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Abstract

We present new deterministic and probabilistic algorithms that reduce the factorization of dense
polynomials from several to one variable. The deterministic algorithm runs in sub-quadratic time
in the dense size of the input polynomial, and the probabilistic algorithm is softly optimal when
the number of variables is at least three. We also investigate the reduction from several to two
variables and improve the quantitative version of Bertini’s irreducibility theorem.
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Introduction

The factorization of multivariate polynomials is a classical problem in computer alge-
bra, which intervenes in many fields of application. So far no softly optimal algorithm is
known. In this article we propose new faster methods for reducing this factorization to
one or two variables.

Let K be a commutative field. Throughout this article F denotes a polynomial in
K[z1, . . . , zn, y], of total degree d := deg(F ) such that the following hypothesis holds:

Hypothesis (C) K has characteristic 0 or at least d(d− 1) + 1.

We are interested in the complexity of computing the irreducible factors F1, . . . , Fr of F .
We use the dense representation for the polynomials, which means that a polynomial of
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total degree d is stored as the vector of its coefficients in the basis of the monomials of
degree at most d. We shall often use the quantity

Nd,n :=
(

d + n

n

)
to represent the number of monomials in n variables of degree at most d. In particular
the size of F equals Nd,n+1. Under Hypothesis (C) it is always possible to suppose that F
is squarefree. Thus, up to a linear change of variables, we can assume that the following
hypothesis holds, without loss of generality:

Hypothesis (H)

{
(i) F is monic in y and degy(F ) = d,

(ii) Res
(
F (0, . . . , 0, y), ∂F

∂y (0, . . . , 0, y)
)
6= 0,

where degy(F ) represents the partial degree of F in the variable y. Here Res(A,B) denotes
the resultant of two univariate polynomials A and B. Under the latter hypothesis, we
apply the lifting and recombination technique, popularized by Zassenhaus (1969), in
order to compute the factorization of F . This technique can be made very efficient for
bivariate polynomials, as demonstrated by Bostan et al. (2004) and Lecerf (2006). One
of the main goals of this article is to generalize the results of Lecerf (2006) to several
variables. Mistakes in the two latter references are corrected in Appendix A.

Main Results

The first section of this article is devoted to the deterministic and probabilistic re-
ductions to one variable. We use and generalize the lifting and recombination algorithm
of Lecerf (2006). More precisely, the deterministic reduction algorithm is presented in
Section 1.2 and proceeds as follows:

(1) Factor the univariate polynomial F (0, . . . , 0, y).
(2) Lift the resulting factors in order to obtain the irreducible factorization of F in

K[[z1, . . . , zn]][y] to precision (z1, . . . , zn)2d, where K[[z1, . . . , zn]] represents the
power series algebra in n variables. Here (z1, . . . , zn)2d represents the 2dth power
of the maximal ideal (z1, . . . , zn).

(3) Solve a linear system in order to determine how the lifted factors recombine into
the true factors.

For fixed n, we show that the costs of the second and third steps are sub-quadratic with
respect to the dense size of F .

The probabilistic reduction algorithm is given in Section 1.3. It starts with the re-
duction to two variables by means of substituting random linear forms in the new vari-
able x for the zi. We say that (α1, . . . , αn) ∈ Kn is a Bertinian good point for F if
Fi(α1x, . . . , αnx, y) is irreducible for all i. In other words, the irreducible factors of F
are in one-to-one correspondence with those of H(x, y) := F (α1x, . . . , αnx, y) ∈ K[x, y].
From a practical point of view, the knowledge of a Bertinian good point naturally gives
rise to the following algorithm:

(1) Factor H(x, y).
(2) Lift the resulting factors in order to recover F1, . . . , Fr.

Of course the factorization of H(x, y) can be handled by any algorithm (probabilistic
or not), but we show that the use of the probabilistic recombination algorithm of Ap-
pendix A.1 leads to a softly optimal reduction to one variable as soon as n ≥ 2.
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In practice, the point (α1, . . . , αn) is chosen with coordinates in a finite subset of K.
In order to estimate the probability of success of this probabilistic reduction, we need
to upper bound the density of Bertinian bad points. This is the purpose of Section 2.1,
where we provide a nearly optimal bound.

Lastly, Section 2.2 is devoted to a new quantitative Bertini irreducibility theorem.
There we do not work under Hypothesis (H) anymore. In order to avoid confusion we
consider a polynomial P of degree d ≥ 1 in the variables v1, . . . , vn over K. For any points
(α1, . . . , αn), (β1, . . . , βn) and (γ1, . . . , γn) in Kn, we define the bivariate polynomial
Pα,β,γ in the variables x and y by:

Pα,β,γ := P (α1x + β1y + γ1, . . . , αnx + βny + γn). (1)

According to the classical Bertini irreducibility theorem (e.g. Shafarevich, 1994, Chap-
ter II, Section 6.1) and if P is irreducible, then there exists a proper Zariski open subset of
(Kn)3 such that Pα,β,γ is irreducible for any triple (α1, . . . , αn), (β1, . . . , βn), (γ1, . . . , γn)
in this subset. We say that, for any irreducible factor Q of P , such a triple in (Kn)3 is a
Bertinian good point for P if Q(α1x + β1y + γ1, . . . , αnx + βny + γn) is irreducible with
the same total degree of Q. In other words, the irreducible factors of P are in one-to-one
correspondence with those of Pα,β,γ . The complementary set of Bertinian good points is
written B(P ) and is called the set of Bertinian bad points.

For algorithmic purposes, the entries of (α1, . . . , αn), (β1, . . . , βn) and (γ1, . . . , γn)
must be taken in a finite subset S of K, so that we are naturally interested in upper
bounding the number of Bertinian bad points in (Sn)3. We refer to such a bound as
a quantitative Bertini theorem. The density of Bertinian bad points with entries in a
non-empty finite subset S of K is defined by:

B(P, S) :=
|B(P ) ∩ (Sn)3|

|S|3n
,

where |S| represents the cardinality of S. At the end of this article we show that
B(P, S) ≤ 3d2/|S| (see Corollary 8), which improves the previously known bounds,
under Hypothesis (C).

Working under Hypothesis (H) is interesting from several points of view. Most polyno-
mials satisfy this hypothesis, so that the substitution of αix for zi is more efficient than
the one of (1). In particular, the former preserves the sparsity whereas the latter does
not. Hypothesis (H) is naturally satisfied in the geometric resolution algorithm for solv-
ing algebraic systems (see Lecerf, 2003). Thus, for any equidimensional algebraic closed
set encoded by a lifting fiber, our Corollary 7 of Section 2.1 can be directly applied in
order to bound the density of associated lifting curves which preserve the irreducible
decomposition.

Related Works

Works on polynomial factorization are too numerous to be all cited here. Several
aspects are treated in the following references: Kaltofen (1982a), Zippel (1993), Schinzel
(2000), von zur Gathen and Gerhard (2003), and Chèze and Galligo (2005). Historical
surveys can be found in: Kaltofen (1990, 1992, 1995, 2003), and Gao (2003). The first
polynomial time multivariate factorization algorithm is due to Kaltofen (1982b,c, 1985c).
Then Chistov, von zur Gathen, Grigoriev, Kaltofen and A. K. Lenstra contributed to this
suject. An important breakthrough has been accomplished by Gao (2003) who designed
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a quadratic time probabilistic reduction from two to one variable for the first time. Then,
Bostan et al. (2004) and Lecerf (2006) proposed faster reductions: a deterministic one
with sub-quadratic cost and a probabilistic one with a cost in Õ(d3) (see the errata in
Appendix A).

Reduction to One Variable
The present work is closely connected to previous results of Heintz and Sieveking

(1981), von zur Gathen (1985), and Kaltofen (1985a,c, 1995). Compared to Kaltofen’s
methods, our main gain is essentially due to using a precision linear in d during the
lifting stage instead of a quadratic precision. Briefly speaking, Kaltofen’s quadratic pre-
cision (1985c) comes from using algebraic approximant algorithms, whereas our linear
precision is proved in (Lecerf, 2006) thanks to Ruppert’s ideas (1986; 1999). Ruppert’s
original idea relies on considering the first algebraic de Rham cohomology group of
K[z, y, 1/F (z, y)] (here n = 1 and we let z = z1): if K is algebraically closed and has
characteristic 0, then (

F̂i
∂Fi

∂z

F
dz +

F̂i
∂Fi

∂y

F
dy

)
i∈{1,...,r}

is basis of this group, where F̂i := F
Fi

(see Ruppert, 1986, Satz 2). In consequence, this
group can be obtained by searching for closed differential 1-forms with denominators F
and numerators of degrees at most d − 1. As shown by Gao (2003), this computation
boils down to linear algebra and is still valid for sufficiently large positive characteristics.

It is worth to mention special cases for which specific methods exist. Over finite fields,
Kaltofen (1987) and Gao et al. (2004) have shown how to test the irreducibility and even
to count the number of factors in a deterministic way. When K = Q, Kaltofen (1985c)
has given a specific deterministic reduction from several to two variables. Searching for
the factors in the algebraic closure of K is called the absolute factorization: the abso-
lute factorization can be computed by a polynomial time deterministic algorithm with
operations in K alone. Advanced results can be found in: Kaltofen (1995), Gao (2003),
Chèze (2004), Chèze and Galligo (2005), Chèze and Lecerf (2005). Finally, concerning
other polynomial representations, such as straight-line program, circuit, black box and
sparse representations, the reader can consult: von zur Gathen (1985), von zur Gathen
and Kaltofen (1985a,b), Kaltofen (1989), Kaltofen and Trager (1990).

Reduction to Two Variables
What we call ”Bertini’s theorem” in this paper is a particular but central case of

more general theorems such as in (Shafarevich, 1994, Chapter II, Section 6.1). We re-
fer the reader to Kleiman’s survey (1998) on Bertini’s life and mathematical work, and
to Jouanolou’s book (1983) for an extensive mathematical treatment. As pointed out
by Kaltofen (1995), the particular case of Bertini’s theorem that only concerns the re-
duction of the factorization problem from several to two variables goes back at least to
Hilbert (1892, p. 117). This is the reason why some authors say ”Hilbert’s theorem”
instead of ”Bertini’s theorem”.

Bertini’s theorem was popularized in complexity theory by Heintz and Sieveking
(1981), and Kaltofen (1982b). A few years later, Bertini’s theorem became a corner-
stone of many factorization or reduction techniques including: Kaltofen (1985a,b,c,d),
von zur Gathen (1985), von zur Gathen and Kaltofen (1985b). For any characteristic
and under Hypothesis (H), von zur Gathen (1985) showed that the set of Bertinian bad
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points for F is included in a proper hypersurface of degree at most 9d2
. This bound is to

be compared to the one of our Theorem 6 of Section 2.1. When K is the field of complex
numbers, Bajaj et al. (1993) obtained the bound B(P, S) ≤ (d4 − 2d3 + d2 + d + 1)/|S|
by following Mumford’s proof (1995, Theorem 4.17) of Bertini’s theorem. This proof
starts with reducing to Hypothesis (H). For any perfect field K, Kaltofen (1995) proved
that B(P, S) ≤ 2d4/|S| by using his factorization algorithm. If K has characteristic 0 or
larger than 2d2, Gao (2003) proved the sharper bound B(P, S) ≤ 2d3/|S|. He made use
of his factorization algorithm adapted from Ruppert’s theorems (1986; 1999). Recently,
Chèze has pointed out (2004, Chapter 1) that the latter bound can even be refined to
B(P, S) ≤ d(d2 − 1)/|S| by using directly (Ruppert, 1986, Satz C). A nice presentation
of Ruppert’s results is made in Schinzel’s book (2000, Chapter V).

Complexity Model

For our complexity analysis, we use the computation tree model (see Bürgisser et al.,
1997, Chapter 4) from the total complexity point of view. Roughly speaking, this means
that complexity estimates charge a constant cost for each arithmetic operation (+, −, ×,
÷) and the equality test. Yet all the constants in the base fields (or rings) of the trees are
thought to be freely at our disposal. Univariate factorization algorithms fall outside this
model. Therefore, for convenience, we enlarge the model with a univariate factorization
algorithm. We use the classical O and Õ (read “soft Oh”) notation in the neighborhood
of infinity as defined in (von zur Gathen and Gerhard, 2003, Chapter 25.7). Informally
speaking, “soft Oh”s are used for readability in order to hide logarithmic factors in
complexity estimates.

For each integer d, we assume that we are given a computation tree that computes
the products of two polynomials of degree at most d with at most M(d) operations,
independently of the base ring. As in (von zur Gathen and Gerhard, 2003, Chapter 8.3),
for any positive integers d1 and d2, we assume that M satisfies: M(d1d2) ≤ d2

1M(d2) and
M(d1)/d1 ≤ M(d2)/d2 if d1 ≤ d2. In particular, this implies the super-additivity of M,
that is M(d1) + M(d2) ≤ M(d1 + d2). We recall that the resultant and the extended
greatest common divisor of two univariate polynomials of degree at most d over K can
be computed with O(M(d) log(d)) operations in K (von zur Gathen and Gerhard, 2003,
Chapter 11). Series are thought to be represented by dense vectors of their coefficients in
the usual monomial basis. We assume that, for each d and n, we are given a computation
tree that computes the product of two power series over K in n variables, truncated in
total degree d, and that performs at most S(d, n) operations in K. In addition, we assume
that S is super-additive with respect to d, that is: S(d1, n) + S(d2, n) ≤ S(d1 + d2, n) for
any positive integers d1 and d2. If K has characteristic 0 then the algorithm presented
by Lecerf and Schost (2003) allows us to take S(d, n) ∈ Õ(Nd−1,n), which is softly optimal
with respect to the dense size of the series to be multiplied. For any characteristic and
any truncation, we expect that softly optimal algorithms may exist: recent advances in
this direction have been made by van der Hoeven (2004, 2005) and Schost (2005).

Lastly, we assume that, for each n, we are given a computation tree that computes
the product of two n×n matrices over K with at most O(nω) field operations, for a fixed
constant ω. We require that 2 < ω ≤ 3 in order to use (Storjohann, 2000, Theorem 2.10)
later. In contrast to polynomials, we only deal with matrices over K.
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1. Reduction to One Variable

We carry on with the notation of the introduction: F denotes a polynomial of degree
d which satisfies Hypotheses (C) and (H). Recall that the irreducible factors of F are
denoted by F1, . . . , Fr. Without loss of generality we assume that F1, . . . , Fr are monic
in y. Let F1, . . . ,Fs denote the monic irreducible factors of F in K[[z1, . . . , zn]][y]. Under
Hypothesis (H), and because of the Hensel lemma, Fi remains irreducible when substi-
tuting 0, . . . , 0 for z1, . . . , zn, for all i ∈ {1, . . . , s}. To each i ∈ {1, . . . , r}, we associate
the vector µi ∈ {0, 1}s, defined by

Fi =
s∏

j=1

F
µi,j

j . (2)

Since the µi have entries in {0, 1} and have pairwise disjoint supports, we can assume
that they form a reduced echelon basis, without loss of generality.

1.1. Theoretical Reduction to Two Variables

We introduce the set of auxiliary variables a1, . . . , an and the polynomial

G := F (a1x, . . . , anx, y) ∈ Ka[x, y], where Ka := K(a1, . . . , an),

on which we are going to apply the deterministic reduction algorithm of Lecerf (2006).
The polynomial G is monic in y when seen in K[a1, . . . , an, x][y], thus its irreducible
factors in Ka[x, y] are in one-to-one correspondence to those of F . In other words, the
irreducible factors of G are the Gi(x, y) := Fi(a1x, . . . , anx, y), for i ∈ {1, . . . , r}. It is
straightforward to check that Hypothesis (H) implies:

(Ha)

{
(i) degy(G) = deg(G) = d,

(ii) Res
(
G(0, y), ∂G

∂y (0, y)
)
6= 0.

We introduce the irreducible factors G1, . . . ,Gs of G in Ka[[x]][y], which are related to the
Fi by Gi(x, y) = Fi(a1x, . . . , anx, y), for all i ∈ {1, . . . , s}. It follows that Gi belongs to
K[a1, . . . , an][[x]][y]. Furthermore the coefficient of xjyk in Gi is either 0 or homogeneous
of degree j. As a direct consequence of (2), we observe that µi satisfies and is uniquely
determined by Gi =

∏s
j=1 G

µi,j

j . Lastly, we introduce

F̂i :=
s∏

j=1,j 6=i

Fj and Ĝi :=
s∏

j=1,j 6=i

Gj , for all i ∈ {1, . . . , s}.

1.2. Deterministic Reduction Algorithm

We are now ready to apply the deterministic recombination algorithm of (Lecerf, 2006,
Section 3) to G, that makes use of the following linear system over Ka in the unknowns
(`1, . . . , `s):

Da,σ


s∑

i=1

`i coeff
(

Ĝi
∂Gi

∂y
, xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

s∑
i=1

`i coeff
(

Ĝi
∂Gi

∂x
, xjyk

)
= 0, k ≤ d− 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1,
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where coeff(G, xiyj) represents the coefficient of the monomial xjyk in G, and where
σ denotes a positive integer. Since (H) implies (Ha), the combination of (Lecerf, 2006,
Theorem 1 and Lemma 4) implies:
Lemma 1 Under Hypotheses (C) and (H), for any σ ≥ 2d, the reduced echelon solution
basis of Da,σ is µ1, . . . , µr.

Let us recall here that the condition σ ≥ 2d in Lemma 1 is a consequence of Ruppert’s
irreducibility test (1986; 1999). If we applied this lemma directly, we would be led to solve
Da,σ over Ka, which is very expensive. In the next lemma, we show that this computation
can be avoided by means of solving the linear system over K instead of Ka. Moreover we
show that the resolution can be performed over any subfield E of K. In particular and
when possible, the use of the prime field of K is expected to yield a practical speed-up
in the resolution.
Lemma 2 Let E be a subfield of K. For any σ ≥ 2d, the reduced echelon basis of the
restriction to Es of the solution set of Da,σ is µ1, . . . , µr.

Proof. Since the entries of the µi are in {0, 1}, one has µi ∈ Es, hence µi is a solution of
Da,σ over E. Let (`1, . . . , `s) ∈ Es denote a solution of Da,σ. According to the previous
lemma, there exists (γ1, . . . , γr) ∈ Kr

a such that (`1, . . . , `s) = γ1µ1 + · · · + γrµr. Since
µ1, . . . , µr form a reduced echelon basis it follows that γi ∈ E, for all i ∈ {1, . . . , r}. 2

For the sake of efficiency, we wish to avoid the substitution of the aix for the zi, and to
obtain a direct generalization of (Lecerf, 2006, Section 3). For this purpose, we introduce
the differential operator

θ := z1
∂

∂z1
+ · · ·+ zn

∂

∂zn
,

which is easy to compute by means of the following formula:

θ(zj1
1 · · · zjn

n ) = (j1 + · · ·+ jn)zj1
1 · · · zjn

n .

We write j̄ := j1 + · · ·+ jn, and consider the new linear system defined by:

Dσ


s∑

i=1

`i coeff
(

F̂i
∂Fi

∂y
, zj1

1 · · · zjn
n yk

)
= 0, k ≤ d− 1, d ≤ j̄ + k ≤ σ − 1,

s∑
i=1

`i coeff
(
F̂iθFi, z

j1
1 · · · zjn

n yk
)

= 0, k ≤ d− 1, j̄ ≤ σ − 1, d + 1 ≤ j̄ + k ≤ σ.

Lemma 3 Under Hypotheses (C) and (H), and for any σ ≥ 2d, the reduced echelon
solution basis of Dσ is µ1, . . . , µr.

Proof. By Lemma 2, it remains to verify that the solutions of Dσ coincide with the

solutions of Da,σ in Ks. From Ĝi
∂Gi

∂y
=
(

F̂i
∂Fi

∂y

)
(a1x, . . . , anx, y) we deduce that

coeff
(

Ĝi
∂Gi

∂y
, xjyk

)
equals the homogeneous component of degree j of the coefficient of

7



yk in (F̂i
∂Fi

∂y )(a1, . . . , an, y) seen in K[[a1, . . . , an]][y]. Thus the first subsets of equations
of Da,σ and Dσ coincide over Ks. On the other hand, a basic calculation gives:

x
∂Gi

∂x
= x

∂

∂x

(
Fi(a1x, . . . , anx, y)

)
=

n∑
j=1

xaj
∂Fi

∂zj
(a1x, . . . , anx, y) = (θFi)(a1x, . . . , anx, y),

from which we deduce that coeff
(

Ĝi
∂Gi

∂x
, xjyk

)
= coeff

(
Ĝix

∂Gi

∂x
, xj+1yk

)
equals the

homogeneous component of degree j + 1 of the coefficient of yk in (F̂iθFi)(a1, . . . , an, y)
seen in K[[a1, . . . , an]][y]. Finally, the second subsets of equations of Da,σ and Dσ also
coincide over Ks. 2

Based on Lemma 3, the factorization algorithm proceeds as follows:
Algorithm 1 Deterministic factorization algorithm.
Input: F of total degree d satisfying Hypotheses (C) and (H).
Output: the irreducible factors F1, . . . , Fr of F .
(1) Compute F1(0, . . . , 0, y), . . . ,Fs(0, . . . , 0, y) as the irreducible factors of the univari-

ate polynomial F (0, . . . , 0, y).
(2) Lifting step. Call a fast multi-factor Hensel lifting algorithm in order to obtain

F1, . . . ,Fs to precision (z1, . . . , zn)σ with σ := 2d.
(3) Recombination step.

(a) For each i ∈ {1, . . . , s} compute F̂i as the quotient of F by Fi to precision
(z1, . . . , zn)σ in K[[z1, . . . , zn]][y].

(b) Compute (F̂1
∂F1
∂y , . . . , F̂s

∂Fs

∂y ) to precision (z1, . . . , zn)σ.

(c) Compute (F̂1θF1, . . . , F̂sθFs) to precision (z1, . . . , zn)σ.
(d) Build the linear system Dσ and compute its reduced echelon solution basis

µ1, . . . , µr.
(e) If r = 1 then return F . Otherwise, for each i in {1, . . . , r}, compute Fi as∏s

j=1 F
µi,j

j to precision (z1, . . . , zn)deg(Fi)+1, and return F1, . . . , Fr.

Proposition 4 Algorithm 1 is correct and performs one factorization of a univariate
polynomial of degree d over K plus a number of operations in K belonging to:

O
(
sS(σ, n)M(d) + dNσ−1,nsω−1

)
. (3)

Proof. The correctness follows from Lemma 3. It remains to analyze the costs of steps (2)
and (3). A fast multi-factor Hensel lifting algorithm is given in (von zur Gathen and Ger-
hard, 2003, Algorithm 15.17) for I-adic topologies when I is a principal ideal. Here I :=
(z1, . . . , zn) is not principal but this algorithm still applies. From the complexity point of
view, we must take care to perform the last step of the lifting to precision σ and not to the
next power of 2 of σ. Subject to this slight modification and thanks to the super-additivity
of S, the cost of step (2) follows mutatis mutandis from (von zur Gathen and Ger-
hard, 2003, part (ii) of Theorem 15.18): it belongs to O((S(σ, n) + log(d))M(d) log(s)) ⊆
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O(S(σ, n)M(d) log(s)). A slightly faster (by a constant factor) lifting algorithm is de-
scribed in (Bostan et al., 2004, Section 3) but the same modifications are necessary to
deal with multivariate power series.

The total cost of steps (3a), (3b) and (3c) clearly belongs to O(sS(σ, n)M(d)). The con-
struction of Dσ is negligible. Since Dσ has s unknowns and less than 2dNσ−1,n equations,
the cost of step (3d) belongs to O(dNσ−1,nsω−1) by (Storjohann, 2000, Theorem 2.10).
The computation of Fi can benefit of the sub-product tree technique of (von zur Ga-
then and Gerhard, 2003, Algorithm 10.3). Thus, by (von zur Gathen and Gerhard,
2003, Lemma 10.3) we deduce that each Fi can be computed in time O(S(deg(Fi) +
1, n)M(deg(Fi)) log(si))), where si :=

∑s
j=1 µi,j represents the number of lifted fac-

tors involved in Fi. Thanks to the super-additivities, the cost of step (3e) drops to
O(S(d, n)M(d) log(s)). 2

Since a power series in n variables to precision σ has dense size Nσ−1,n, one necessarily
has S(σ, n) ≥ Nσ−1,n. By using a softly optimal polynomial multiplication, that is M(d) in

Õ(d), and using the assumption ω > 2, we deduce that cost (3) drops to O
(
S(σ, n)dω

)
.

Furthermore, when softly optimal series multiplication is available, that is S(σ, n) ∈
Õ(N2d−1,n), this cost drops further to Õ(2ndω−1Nd,n+1), by using

N2d−1,n

Nd,n
=

(2d− 1 + n) · · · (2d)
(d + n) · · · (d + 1)

≤ 2n,

and
dNd,n ∈ O

(
Nd,n+1 log(Nd,n+1)

)
(Lecerf and Schost, 2003, Lemma 3). (4)

In general, when using the naive series multiplication, S(σ, n) is quadratic in N2d−1,n.
Thus, combining

N2d−1,n

N2
d,n

=
n(2d− 1 + n)

(d + n)2
· · · 2d

(d + 1)2
≤ 1

and inequality (4), we deduce that cost (3) belongs to Õ(N4
d,n+1): the cost of this reduc-

tion is polynomial (in the size of F ).
Let us now consider that n is fixed. We use the notation Od to specify that the O

concerns the only parameter d. In this setting, softly optimal series multiplication is
always possible. Precisely, we can take S(σ, n) ∈ O(M(σ)n) ⊆ Õd(σn) ⊆ Õd(dn), thus
cost (3) drops to Õd

(
dn+ω

)
. Since the dense size Nd,n+1 of F is greater than dn+1/(n+1)!,

and since ω is at most 3, we can say that the cost of the deterministic reduction algorithm
is sub-quadratic.

1.3. Probabilistic Reduction Algorithm

We could adapt the probabilistic algorithm of Appendix A.1 to several variables by
using the reduction to G as in the previous subsection. Roughly speaking, we would only
gain a factor of d in the size of linear system to be solved. The natural probabilistic strat-
egy actually consists of factoring H(x, y) = F (α1x, . . . , αnx, y) ∈ K[x, y] for a Bertinian
good point (α1, . . . , αn) ∈ Kn, as presented in the introduction. The detailed algorithm
depends on parameters u2, . . . , um, with m := 2d2 − 1.
Algorithm 2 Probabilistic factorization algorithm.

9



Input: F of total degree d satisfying Hypotheses (C) and (H), (α1, . . . , αn) ∈ Kn, and
(u2, . . . , um) ∈ Km−1.

Output: the irreducible factors F1, . . . , Fr of F .
(1) Compute H1(0, y), . . . ,Hs(0, y) as the irreducible factors of the univariate polyno-

mial H(0, y).
(2) Lifting step. Call a fast multi-factor Hensel lifting algorithm in order to obtain the

irreducible factors H1, . . . ,Hs of H(x, y) in K[[x]]/(xσ)[y], where σ := 2d.
(3) Recombination step.

(a) Compute µ1, . . . , µr by means of Algorithm 3 of the appendix called with input
H1, . . . ,Hs, and (u2, . . . , um).

(b) Verify that µ1, . . . , µr give the irreducible factorization of H by means of Al-
gorithm 4 of the appendix. If r = 1 then return F .

(c) Obtain Fi(0, . . . , 0, y) as
∏s

j=1 Hj(0, y)µi,j , for each i in {1, . . . , r}.
(d) Let d̄ := max(deg(Fi(0, . . . , 0, y)) | i ∈ {1, . . . , r}) ≤ d − 1. Call a fast multi-

factor Hensel lifting algorithm up to precision (z1, . . . , zn)d̄+1 in order to re-
cover all the Fi, and return F1, . . . , Fr.

Proposition 5 Assume that Hypotheses (C) and (H) hold and that (α1, . . . , αn) is a
Bertinian good point for F . There exists a nonzero polynomial P ∈ K[z2, . . . , zm] of
total degree at most s such that Algorithm 2 is correct whenever P(u2, . . . , um) 6= 0.
Algorithm 2 performs one factorization of a univariate polynomial of degree d over K
plus a number of operations in K belonging to

O
(
d(M(d)2 + M(d2)) + S(d, n)M(d) log(d)

)
. (5)

Proof. The correctness mainly follows from Propositions 10 and 11 of the appendix.
In step (2) we can directly use (von zur Gathen and Gerhard, 2003, Algorithm 15.17),
which performs O(M(σ)M(d) log(s)) operations, by (von zur Gathen and Gerhard, 2003,
part ii of Theorem 15.18). By Proposition 10, the cost of step (3a) is in O(s(M(d2) +
M(d)2)). By Proposition 11, step (3b) takes O(M(d)2 log(d)) operations. The compu-
tation of Fi(0, . . . , 0, y) can be done by means of (von zur Gathen and Gerhard, 2003,
Algorithm 10.3). Thus, by (von zur Gathen and Gerhard, 2003, Lemma 10.3), each
Fi(0, . . . , 0, y) can be computed in time O(M(deg(Fi(0, . . . , 0, y))) log(s))). Thanks to
the super-additivity of M, step (3c) only takes O(M(d) log(s)) operations. The cost of
the last step has already been discussed in the proof of Proposition 4: it belongs to
O((S(d̄ + 1, n) + log(d))M(d) log(d)). 2

When softly optimal polynomial and series multiplications are available, that is when
M(d) ∈ Õ(d) and S(d, n) ∈ Õ(Nd−1,n), cost (5) drops to:

Õ(d3 + dNd−1,n) ⊆ Õ(dNd,n + d3) ⊆ Õ(Nd,n+1 + d3),

where the latter inclusion uses (4). If n ≥ 2 then d3 belongs to O(Nd,n+1), hence this
reduction algorithm is softly optimal.

2. Reduction to Two Variables

We start with a sharp estimate for the density of the Bertinian bad points (α1, . . . , αn)
for F . Then we deduce our new quantitative Bertini theorem.
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2.1. Under Hypothesis (H)

The set of Bertinian bad points (α1, . . . , αn) ∈ Kn of F is denoted by BH(F ). Let us
start with an example that will provide us with the lower bounds stated in Theorem 6
and Corollary 7 below.
Example. Let n ≥ 2, K := C, F := yd+zd−1

1 y−zd−1
2 −1. The Stepanov-Schmidt criterion

implies that F (0, z2, 0, . . . , 0, y) = yd − zd−1
2 − 1 is irreducible, thus F is irreducible

(for this criterion and recent generalizations see Gao, 2001). Let S denote the set of
roots of zd(d−1) − 1. For any (α1, . . . , αn) ∈ Sn, the polynomial y − (α2/α1)d−1 divides
H = yd − 1 + xd−1(αd−1

1 y − αd−1
2 ). Therefore, all the points of Sn are Bertinian bad

points for F , whence
|BH(F ) ∩ Sn|

|S|n
= d(d− 1)/|S| = 1.

By the classical Schwartz-Zippel lemma (Zippel, 1979; Schwartz, 1980): a nonzero poly-
nomial A in n variables can not have more than deg(A)|S|n−1 roots in Sn. We deduce
that there exists no polynomial A of degree at most d(d−1)−1 that vanishes on BH(F ).

Now we deal with the upper bound:
Theorem 6 Under Hypotheses (C) and (H), there exists a polynomial in K[a1, . . . , an]\
{0} of total degree at most (d− 1)(2d− 1) that vanishes on BH(F ). In addition we have:

max
(

min
(
deg(A) | A(BH(F )) = 0

)
| F satisfies (C) and (H)

)
≥ d(d− 1),

where A is taken over all the nonzero polynomials in K[a1, . . . , an].

Proof. Since the map δ : d 7→ (d − 1)(2d − 1) satisfies δ(d1) + δ(d2) ≤ δ(d1 + d2), for
any positive integers d1 and d2, we can assume that F is irreducible.

In the rest of the proof we let σ := 2d. For any (α1, . . . , αn) ∈ Kn, we introduce the
following linear system:

Dα,σ


s∑

i=1

`i coeff
(

Ĥi
∂Hi

∂y
, xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

s∑
i=1

`i coeff
(

Ĥi
∂Hi

∂x
, xjyk

)
= 0, k ≤ d− 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1,

where H1(x, y), . . . ,Hs(x, y) represent the monic irreducible factors of H(x, y) in K[[x]][y],
and Ĥi := H/Hi, for all i ∈ {1, . . . , s}. By (Lecerf, 2006, Theorem 1 and Lemma 4), the
rank of the solution space of Dα,σ equals the number of irreducible factors of H.

From Lemma 1, we know that Da,σ has rank s − 1. Therefore there exists a nonzero
minor A ∈ K[a1, . . . , an] of size s− 1 in Da,σ. Now remark that Dα,σ coincides with the
specialization of Da,σ at a1 = α1, . . . , an = αn. Therefore, if A(α1, . . . , αn) 6= 0 then
Dα,σ has rank s− 1, hence H is irreducible.

For any j ∈ {0, . . . , σ − 1}, the coefficient coeff
(

Ĝi(x, y)
∂Gi

∂y
(x, y), xjyk

)
is a poly-

nomial of degree at most j. For any j ∈ {0, . . . , σ − 2}, coeff
(

Ĝi(x, y)
∂Gi

∂x
(x, y), xjyk

)
is a polynomial of degree at most j + 1 (see the proof of Lemma 3). It follows that A is
a polynomial of total degree at most (s− 1)(2d− 1). 2
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In terms of counting Bertinian bad points, we deduce the following corollary thanks
to the Schwartz-Zippel lemma mentioned above.
Corollary 7 Under Hypotheses (C) and (H), for any finite non-empty subset S of K,
we have

|BH(F ) ∩ Sn|
|S|n

≤ (d− 1)(2d− 1)/|S|.

This bound is asymptotically sharp up to a constant factor:

max
(
|BH(F ) ∩ Sn|

|S|n−1
| S ⊆ K and F satisfies (C) and (H)

)
≥ d(d− 1).

Roughly speaking, this corollary asserts that it is necessary and sufficient to take
|S| � d2 in order to pick up a Bertinian good point at random in Sn with a high
probability of success.

2.2. Quantitative Bertini Theorem

Now we are ready to deduce our quantitative Bertini theorem. We keep on using the
notation of the introduction: P denotes a polynomial in K[v1, . . . , vn] of total degree d ≥
1. If P is squarefree then the variables can be changed in order to recover Hypothesis (H)
for a suitable polynomial F . This is the main idea for proving:
Corollary 8 Under Hypothesis (C), for any P ∈ K[v1, . . . , vn] of total degree d and for
any non-empty finite subset S of K, we have B(P, S) ≤ (3d(d− 1) + 1)/|S|.

Proof. Since the map δ : d 7→ 3d(d − 1) + 1 satisfies δ(d1) + δ(d2) ≤ δ(d1 + d2), for
any positive integers d1 and d2, we can assume that P is irreducible. Let w1, . . . , wn,
z1, . . . , zn be new sets of variables. For any (β1, . . . , βn) and (γ1, . . . , γn), we define:

Pβ := P (w1 + β1y, . . . , wn + βny) ∈ K[w1, . . . , wn, y],
Pβ,γ := Pβ(z1 + γ1, . . . , zn + γn, y) ∈ K[z1, . . . , zn, y].

Let B ∈ K[b1, . . . , bn] represent the homogeneous component of P of highest degree d. It
is straightforward to verify that if (β1, . . . , βn) is not a zero of B then Pβ is monic in y.

For any (β1, . . . , βn) ∈ Kn such that B(β1, . . . , βn) 6= 0, we introduce the discriminant
Cβ ∈ K[c1, . . . , cn] of Pβ with respect to y. Since Pβ is squarefree, Hypothesis (C) implies
that Cβ is a nonzero polynomial of degree at most d(d−1). For any (γ1, . . . , γn) ∈ Kn such
that Cβ(γ1, . . . , γn) 6= 0, the polynomial F := Pβ,γ satisfies Hypothesis (H). Therefore,
Theorem 6 ensures the existence of a nonzero polynomial Aβ,γ ∈ K[a1, . . . , an] of degree
at most (d− 1)(2d− 1) satisfying the following property: for any (α1, . . . , αn) ∈ Kn such
that Aβ,γ(α1, . . . , αn) 6= 0, the polynomial H = Pβ,γ(α1x, . . . , αnx, y) is irreducible. This
way we obtain:

B(P ) ⊆Kn × {(β1, . . . , βn) | B(β1, . . . , βn) = 0} ×Kn

∪Kn × {(β1, . . . , βn), (γ1, . . . , γn) | B(β1, . . . , βn) 6= 0, Cβ(γ1, . . . , γn) = 0}
∪ {(α1, . . . , αn), (β1, . . . , βn), (γ1, . . . , γn) | B(β1, . . . , βn) 6= 0,

Cβ(γ1, . . . , γn) 6= 0, Aβ,γ(α1, . . . , αn) = 0}.

Finally, by using the Schwartz-Zippel lemma with B, Cb and Ab,c, it follows that:

|B(P ) ∩ (Sn)3| ≤ d|S|3n−1 + d(d− 1)|S|3n−1 + (d− 1)(2d− 1)|S|3n−1,

which yields the claimed bound. 2
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A. Errata for “Complexity Issues in Bivariate Polynomial Factorization”
and “Sharp Precision in Hensel Lifting for Bivariate Polynomial Factor-
ization”

In (Bostan et al., 2004; Lecerf, 2006) we presented deterministic and probabilistic
recombination algorithms for the factorization of dense bivariate polynomials. It turns out
that the analyzes of the probability of success of the probabilistic algorithms are wrong.
In this appendix, we explain what is wrong and what can be fixed. We follow the notation
of (Lecerf, 2006). Recall that we are interested in computing the irreducible factorization
of a polynomial F of total degree d in two variables x and y over a commutative field K,
under the assumption that the characteristic of K is zero or at least d(d− 1) + 1.

What is Wrong

In (Bostan et al., 2004, Corollary 2) and (Lecerf, 2006, Proposition 3) it was claimed
that the recombination problem could be solved with O(dω) arithmetic operations in K in
average (here ω denotes a feasible matrix multiplication exponent). This result is wrong.
The error appears in (Bostan et al., 2004, Lemma 1), and is repeated in (Lecerf, 2006,
Lemma 5). More precisely, the error is at the end of the proof of (Bostan et al., 2004,
Lemma 1): there it is said that the restriction to K of the solution set of a K(x)-linear
system S can be obtained by means of the only resolution over K of specializations of
S at only two suitable values for x in K, which is in general wrong. This error implies
that the probability of success of the probabilistic recombination algorithms presented
in (Bostan et al., 2004, Section 2.2) and (Lecerf, 2006, Section 3) is erroneous. The other
results of (Bostan et al., 2004; Lecerf, 2006) are not affected by this error. In the previous
version of the present paper, that was accepted at the MEGA 2005 conference, only the
constants in the upper bounds on the density of Bertinian bad points of Section 2 suffered
from this error.

What can be Fixed

We will only focus on fixing the statements of (Lecerf, 2006). Similar corrections
for (Bostan et al., 2004) follow mutatis mutandis. In the first subsection we present a
new probabilistic algorithm with a cost in Õ(d3) in average. In the second subsection
we correct the wrong probabilistic algorithm of (Lecerf, 2006) so that is always return
a correct answer, and refer to it as the heuristic algorithm. This heuristic gives the best
performances in practice, as observed in (Bostan et al., 2004, Section 2.4), and we leave
the question of its probability of success to future work.
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A.1. The Corrected Probabilistic Recombination Algorithm

In this subsection we present a new probabilistic recombination algorithm with an
average cost in Õ(d3). We start with recalling a classical preconditioning technique, due
to Kaltofen and Saunders (1991, Theorem 2), for solving overdetermined linear systems
faster. We briefly recall the proof for convenience. For other possible strategies, we refer
the reader to Chen et al. (2002).
Lemma 9 Let A be a m × s matrix over K of rank s − r, and let U be the following
upper triangular s×m Toepliz matrix with entries in K:

U :=


1 u2 u3 · · · um−1 um

1 u2 u3 · · · um−1

. . . . . . . . .
...

1 . . . um−s+1

 .

There exists a nonzero polynomial P ∈ K[z2, . . . , zm] of total degree at most s such that
the matrix UA has rank s− r whenever P(u2, . . . , um) 6= 0.

Proof. The case when m ≤ s is immediate (we can take P = 1). Let us now assume
that m > s. Let B := UA, t := s− r, I := {1, . . . , t}, and J := {j1, . . . , jt} be such that
the columns of A indexed by j1, . . . , jt are linearly independent. Let us assume that U
has generic entries z2, . . . , zm replacing u2, . . . , um, and let us take

P :=
∑
K

UI,KAK,J ,

where the sum is taken over all the subsets K of {1, . . . ,m} with cardinality t, and where
UI,K represents the determinant of the submatrix of U composed of the rows indexed
by I and columns indexed by K. The polynomials UI,K are K-linearly independent (see
the proof of Kaltofen and Saunders, 1991, Theorem 2). Since there exists K such that
AK,J 6= 0, we have that P 6= 0. The conclusion follows from the classical Cauchy-Binet
formula that provides us with P = BI,J . 2

From now let σ := 2d, and let A denote the m × s matrix associated to Dσ, where
m := 2d2 − 1. With a lucky matrix U , the computation of the kernel of A reduces to
computing the kernel of UA, which has size s × s. Since U is Toepliz, the product UA
can be obtained efficiently. This is the main idea in the following algorithm:
Algorithm 3 Probabilistic recombination algorithm.
Input: F1, . . . ,Fs to precision (xσ), and (u2, . . . , um) ∈ Km−1.
Output: µ1, . . . , µr.
(1) For each i ∈ {1, . . . , s}, compute F̂i as the quotient of F by Fi to precision (xσ).
(2) Compute (F̂1

∂F1
∂y , . . . , F̂s

∂Fs

∂y ) to precision (xσ).

(3) Compute (F̂1
∂F1
∂x , . . . , F̂s

∂Fs

∂x ) to precision (xσ−1).
(4) Build the matrix A, and compute B = UA.
(5) Return the reduced echelon basis of the kernel of B.
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Proposition 10 Under Hypothesis (H), for any F , there exists a nonzero polynomial
P ∈ K[z2, . . . , zm] of total degree at most s such that Algorithm 3 returns a correct answer
whenever P(u2, . . . , um) 6= 0. The cost of Algorithm 3 belongs to O(s(M(d)2 + M(d2))),
or to Õ(d3).

Proof. The correctness follows from (Lecerf, 2006, Theorem 1 and Lemma 4) and
Lemma 9. The cost analysis of steps (1) to (3) is the same as in (Lecerf, 2006, Proposi-
tion 1). In step (4), it is classical that the product UA costs O(sM(d2)). The final kernel
computation is in O(sω) by (Storjohann, 2000, Theorem 2.10). 2

Let S be a finite subset of K of cardinality |S| and assume that u2, . . . , um are uniformly
taken at random in S. By the classical Schwartz-Zippel lemma (Zippel, 1979; Schwartz,
1980) and Lemma 9, we obtain that the probability of getting a zero of P is at most s/|S|.
Since the output of Algorithm 3 can be verified in softly optimal time (see Algorithm 4
below), we can thus deduce a recombination algorithm that always returns a correct
answer with an average cost in Õ(d3).

A.2. Heuristic Recombination Algorithm

The heuristic recombination algorithm we are to present can be seen as a variant of
the deterministic one (of Lecerf, 2006, Section 3). We solve the over-determined linear
system Dσ progressively: Dσ is split into d subsystems of sizes O(d)× s. Each subsystem
can be built efficiently and independently of the others. This way we can compute the
intersection of their solution set in sequence and stop the resolution when the softly
optimal early exit criterion given below is satisfied. In practice we observe that only
a few subsystems are necessary, and that this approach is faster than the one of the
previous subsection.
Algorithm 4 Early exit criterion.
Input: F1, . . . ,Fs to precision (xd), and a reduced echelon basis ν1, . . . , νt such that
〈µ1, . . . , µr〉 ⊆ 〈ν1, . . . , νt〉.

Output: “true” if (µ1, . . . , µr) = (ν1, . . . , νt), and “false” otherwise.
(1) If t = 1 then return “true”.
(2) If the entries of the νi are not in {0, 1} the return “false”.
(3) If the supports of ν1, . . . , νt do not form a partition of {1, . . . , s} of size t then

return “false”.
(4) For each i ∈ {1, . . . , t}, let di :=

∑s
j=1 νi,j, and let F̃i ∈ K[x, y]di be computed as

the truncation of
∏s

j=1 F
νi,j

j modulo (x, y)di+1.
(5) If

∏t
i=1 F̃j = F then return “true” else return “false”.

Proposition 11 Under Hypothesis (H), Algorithm 4 is correct and takes O(M(d)2 log(d))
operations in K.

Proof. It is clear that the “false” answer is always correct. If “true” comes from the
first step, this means that r = t = 1 (that is F is irreducible). If “true” is returned
by the last step then each F̃j is a product of some irreducible factors of F , whence
〈ν1, . . . , νt〉 ⊆ 〈µ1, . . . , µr〉.

Steps (1) to (3) take O(st) operations in K. In step (4) each F̃i can be computed by the
sub-product tree technique with O(M(di)2 log(di)) operations, by (von zur Gathen and
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Gerhard, 2003, Lemma 10.3). The total cost of this step thus belongs to O(M(d)2 log(d)).
Similarly step (5) also takes the O(M(d)2 log(d)). 2

Let τ := 2d + 1. Here we require precision (xτ ) for the lifted factors F1, . . . ,Fs. For any
u ∈ K, we introduce the following linear system Pu

τ :

Pu
τ


∑s

i=1 `i coeff
(
F̂i(x, ux)∂Fi

∂x (x, ux), xj
)

= 0, d ≤ j ≤ τ − 2,∑s
i=1 `i coeff

(
F̂i(x, ux)∂Fi

∂y (x, ux), xj
)

= 0, d ≤ j ≤ τ − 2.

The heuristic recombination algorithm proceeds as follows:
Algorithm 5 Heuristic recombination algorithm.
Input: F1, . . . ,Fs to precision (xτ ), and {u1, . . . , ud} ⊆ Kd.
Output: µ1, . . . , µr.
(1) Initialize t with s, and ν1, . . . , νt with the canonical basis of Ks.
(2) For u in {u1, . . . , ud} do:

(a) For each i ∈ {1, . . . , s}, compute fi := Fi(x, ux), gi := ∂Fi

∂y (x, ux), and hi :=
∂Fi

∂x (x, ux) to precision (xτ−1).
(b) Let A1 := 1, Bs := 1. For each i from 2 to s, compute Ai := Ai−1fi−1,

Bs−i+1 := Bs−i+2fs−i+2 to precision (xτ−1).
(c) For each i ∈ {1, . . . , s}, compute F̂i(x, ux)∂Fi

∂y (x, ux) as giAiBi to precision

(xτ−1) and F̂i(x, ux)∂Fi

∂x (x, ux) as hiAiBi to precision (xτ−1) (remark that
AiBi =

∏s
j=1,j 6=i fj).

(d) Update ν1, . . . , νt with the reduced echelon basis of the restriction to 〈ν1, . . . , νt〉
of the solutions of Pu

τ .
(e) If Algorithm 4 returns “true” then return ν1, . . . , νt.

Proposition 12 Under Hypothesis (H), if u1, . . . , ud are pairwise distinct then Algo-
rithm 5 is correct. Each step of the main loop (2) takes O(dsω−1 + M(d)2 log(d)) opera-
tions in K.

Proof. When u is seen as a transcendental parameter over K then the solution set over
K of Pu

τ coincides with the one of Dσ (this comes from Lecerf, 2006, equation (7)). Since
Pu

τ involves polynomials in u of degree at most d − 1, the latter solution set coincides
with the common solutions of Pu1

τ , . . . , Pud
τ , whenever u1, . . . , ud are pairwise distinct.

The cost of steps (2a) to (2c) belongs to O(dτ + M(τ)s) (see the proof of Lecerf,
2006, Proposition 2). The computations in step (2d) can be done as follows. Let M
denote the matrix of Pu

τ , let N denote the matrix whose columns are ν1, . . . , νt, and let
Ñ be a matrix whose columns are a basis of the kernel of MN . Then the columns of
NÑ generate the restriction to 〈ν1, . . . , νt〉 of the solutions of Pu

τ . This way, and thanks
to (Storjohann, 2000, Theorem 2.10), step (2d) costs O(τsω−1). The cost of step (2e)
comes from Proposition 11. We finally deduce that each step of the main loop costs
O(M(d)2 log(d) + τsω−1). 2

On all the examples we have tested, the early exit happens after only one or two steps
of the main loop. Therefore the interesting question is the following: what is the average
cost of Algorithm 5 when taking u1, . . . , ud uniformly at random in a given finite subset
of K?
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Bostan, A., Lecerf, G., Salvy, B., Schost, É., Wiebelt, B., 2004. Complexity issues in bi-
variate polynomial factorization. In: Proceedings of the 2004 International Symposium
on Symbolic and Algebraic Computation. ACM Press, pp. 42–49.

Bürgisser, P., Clausen, M., Shokrollahi, M. A., 1997. Algebraic complexity theory.
Springer-Verlag.

Chen, L., Eberly, W., Kaltofen, E., Saunders, B. D., Turner, W. J., Villard, G., 2002.
Efficient matrix preconditioners for black box linear algebra. Linear Algebra Appl.
343/344, 119–146, special issue on structured and infinite systems of linear equations.
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(Switzerland).

Zassenhaus, H., 1969. On Hensel factorization I. J. Number Theory 1 (1), 291–311.
Zippel, R., 1979. Probabilistic algorithms for sparse polynomials. In: Proceedings of EU-

ROSAM ’79. No. 72 in Lecture Notes in Comput. Sci. Springer-Verlag, pp. 216–226.
Zippel, R., 1993. Effective Polynomial Computation. Kluwer Academic Publishers.

19


