
SHARP PRECISION IN HENSEL LIFTING
FOR BIVARIATE POLYNOMIAL FACTORIZATION

G. LECERF

Abstract. Popularized by Zassenhaus in the seventies, several algorithms
for factoring polynomials use a so called lifting and recombination scheme.

Concerning bivariate polynomials, we present a new algorithm for the recom-

bination stage that requires a lifting up to precision twice the total degree of
the polynomial to be factored. Its cost is dominated by the computation of

reduced echelon solution bases of linear systems. We show that our bound on

precision is asymptotically optimal.

Introduction

Let F denote a polynomial in two variables x and y over a commutative field K.
All along this text F represents the polynomial we want to factor over K. Many
algorithms for factoring F proceed via so called lifting and recombination schemes.
Such schemes divide into three main stages. Informally speaking, in the first stage
one of the two variables is specialized to a random value and the univariate polyno-
mial obtained this way is factored. In the second stage, this factorization is lifted
over a power series algebra and in the last stage the factorization over K is discov-
ered from recombinations of the lifted factors. This article is devoted to the third
stage only: we show that fast recombination is possible with lifting up to precision
only twice the total degree d of F .

Recently, using the logarithmic derivative method introduced in [BHKS04], it has
been proved that lifting up to a precision d(d−1)+1 is sufficient to efficiently recover
the factors of F by means of linear algebra, whatever the characteristic of the base
field is. This bound on precision is optimal for small positive characteristics, as
shown by van Hoeij’s example F = yp+1+xp+1−1 ∈ Fp2 [x, y], for a prime number p.
If K has characteristic 0 or sufficiently large, a linear bound is sufficient, as first
shown in [BLS+04].

On the other hand, in [Rup86, Rup99], Ruppert introduced the idea of charac-
terizing the absolute reducibility of F in terms of the existence of closed differential
1-forms ω = H

F dx+ G
F dy, where G and H are in K[x, y] and satisfy some constraints

on their degrees. From this characterization, Gao derived an algorithm for com-
puting both the absolute and rational factorizations of F [Gao03]. The core of his
algorithm relies on efficiently solving the linear system built from the condition of
ω being closed:

(1)
∂

∂x

(
G

F

)
=

∂

∂y

(
H

F

)
.

Date: Preliminary version of May 10, 2004. Revised version of January 13, 2005.
2000 Mathematics Subject Classification. Primary 12Y05, 68W30; Secondary 11Y16, 12D05,

13P05.
Key words and phrases. Polynomial factorization, Hensel lifting.

1



2 G. LECERF

This equality rewrites in terms of the following crucial polynomial equation:

(2) G
∂F

∂x
− F

∂G

∂x
= H

∂F

∂y
− F

∂H

∂y
.

In this article we combine both lifting and Gao’s points of view. Our recombina-
tion algorithm is based on searching expressions of G and H in terms of the lifted
factors. The only expression of G in terms of the lifted factors exactly corresponds
to the logarithmic derivative method. The expression of H produces new linear
equations that are the key to obtain a sharp bound on precision via (2).

Notation. K̄ denotes the algebraic closure of K. K[x, y] denotes the algebra of
polynomials in two variables over K, and K[x, y]m the vector space of polynomials
of degree at most m. The field of fractions of K[y] is denoted K(y), the power series
algebra over K is denoted K[[x]] and its field of fractions K((x)). For any polynomial
G ∈ K[x, y], the total degree of G is written deg(G), and its degree with respect
to the variable x (resp. y) is written degx(G) (resp. degy(G)). The resultant of F
and G in K[x, y] with respect to y is denoted by Resy(F,G). For compactness, the
s-tuple (`1, . . . , `s) is represented by `1:s, according to Gantmacher’s notation. We
also use the notation 〈µ1, . . . , µr〉 = 〈µ1:r〉 to represent the K-vector space generated
by µ1:r.

Main Results. We shall always work under the following assumptions:

Hypothesis (H)

{
(i) degy(F ) = deg(F ) =: d;

(ii) Resy

(
F, ∂F

∂y

)
(0) 6= 0.

Remark that (ii) implies d ≥ 1. Hypothesis (H) is not really restrictive: if F is
square-free, it can be ensured by means of a generic linear change of variables, but
we will not discuss this question here. Hypothesis (i) corresponds to fact that F
is monic with respect to y. The monic (with respect to y) irreducible factors of F
over K[x] (resp. over K[[x]]) are then denoted F1:r (resp. F1:s). Of course we have
r ≥ 1, s ≥ 1 and s ≥ r. For convenience we will often use the partial products

F̂i :=
r∏

j=1,j 6=i

Fj and F̂i :=
s∏

j=1,j 6=i

Fj .

To each i ∈ {1, . . . , r} we associate the vector µi ∈ {0, 1}s, defined by Fi =
s∏

j=1

F
µi,j

j .

Since the µi have entries in {0, 1} and are pairwise orthogonal for the canonical
scalar product, up to a unique permutation, they form a reduced echelon basis. All
along this text we assume that µ1:r actually forms a reduced echelon basis.

The main idea of our new recombination algorithm relies in considering the
following family of vector spaces parametrized by the precision σ ≥ 1:

Lσ :=
{

(`1:s, G,H) ∈ Ks ×K[x, y]d−1 ×K[x, y]d−1 |

G−
s∑

i=1

`iF̂i
∂Fi

∂y
∈ (x, y)σ,

H −
s∑

i=1

`iF̂i
∂Fi

∂x
∈ (x, y)σ + (xσ−1)

}
.

Lastly π denotes the canonical projection from Lσ to Ks. In Section 1 we prove
the following theorem, which tells us that precision σ = 2d is sufficient to recover
the factorization of F by means of linear algebra:



SHARP PRECISION IN HENSEL LIFTING 3

Theorem 1. Under Hypothesis (H), if σ ≥ 2d and if K has characteristic zero or
at least d(d− 1) + 1 then

(3) π(Lσ) = 〈µ1:r〉.

In Section 2 we exhibit a family of examples, parametrized by the degree d, for
which σ ≥ 2d − 1 is necessary in order to reach equality (3). This shows that
the bound 2d given by the previous theorem is asymptotically optimal. Section 3
presents two algorithms for computing 〈µ1:r〉 from the Fi given at precision σ. The
first algorithm is deterministic and requires σ ≥ 2d. Whereas the second algorithm
is probabilistic and faster but requires σ ≥ 2d + 1. Our new algorithms mainly
reduce to computing reduced echelon solution bases of linear systems.

These new algorithms are faster than the ones given in [BLS+04] by a constant
factor: respective precisions of the liftings are smaller and linear systems have less
equations.

Related Works. Concerning factorization of polynomials in general, we refer to
the classical books [Zip93, GG99], but also to the extensive bibliographies of [Gao03,
Kal03]. Here we only focus on lifting and recombination schemes and Gao’s algo-
rithm.

Factorization via Hensel lifting appeared first in the work of Zassenhaus at the
end of the sixties for univariate polynomials with integer coefficients [Zas69]. The
idea of using lifting for K[x, y] is pioneered by [Mus75, WR75, Wan78]. For a long
time the recombination step was performed by an exhaustive search, which means
the computation of all the possible recombinations: true factors are recognized by
means of Euclidean divisions. Of course, the cost of such a process is exponential
in the number of lifted factors, hence in the total degree of the polynomial in the
worst case.

Although polynomial time algorithms have been introduced in the eighties by
Chistov, von zur Gathen, Grigoriev, Kaltofen and Lenstra (we refer to the intro-
duction of [Gao03] for historical details and references), lifting and recombination
schemes remain popular for they have been observed to be often faster in practice.
Recently, Gao and Lauder proved that the average running time of a such schemes
is almost linear for bivariate polynomials over finite fields [GL02], which justifies
the empirical observation.

In [SSKS91, SSH92, SS93], T. Sasaki and his collaborators introduced the zero-
sum relations method, also called the trace recombination method later: unfortu-
nately no correct proof was given for ensuring polynomial time complexity in all
cases (cf. the counter-example given in the introduction of [BLS+04]). Although
the practical behavior of this method was very attractive, since it reduces the re-
combination stage to fast linear algebra computations, a valid polynomial bound
on the required precision has remained unknown for a decade.

In a recent work [BHKS04], Belabas, van Hoeij, Klüners and Steel introduced the
logarithmic derivative method for recombination. This method is mathematically
equivalent to the recombination via traces [BLS+04, Section 2.3] since the logarith-
mic derivative corresponds to the generating series of the traces. The use of the
logarithmic derivative allowed to prove a quadratic bound on precision for Sasaki’s
algorithm, hence polynomial running time in all cases: for bivariate polynomials
precision σ ≥ d(d− 1) + 1 is sufficient, whatever the characteristic of the base field
is. In addition, this bound is sharp for small positive characteristic.

This quadratic bound can be replaced by a linear one, namely 3d−2 if the char-
acteristic of the base field is zero or at least d(d − 1) + 1 as exposed in [BLS+04].
In this article we modify the algorithm of [BLS+04]: we provide a new set of linear
equations coming from the logarithmic derivatives with respect to both variables x



4 G. LECERF

and y. This way we reach the sharp precision 2d. Based on these results, new proba-
bility estimates for multivariate polynomial factorization via Bertini’s irreducibility
theorem are presented in [Lec05].

On the other hand, inspired by the work of Niederreiter [Nie93] on factorization
of univariate polynomials over finite fields and Ruppert’s theorem on the char-
acterization of absolute irreducible polynomials by means of differential 1-forms,
Gao designed a factorization algorithm in [Gao03] with the following feature: if
the characteristic of the base field is zero or large enough then absolute (resp. ra-
tional) factorization can be computed within O(d5) operations (resp. O(d4)), by
means of a probabilistic algorithm. Under similar hypotheses, complexity O(dω)
is reached in [BLS+04] for rational factorization, also with a probabilistic method,
where ω ≤ 3 denotes the exponent of matrix multiplication complexity. From the
asymptotic point of view, we do not improve the complexity results of [BLS+04]:
we show that our new algorithm belongs to the same complexity class but with
better constants hidden behind the O.

1. Proof of Theorem 1

This section is devoted to proving Theorem 1: the main idea consists in showing
that conditions of Theorem 1 imply that G and H satisfy the closeness condition (2).
We start with the easiest inclusion of (3):

Lemma 1. Under Hypothesis (H), we have 〈µ1:r〉 ⊆ π(Lσ), for all σ ≥ 1.

Proof. Let i ∈ {1, . . . , r}. Differentiating both sides of Fi =
∏s

j=1 F
µi,j

j with respect
to y gives:

∂Fi

∂y
=

s∑
j=1

µi,j
∂Fj

∂y

s∏
k=1,k 6=j

F
µi,k

k .

Multiplying both sides by F̂i =
∏s

k=1 F
1−µi,k

k yields:

F̂i
∂Fi

∂y
=

s∑
j=1

µi,jF̂j
∂Fj

∂y
.

In a similar way, we obtain:

F̂i
∂Fi

∂x
=

s∑
j=1

µi,jF̂j
∂Fj

∂x
.

Since both ∂Fi

∂x and ∂Fi

∂y have total degrees at most deg(Fi)− 1, we deduce:(
µi, F̂i

∂Fi

∂y
, F̂i

∂Fi

∂x

)
∈ Lσ,

hence µi ∈ π(Lσ). �

The second lemma shows that the closeness condition (2) implies the nullity of
the derivative of the residue of G/F at any root φ ∈ K̄[[x]] of F (x, .). The proof
follows the one of [Gao03, Lemma 2.4].

Lemma 2. Under Hypothesis (H), let G and H be polynomials in K̄[x, y]d−1 sat-
isfying (2), and let φ ∈ K̄[[x]] be such that F (x, φ) = 0. We have:

a.
d

dx

(
G(x, φ)
∂F
∂y (x, φ)

)
= 0;



SHARP PRECISION IN HENSEL LIFTING 5

b. If the characteristic of K is zero or at least d(d− 1) + 1 then

G(x, φ)
∂F
∂y (x, φ)

∈ K̄.

Proof. According to Hypothesis (H), the polynomial F splits over K̄[[x]]. Let φi ∈
K̄[[x]] for all i ∈ {1, . . . , d} denotes the roots F , so that F =

∏d
i=1(y − φi). We

introduce the partition (Si)i∈{1,...,s} of {1, . . . , d} defined by Fi =
∏

j∈Si
(y − φj).

For each j ∈ {1, . . . , d}, we also introduce

gj :=
G(x, φj)
∂F
∂y (x, φj)

and hj :=
H(x, φj)
∂F
∂y (x, φj)

,

that both belong to K̄[[x]] according to (H). In K̄((x))(y) the following identities
hold, since G and H have degrees at most d− 1 in y:

G

F
=

d∑
j=1

gj

y − φj
,

H

F
=

d∑
j=1

hj

y − φj
.

Differentiating the first equality with respect to x and the second one to y, we
obtain:

∂

∂x

(
G

F

)
=

d∑
j=1

(
gj

(y − φj)2
dφj

dx
+

1
y − φj

dgj

dx

)
,

∂

∂y

(
H

F

)
= −

d∑
j=1

hj

(y − φj)2
.

Using (1), we deduce

(4)
dgj

dx
= 0, for all j ∈ {1, . . . , d}.

This concludes part (a).
Let us now deal with part (b). Let p denote the characteristic of K. If p = 0

then we deduce gj = gj(0), from (4). Otherwise, if p > 0 we only deduce gj =
gj(0) + O(xp). For fixed j, there exists a unique index i satisfying Fi(x, φj) = 0.
Consider the resultant B(x) := Resy(Fi, G−gj(0)∂F

∂y ): according to basic properties
on resultants, B has degree at most (d − 1)deg(Fi) ≤ d(d − 1) and equals zero up
to precision (xp). According to the hypothesis on p, we deduce that B = 0. It
follows that Fi divides G − gj(0)∂F

∂y , hence G(x, φj) − gj(0)∂F
∂y (x, φj) = 0, which

yields gj = gj(0) and concludes part (b) for positive characteristic. �

Proof of Theorem 1. According to Lemma 1, it remains to prove π(Lσ) ⊆ 〈µ1:r〉.
Let `1:s ∈ π(Lσ). By construction, there exist G and H in K[x, y]d−1 such that:

G−
s∑

i=1

`iF̂i
∂Fi

∂y
∈ (x, y)σ, H −

s∑
i=1

`iF̂i
∂Fi

∂x
∈ (x, y)σ + (xσ−1).

Differentiating the former equality with respect to x and the latter with respect to
y yields:

∂G

∂x
−

s∑
i=1

`i

(
∂F̂i

∂x

∂Fi

∂y
+ F̂i

∂2Fi

∂xy

)
∈ (x, y)σ−1,

∂H

∂y
−

s∑
i=1

`i

(
∂F̂i

∂y

∂Fi

∂x
+ F̂i

∂2Fi

∂xy

)
∈ (x, y)σ−1,



6 G. LECERF

from which we deduce:

G
∂F

∂x
− F

∂G

∂x
−

s∑
i=1

`iF̂i

(
∂Fi

∂y

(
∂F

∂x
− Fi

∂F̂i

∂x

)
− F

∂2Fi

∂xy

)
∈ (x, y)σ−1,

H
∂F

∂y
− F

∂H

∂y
−

s∑
i=1

`iF̂i

(
∂Fi

∂x

(
∂F

∂y
− Fi

∂F̂i

∂y

)
− F

∂2Fi

∂xy

)
∈ (x, y)σ−1.

Then, using

∂F

∂x
− Fi

∂F̂i

∂x
=

s∑
j=1

F̂j
∂Fj

∂x
−

s∑
j=1,j 6=i

F̂j
∂Fj

∂x
= F̂i

∂Fi

∂x
,

∂F

∂y
− Fi

∂F̂i

∂y
=

s∑
j=1

F̂j
∂Fj

∂y
−

s∑
j=1,j 6=i

F̂j
∂Fj

∂y
= F̂i

∂Fi

∂y
,

we obtain:

G
∂F

∂x
− F

∂G

∂x
−
(

H
∂F

∂y
− F

∂H

∂y

)
∈ (x, y)σ−1.

From the assumption on σ and using the fact that G∂F
∂x −F ∂G

∂x and H ∂F
∂y −F ∂H

∂y are
polynomials of degrees at most 2d− 2, the stronger equality (2) holds in K[[x]][y],
hence in K[x, y]. Let i ∈ {1, . . . , r}, for any j such that µi,j = 1 we associate ϕj ∈
K̄[[x]] such that Fj(x, ϕj) = 0. For such a j, Lemma 2 gives us G(x, ϕj)/∂F

∂y (x, ϕj) ∈
K̄. Letting x = 0, we have:

G(0, y)−
s∑

i=1

`iF̂i(0, y)
∂Fi

∂y
(0, y) ∈ (y)σ,

and, using σ ≥ 2d ≥ d, we get:

G(0, y)−
s∑

i=1

`iF̂i(0, y)
∂Fi

∂y
(0, y) = 0.

Substituting ϕj(0) for y in this equality yields:

G(x, ϕj)
∂F
∂y (x, ϕj)

=
G(0, ϕj(0))
∂F
∂y (0, ϕj(0))

= `j .

It follows that Fi divides G−`j
∂F
∂y , and then, for any k such that µi,k = 1, G(x, ϕk)−

`j
∂F
∂y (x, ϕk) = 0. We deduce `j = `k and that `1:s belongs to 〈µ1:r〉, which concludes

the proof. �

2. Lower Bound on Precision

In this section we show that σ ≥ 2d−1 is necessary in order to ensure equality (3)
of Theorem 1 in general. It follows that the precision σ ≥ 2d required by Theorem 1
is asymptotically sharp.

The lower bound 2d − 1 is realized by the following family of examples. We
take K := C (the field of complex numbers), d ≥ 2, F := yd − y − xd−1. Let
ω ∈ C denote a (d − 1)th primitive root of unity. Let `1:s := (1, ω, . . . , ωd−2, 0),
G := (d − 1)(y + xd−1), H := (d − 1)xd−2y. Let φi ∈ K[[x]], for i ∈ {1, . . . , d},
denote the roots of F , where:

φi = ωi−1 +
xd−1

d− 1
+O(x2d−2), for i ∈ {1, . . . , d− 1} and φd = −xd−1 +O(x2d−2).



SHARP PRECISION IN HENSEL LIFTING 7

According to our notation, we have s = d and we let Fi := y−φi, for i ∈ {1, . . . , s}.
For i ∈ {1, . . . , d− 1}, we compute

G(x, φi)
∂F
∂y (x, φi)

=
(d− 1)

(
ωi−1 + d

d−1xd−1
)

d
(
(ωi−1) + xd−1

d−1

)d−1

− 1
+O(x2d−2)

=
(d− 1)

(
ωi−1 + d

d−1xd−1
)

d ((ωi−1)d−1 + (ωi−1)d−2
xd−1)− 1

+O(x2d−2)

=
(d− 1)ωi−1 + dxd−1

d− 1 + dω−(i−1)xd−1)
+O(x2d−2)

= ωi−1 +O(x2d−2).

We deduce

(5) G−
s∑

i=1

`iF̂i
∂Fi

∂y
∈ (x2d−2).

Multiplying both sides of this equality by xd−2 = ∂Fi

∂x +O(x2d−3) and using ∂Fi

∂y = 1,
for i ∈ {1, . . . , d− 1}, we deduce:

xd−2G−
s∑

i=1

`iF̂i
∂Fi

∂x
∈ (x2d−3),

and, using xd−2G−H ∈ (x2d−3), we finally get:

(6) H −
s∑

i=1

`iF̂i
∂Fi

∂x
∈ (x2d−3).

By combining (5) and (6) we deduce that (`1:s, G,H) ∈ L2d−2, hence `1:s ∈
π(L2d−2).

Consider i such that µi,d = 1. If we had π(L2d−2) = 〈µ1:r〉 this would imply
µi,j = 0 for any j 6= d, hence Fd would belong to K[x, y], which is not possible. It
follows that σ ≥ 2d− 1 is necessary in order to ensure (3). It is worth mentioning
that F is irreducible (over C): for instance, this comes from the Eisenstein-Dumas
criterion (we refer to [Gao01] for recent advances in this topic).

3. Recombination Algorithms

In this section we treat the problem of computing µ1:r from F1:s known up to
a certain precision. According to our notation and assumptions, if π(Lσ) = 〈µ1:r〉
holds then µ1:r equals the reduced echelon basis of π(Lσ). From now on, we assume
that K has either characteristic 0 or at least d(d− 1) + 1.

We are going to describe two algorithms for computing the µi, that are adapted
from [BLS+04]. The first one is deterministic and directly exploits Theorem 1.
The second one is probabilistic and mainly gains a factor of d in complexities.
We start this section with some preliminaries about the complexity model we use.
Concerning the complexities of the lifting stage and the computation of the Fi from
the µi we refer to [BLS+04].

Complexity Model. For our complexity analysis, we use the computation tree
model [BCS97, Chapter 4]. We denote by M(n) the complexity of multiplying two
polynomials of degree at most n in this model. As in [GG99, Chapter 8, Section 3]
we assume that M is super-additive: M(n1 + n2) ≥ M(n1) + M(n2) for any positive
integers n1 and n2.



8 G. LECERF

The constant ω denotes a feasible matrix multiplication exponent as in [GG99,
Chapter 12], so that two n × n matrices can be multiplied within O(nω) field
operations. As in [Sto00], we assume that 2 < ω ≤ 3. We recall the following
complexity for linear system solving, which is a corollary of [Sto00, Theorem 2.10]:

Lemma 3. The computation of the reduced echelon solution basis of a linear system
over K with s unknowns and m ≥ s equations requires O(msω−1) operations in K.

In this section we shall use the notation coeff
(
G, xjyk

)
, that denotes the coeffi-

cient of xjyk in G ∈ K[[x]][[y]].

Deterministic Recombination Algorithm. Assume we are given F1, . . . ,Fs at
precision (xσ). Our aim is to compute the reduced echelon basis of π(Lσ). For this
purpose, we use the following linear system Dσ, with s unknowns `1:s:

Dσ


∑s

i=1 `i coeff
(
F̂i

∂Fi

∂y , xjyk
)

= 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,∑s
i=1 `i coeff

(
F̂i

∂Fi

∂x , xjyk
)

= 0, k ≤ d− 1, j ≤ σ − 2, d ≤ j + k ≤ σ − 1.

Dσ is related to Lσ as follows:

Lemma 4. Under Hypothesis (H), for all σ ≥ d, we have π(Lσ) = {`1:s ∈ Ks | Dσ}.

Proof. The linear system Dσ is directly built from π(Lσ): by construction, Fi is
monic with respect to y, which implies that ∂Fi

∂x has degree in y at most degy(Fi)−1.
It follows that both F̂i

∂Fi

∂y and F̂i
∂Fi

∂x have degrees at most d−1 in y, which justifies
the restriction k ≤ d− 1 in the construction of Dσ. The first set of equations of Dσ

runs over the monomials xjyk that belong neither to (x, y)σ nor to K[x, y]d−1. The
other second set of equations runs over the monomials xjyk that belong neither to
(x, y)σ + (xσ−1) nor to K[x, y]d−1. �

Here follows the first algorithm together with its complexity analysis.

Algorithm Recombination

Input: F1:s at precision (xσ).
Output: µ1:r.
(1) For each i ∈ {1, . . . , s} compute F̂i as the quotient of F by Fi, using

Euclidean divisions with respect to y at precision (xσ).
(2) Compute (F̂1

∂F1
∂y , . . . , F̂s

∂Fs

∂y ) at precision (xσ).

(3) Compute (F̂1
∂F1
∂x , . . . , F̂s

∂Fs

∂x ) at precision (xσ−1).
(4) Compute the reduced echelon solution basis of Dσ.

Proposition 1. Under Hypothesis (H), for σ = 2d, Algorithm Recombination is
correct and requires

O(M(σ)M(d)s + σdsω−1) ⊆ O(dω+1 + dM(d)2)

operations in K.

Proof. The correctness directly follows from the combination of the previous lemma
and Theorem 1. The Euclidean divisions are well-defined since the Fi are monic
with respect to y. Step 1 costs O(M(σ)M(d)s). Costs of steps 2 and 3 belong to
O(M(σ)M(d)s). The linear system Dσ has s unknowns and O(σd) equations. Thus
the last step costs O(σdsω−1 + sω log s) operations, according to Lemma 3. Lastly,
the right hand side of the inclusion follows from s ≤ d. �

The asymptotic cost of this algorithm is roughly the same as the one of [BLS+04,
Section 2.2] but it gains two constant factors. The first one comes from using
precision 2d instead of 3d − 2. The second one concerns the size of the linear



SHARP PRECISION IN HENSEL LIFTING 9

system: both have the same number s of unknowns but ours has 2d2 − 1 equations
compared to 5

2d(d− 1).

Probabilistic Recombination Algorithm. We now detail a faster probabilistic
algorithm, by showing that y may be replaced by ux, for two random values u ∈ K,
with a high probability of success. This leads to a linear system with fewer equations
than Dσ, reducing the cost of the linear algebra stage mainly by a factor of d. The
same factor also concerns other steps since the instantiations of y to ux can be
done at the beginning of the process. A crucial advantage of this technique is that
it avoids constructing Dσ at all. The only slight drawback versus the previous
algorithm is that the required precision is 2d + 1 instead of 2d. In order to avoid
confusions we use τ to denote this precision instead of σ.

For any u ∈ K, we introduce the following linear system Pu
τ :

Pu
τ


∑s

i=1 `i coeff
(
F̂i(x, ux)∂Fi

∂x (x, ux), xj
)

= 0, d ≤ j ≤ τ − 2,∑s
i=1 `i coeff

(
F̂i(x, ux)∂Fi

∂y (x, ux), xj
)

= 0, d ≤ j ≤ τ − 2.

The probabilistic algorithm for recombination proceeds as follows:

Algorithm ProbabilisticRecombination

Input: F1:s at precision (xτ ), a and b in K.
Output: µ1:r.
(1) For all i ∈ {1, . . . , s} and u ∈ {a, b} compute fu

i := Fi(x, ux), gu
i :=

∂Fi

∂y (x, ux) at precision (xτ ) and hu
i := ∂Fi

∂x (x, ux) at precision (xτ−1).
(2) For all u ∈ {a, b} let Au

1 := 1, Bu
s := 1;

For all i from 2 to s and u ∈ {a, b} compute Au
i := Au

i−1f
u
i−1, Bu

s−i+1 :=
Bu

s−i+2f
u
s−i+2 at precision (xτ ).

(3) For all i ∈ {1, . . . , s} and u ∈ {a, b} compute F̂i(x, ux)∂Fi

∂y (x, ux) as

gu
i Au

i Bu
i at precision (xτ ) and F̂i(x, ux)∂Fi

∂x (x, ux) as hu
i Au

i Bu
i at precision

(xτ−1) (since Au
i Bu

i =
∏s

j=1,j 6=i fu
j ).

(4) Return the reduced echelon solution basis of the union of P a
τ and P b

τ .
We start with the complexity analysis.

Proposition 2. Under Hypothesis (H), for τ = 2d + 1, Algorithm ProbabilisticRe-
combination requires

O(dτ + M(τ)s + τsω−1) ⊆ O(M(d)d + dω)

operations in K.

Proof. Step 1 performs O(dτ) operations. The total cost of Step 2 belongs to
O(M(τ)s). Step 3 costs O(M(τ)s). The final join system of P a

τ and P b
τ has s

unknowns and O(τ) equations. Thus the cost of Step 4 comes from Lemma 3.
Lastly the right hand-side of the inclusion follows from s ≤ d. �

In order to prove the correctness and study the probability of success of this
algorithm, we introduce the following vector space:

Λτ :=
{

`1:s ∈ Ks |
s∑

i=1

`i coeff
(

F̂i
∂Fi

∂x
, xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ τ − 2,

s∑
i=1

`i coeff
(

F̂i
∂Fi

∂y
, xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ τ − 2

}
.



10 G. LECERF

From Lemma 4 it is easy to see that

(7) Λτ ⊆ π(Lτ−1).

Let z denote a new variable. Substituting xz for y, we obtain:

Λτ =
{

`1:s ∈ Ks |
s∑

i=1

`i coeff
(

F̂i(x, xz)
∂Fi

∂x
(x, xz), xjzk

)
= 0, k ≤ d− 1, d ≤ j ≤ τ − 2,

s∑
i=1

`i coeff
(

F̂i(x, xz)
∂Fi

∂y
(x, xz), xjzk

)
= 0, k ≤ d− 1, d ≤ j ≤ τ − 2

}
.

For any u ∈ K, we shall use Λu
τ := {`1:s ∈ Ks | Pu

τ }. The following technical lemma
tells us that specializing u to two different values a and b in K allows us to recover
Λτ by means of solving the join system P a

τ ∪P b
τ , except if (a, b) belongs to a certain

proper Zariski closed subset of K2.

Lemma 5. For any b ∈ K, there exists a nonzero polynomial Pb ∈ K[z] of degree
at most (dim(Λb

τ )− dim(Λτ ))(d− 1) such that Pb(a) 6= 0 implies Λτ = Λa
τ ∩ Λb

τ .

Proof. Obviously, we have Λτ ⊆ Λa
τ ∩Λb

τ , for any a and b. Let λ1:dim(Λb
τ ) be a basis

of Λb
τ such that the dim(Λτ ) first vectors form a basis of Λτ . For any λk /∈ Λτ there

exists j ∈ {d, . . . , τ − 2} such that one polynomial among
s∑

i=1

λk,i coeff
(

F̂i(x, zx)
∂Fi

∂y
(x, zx), xj

)
and

s∑
i=1

λk,i coeff
(

F̂i(x, zx)
∂Fi

∂x
(x, zx), xj

)
is not zero: let pk(z) be one of them which is not zero. We take Pb as the product
of all such pk. By construction, each pk has degree at most d− 1. Finally for any
a ∈ K such that Pb(a) 6= 0, we have λk /∈ Λa

τ . �

We are now ready to show the correctness of the probabilistic recombination
algorithm:

Proposition 3. Under Hypothesis (H), if τ = 2d + 1 then for any a and b in K
such that Pb(a) 6= 0 (where Pb is the polynomial occurring in the previous lemma)
Algorithm ProbabilisticRecombination is correct.

Proof. According to the previous lemma, we have Λτ = Λa
τ ∩ Λb

τ . Thus, from (7)
and Theorem 1, the equality Λa

τ ∩ Λb
τ = 〈µ1:r〉 follows. �

Bad choices of a and b will result in wrong factors Fi. Such situations can be
easily detected by computing the Fi candidates and performing Euclidean division
of F . Indeed, using [BLS+04, Proposition 4] we know that the µi returned by
ProbabilisticRecombination are correct if and only if they all have entries in {0, 1}
(this requires the characteristic to be either zero or at least d). In addition, all
the computed µi which have entries in {0, 1} correspond to true factors but not
necessarily irreducible. This allows to split the original factorization problem into
smaller problems. Furthermore, according to our assumption on the characteristic
of K and deg(Pb) ≤ d(d−1), for any b it is always possible to find a ∈ {0, . . . , d(d−
1)} such that Pb(a) 6= 0. This way, the probabilistic strategy can be used in order
to always return correct results.

Lastly, as in the deterministic algorithm, we gain constant factors in the precision
of the series and the size of the linear system compared to [BLS+04, Section 2]:



SHARP PRECISION IN HENSEL LIFTING 11

our precision 2d + 1 is to be compared to 4d − 3, and our linear system P a
τ ∪ P b

τ

contains 4d equations compared to 6(d− 1).

Acknowledgments

I wish to thank Arne Storjohann for pointing out that the complexity of the
reduced echelon computation used in [BLS+04, Section 2.2] could be improved
thanks to [Sto00, Theorem 2.10].

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer,

1997.
[BHKS04] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel. Factoring polynomials over global

fields. Manuscript, September 2004.

[BLS+04] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in bivari-
ate polynomial factorization. In Proceedings of ISSAC 2004, pages 42–49. ACM Press,

2004.

[Gao01] S. Gao. Absolute irreducibility of polynomials via Newton polytopes. J. Algebra,
237(2):501–520, 2001.

[Gao03] S. Gao. Factoring multivariate polynomials via partial differential equations. Math.
Comp., 72:801–822, 2003.

[GG99] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University

Press, 1st edition, 1999.
[GL02] S. Gao and A. G. B. Lauder. Hensel lifting and bivariate polynomial factorisation over

finite fields. Math. Comp., 71(240):1663–1676, 2002.
[Kal03] E. Kaltofen. Polynomial factorization: a success story. In Proceedings of ISSAC 2003,

pages 3–4. ACM Press, 2003.
[Lec05] G. Lecerf. Improved dense multivariate polynomial factorization algorithms. Manu-

script, January 2005.
[Mus75] D. R. Musser. Multivariate polynomial factorization. J. Assoc. Comput. Mach., 22:291–

308, 1975.
[Nie93] H. Niederreiter. A new efficient factorization algorithm for polynomials over small finite

fields. Appl. Algebra Engrg. Comm. Comput., 4(2):81–87, 1993.
[Rup86] W. M. Ruppert. Reduzibilität ebener Kurven. J. Reine Angew. Math., 369:167–191,

1986.

[Rup99] W. M. Ruppert. Reducibility of polynomials f(x, y) modulo p. J. Number Theory,

77(1):62–70, 1999.
[SS93] T. Sasaki and M. Sasaki. A unified method for multivariate polynomial factorizations.

Japan J. Indust. Appl. Math., 10(1):21–39, 1993.

[SSH92] T. Sasaki, T. Saito, and T. Hilano. Analysis of approximate factorization algorithm. I.
Japan J. Indust. Appl. Math., 9(3):351–368, 1992.

[SSKS91] T. Sasaki, M. Suzuki, M. Kolář, and M. Sasaki. Approximate factorization of multi-

variate polynomials and absolute irreducibility testing. Japan J. Indust. Appl. Math.,
8(3):357–375, 1991.

[Sto00] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH, Zürich, 2000.
http://www.scg.uwaterloo.ca/˜astorjoh.

[Wan78] P. S. Wang. An improved multivariate polynomial factoring algorithm. Math. Comp.,

32(144):1215–1231, 1978.
[WR75] P. S. Wang and L. P. Rothschild. Factoring multivariate polynomials over the integers.

Math. Comp., 29:935–950, 1975.

[Zas69] H. Zassenhaus. On Hensel factorization I. J. Number Theory, 1(1):291–311, 1969.
[Zip93] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.

Laboratoire de Mathématiques, Université de Versailles Saint-Quentin-en-Yvelines,

45 avenue des États-Unis, 78035 Versailles, France
E-mail address: Gregoire.Lecerf@math.uvsq.fr


	Introduction
	Notation
	Main Results
	Related Works

	1. Proof of Theorem 1
	2. Lower Bound on Precision
	3. Recombination Algorithms
	Complexity Model
	Deterministic Recombination Algorithm
	Probabilistic Recombination Algorithm

	Acknowledgments
	References

