Gerhard. Fast modular algorithms for squarefree factorization and Hermite integra-
tion. Appl. Algebra Engrg. Comm. Comput., 11(3):203–226, 2001.

[GG03] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, second edition, 2003.

[GT96] P. Gianni and B. Trager. Square-free algorithms in positive characteristic. Appl. Algebra
Engrg. Comm. Comput., 7(1):1–14, 1996.

[Her26] G. Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.
Math. Ann., 95(1):736–788, 1926.

[Kal82] E. Kaltofen. Polynomial factorization. In B. Buchberger, G. Collins, and R. Loos,
editors, Computer algebra, pages 95–113. Springer-Verlag, 1982.

[Kal90] E. Kaltofen. Polynomial factorization 1982–1986. In Computers in mathematics (Stan-
ford, CA, 1986), volume 125 of Lecture Notes in Pure and Appl. Math., pages 285–309.
Dekker, 1990.

[Kal92] E. Kaltofen. Polynomial factorization 1987–1991. In LATIN ’92 (São Paulo, 1992),
volume 583 of Lecture Notes in Comput. Sci., pages 294–313. Springer-Verlag, 1992.

[Kro82] L. Kronecker. Grundzüge einer arithmetischen theorie de algebraischen grössen. J. reine
angew. Math., 92:1–122, 1882.

[Lec06] G. Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization. Math.
Comp., 75:921–933, 2006.

20 G. LECERF

[Lec07a] G. Lecerf. Improved dense multivariate polynomial factorization algorithms. J. Sym-
bolic Comput., 42(4):477–494, 2007.

[Lec07b] G. Lecerf. New recombination algorithms for bivariate polynomial factorization based
on Hensel lifting. Manuscript, 2007.

[Mag] The Magma computational algebra system for algebra, number theory and geometry.
http://magma.maths.usyd.edu.au/magma/. Computational Algebra Group, School of
Mathematics and Statistics, University of Sydney, NSW 2006 Australia.

[MR82] R. Mines and F. Richman. Separability and factoring polynomials. Rocky Mountain J.
Math., 12(1):43–54, 1982.

[MRR88] R. Mines, F. Richman, and W. Ruitenburg. A course in constructive algebra. Univer-
sitext. Springer-Verlag, 1988.

[Mus71] D. R. Musser. Algorithms for Polynomial Factorization. PhD thesis, C.S. Department,
Univ. of Wisconsin, 1971.

[Ric81] F. Richman. Seidenberg’s condition P . In Constructive mathematics (Las Cruces,
N.M., 1980), volume 873 of Lecture Notes in Math., pages 1–11. Springer-Verlag,
1981.

[Sei70] A. Seidenberg. Construction of the integral closure of a finite integral domain. Rend.
Sem. Mat. Fis. Milano, 40:100–120, 1970.

[Sei74] A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc., 197:273–313, 1974.
[Sei78] A. Seidenberg. Constructions in a polynomial ring over the ring of integers. Amer. J.

Math., 100(4):685–703, 1978.
[Ste05] A. Steel. Conquering inseparability: primary decomposition and multivariate factor-

ization over algebraic function fields of positive characteristic. J. Symbolic Comput.,
40(3):1053–1075, 2005.

[Wae30] B. L. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen.
Math. Ann., 102(1):738–739, 1930.

[Wae49] B. L. van der Waerden. Modern Algebra. Vol. I. Frederick Ungar Publishing Co., New
York, N. Y., 1949.

Grégoire Lecerf, Laboratoire de Mathématiques (UMR 8100 CNRS), Université de

Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis, 78035 Versailles, France
E-mail address: Gregoire.Lecerf@math.uvsq.fr

	Introduction
	Overview
	Related Works

	1. Separable Factorization
	1.1. Separable and Inseparable Degrees
	1.2. Deflation of Polynomials
	1.3. Existence and Uniqueness of the Separable Decomposition

	2. Computation of the Separable Decomposition
	2.1. Computational Model
	2.2. The Induction Step
	2.3. Yun's Algorithm Revisited
	2.4. Main Algorithm

	3. Multi-modular Algorithm
	3.1. Characterization of Lucky Ideals
	3.2. Algorithm
	3.3. Application to Bivariate Polynomials
	3.4. Timings

	4. Applications
	4.1. Squarefree Factorization
	4.2. Irreducible Factorization

	References

