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We present a new probabilistic method for solving systems of polynomial equations
and inequations. Our algorithm computes the equidimensional decomposition of the
Zariski closure of the solution set of such systems. Each equidimensional component is
encoded by a generic fiber, that is a finite set of points obtained from the intersection of
the component with a generic transverse affine subspace. Our algorithm is incremental
in the number of equations to be solved. Its complexity is mainly cubic in the maximum
of the degrees of the solution sets of the intermediate systems counting multiplicities.

Our method is designed for coefficient fields having characteristic zero or big enough
with respect to the number of solutions. If the base field is the field of the rational
numbers then the resolution is first performed modulo a random prime number after
we have applied a random change of coordinates. Then we search for coordinates with
small integers and lift the solutions up to the rational numbers. Our implementation
is available within our package Kronecker from version 0.166, which is written in the
Magma computer algebra system.

1 Introduction

Introduced by H. Hironaka in the middle of the sixties, the concept of a standard basis
of an ideal in a polynomial ring has become a topic of particular interest in mathematics
and computer science since B. Buchberger’s work. Nowadays the effective construction
of such a basis is an essential functionality in all computer algebra systems. The sub-
jacent algorithms are unceasingly improved and make it possible to deal with concrete
problems inaccessible to numerical methods. And yet the complexity of these algorithms
is doubly exponential in the worst case. In the nineties, M. Giusti and J. Heintz showed
that elimination problems can be brought back in a polynomial complexity class by rep-
resenting the eliminating polynomials by straight-line programs. On the basis of their
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work, this paper leads to a probabilistic algorithm to compute the decomposition into
equidimensional components of the solution set of a system of polynomial equations and
inequations. Turning into practice the concept of generic point of an algebraic variety is
the key of this new algorithm.

1.1 Main Result

Let k be a field of characteristic zero, we denote by k its algebraic closure. Let f1, . . . , fs, g
be polynomial functions in k[x1, . . . , xn] given by a straight-line program of size L. The
solution set in k

n of the system

f1 = · · · = fs = 0, g 6= 0

is a constructible set, we are interested in describing the k-algebraic variety V defined as
the closure of this set with respect to the Zariski topology. More precisely the algorithm
we present here computes the equidimensional decomposition of V.

Our method is incremental in the number of equations to be solved. Therefore its
complexity depends on the number of solutions of the intermediate systems. For i from
0 to s, we introduce the ith intermediate system as the system:

f1 = · · · = fi = 0, g 6= 0.

We denote by Vi the k-algebraic variety obtained from the closure (for the Zariski topol-
ogy) of the set of roots of the ith intermediate system in k

n:

Vi := {z ∈ k
n| f1(z) = · · · = fi(z) = 0, g(z) 6= 0}, i = 0, . . . , s.

Note that if g is not the zero polynomial then V0 is k
n. Our algorithm computes the

equidimensional decompositions of the Vi in sequence for i = 0, . . . , s. Each equidimen-
sional component is represented by a set of lifting fibers (see definitions in §2.3 and §3.2).
Each lifting fiber encodes an equidimensional variety. Our representation is not redun-
dant in the following sense: an irreducible component of a variety represented by a lifting
fiber can not be included in a variety represented by another fiber.

IfW is an irreducible component of Vi we write mul(W; f1, . . . , fi) the multiplicity of
the generic point ofW as a solution of the system f1 = · · · = fi = 0 (cf. §2.2). We denote
by dega(W; f1, . . . , fi), and call it the algebraic degree of W with respect to f1, . . . , fi,
the product mul(W; f1, . . . , fi)deg(W), where deg(W) stands for the classical geometric
degree of W. By extension we define dega(Vi; f1, . . . , fi) as the sum of the algebraic
degrees of the irreducible components of Vi. We denote by δa

i this last quantity:

δa
i := dega(Vi; f1, . . . , fi).

The crucial quantity appearing in the complexity of our algorithm is the maximum δa

of the δa
i , namely: δa := maxi=0,...,s δa

i . We introduce the function U , that is used for
complexity estimates from §2.1 and that dominates the complexity of the basic arithmetic
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operations for univariate polynomials in degree at most z (multiplication, division and
greatest common divisor):

U(z) := z log2(z) log log(z).

We also use the constant Ω that is a positive real number bigger than 3 and smaller
than 4: it is related to the complexity of the linear algebra over a ring as recalled in §2.1.
We let d be the maximum of the degrees of the fi and recall that L is the evaluation
complexity of f1, . . . , fs, g. The aim of this paper is the description of an algorithm that
yields the following complexity result:

Theorem 1 Let k be a field of characteristic zero. There exists a probabilistic algorithm
taking as input a sequence f1, . . . , fn, g of polynomials in k[x1, . . . , xn] of degree at most d
and given by a straight-line program of size at most L. The output is the equidimensional
decomposition of the Zariski closure of the system

f1 = · · · = fs = 0, g 6= 0.

In case of success, the procedure requires

O
(
s log(d)n4(nL + nΩ)U(dδa)3

)
,

arithmetic operations in k. Equidimensional components are encoded by a set of lifting
fibers. The probability of success of the algorithm depends on the choice of a point in
knO(1)

: there exists a Zariski open set of points that yield a correct answer.

The above statement is subject to the following observations. First the multiplicities of
the components are not computed. The algorithm does not need to know them either.
Eventually it provides lower bounds on them. Moreover we do not know how to detect
the cases of failure. For the sake of simplicity we chose a presentation in which the
algorithm may not stop in very bad situations. We could remedy this using Bézout’s
inequality to compute upper bounds on the number of solutions of each intermediate
system. In case of failure the worst case complexity may be higher than in case of
success but we do not address this problem in this paper.

Since bad choices of points in knO(1)
are enclosed in an algebraic hypersurface the

probability of failure is very low, what is confirmed in practice by our implementation.

1.2 Related Results

Let k be a field of characteristic zero and f1, . . . , fs be polynomials in k[x1, . . . , xn]. We
denote by V the k-algebraic variety solution of f1 = · · · = fs = 0. We discuss the main
results concerning the computation of equidimensional decompositions.
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Equidimensional decomposition For computing the equidimensional decomposi-
tion of V, the best known deterministic algorithms have a complexity upper bound
asymptotically polynomial in sdn2

in terms of the number of arithmetic operations in k:
in [CG83, Chi96, Chi97] Chistov and Grigoriev present algorithms with such a complex-
ity for computing a decomposition of V into irreducible components; Giusti and Heintz
give in [GH91] another method with the same complexity, moreover their decomposi-
tion into equidimensional components is well-parallelizable; We refer to [Vor99] for a
more detailed historical presentation. Elkadi and Mourrain propose in [EM99] a method
based on Bézoutian matrices, their algorithm is probabilistic and has complexity also
polynomial in sdn2

.

Roughly speaking sdn2
is a lower bound for this problem if we represent multivariate

polynomials of the output by vectors of their coefficients (dense or sparse representation
as defined in [DST87]). This fact comes from the following observation: take s as the
integer part of n/2 and consider random enough polynomials of degree d ≥ 2. Then
any eliminant polynomial in the ideal (f1, . . . , fs) ∩ k[x1, . . . , xn−s+1] has degree ds (by
Bézout inequality and the choice of random polynomials) and therefore the number of
monomials of such an eliminant polynomial is in dO(n2) (for fixed d and when n tends
to infinity).

From a numerical point of view, Sommese, Verschelde and Wampler propose in [SV00,
SVW01a, SVW01b, SVW01c, SVW02] numerical equidimensional and irreducible de-
composition algorithms based on homotopy continuation. Some of their techniques are
very similar to ours but in an archimedian framework. Nowadays the complexity of their
full solver is still unknown. In this vein, for the first time in [CHMP01, Cas01] Castro,
Hägele, Morais and Pardo compare the efficiency of symbolic and numerical analysis
procedures for polynomial system solving using the approximate zero theory.

In [Lec00] we propose a first breakthrough: eliminant polynomials are encoded by
means of straight-line programs and algebraic varieties by geometric resolutions, we
provide a complexity mainly polynomial in dn. The algorithm is probabilistic with
a uniform bounded error probability. Another independent approach is proposed by
Jeronimo, Puddu and Sabia in [JS00, JPS01, JS02]: the main difference is that each
output component is described as the set of roots of n + 1 polynomials encoded by
straight-line programs. Another algorithm for computing Chow forms of the components
is proposed in [JKSS02]: it still relies on incremental solving and it is based on a new
process for computing Chow forms from geometric resolutions.

A by-product of an equidimensional decomposition is the dimension but there ex-
ist direct algorithms: the dimension can be computed in cost sdn. In [GH93] Giusti
and Heintz propose a well-parallelizable algorithm polynomial in sdn, deterministic
in a non-uniform complexity model and probabilistic in a uniform one; in 1996 Chis-
tov [Chi96, Chi97] performs the same computation within the same complexity but
deterministically for a uniform complexity model. On the basis of Koiran’s derandomiza-
tion methods [Koi97] Rojas proposes in [Roj00] a deterministic algorithm for computing
the dimension using toric resultant [Stu94, GKZ94] within a complexity polynomial in
a certain mixed volume (therefore polynomial in dn).
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Evaluation techniques and lower bounds Our method is in the continuation
of a series of papers initiated by Giusti, Hägele, Heintz, Krick, Matera, Montaña,
Morais, Morgenstern and Pardo. The notion of geometric resolution has been introduced
in [GHMP95, Par95] and the first resolution procedure for reduced regular sequences ap-
pears in 1997: In [GHH+97, GHMP97, GHM+98] it is presented an algorithm for com-
puting the roots of a system of polynomial equations with a complexity polynomial in a
certain degree that is intrinsic to incremental methods. In [KP96, Mor97, HMPS00] the
method is generalized in order to compute the isolated roots of any system of polynomial
equations and inequations.

In [Mat99, HMW01] the algorithm is revisited and improved, the exponents in the
complexity estimates are detailed. In [GLS01] we simplify, redesign, improve more the
algorithm, and we also explain how to implement it. The purpose of this paper is to
extend this last algorithm in a natural way in order to compute not only the isolated
roots but a description of all the equidimensional components. A good historical and
extended presentation of these works can be found in [CGH+].

In [GH01, CGH+], Castro, Giusti, Heintz, Matera and Pardo explain why univer-
sal elimination procedures require exponential running time in worst case. Informally
speaking, it follows from these results that resolution algorithms based on evaluation
techniques are polynomially optimal in worst case.

1.3 Contributions

Let us recall that the algorithm presented in [GLS01] can only solve the very particular
but generic situation called reduced regular : according to the notation of the beginning,
this corresponds to the case when s = n, Vi is equidimensional of codimension i (regular-
ity hypothesis) and the Jacobian matrix of f1, . . . , fi has full rank when evaluated at the
generic points of Vi (reduction hypothesis), for i = 1, . . . , n. In this paper we stay stick
to the same approach: incremental solving and encoding of equidimensional varieties by
means of lifting fibers.

The first difficulty we overcame is the following: if the reduction hypothesis fails
then a certain Jacobian matrix is degenerated and a certain associated Newton operator
is not applicable. The solution we propose comes from [Lec02], where we provide a
generalization of the Newton operator that is well suited to our solver. The regularity
hypothesis is easier to remove, this is the purpose of §4: we present a minimization
process which ensures that our representations of equidimensional decompositions are
not redundant.

In [JS00, Lec00, JKSS02] the decomposition algorithms rely on Bertini’s first theo-
rem, which demands to replace the original polynomials by generic linear combinations
of them. The main drawback is that the resulting solver is not incremental. Moreover if
only one polynomial is difficult to evaluate then the combination spoils the complexity
of each equation. Last the deforestation, in the sense of [GHL+00], of these algorithms
yields implementations far away from [GLS01]. These are the reasons why we were
motivated by the deflation techniques of [Lec02].
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In the same way as in [GLS01], if k is the field of the rational numbers the resolution
is first computed modulo a small prime number p, of size about 64 bits. Then we lift
the solutions in the ring of the p-adic numbers and reconstruct the rational numbers.
But before lifting the integers it is important to find a fiber of small height. This is the
aim of §5.4. The algorithm presented here has been implemented in our Magma [Mag,
BC95, BCM94, CP96, BCP97] package called Kronecker [Lec99] from version 0.166 and
available at http://kronecker.medicis.polytechnique.fr.

2 Complexity Model and Data Structure

One key feature of the geometric resolution algorithms based on evaluation techniques
is an effective use of the Noether Normalization Lemma also called geometrically the
Noether Position. This technique allows to represent a positive dimensional variety by
a zero-dimensional one. First we explain the complexity model we use and recall a few
well-known results. Then we recall the definitions of geometric resolution and a lifting
fiber.

2.1 Complexity Model

Let k be an effective field, a straight-line program Γ encoding a set of polynomials
f1, . . . , fs of k[x1, . . . , xn] is a data structure representing an evaluation scheme for
f1, . . . , fs. Such a program is composed of a sequence of elementary instructions. Each
instruction performs only one basic binary arithmetic operation (addition, subtraction
or multiplication). The inputs of Γ are the variables x1, . . . , xn, the outputs are the
values of f1, . . . , fs. We denote by L the complexity of Γ, defined as the number of
instructions of the program Γ. For standard terminology about straight-line program we
refer to [BCS97].

As a complexity model we use the unit cost measure, i.e. each arithmetic operation
(multiplication, addition, division) of the ground field is counted as one. In the sequel
we use the function U(z) that denotes

U(z) := z log2(z) log log(z).

This function dominates the complexity of the arithmetic operations (addition, multi-
plication, division, greatest common divisor) with polynomials of degrees at most z in
terms of number of operations in the base ring or field. The quantity U(z) also domi-
nates the bit-complexity of the arithmetic operations (addition, multiplication, quotient,
remainder and greatest common divisor) of the integers of bit-size at most z.

The constant Ω we use along this paper is a number bigger than 3 and such that the
adjoint and the determinant of a n × n matrix over a k-algebra can be done in O(nΩ)
arithmetic operations in the algebra. If k has characteristic zero (or big enough with
respect to n) then we can take Ω = 3 (according to the results from [CW90] and [PS78]),
but the underlying algorithm is difficult to implement and is not the most efficient in
our range of applications (n at most 15). Hence Ω is about 4 in practice.
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Many authors have contributed to these topics. Some very good historical presenta-
tions can be found in the books by Aho, Hopcroft, Ullman [AHU74], Bürgisser, Clausen,
Shokrolahi [BCS97], Bini, Pan [BP94], von zur Gathen and Gerhard [GG99], among
others. A short presentation can also be found in [GLS01, §3.5].

2.2 Geometric resolutions

In this section k denotes a field of characteristic 0. Let x1, . . . , xn be indeterminates over
k and W be a r-equidimensional k-variety in k

n, where k denotes the algebraic closure
of k. We call I the annihilating ideal of W in k[x1, . . . , xn]:

I := {f ∈ k[x1, . . . , xn], f(z) = 0, ∀z ∈ W},

and we denote by k[W] the coordinate ring k[x1, . . . , xn]/I. The definition of the degree
deg(W) ofW that suits best our purpose is the geometric one (see [Hei83, Ful84, Mum95]
for instance):

deg(W) := sup {#V(y1 − p1, . . . , yr − pr) ∩W ⊆ k
n ;

y1, . . . , yr are k− linear forms, (p1, . . . , pr) ∈ kr,

#V(y1 − p1, . . . , yr − pr) ∩W < +∞},

where # denotes the cardinal function and V(y1− p1, . . . , yr − pr) is the variety solution
of y1 = p1, . . . , yr = pr. If W is not equidimensional then its degree is defined as the
sum of the degrees of its equidimensional components.

Let W be r-equidimensional. We say that a subset of variables Z = {xi1 , . . . , xik}
is free with respect to W when I ∩ k[xi1 , . . . , xik ] = (0). A variable is integral with
respect to a subset of variables Z if there exists in I a monic polynomial annihilating it
and whose coefficients are polynomial in the variables of Z only.

A Noether normalization ofW consists of a k-linear change of variables, transforming
the variables x := (x1, . . . , xn) into new ones y := (y1, . . . , yn), such that the linear map
from k

n to k
r (r ≤ n) that sends (y1, . . . , yn) to (y1, . . . , yr) induces a finite surjective

morphism of affine varieties π : W → k
r. This is equivalent to the fact that the

variables y1, . . . , yr are free and yr+1, . . . , yn integral with respect to the free ones. In
this situation we say that the variables are in Noether position with respect to W.

Let B denote the coordinate ring k[W], and R := k[y1, . . . , yr], then a Noether
normalization induces an integral ring extension R→ B. Let K be the field of fractions
of R and B′ denote K⊗R B, then B′ is a finite-dimensional K-vector space of dimension
bounded by the degree of W.

We say that the variables y1, . . . , yn are in projective Noether position if they
define a Noether position for the projective Zariski closure of W. More precisely, let x0

be a new variable, to any polynomial f of k[x1, . . . , xn], we associate fh(x0, . . . , xn) the
homogenization of f with respect to x0; let Ih ⊂ k[x0, . . . , xn] denote the ideal generated
by all the homogenized polynomials of I and Wh ⊆ k

n+1 the k-variety associated to Ih:
Wh is the projective Zariski closure of W. We say that the variables y1, . . . , yn are in
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projective Noether position with respect toW when x0, y1, . . . , yn are in Noether position
with respect to Wh, that is k[x0, y1, . . . , yr]→ k[Wh] is an integral ring extension.

From now on we assume that y1, . . . , yn are variables in projective Noether posi-
tion for W. In this situation the dimension of B′ is exactly the degree of π, that
equals deg(W). We are interested in some particular bases of B′: A k-linear form
u = λr+1yr+1 + · · · + λnyn, with (λr+1, . . . , λn) ∈ kn−r, such that the set of powers
1, u, . . . , udeg(W)−1 forms a basis of the vector space B′ is called a primitive element
of W.

A geometric resolution of W is a data structure to store and manipulate W from
a computational point of view. This record contains the following fields:

• An invertible n×n square matrix M with entries in k such that the new coordinates
y = M−1x are in projective Noether position with respect to W;

• A primitive element u = λr+1yr+1 + · · ·+ λnyn of W;

• The minimal polynomial q(T ) ∈ K[T ] of u in B′, monic in T , and

• The parametrization of W by the zeros of q, given by polynomials

vr+1(T ), . . . , vn(T ) ∈ K[T ],

such that yj = vj(u) in B′, for r + 1 ≤ j ≤ n and degT (vj) < degT (q).

Given a primitive element u, its monic minimal polynomial q is uniquely determined.
But the parametrization can be expressed in several ways. In the above definition the
parametrization of the algebraic coordinates has the form

yj = vj(T ), r + 1 ≤ j ≤ n.

However, given any polynomial p in K[T ] relatively prime with q another parametrization
can be deduced:

p(T )yj = vj(T )p(T ), r + 1 ≤ j ≤ n.

One interesting choice is to express the parametrization in the following way:

∂q

∂T
(T )yj = wj(T ), r + 1 ≤ j ≤ n, (1)

with degT wj < degT q. We call a parametrization in the form of Equation (1) a Kro-
necker parametrization. This special form has a long history and we refer to [GLS01,
§1] for more details about this subject.

Proposition 1 [GLS01, Proposition 3] According to the above notation, the polynomial
q has its coefficients in R and in the Kronecker parametrization (1) the polynomials wi

have also their coefficients in R instead of K. The total degree of q and the wi with
respect to the variables y1, . . . , yr and T is bounded by degT (q) = deg(W). Moreover
q(u) and dq

dT (u)yj − wj(u) belong to I, for r + 1 ≤ j ≤ n.
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For instance, let f1 = x2
3 + x1x2 + 1 and f2 = x2

2 + x1x3, the variables x1, x2, x3 are
in Noether position, x2 is a primitive element and we have the following Kronecker
parametrization

x4
2 + x3

1x2 + x2
1 = 0,

(4x3
2 + x3

1)x3 = 4x1x2 + 3x2
1x

2
2.

Since we impose that deg(vj) < deg(q) it follows:

Proposition 2 Given a Noether position and a primitive element, any equidimensional
algebraic variety W admits a unique geometric resolution.

As discussed in §1.2 geometric resolutions have been designed to be stored by means
of straight-line programs. We will not compute such objects here. As the only geometric
resolutions we need for our solver are for curves, we use dense polynomial representation.
Nevertheless in §5.3 we propose an efficient scheme to compute expanded representations
of geometric resolutions.

Let V be a variety, we say that a sub-varietyW of V is isolated in V ifW is the union
of some irreducible components of V. Let e = (e1, . . . , el) be a sequence of polynomials
in k[x1, . . . , xn]. We denote by V(e) the k-algebraic variety solution of e = 0. Let W be
an irreducible component of V(e), then its multiplicity mul(W; e) as a solution of the
system e = 0 is given by:

mul(W; e) = dimK[W] K[W][[yr+1 − vr+1(T ), . . . , yn − vn(T )]]/(e ◦M),

where M , u, q, v come from a geometric resolution of W, K[W] ' K[T ]/(q(T )) is a
field and K[W][[yr+1 − vr+1(T ), . . . , yn − vn(T )]] denotes the power series ring in the n
variables yr+1 − vr+1(T ), . . . , yn − vn(T ).

For any irreducible component W of V(e) we denote by dega(W; e) the product
mul(W; e)deg(W). For any isolated sub-variety V of V(e), dega(V; e) is defined as the
sum of the dega(W; e) over all the irreducible components W of V.

2.3 Fibers

We keep the notation of the previous section: W is a r-equidimensional variety, I is its
annihilating ideal, y1, . . . , yn are variables in projective Noether position and π is the
projection from W onto the space spanned by the free variables. In this situation we
call the fiber of W at point p := (p1, . . . , pr) the finite set of points Wp := π−1(p). If
all the points of a fiber are smooth on W and for π then the cardinal of the fiber equals
deg(W). In general this property holds but one needs to count points in the fiber with
their multiplicities [Sam67, p. 89]. A k-linear form u = λr+1yr+1 + · · ·+ λnyn is said to
be a primitive element of a fiber if its separates its points, in the sense that u takes
two distinct values at two different points of the fiber.

We represent the fiber of Wp by a record which has the following entries:
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• An annihilating system e = (e1, . . . , el) ⊆ I ofW; e is encoded by a straight-line
program with x1, . . . , xn as input.

• An invertible n×n square matrix M with entries in k such that the new coordinates
y = M−1x are in projective Noether position with respect to W.

• The specialization point p;

• A primitive element u = λr+1yr+1 + · · · + λnyn of Wp, with (λr+1, . . . , λn) in
kn−r;

• The minimal polynomial q(T ) ∈ k[T ] of u in the coordinate ring k[Wp];

• n− r polynomials v := (vr+1, . . . , vn) of k[T ], of degrees strictly less than degT (q),
giving the parametrization of Wp by the zeros of q:

k[yr+1, . . . , yn]/(q(u), yr+1 − vr+1(u), . . . , yn − vn(u)) ' k[Wp].

Observe that the following relations hold in the factor ring:

u(vr+1(T ), . . . , vn(T )) = T,

ej ◦M(p1, . . . , pr, vr+1(T ), . . . , vn(T )) ≡ 0 mod q(T ), 1 ≤ j ≤ l.

If the Jacobian matrix of e ◦M with respect to the variables yr+1, . . . , yn has rank n− r
when evaluated at each point of the fiber then we call p a lifting point, and the fiber is
said to be a lifting fiber. In this case note that we have deg(Wp) = deg(W). Such a fiber
representsW in the sense that it is possible to recover the geometric resolution with prim-
itive element u lying over this fiber: the minimal polynomial and the parametrization of
this geometric resolution of W specialize to the ones of the fiber [GLS01, Proposition 5].

When W is isolated in V(e) we will say for short that the fiber is isolated. If a
fiber is not isolated then one can not find lifting points, this is a consequence of the
Jacobian criterion [Mat86, §30]. If a fiber is isolated, lifting points exist if and only
if mul(W; e) = 1. In this case the specialization points that are not lifting points are
enclosed in an algebraic hypersurface of kr [GLS01, Lemma 1]. The purpose of the
next section is to generalize the notion of lifting points for isolated fibers of components
featuring multiplicities. In such cases we make use of the deflation algorithm introduced
in [Lec02].

Notation for the pseudo-code For the pseudo-code of the algorithms we use the
following notation. If F denotes a fiber: FChangeOfVariables is M , FPrimitiveElement is u,
FSpecializationPoint is p, FMinimalPolynomial is q, FParametrization is v and FAnnihilatingSystem is
e.
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Generic Fibers Let P(P ) be a property depending on a point P ∈ kN for a given
integer N , we say that P(P ) is true for almost all points P if there exists a nonzero
polynomial H ∈ k[z1, . . . , zN ] such that H(P ) 6= 0 implies P(P ).

LetW be an equidimensional variety and e a sequence of polynomials in k[x1, . . . , xn]
such thatW ⊆ V(e). A fiber ofW with annihilating system e corresponds to the choice of
a n×n matrix over k, a linear form depending on at most n variables and a specialization
point of size at most n. In other words, such a fiber corresponds to a choice of a certain
point P in kN with N = n2 + 2n. If P is a property depending on a fiber of W for the
annihilating system e then we say that P is true for almost all fibers of W if P is true
for almost all values of the point P associated to the fiber.

3 Lifting algorithms

In this section we import the main results of [Lec02], the deflation process described
therein is the core of our solver: the deflation process is defined in §3, the generic trace
in §3.5, the nested coordinates in §3.4, the functions NestedCoordinatesWithTrace and
LiftNestedCoordinates are presented in §4.

3.1 Fast deflation

The following framework is similar to and generalizes [GLS01, §4]. Let o be a Noethe-
rian domain, m one of its maximal ideals, K its field of fractions and ô its completion
with respect to the m-adic topology. We assume that K has characteristic zero. The
main applications we have in mind are: (o,m) = (k[t], (t)), (o,m) = (k[y1, . . . , yr], (y1 −
p1, . . . , yr − pr)), where k is a field of characteristic zero and (p1, . . . , pr) ∈ kr and
(o,m) = (Z, (p)), where p is a prime number.

Roughly speaking we are given a set of isolated roots of a system e = 0, at precision
m, our aim is to recover these roots at precision mκ for any values of κ. The method we
propose below works for almost all maximal ideal m. More formally, our lifting algorithm
takes as input:

(I1) A sequence e = (e1, . . . , el) of polynomials in K[x1, . . . , xn] encoded by a straight-
line program;

(I2) A linear form u = λ1x1 + · · ·+ λnxn, with λi ∈ K;

(I3) A monic squarefree polynomial q in o[T ];

(I4) v = (v1, . . . , vn), n polynomials in o[T ] of degrees strictly less than deg(q);

(I5) T , the generic trace of the deflation process described in the next paragraphs.

Let A := ô[T ]/(q). We say that an element in K (given by its numerator and denomi-
nator) is well-defined in ô if its denominator is invertible modulo m. We assume that:
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Algorithm 1: Global Newton Iterator

GlobalNewton(e, u, q,v,StopCriterion, T )

• e is a sequence of polynomials in K[x1, . . . , xn].

• u is a linear form in the variables x1, . . . , xn.

• q is a monic polynomial in o[T ].

• v is a sequence of polynomials in o[T ].

• StopCriterion is a function returning a Boolean value. Its arguments are taken from
the local variables of this procedure. It returns whether the lifted parametrization
(V1, . . . , Vn) at precision mκ is sufficient or not.

• T is the generic trace.

If (H1),. . . ,(H7) are satisfied then for almost all matrices N introduced below the pro-
cedure returns Q and (V1, . . . , Vn) as in (O1), (O2), where the precision κ is implicitly
fixed by StopCriterion.

# Computations are performed in A/(mκA), for increasing values of κ.
N ← a random n× n invertible matrix with entries in K.
# Change the coordinates to N
e ← e ◦N ; v ← N−1v; u ← u ◦N ;
κ ← 1;
Y ← NestedCoordinatesWithTrace(e, q,v, T );
V ← v; Q ← q;
while not StopCriterion(e, u,Q,V, κ,N) do

κ ← 2κ;
Y ← LiftNestedCoordinates(e, Q,Y, T );
# Y is a n-uple of multivariate power series in n variables.
V ← constant coefficient of Y;
∆ ← u(V)− T ;
Y ← Y −

(
∆∂Y

∂T mod Q
)
;

Q ← Q−
(
∆∂Q

∂T mod Q
)
;

od;
V ← constant coefficient of Y;
V ← NV; # Change the coordinates back
return(Q,V);

12



(H1) There exist polynomials Q̂, V̂1, . . . , V̂n in K[T ] such that x∗ = (V̂1, . . . , V̂n) in
(K[T ]/Q̂(T ))n represents a set of isolated roots with respect the Zariski topol-
ogy of the system e = 0.

Let Q̂i, for i = 1, . . . , c, be the irreducible factors of Q̂, then we denote by mi the
multiplicity of (V̂1, . . . , V̂n) as a root of e = 0 in K[T ]/Q̂i(T ). By extension we say
that an element of K[T ]/Q̂(T ) is well-defined in A if all its coefficients are well-defined
in ô. Let m denote the minimum of the multiplicities of the points represented by x∗:
m := minc

i=1mi. We assume more:

(H2) deg(Q̂) = deg(q), Q̂ is monic, well-defined in ô and coincides with q modulo m.

(H3) deg(V̂j) < deg(q), for j = 1, . . . , n, x∗ is well-defined in An and coincides with
(v1, . . . , vn) modulo m.

(H4) u(V̂1, . . . , V̂n) = T .

(H5) e is well-defined over A.

Let us now describe the main construction which yields to the fast deflation algorithm.
We intensively use Gantmacher’s notation zi:j to denote the sub-sequence zi, . . . , zj of
a vector or sequence z. We construct sequences (ek)k≥1 and (nk)k≥1 incrementally as
follows. We start with n1 := 1, e1 := e and for k ≥ 2:

1. We introduce the power series ring Sk := K[T ]/Q̂(T )[[xnk:n − V̂nk:n]], ek is a finite
subset of Sk.

2. We let µk := val(ek) be the minimum of the valuations of the elements of ek.

3. We define

ẽk :=
µk−1⋃
j=0

{
∂je

∂xnk
j
, e ∈ ek

}
.

4. For the sake of simplicity we assume that there exists an element in ek having a
nonzero coefficient with respect to the monomial xµk

nk . In this case we say that
xnk

is in Weierstraß position with respect to ek. When entering Algorithm 1
this hypothesis may not hold, this is why we change the coordinates: almost all
matrices N involved in Algorithm 1 ensure Weierstraß positions.

5. By construction the Jacobian matrix of ẽk at V̂nk:n is nonzero and has rank ρk ≥ 1.
We define nk+1 := nk +ρk and try to extract a subset Σk of ρk elements in ẽk such
that the Jacobian matrix of Σk with respect to the variables xnk:nk+1−1 at V̂nk:n

is invertible. We will say that x∗ is DA-irreducible at order k if the algorithm
used to compute the rank ρk and extract Σk does not fail at inverting zero-divisors
(we refer to [Lec02] for more details about this algorithm). In order to continue
we need to assume that this kth DA-irreducibility holds.
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6. Conditions required by the implicit function theorem are satisfied: it is possible to
define ynk:nk+1−1 as the unique power series in Sk+1 satisfying Σk(ynk:nk+1−1, xnk+1:n) =
0 in the neighbourhood of V̂nk:n. Last we define ek+1 := ẽk(ynk:nk+1−1, xnk+1:n) ⊂
Sk+1.

This construction stops once we have exhausted all the variables, that is when nk+1 =
n + 1. We let ν be such that nν+1 = n + 1 and call it the depth of the deflation.
Gathering the necessary DA-irreducibility conditions we must assume:

(H6) x∗ is DA-irreducible at order k, for all k ∈ {1, . . . , ν}. In particular this implies
that x∗ is DA-irreducible as defined in [Lec02, §5].

Observe that the concept of DA-irreducibility strongly depends on the algorithm in-
volved in step 5, which chooses of the subsets Σk: different choices yield different DA-
irreduciblities. The underlying idea corresponds to the fact that the construction of
the deflation sequence can be done without splitting Q̂. Last, in order to ensure the
well-definition of all the Σk over A we need to add one last hypothesis:

(H7) All the quantities involved in the calculations of step 5 are well-defined over A.

Before studying Algorithm 1 it remains to define the subfunctions it uses. These
subfunctions compute and lift what are called the nested coordinates Y = (Y1, . . . , Yn)
associated to the deflation process and defined as power series in K[T ]/Q̂(T )[[ε1, . . . , εn]]
by:

Ynν :nν+1−1 := ynν :nν+1−1(),
Ynν−1:nν−1 := ynν−1:nν−1(Ynν :nν+1−1 + εnν :nν+1−1),

. . .

Yn1:n2−1 := yn1:n2−1(Yn2:n3−1 + εn2:n3−1, . . . , Ynν :nν+1−1 + εnν :nν+1−1).

According to (H7) the nested coordinates are also well-defined over A. The generic
trace T of the deflation is a data structure that stores all the choices performed during
the construction and for generic coordinates. We refer to [Lec02, §3.5] for a precise
definition.

The first subfunction NestedCoordinatesWithTrace we use takes as input the poly-
nomial system, the approximation of the root mod m and computes the nested coordi-
nates Y at precision m, but the generic trace of the root is supposed to be known. The
second subfunction LiftNestedCoordinates takes as input the value of Y at precision
κ and returns the lifted value at precision 2κ. This lifting operates only if the generic
trace is known.

We are now able to describe how our lifting algorithm computes approximations of
x∗ in A at any arbitrary precision. More precisely, for any given κ > 0 we are able to
compute:

(O1) Q a monic polynomial in o[T ] of degree deg(q) which coincides with Q̂ modulo mκ.
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(O2) V = (V1, . . . , Vn), n polynomials in o[T ] of degrees strictly less than deg(q) which
coincides with (V̂1, . . . , V̂n) modulo mκ and u(V) = T modulo mκ.

The lifting algorithm is the combination of the deflation algorithm of [Lec02] and the
globalization trick of [GLS01, §4]. It is summarized in Algorithm 1. We recall that the
algorithm is probabilistic: in order to work properly the coordinates must be generic
enough in order to satisfy the Weierstraß positions required by the deflation [Lec02,
§2.2]. This is why the procedure starts with picking up a random matrix N . Then we
change e to e◦N , v to N−1(v) and u to u◦N before entering the deflation routines. At
the end of the lifting we change back the coordinates. If N is not generic enough then
the NestedCoordinatesWithTrace may either raise a “division by zero” error, return a
bad result or may never stop. We denote by a(h) the cost of the arithmetic operations in
o/mh: binary arithmetic operations (addition, multiplication, inversion) and projections
from o/mh′ to o/mh, for any h′ ≤ h.

Proposition 3 According to the above notation, under hypotheses (H1),. . . ,(H7) for
almost all matrices N of Algorithm 1, which is well-defined over o and invertible modulo
m, Algorithm 1 returns a correct answer, with a complexity in

O
(

log(d)n4(nL + nΩ)m2U(deg(q))
log2(κ)+1∑

j=0

a(2j)
)
,

where d is an upper bound on the degrees of the elements of e and L denotes the evaluation
complexity of the straight-line program encoding e.

Proof. This is a corollary of [Lec02, Theorem 1]. The cost of the changes of variables is
negligible. The complexity is essentially the sum of the complexities of the computation
of the nested coordinates and the successive liftings. The deformation for updating Y
and Q are done within O(n3m) arithmetic operations in A/(mκA), since the support of
the multivariate power series for Y is in O(nm) (combine Proposition 3, Proposition 6
and Lemma 7 of [Lec02]). The value m is bounded by dn, hence log(nm) is bounded by
log(n) + n log(d) ∈ O(n log(d)). �

3.2 Lifting Fibers for Multiple Components

We come back to the notation of §2.2: W is a r-equidimensional variety, M , y, u, q, v
constitute a geometric resolution of W. We recall that K := k(y1, . . . , yr). Let e be a
sequence of polynomials in k[x1, . . . , xn]. We assume that W is isolated in V(e).

Let K[a] := K[T ]/q(T ) and y∗ = (vr+1(a), . . . , vn(a)) in K[a]n. Then the vector
y∗ represents a set of isolated roots of the system e ◦M = 0 seen as polynomials in
K[yr+1, . . . , yn]. We are in the frame of the deflation process of the previous section:
we say that the geometric resolution is DA-irreducible with respect to the sequence
e = 0 if Ny∗ is DA-irreducible as a root of e ◦M ◦N−1 = 0 for almost all matrices N
in GLn(k). This property is independent of the geometric resolution chosen. Therefore
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we say for short that W is DA-irreducible in V(e). By extension, the generic trace T
of W with respect to e is defined to be the generic trace of y∗ (and is also independent
of the geometric resolution).

We introduce the function DaSplit of [Lec02, §5]. If given as input the polynomials
e and the parametrisation of the roots of e = 0 over K coming from the geometric
resolution then it returns a partition of these roots into DA-irreducible subsets together
with their corresponding generic traces. To this partition corresponds a decomposition
of W. We call a DA-lifting point p a point in kr satisfying the following property:
the function DaSplit of [Lec02, §5] called on Ny∗ commutes with the specialization of
the free variables at p, for almost all matrices N in GLn−r(k). By this commutation we
mean that all the branchings performed during the execution of DaSplit are preserved.
In other words the deflation algorithm executed over K or over k after the specialization
y1 = p1, . . . , yr = pr keeps the same branchings. A fiber with a DA-lifting point is called
a DA-lifting fiber. In this case, if W is DA-irreducible then we say that the fiber is a
DA-irreducible lifting fiber.

This definition is technical and the lack of geometric interpretation makes it difficult
to manipulate. The only useful result we shall use is:

Lemma 1 If W is isolated in V(e) then almost all fibers of W with respect to e are
DA-lifting fibers.

Proof. This is a consequence of Propositions 7, 8 and 20 of [Lec02]. �

This terminology is used in §5.3: once the generic trace is known we are able to test if
a fiber is a DA-lifting fiber. Last we need to revisit the definition of a fiber given in §2.3:
we need to add a new field to store the generic trace. For the pseudo-code we introduce
FGenericTrace to denote the generic trace of the fiber F . It is important to notice that
this trace is only known for DA-irreducible lifting fibers.

3.3 Lifted Curves

Let W be a r-equidimensional variety. Following the notation of §2.2, π denotes the
projection map from W onto the space spanned by the free variables y1, . . . , yr. Let F
be a DA-irreducible lifting fiber of W, p its specialization point and p′ ∈ kr be a point
different from p. We denote by D the line spanned by p and p′. The inverse image
WD := π−1(D) is a one equidimensional variety called a lifted curve [GLS01, §4.5].
We are interested in computing a geometric resolution of it.

This lifted curve computation is achieved by replacing the function GlobalNewton
of [GLS01, §4.3] by the one of Algorithm 1 in the function LiftCurve of [GLS01, §4.5].
One slight modification to notice is that GlobalNewton takes the trace of the fiber as a
new argument. It is also important to observe that this new LiftCurve procedure is now
probabilistic because of the random choice of N introduced in the new GlobalNewton.

The lifted curve algorithm is summarized in Algorithm 2. Let e, M , p, u, q, v
compose the fiber F . First we express the equations in the variables y1, . . . , yn: g :=
e ◦M . Then we introduce a new variable t and compute h from g by substituting yi by
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Algorithm 2: Lift Curve

LiftCurve(F ,p′)

• F is a DA-irreducible lifting fiber of W.

• p′ is a point in kr different from the lifting point of F .

For almost all choices of the matrix N involved in the function GlobalNewton, the
procedure returns the Kronecker parametrization q,w of the geometric resolution of the
lifted curve for the line (pp′).

r ← dim(F );
δ ← deg(F );
p ← FSpecializationPoint ;
g ← FAnnihilatingSystem ◦ FChangeOfVariables ;
h ← g((p′1 − p1)t + p1, . . . , (p′r − pr)t + pr, yr+1, . . . , yn);
StopCriterion ← ((k) 7→ k > δ);
q,v:=GlobalNewton(h, FPrimitiveElement , FMinimalPolynomial ,

FParametrization ,StopCriterion, FGenericTrace);
w ← [z ∂q

∂T mod q : z ∈ v];
q ← Truncate(q, tδ+1);
w ← [Truncate(z, tδ+1) : z ∈ w];
return(q,w);

pi + (p′i − pi)t for i = 1, . . . , r. Last we call the deflation process at the points of F with
the system h = 0 and with (o,m) = (k[[t]], (t)) (with respect to the notation of §3). The
function StopCriterion forces the lifting to stop once the precision tdeg(W)+1 is reached.
At the end, denoting w = (wr+1, . . . , wn), the parametrization of WD becomes:

q(t, u) = 0,


∂q(t,T )

∂T (t, u)yr+1 = wr+1(t, u),
...

∂q(t,T )
∂T (t, u)yn = wn(t, u),

in other words:

k(t)⊗ k[WD] ' k(t)[T ]/
(
q(t, T ),

∂q(t, T )
∂T

yr+1 − wr+1(t, u), . . . ,
∂q(t, T )

∂T
yn − wn(t, u)

)
.

Let us recall that the total degree of q and the wi is bounded by deg(W) [GLS01,
Proposition 3], which justifies our stop criterion. At the end of the procedure the function
Truncate is used to recover bivariate polynomials of degrees at most δ from series known
at precision δ + 1.
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Algorithm 3: Splittings due to the deflation

DaSplitFiber(F )

• F is a DA-lifting fiber of W.

For almost all matrix N the function returns a set F of DA-irreducible lifting fibers
representing W.

r ← dim(F );
N ← (n− r)× (n− r) invertible random matrix over k;
g ← FAnnihilatingSystem ◦ FChangeOfVariables ;
g ← g(FSpecializationPoint , yr+1, . . . , yn);
g ← g ◦N ;
v ← N−1FParametrization ;
(Qi, Ti)i=1,...,t ← DaSplit(g, FMinimalPolynomial ,v);
F ← {};
for i from 1 to t do

F ′ ← F ;
F ′

MinimalPolynomial ← Qi;
F ′

Parametrization ← FParametrization mod Qi;
F ′

GenericTrace ← Ti;
F ← F ∪ {F ′} ;

return(F);

Proposition 4 According to the above notation, for almost all fibers F of W and for
almost all choices of N in GlobalNewton the complexity of Algorithm 2 is in

O
(

log(d)n4(nL + nΩ)U(dega(W;FAnnihilatingSystem))2
)
,

in terms of arithmetic operations in k, where d is an upper bound on the degrees of the
elements FAnnihilatingSystem and L denotes the evaluation complexity of the straight-line
program encoding FAnnihilatingSystem .

Proof. The proof is very similar the one of Lemma 3 in [GLS01]: we take the function
a as U in Proposition 3 and we observe that mU(deg(W)) ≤ U(dega(W;FAnnihilatingSystem)).
�

3.4 Splittings due to the Deflation

During the resolution process of §5 we produce DA-lifting fibers that are not necessarily
DA-irreducible. We need to split them into DA-irreducible ones and compute their
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generic traces. The definition of DA-lifting points is exactly stated in such a way that
the execution of the splitting algorithm of [Lec02, §5] leads to correct decompositions
and traces, when executed on DA-lifting fibers. The resulting method is summarized in
Algorithm 3. The function DaSplit is the one from §5 of [Lec02]. From Propositions 19
and 20 of [Lec02] we deduce:

Proposition 5 According to the notation of Algorithm 3, for almost all matrices N in
GLn−r(k) the function DaSplitFiber returns a correct answer, with a complexity in

O
(

log(d)n4(nL + nΩ)dega(W;FAnnihilatingSystem)2U(deg(F ))
)
,

in terms of arithmetic operations in k, where d is an upper bound on the degrees of the
elements of FAnnihilatingSystem and L denotes the evaluation complexity of the straight-line
program encoding FAnnihilatingSystem .

4 Removing Redundancies

Let e = (e1, . . . , el) be a sequence of polynomials in k[x1, . . . , xn]. We assume that we
are given a set F of fibers of varieties whose union is isolated in V(e). In this section
we describe a process for computing a minimal subset of isolated fibers from F that
represents V(e). We call this stage of the solver the minimization process. The basic
underlying operation is the inclusion test between two equidimensional varieties.

4.1 Inclusion between two varieties

Let W1 (resp. W2) be a r1 (resp. r2)-equidimensional variety. Let F 1 (resp. F 2) be
a fiber of W1 (resp. W2). We assume that F 2 is a DA-irreducible lifting fiber. We
are looking for a fiber for the reunion of the irreducible components of W1 that are not
included in W2. Our method consists in computing one judicious lifted curve of F 2.

First we explain the method in terms of geometric resolutions, then we specialize the
free variables and deduce the algorithm for the fibers. We assume that F 1 is generic
enough so that we can consider the geometric resolutions lying over F 1 and F 2: Mi

is the change of variables, ui the primitive element, Qi the minimal polynomial and
Vi = (V i

ri+1, . . . , V
i
n) the parametrization of the geometric resolution lying over F i, for

i = 1, 2. Let yi := M−1
i x, then the parametrization of Wi is given by:

Qi(yi
1, . . . , y

i
ri

, ui) = 0,


yi

ri+1 = V i
ri+1(y

i
1, . . . , y

i
ri

, ui),
...

yi
n = V i

n(yi
1, . . . , y

i
ri

, ui).

We express the parametrization of F 1 in the coordinates of F 2:

(Z1, . . . , Zn) := M−1
2 M1(y1

1, . . . , y
1
r1

, V 1
r1+1, . . . , V

1
n+1).
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Algorithm 4: Difference

Difference(F 1, F 2)

• F 1 is a fiber of W1.

• F 2 is a DA-irreducible lifting fiber of W2.

For almost all fibers F 1 ofW, almost all primitive elements for F 2 and almost all matrices
N involved in GlobalNewton called from LiftCurve, the procedure returns F a fiber of
the components of W1 not included in W2.

r1 ← dim(F 1);
r2 ← dim(F 2);
if r1 > r2 then return(F 1);
M1 ← F 1

ChangeOfVariables ;
M2 ← F 2

ChangeOfVariables ;
(z1, . . . , zn) ← M−1

2 M1(F 1
SpecializationPoint , F

1
Parametrization);

C ← LiftCurve(F 2, (z1, . . . , zr2)) in k[a] := k[T ]/(F 1
MinimalPolynomial );

C ← subs(t = 1, C);
a ← F 2

PrimitiveElement(zr2+1, . . . , zn);
b ← CMinimalPolynomial (a);
b ← b viewed in k[T ];
F ← F 1;
FMinimalPolynomial ← F 1

MinimalPolynomial div gcd(F 1
MinimalPolynomial , b);

FParametrization ← F 1
Parametrization mod FMinimalPolynomial ;

return(F );

Let χt(y2
1, . . . , y

2
r2

, T ) ∈ k[y2
1, . . . , y

2
r2

, T ] be the minimal polynomial of the linear form
uλ = λr2+1y

2
r2+1 + · · ·+ λny2

n with respect to W2 where the λi are new parameters in k:

χt(y2
1, . . . , y

2
r2

, uλ) = 0 in k[W2].

Let A := uλ(Zr2+1, . . . , Zn), we deduce that, for almost all uλ:

χt(Z1, . . . , Zr2 , A) = 0 in k(y1
1, . . . , y

1
r1

)[T ]/(Q1)

is equivalent to the inclusion of W1 in W2 [Lec00, Appendix A]. Therefore the com-
ponents of W1 included in W2 correspond to the greatest common divisor of Q1 and
χt(Z1, . . . , Zr2 , A) = 0, for almost all uλ.

Let us now consider what happens in the above computations when we specialize
y1
1, . . . , y

1
r1

to the lifting point p1 of F 1. More precisely let M1, p1, u1, q1, v1 be
the change of coordinates, the specialization point, the primitive element, the minimal
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polynomial and the parametrization of F . We recall that q1 and v1 can be deduced from
Q1 and V1 by substituting y1

1, . . . , y
1
r1

by p1.

First we compute
z = (z1, . . . , zn) := M−1

2 M1(p1,v1).

Then we compute the lifted curve of F 2 for the line going through p2 and (z1, . . . , zr2):
this computation is performed in k[T ]/(q1) instead of k but no inversion is required
in this algebra. From the parametrization of this curve we deduce the value q(T ) :=
χt(z1, . . . , zr2 , T ) for uλ = u2.

Last it remains to compute a := u2(zr2+1, . . . , zn) and evaluate q at a: b := q(a). The
value b belongs to k[T ]/(q1), we convert it to be the element of k[T ] of degree strictly
less than deg(q1).

Let q be the greatest common divisor of b and q, F the restriction of F 1 modulo
q/q. If the specialization point of F 1 and the primitive element of F 2 are generic enough
then F represents the components of F 1 that are not included in F 2. This method is
summarized in Algorithm 4 and has the following complexity:

Proposition 6 According to the above notation, for almost all primitive elements of
F 2, almost all fiber F 1 of W1 and almost all matrices N involved in LiftCurve then
Algorithm 4 returns a correct answer within a complexity in

O
(

log(d)n4(nL + nΩ)U(dega(W2;F 2
AnnihilatingSystem))2U(deg(W1))

)
,

in terms of operations in k, where d is an upper bound on the degrees of the elements of
F 2

AnnihilatingSystem and L denotes the evaluation complexity of the straight-line program
encoding F 2

AnnihilatingSystem .

Proof. The complexity is the one of LiftCurve over k[T ]/(q1), this yields the extra
factor U(deg(W1)). �

4.2 Minimization

We are now coming to the problem of minimizing a set of fibers F. Our method relies
on the above function Difference and is summarized in Algorithm 5. It works well for
almost all sets of fibers.

The precise problem is the following: we are given a set of fibers F = {F1, . . . , Ft}
where Fi is a fiber for the variety Wi. We assume that all the Fi share e as annihilating
system and that V :=W1 ∪ · · · ∪Wt is isolated in V(e). The output of the procedure is
a set of fibers F′ = {F ′

1, . . . , F
′
t′}, where F ′

i is a fiber of the variety W ′
i and satisfying:

1. W ′
1 ∪ · · · ∪W ′

t′ = V,

2. all the elements of F′ are isolated and DA-irreducible,

3. for any i, 1 ≤ i ≤ t′, no irreducible component of W ′
i is included ∪j 6=iW ′

j .
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Algorithm 5: Minimization

Minimize(F)

• F is a set of fibers sharing the same annihilating system e.

For almost all sets of fibers F and almost all matrices N involved in DaSplitFiber, if
the union of the varieties represented by the elements of F is isolated in V(e) then the
procedure returns F′ a set of isolated fibers representing V without redundancy.

for i from −1 to n do
Fi ← {F ∈ F| dim(F ) = n− i};

F′−1 ← {};
for i from 0 to n do

F′i ← {};
for F in Fi do

F ′ ← F ;
for F ′′ in F′−1 ∪ · · · ∪ F′i do

F ′ ← Difference(F ′, F ′′);
F′i ← F′i ∪ DaSplitFiber(F ′);

F′ ← F′0 ∪ · · · ∪ F′n;
return(F′);

In this situation we say that F′ represents V without redundancy.

The process we are to describe is valid for almost all sets of fibers F. We denote by
Fi (resp. F′i) the subset of fibers of F (resp. F′) representing varieties of codimension
i, for i = −1, . . . , n. First observe that F′−1 = F−1 = {}. By induction, let us assume
that we have already computed F′−1 up to F′i−1. Then we initialize F′i as the empty
set and for each fiber F of Fi we first remove from it all the components that belong
to the variety represented by F′0 ∪ · · · ∪ F′i, we get a new fiber F ′. By construction the
variety W ′ represented by F ′ is isolated in V. We deduce that W ′ is isolated in V(e)
and therefore we can apply the deflation algorithm. The new DA-irreducible fibers we
obtain this way are added to F′i and we carry on with another element of Fi.

Proposition 7 According to the above notation, for almost all fibers Fi of Wi sharing
the same annihilating system e and almost all matrices N involved in DaSplitFiber, if
V is isolated in V(e) then Algorithm 5 returns a correct result within a complexity in

O
(

log(d)n4(nL + nΩ)U(dega(V; e))2U(D)
)
,

in terms of operations in k, where d is an upper bound on the degrees of the elements
of e, L denotes the evaluation complexity of the straight-line program encoding e and
D :=

∑t
i=1 deg(Wi).
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Proof. The sum of the costs due to the calls to Difference is in

O
(
log(d)n4(nL + nΩ)

∑t
i=1

∑t′

i′=1 U(dega(W ′
i′ ; e))2U(deg(Wi))

)
⊆ O

(
log(d)n4(nL + nΩ)U(dega(V; e))2U(D)

)
.

The sum of the costs of DaSplitFiber is in

O
(
log(d)n4(nL + nΩ)

∑t′

i′=1 dega(W ′
i′ ; e)2U(deg(W ′

i′))
)

⊆ O
(
log(d)n4(nL + nΩ)dega(V; e)2U(deg(V)

)
.

Last, note that deg(V) ≤ D. �

4.3 Splittings

LetW be an equidimensional variety and f be a polynomial function given by a straight-
line program of size at most L. We are interested in splitting W into Wr and W i where
Wr is the union of the irreducible components of W that are not included in V(f) and
W i is the union of the other components. In the next section we will see that Wr

stands for the components that are regularly intersected by V(f) and W i irregularly.
As in [GLS01, §6.6] we can perform this computation with almost all fibers of W. The
method is summarized in Algorithm 6.

Proposition 8 According to the above notation, for almost all fibers F of W, Algo-
rithm 6 works well within a complexity in:

O
(
(n2 + L)U(deg(F ))

)
,

where L denotes the evaluation complexity of the straight-line program encoding f .

5 Resolution Algorithm

Putting together the previous algorithms we deduce the incremental step of our solver.

5.1 Incremental Solving

Let F be a set of isolated fibers representing V without redundancy, as defined in §4: we
denote by e their common annihilating system. Let f and g be polynomials encoded by
a straight-line program of size L. We are interested in computing a set of isolated fibers
F′ representing (V ∩ V(f))\V(g) without redundancy.

Our method is summarized in Algorithm 7, it works well for almost all sets F repre-
senting V. Let us describe how it works. For any F in F we denote by F r the sub-fiber
of F composed of the points which are not contained in V(f) and F i for the other
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Algorithm 6: Splitting a Lifting Fiber

Split(F, f)

• F is a fiber of W.

• f is a polynomial in k[x1, . . . , xn].

For almost all fibers F of W, the function returns (F i, F r) a couple of fibers such that
F i is a fiber for the components of W included in V(f) and F r is a fiber for the other
components.

q ← FMinimalPolynomial ;
v ← FParametrization ;
e ← gcd(q, f ◦ FChangeOfVariables(FSpecializationPoint ,v));
q ← q/e;
F i ← F ; F r ← F ;
F i

MinimalPolynomial ← e; F i
Parametrization ← v mod e;

F r
MinimalPolynomial ← q; F r

Parametrization ← v mod q;
return(F i, F r);

points (the exponent r stands for regular and i for irregular). This step is achieved
using Algorithm 6. Then for each F r we compute a fiber F ′ of the Zariski closure of
(W ∩ V(f))\V(g), where W denotes the algebraic variety represented by F r. For this
purpose we call the function OneDimensionalIntersect of [GLS01, §6]: according the
genericity of the fibers we take 0 for the Liouville point.

At the end of the main loop over the elements of F we obtain a set F′ containing all
the F i and F ′ computed previously. We are in the frame of §4 and we call the function
Minimize that produces a set of isolated fibers representing (V ∩ V(f))\V(g).

Proposition 9 Let D1 := dega(V; e) and D2 := dega((V ∩ V(f))\V(g); e, f). For al-
most all set of fibers F representing V without redundancy, and almost all choices of the
matrices N involved in the subfunctions of Intersect, Algorithm 7 returns a correct
answer within a complexity in

O
(
log(d)n4(nL + nΩ)U(deg(f)deg(V))

(
U(D1)2 + U(D2)2

))
,

in terms of operations in k, where d denotes the maximum of the degrees of the elements
of e, f and L the evaluation complexity of the straight-line program encoding e, f, g.

Proof. We denote by W1, . . . ,Wt the varieties represented by the elements of F and by
W ′

1, . . . ,W ′
t′ the ones of F′. From Proposition 8 the costs of the function Split is not

significant. The total cost due to LiftCurve is in

O
(
log(d)n4(nL + nΩ)U(dega(V; e))2

)
.
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Algorithm 7: Intersection

Intersect(F, f, g)

• F is a set of isolated fibers representing V without redundancy.

• f, g are polynomial functions in k[x1, . . . , xn].

For almost all sets of fibers F representing V, and almost all choices of the matrices N
involved in the subfunctions, the algorithm returns a set of isolated fibers representing
(V ∩ V(f))\V(g) without redundancy.

F′ ← {};
for F in F do

F i, F r ← Split(F, f);
F i

AnnihilatingSystem ← F i
AnnihilatingSystem ∪ {f};

C ← subs(t = yr − pr,LiftCurve(F r, FSpecializationPoint + (0, . . . , 0, 1)));
F ′ ← OneDimensionalIntersect(C, f, 0, g);
F ′

AnnihilatingSystem ← F ′
AnnihilatingSystem ∪ {f};

F′ ← F′ ∪ {F ′, F i};
return(Minimize(F′));

From Lemma 16 of [GLS01] the total cost of the function OneDimensionalIntersect is
in

O
(
n(L + n2)U(deg(V))U(deg(f)deg(V))

)
.

Last, noticing that
∑t′

i=1 deg(W ′
i) ≤ deg(f)deg(V), we deduce from Proposition 7 the

cost of the minimization of F′:

O
(
log(d)n4(nL + nΩ)U(deg(f)deg(V))U(D2)2

)
.

�

5.2 Main Function

We come back to the notation from the beginning of §1.1: we recall that we are given a
polynomial system f1 = · · · = fs = 0, g 6= 0 to solve. We let Vi := V(f1, . . . , fi)\V(g),
for i = 0, . . . , s. By induction we assume that we have already computed a set of DA-
irreducible lifting fibers F representing Vi without redundancy and sharing all f1, . . . , fi

as annihilating systems for i ≥ 0. We want to compute such a representation for Vi+1.
Concerning the initialization of the induction we must distinguish two cases: if V0 is
empty (that is g = 0) then we set F = {} and the algorithm stops; otherwise V0 is k

n:
we take 0 as primitive element and T as minimal polynomial. It is now straightforward
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Algorithm 8: Equidimensional Decomposition

GeometricSolve(f , g)

• f is a sequence of polynomials in k[x1, . . . , xn].

• g is a polynomial in k[x1, . . . , xn].

For almost all choices of M , u, p and almost all matrices N involved in the subfunctions,
the function returns the equidimensional decomposition of the solution set of the system
f = 0, g 6= 0, encoded by a set of DA-irreducible lifting fibers without redundancy.

M ← random n× n matrix over k;
u ← random n-linear form over k;
p ← random point in kn;
if g(p) = 0 then return({});
FAnnihilatingSystem ← {};
FChangeOfVariables ← M ;
FPrimitiveElement ← u;
FSpecializationPoint ← p;
FMinimalPolynomial ← T ;
FParametrization ← [];
FGenericTrace ← [];
for f in f do

F ← Intersect(F, f, g);
return(F);

to deduce the resolution algorithm from the previous function. This is detailed in Al-
gorithm 8. We obtain the following complexity result as a corollary of Proposition 9;
Hence the proof of Theorem 1.

Corollary 1 According the above notation, for almost all choices of M , u, p and almost
all matrices N involved in the subfunctions Algorithm 8 returns a correct answer within
a complexity in

O
(
s log(d)n4(nL + nΩ)U(dδa)3

)
,

in terms of operations in k, where d is an upper bound on the degrees of the fi, L
denotes the evaluation complexity of the straight-line program encoding f1, . . . , fs, g and
δa := maxi=1,...,s dega(Vi; f1, . . . , fi),

Observe that because of the choice of the random matrix M in Algorithm 8 we could
have removed all the choices of the random matrices N in the previous algorithms. But
the use of the matrices N is justified in the next paragraphs.
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5.3 Post Processing

Let F denote a DA-irreducible lifting fiber of a r-equidimensional variety W. Following
the notation of §2.3, F is composed of e, M , p, u, q, v. As described in [GLS01,
§5] it is possible to compute another fiber F ′ from F with a different specialization
point, or a different primitive element. It is also easy to perform a change of variables
concerning the free variables only or the dependent variables only. But in order to deal
with positive dimensional varieties it is also necessary to be able to change the Noether
position M . This task can be solved by means of a judicious use of the two fundamental
functions LiftCurve and OneDimensionalIntersect. Before all let us simplify the
Noether position.

Simplifying the coordinates Let us divide the matrix M into four blocks:

M =
(

M1,1 M1,2

M2,1 M2,2

)
,

such that M1,1 is a r× r matrix. We assume that M1,1 and M2,2 are invertible, which is
true for almost all matrices M . This hypothesis is not very restrictive: we can enforce
all the Noether positions occurring in the resolution to have this property; Note that
this is already the case in [GLS01].

We are looking for an invertible matrix R such that, written with the same block
pattern we have:

R :=
(

R1,1 0
R2,1 R2,2

)
and MR =

(
Idr ?
0 Idn−r

)
holds,

where Id represents identity matrices. This problem admits a unique solution R given
by: 

R1,1 = (M1,1 −M1,2M
−1
2,2 M2,1)−1,

R2,1 = −M−1
2,2 M2,1R1,1,

R2,2 = M−1
2,2 .

We build the fiber F ′ ofW from F by changing the Noether position to MR, the special-
ization point to p′ = R−1

1,1p, the primitive element u′ = u ◦ N and the parametrization
v′ = R−1

2,2v −R2,1p, then F ′ is a DA-irreducible lifting fiber of W.

Changing the Noether Position According to the previous paragraph we assume
that the Noether position given by M has the following form, with the same block pattern
as above: (

Idr ?
0 Idn−r

)
.

In order the change the Noether position it suffices to be able to perform the following
change of coordinates for any fixed i, 1 ≤ i ≤ r:

Yi := yi +
n∑

j=r+1

ajyj , aj ∈ k, for r + 1 ≤ j ≤ n,

Yj := yj , for all j 6= i.
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Let Y := (Y1, . . . , Yn) and R be the matrix such that y = RY. We denote by fy the
polynomial yi +

∑n
j=r+1 ajyj − pi and by fx the polynomial fy ◦M−1.

We construct the following point p′ in kr: p′i := pi + 1, p′j := pj , for j 6= i. Then we
call the function LiftCurve with F and p′ as arguments in order to recover the curve C
parametrized by t = yi− pi. Then we call the function OneDimensionalIntersect with
C, fx, 0 and 1 as arguments. If V (fx) intersects C regularly then we obtain a description
of the following set of points as output:

W ∩ V(y1 − p1, . . . , yi−1 − pi−1, fy, yi+1 − pi+1, . . . , yr − pr).

Rewriting this variety in terms of the new coordinates Y yields:

W ∩ V(Y1 − p1, . . . , Yr − pr),

hence we deduce the following fiber F ′ differing from F by replacing the change of
coordinates by M ◦R.

If the degree of F ′ equals deg(W) then F ′ is a good candidate to be a DA-lifting
fiber, what remains to be checked. Since we know the generic trace of W, this test can
be achieved in a probabilistic way using Proposition 17 of [Lec02]. No more code is
actually needed: one can re-use LiftCurve but the execution can be stopped just after
NestedCoordinatesWithTrace. If this piece of code runs without raising any division
by zero error then this proves that the new fiber F ′ is a DA-lifting fiber.

Performing this process for all the values of i ranging from 1 to r, one can compute
from F almost all fibers of W. The cost of this process is dominated by O(r) times the
cost of LiftCurve (because the cost of the intersection is negligible).

Recovering the Geometric Resolution In case one would be tempted to lift the free
variables and write down the geometric resolution lying over a lifting fiber using dense
polynomial representations, we give a reasonable strategy. We can use the global lifting
procedure in k[[y1−p1, . . . , yr−pr]] with respect to the maximal ideal (y1−p1, . . . , yr−pr).
The complexity of the multiplication of multivariate power series is addressed in [LS01]
and is mainly linear in the size of the series (up to logarithmic factors). This yields an
algorithm for recovering the geometric resolution mainly linear in the size of the output.
More general algorithms are proposed in [Sch00, Sch03, Sch02].

5.4 Special Case of the Integers

Our geometric resolution algorithm works well over a field k of characteristic zero. If k
is the field Q of the rational numbers then we pick up a random prime p and first solve
the system modulo p. If p is lucky then the algorithm computes a correct resolution
of the system modulo p. The luckiness of p corresponds to the commutation of the
computations over Q and modulo p. This is why the output is correct except for a finite
number of primes. Once the modular resolution is completed then each returned fiber
has a change of variables, a primitive element and a specialization point with entries in
the range 0, . . . , p− 1. Before recovering fibers over Q it is important to find changes of
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variables, specialization points and primitive elements of small height. For this purpose
we perform trials with small random integers. The height of the integers is increased
after a certain number of failures.

From §5.3 we know how to change the Noether position and from [GLS01, §5] we
know how to change the specialization point and the primitive element. Moreover as
explained in §5.3 it is always possible to check whether the resulting fibers are still
DA-lifting fibers or not.

Once we have found a fiber of small height then the lifting of the integers is exactly
the same as in [GLS01, §4.6] except that we must use the new GlobalNewton from §3
based on the deflation algorithm.

6 Examples

The algorithm presented in this paper has been implemented within the Magma computer
algebra system. The package is called Kronecker [Lec99] and the current version is 0.166.
The timings we give in this section concern a 1 GHz Pentium III based computer with
512 MB of internal memory and running Linux 2.4; We use Magma 2.9. More examples
are given in [Lec01].

The family of examples we have chosen to illustrate the behavior of our implementa-
tion comes from the following problem: Let k be a field and S(X, Y, Z) be a polynomial
in k[X, Y, Z] such that S(0, 0, 0) = 0. We introduce three infinite families of new symbols
(xi)i∈N, (yi)i∈N, (zi)i∈N and the following formal power series in the parameter t:

X̂ :=
∑
i≥0

xit
i, Ŷ :=

∑
i≥0

yit
i, Ẑ :=

∑
i≥0

zit
i.

For any nonnegative integer σ we address the problem of describing the set of power
series X̂, Ŷ and Ẑ satisfying S(X̂, Ŷ , Ẑ) ∈ O(tσ). For a fixed value of σ this problem
can be turned into a polynomial system involving at most σ equations and 3σ variables.

In the rest of the paper we chose S := (X2 + Y 3 + Z4)(X2 + Y 3 + Z5) and k :=
Z/4294967291Z, the polynomial systems we obtain for each σ are simplified a bit using
the following rules:

• Each equation being a power of a variable is removed and this variable is replaced
by zero in the remaining system. This rule is applied as many times as necessary
to remove all these trivial equations.

• We only consider as unknowns of the system obtained after applying the previous
rule the variables that do appear in the system and we discard the others.

For instance let us build the system for σ = 11: first we compute the power series
expansion of P := S(X̂, Ŷ , Ẑ) at precision O(t11), then we let fi denote the coefficient of
P of degree i, for i = 0, . . . , 10. The polynomial system F = {f0, . . . , f10} we are to solve
can be simplified this way: since f4 = x4

1 we discard f4 and replace x1 by 0 in F . After
this substitution f6 becomes y6

1, hence we remove f6 and set y1 = 0. Last there are left
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3 nonzero polynomials in the system, of respective degrees 6, 9 and 9. The number of
effective unknowns in this system is 7. Using Kronecker we find that the solution set of
this system is composed of one component of codimension 3 and degree 18 which is not
multiple and one multiple component of codimension 2 and degree 1. This computation
requires less than 5 seconds and about 3 MB of memory.

Dimensions and degrees of the components solutions for values of σ ranging from
11 to 14 are given in the following table. For each component we given a couple (c, d)
where c is the codimension and d the degree of the component. For multiple components
we display the degree in bold font. The column n contains the number of effective
unknowns of the system. The column d provides the sequence of the total degrees of the
equations. The last two columns contain the total time and the memory consumption
of the computation.

σ n d (codim,deg) time memory
11 7 6, 9, 9 (2,1), (3,18) 5 s 3 MB
12 10 6, 9, 9, 9 (2,1), (4,44) 28 s 5 MB
13 13 6, 9, 9, 9, 9 (3,3), (5,110) 285 s 14 MB
14 16 6, 9, 9, 9, 9, 9 (3,3), (3,200) 3382 s 100 MB

Concerning comparisons with other tools we would like to underline that no function
strictly similar to our GeometricSolve of Algorithm 8 is available in Magma or in other
computer algebra software. Comparison with straight Gröbner basis functions is not fair
but for information we mention that the graded reverse lexicographical bases computed
with Magma require: 1.5 s and 2 MB for σ = 11, 71 s and 9 MB for σ = 12 and for
σ = 13 we have stopped the computation after 1 hour, 210 MB were in use. Primary and
Prime decomposition functions available in Magma are not faster than Gröbner bases on
these examples.

7 Conclusion

In this paper we have presented a practical probabilistic algorithm to compute the equidi-
mensional decomposition of an algebraic closed set. For the first time we have been able
to state a precise upper bound complexity for this problem, with an explicit reasonable
exponent. Although mechanisms that handle the decomposition in itself are quite clas-
sical, the use of the deflation algorithm as a generalization of Newton’s operator is very
new and validates the fiber encoding approach even for multiple components. Estimating
the probability of success of this algorithm is subject to further work.

Computing the prime decomposition from the equidimensional one seems to be an
easy task in theory but is not at all in practice. The current distribution of Kronecker
already contains experimental functions that compute prime decompositions over Z/pZ
but recombinations over Q are still in development.

Acknowledgments: I am very grateful to Allan Steel and all the Magma team
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rithmes de manipulations algébriques. Masson, 1987.
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