Quadratic Newton Iteration
for Systems with Multiplicity

G. LECERF

Laboratoire GAGE, UMS MEDICIS,
Ecole polytechnique, 91128 Palaiseau, France
lecerf@gage.polytechnique.fr

Preliminary version of 9th November 2001

Abstract

Newton’s iterator is one of the most popular components of polynomial equation
system solvers, either from the numeric or symbolic point of view. This iterator
usually handles smooth situations only (when the Jacobian matrix associated to
the system is invertible). This is often a restrictive factor. Generalizing Newton’s
iterator is still an open problem: how to design an efficient iterator with a quadratic
convergence even in degenerate cases? We propose an answer for a m-adic topology
when the ideal m can be chosen generic enough: compared to a smooth case we
prove quadratic convergence with a small overhead that grows with the square of
the multiplicity of the root.

AMS Classification: 14-04, 14Q20, 14B05, 68W30.

1 Introduction

Let us consider the polynomial equation system f; = fo = f3 = 0 in the unknowns
T1,%o, T3, Where:

fi = 2.’L‘1—|—2.T%+2.’L‘2—{—2.’L‘%—|—.T§—1,

fa = (z1+m0—23—1)% =23,

3 1= z{ +95x5+10x3 +dz5 + - -
223 + 522 + 10 5z35 4 5)% — 1000 23

It is easy to check that z* := (0,0, —1) is an isolated multiple root of this system. Assume
that, for a given prime number p, we are given an approximate root z := (z1, 22, 23) in
73, where z; = 0 mod p, 2o = 0 mod p and z3 = —1 mod p. Our problem is to recover
z* from z. Let F' denote the sequence of the above polynomials fi, fo, f3 in Z[z1, z2, T3]

If * were a simple root then the classical Newton iterator N would solve our problem:
N()) R
z)=z——(z z).
dz

1

Preliminary version — 9th November 2001

The iterator N is well-defined over the ring of the p-adic integers Z, if the Jacobian
matrix % is invertible at z. Except for a finite number of primes p this condition is
satisfied and the sequence (N*(z)),>o of the iterated of z converges to z* quadratically
in Zg, that is:

N®(z) —z* € pZNZ;’).

Then, using a rational reconstruction algorithm [Dix82|, one can recover z* from a p-adic
precise enough approximation.

One can check that the multiplicity M of z* is 18. This can be computed as the
dimension of the Q-algebra Q[[z1, z2, z3+1]]/(F') thanks to the software Singular [GPS01].
Moreover the above system has 54 isolated solutions counted with multiplicity; z* is the
only multiple root.

The purpose of this article is the construction of an iterator N that generalizes N
for multiple roots. The validity of N still depends on the choice of a lucky prime p. We
show that there exists only a finite number of unlucky p. The number of operations in
Zyp executed by N is linear in the evaluation complexity of the input system F' and in
the square of the multiplicity (up to logarithmic factors), but it is important to underline
that the algorithm does not compute the multiplicity and does not need to know it.

1.1 Main Result

Let o be a Noetherian domain and k its field of fractions. The reader may keep in
mind that our cases of interest are 0 = K[t], 0 = K]Jt1,...,tmn] (where K is a field)
and o = Z (as in the above situation). We denote by k the algebraic closure of k. We
are given fi,...,fs polynomials in o[z1,...,z,]. Let z* be an isolated point (for the
Zariski topology, see for instance [Mat86, §4]) of multiplicity M of the algebraic variety
{z € k", fi(z) = --- = fs(z) = 0}. The multiplicity M is the dimension of the %-
algebra k[[z1 — x%,...,2n — 22]]/(f1,-- -, fs). Roughly speaking, we are concerned with
the following lifting problem: can we recover z* from one of its approximations modulo
a maximal ideal m of o7

We propose a partial answer to this question: our method works for some lucky ideals
m only. The first restrictions on m are natural and concern the specialization of the root
z* modulo m.

Let @ be a monic irreducible polynomial of k[T]. We denote by u the image of T in
the algebraic extension k(u) := k[T]/(Q(T)). We assume that z* € k(u)" and:

(Hg) There exists pg € o such that pg is a unit in o/m, pgQ € o[T] and the
discriminant of pg(@ is a unit in o/m.

Concerning the classical mathematical background we refer to [Mat86, §8]. We denote by
0 the completion of o with respect to the m-adic topology. Any a in o that is a unit in o/m
is a unit in o/m” for any integer x > 1 and is also a unit in 6. Under hypothesis (Hg), the
quotient ring A := 6[T"]/(Q(T)) is well-defined as an 6-algebra of dimension the degree

2

Preliminary version — 9th November 2001

of @ and inherits the complete and separated (mA)-adic topology. Multiplication in A is
continuous: if z; € m* A, for i = 1,2 and integers ; > 0, then z12zp € mf1T52 4,

From a practical point of view the situation is the following. We want to compute

in A but knowing only an approximation ¢ € o[T] of @, that is pg(Q — ¢) has all its
coefficients in m. But it suffices to observe that A is isomorphic to 6[T]/(q(T)) (see
Proposition 1 below) to make the computations in A effective.
In order to embed z* in A we need the following hypothesis (Hy+). We denote by p the
canonical projection from k[T] onto k[u]. Let p~! : k[u] — k[T] be the linear map such
that p—!(e) is the unique polynomial of degree less than the degree of Q and such that
its projection in k[u] is e.

(Hyz+) There exists pg+ in o such that p,« is a unit in o/m and the polynomial
*

pr+p~Hax}) is in o[T], for i = 1,...,n.
We still write z* for the image of z* in A when there is no danger of confusion. Let
z € A™ be an approximation of z* modulo m. In the case M = 1 (we say that z* is a
simple root) it is well-known that Newton’s iterator answers our lifting problem ([Lan93,
XII, §7] for instance). Let F' denote the vector of polynomials (fi,..., fs) and % the
Jacobian matrix of F. If

(H;) The determinant of £ (z*) in a unit in A/m,
then Newton’s iterator IV is well-defined in any neighborhood of z*:

N(z) =2 — (%(z)) TR,

Its convergence is quadratic, that is for all k > 1:

z—z* € (MFA)" = N(2) —z* € (m*A)".

If the multiplicity M is greater than 1 then Newton’s iterator is not defined anymore
at z*. Our aim is the generalization of this iterator N in order to handle multiple roots.
We introduce an iterator N answering this problem and prove that the overhead is mainly
M?. Our algorithm works under some genericity conditions: the characteristic of & must
be big enough, the coordinates must be generic enough and the maximal ideal m must
satisfy (Hg), (H,+) and other conditions generalizing (H ;). The change of coordinates
is represented by a matrix M of GL,(k) (the group of invertible n X n matrices over k).
The complexity model we use is stated in §4.1. The constant 2 comes mainly from linear
algebra complexity: 3 < < 4. We refer to §4.1 for further details.

Theorem 1 Let 0 be a Noetherian domain and k its field of fractions. There ezists a
deterministic algorithm performing the following task. The inputs of the algorithm are:

o A sequence fi,..., fs of polynomials in o[x1, ..., Ty] given by a straight-line program
of length L.

3

Preliminary version — 9th November 2001

® (,V1,...,Un, a sequence of polynomials in o[T);
o A matriz M of GLy(k).
o A mazimal ideal m of o.
We assume that the input satisfies the following hypotheses:
® ¢ is monic.
o There exists polynomials Q,V1,...,Vy in k[T] such that:

— @ is monic and irreducible.

— The point z* = (V1(u), ..., Vp(u)) in k(u) := k[T]/(Q(T)) is an isolated root
of the system f1 =--- = f, = 0 with multiplicity M .

— There ezist pg and pg+ in o and being units in o/m such that the polynomials
pQQ and py+V; have all their coefficients in o and pgo(Q — q) and pgy- (Vi —v;),
fori=1,...,n, have all their coefficients in m.

e The characteristic char(k) is either O or at least M + 1.

e The matriz M is outside of an algebraic hypersurface of GLy(k) depending on the
input polynomials and the root z*.

e The ideal m does not contain an element a # 0 of o that depends on the input
polynomials, the root £* and M.

Let z be the image of (vi,...,vy) in A :=0[T]/(q(T)), we still write =* for its image in
A. Let k be a lower bound on the precision of z as an approrimation of z* in A: z—1z* €
(mfA)". Under the above conditions the algorithm computes polynomials v1,..., 0, in
o/ (m?*)[T] such that the image N(z) of (01,...,0p) in A approzimates z* at precision
at least 2k, that is: N(z) — x* € (m**A)". The algorithm performs

o (n3 (nL 4+ nt)M? log(nM))
arithmetic operations in A/(m?rA).

As an immediate consequence of the above theorem, the sequence (]\Nl' l(z))lzo converges
quadratically to z*: N'(z) — z* € (m2*A)".

It is important to notice that the theorem does not state neither the existence of
a lucky m nor generic enough changes of coordinates. If k has characteristic zero then
almost all random choices of coordinates are generic enough. In the case when o =
Klti,...,ty] (where K is a field) the maximal ideals m = (¢t; — p1,...,t, — py) that are
not lucky come from points (p1,...,p,) included in an algebraic hypersurface in K™.
Hence, if K has characteristic zero then almost all maximal ideals are lucky. In the case
when 0 = Z only a finite number of maximal ideals are not lucky. We leave probability
estimates for further work and focus only on the algorithm.

4

Preliminary version — 9th November 2001

From [GLS01, Lemma 2] we recall that for the special case M = 1 the complexity of
Newton’s iterator is in O(nL + nf?). Focusing on the dependency on M, the overhead of
N grows with M? up to logarithmic factors.

The complexity model and the algorithm are presented in §4. The basic tools necessary
for the algorithm are given in §2. The mathematical idea is developed in §3. In §5 we
use the classical dynamic evaluation framework to handle reducible sets of roots. In the
next paragraphs we give some details about the important consequences in the field of
polynomial systems solving. We conclude this introduction with the presentation of the
new underlying ideas along with examples.

1.2 Motivation for Polynomial System Solving

In |GLSO01] we present an algorithm to solve systems of polynomial equations and in-
equations: a practical variant of the geometric resolution algorithm. We recall the main
framework of this algorithm. Let k be a field of characteristic zero. We are given poly-

nomials f1,..., fn,g in k[z1,...,2z,] and are interested in computing a description of the
set of roots of the system f; = --- = f, = 0, g # 0. Let V(f1,...,f;) (resp. V(g))
denote the algebraic variety solution of f; = --- = f; = 0 (resp. g = 0). Let V; be the

Zariski closure of V(f1,..., fi)\V(g), for i = 1,...,n. Our algorithm is incremental in
the number of equations to be solved, we compute a description of V;y; from one of V;.
Our method works under the following restrictive hypotheses:

(R1) Regularity hypothesis: each V; is equidimensional of dimension n — i;

(R2) Reduction hypothesis: the Jacobian matrix of f1,. .., f; has full rank when evaluated
at V;.

We assume that the affine coordinates are generic enough (if this is not the case
then replace them by a random affine transformation). Roughly speaking here is the
incremental step of our solver: at step i, the variety V; is represented by the finite

set of solutions of the system f; = --- = f; =21 = -+ = 2 = 0,9 # 0, called
a lifting fiber. From this set of points we compute the curves solutions of the system
fi=-=fi=z1 =+ =1xp41 =0, g #0. This curve is parametrized by

the variable x,_;, it is called a [lifting curve. This computation is called the lifting
step. Then we compute the intersection of this curve with the next equation f;1; = 0,
this is the intersection step: according to hypothesis (R;) this yields a finite set of
points from which we remove the solutions of g = 0, this is the cleaning step. This
way, we obtain a lifting fiber for V;;1, which represents the solutions of the system
fi==firn=r1=-=2p-1=0, g#0.

We focus on the lifting step: the one of [GLS01] relies on Newton’s iterator, the
invertibility of the Jacobian matrix occurring in this iterator is equivalent to hypothesis
(R2). This is a restrictive factor of the method. Theorem 1 remedies this problem.
Full details about the complete resulting solver are given in [Lec0l]: we show how to
get rid of hypothesis (R;) as well and how to compute the equidimensional algebraic
decompositions of the V; in sequence.

5

Preliminary version — 9th November 2001

1.3 Brief History

For centuries Newton’s method has certainly been the most famous approach for solving
equations and systems of equations numerically, but the idea of using it in a symbolic
solver is more recent. We refer to Schost’s thesis [Sch00, Chapitre 6] for a detailed
historical presentation.

In the non-archimedian case of J-adic topologies, where J is an ideal of a ring R, we
attribute the introduction of Newton’s method in computer algebra to Zassenhaus [Zas69]
for greatest common divisor computations (known as Hensel’s lemma). In the field of
polynomial equation system solving, the earliest occurrence of Newton’s iterator seems
to be due to Trinks [Tri85] in 1985: he proposed to lift to the rational numbers of a
shape-lemma [GM89] Grobuer basis which is only known modulo a lucky prime number.

In 1988, Winkler [Win88| generalized Trinks’ approach for the computations of p-
adic approximations of Grébner bases. The choice of a lucky p is then discussed in sev-
eral papers: Gianni [Gia87|, Kalkbrener [Kal87, Kal97|, Pauer [Pau92|, Gribe |Gra93|,
Assi [Ass94], and more recently Gianni, Fortuna and Trager [GFT00]. In [Nau98]
Nauheim proposes a method to handle lifting with an unlucky p.

The geometric resolution algorithm we are concerned with has been introduced by
Giusti, Heintz, Morais, Morgenstern and Pardo [GHM*98]| in the early 1990s: Newton’s
iterator is used to compress the straight-line programs encoding the resolutions of the
intermediate varieties V; in the incremental solving process. The representation of each
V; has a size polynomial in its degree. The resulting solver has a complexity mainly
polynomial in the maximum of the degrees of the intermediate varieties V;. This was
a breakthrough in theoretical complexity. This idea has been developed in a series of
papers [Mor97, GHH197, GHMP97, Hig98, HKP100]. From a practical point of view,
the geometric resolution algorithm has been turned into an efficient software called Kro-
necker [Lec99]. It has been designed by Giusti, Lecerf and Salvy [GLS01] and implemented
in the Magma computer algebra system [BC89, BC90, BCM94, BC95, CP96, BCP97|:
the theoretical algorithm has been completely redesigned and simplified. We improved
its complexity dramatically. We introduced, independently of Heintz, Matera and Waiss-
bein [HMWO01], the notion of lifting curves.

I propose in [Lec00] a theoretical generalization of the geometric resolution algorithm
for computing an equidimensional decomposition of the solution set of any polynomial
equation system (removing the above regular reduced restrictive hypotheses (R;) and
(R2)). My approach is based on Bertini’s first theorem as initiated in [KP96, Mor97]:
the input system is replaced with generic linear combinations of the given equations.
I prove that the only lifting to perform concerns the smooth components and can be
done using the classical Newton iterator. But my algorithm presents two main draw-
backs. On the one hand, the substitution of the original system by linear combinations
of the original equations spoils the evaluation complexity of the intermediate systems.
On the other hand the theoretical description does not lead to an easy implementation
as in [GLS01] when applying the deforestation idea introduced in [GHLT00] to elimi-
nate straight-line programs in the intermediate computations. Jeronimo and Sabia also

6

Preliminary version — 9th November 2001

propose a generalization of the algorithm in [JS00]. Their approach and purposes are dif-
ferent: they provide an idealistic description of each equidimensional component instead
of a geometric resolution. This is a less convenient output for numerical solving.

The purpose of this article is the generalization of the algorithm presented in [GLSO01],
but without mixing the equations of the input system and keeping the natural incremen-
tal resolution process. The main problem is to deal with situations featuring multiple
components.

From a numerical point of view the one dimensional case is now well understood
as demonstrated in Yakoubsohn’s recent work [Yak00]|. But in several variables there
exists no satisfying generic Newton iterator handling multiplicities. In [MS95] Méller and
Stetter postprocess Grobner bases numerically in order to compute all the roots of a zero-
dimensional polynomial equation system. In [Ste96] Stetter exploits some Grobner bases
in order to obtain local information about a cluster of roots. A generic numerical iterator
has been proposed by Ojika, Watanabe and Mitsui in [0ji82, OWMS83, 0ji87]. Their idea
consists in replacing the original system by another one for which the considered singular
root has smaller multiplicity. This is done by differentiating well chosen equations. After
a finite number of steps they obtain a system for which the considered root is simple.
The computations are done mixing numerical and symbolical manipulations. It is a pity
that their study lacks stability and complexity analyses. Since they call their algorithm
the Modified Deflation Algorithm, we will refer to our method as a deflation algorithm.

1.4 Presentation of the Method

Before entering the mathematical framework of our algorithm we introduce the basic
ideas along examples.

Example 1 We start with the easiest case, with one variable only: n = 1, 0 = QJt],
k = Q(t) and one polynomial f(z) in o[z]. Let p € Q and m = (¢ — p), we are given an
algebra A = 6[T"]/(q(T)) as defined above in §1.1 and an approximation z € A of a root
z* of f of multiplicity M. If M is known and is greater than 1 we can replace f by its

(M — 1)st derivative f := gf&i{ and then use the classical Newton iterator (if f'(z*)

is invertible in A). Practically we proceed this way: to evaluate f and its first order
derivative at the point z, we take a new variable dx and evaluate f in the power series
ring A[[dz]] at z + dz and precision O(dz™1):

Mo1dif :
fz+dz) =) =—=(2)ds’ + O(dz™M*?),
il dz?
i=0
so that introducing the function coeff to extract the coefficient of its first argument with
respect to its second one, we deduce the iterator:

1 coeff(f(z + dz),dz™ 1)
M coeff(f(z + dx),dzM)

N(z):=2—[/]'(z) =2 (1)

7

Preliminary version — 9th November 2001

Now let us assume that M is a priori unknown. Our strategy is to determine M and
then to use the iterator N. The success of the algorithm relies on the choice of m.

We compute the multiplicity M, of z as a root of f in A/mA. For this purpose we
evaluate f at z + dz in the power series ring A/mA[[dz]]:

M, := valy, f(z + dz),

where val denotes the valuation function. Assuming that M, = M and that Zf—]\;(x*) is

a unit in A/mA then the sequence (N*(z)), converges quadratically to z*.
As for the justification of this algorithm we observe that M, = M if and only if

M
%Wi(z) is a unit in A/mA. This condition generalizes (Hy). In particular this proves
that, except for a finite set of choices, almost all p yield a correct multiplicity.

Example 2 We now take n = 2, 0 = Q[t], f1 = (z1 — t)® — 22, fo = 25 + 65z, — 5.
One can check that the set of roots of
=0, 25 +13=0 (2)

is an isolated component of the variety defined by fi = fo = 0 of multiplicity M = 2.
This is confirmed by the following computations.

Let p be a point in Q and m = (t—p). We are given ¢(T) = T%+p?, the corresponding
algebra A = Q[[t — p]][T]/(¢(T)) and the approximate root z = (0,u), where u denotes
the image of T in A. In order to satisfy (Hg) and (H,+) it suffices that p # 0.

Let dzo be a new variable. First we compute an approximation of y; € Al[dzs]],
the power series solution of fi(y1,u + dz2) = 0 using an effective version of the implicit
function theorem:

2 1
y=({t—p)+ @udxg — @dx% + O((¢ —p)2,dxg).

Substituting z; by the above approximation of y; in the other equation fo = 0 we get:

10
0 = 20p”u(t — p)dzs — §p2(2p + (t —p))dzs + O((t — p)?, dz).

Differentiating the above equation with respect to dzo yields a linear equation in dzs:

20
0 = 20p°u(t —p) — §p2(2p + (t — p))dza + O((t — p)?, dz3).

This equation admits a unique solution of valuation 1 and precision O((¢t — p)?):

dze = %u(t —p) 4+ O((t — p)?).

We deduce that (0,u(1+ %(t— p))) is an approximate root at precision O((t—p)?). From
x5 =u(l+ %(t —p)) + O((t — p)?) we deduce that u = z3(1 — %(t —p)) +O((t — p)?).
Substituting u by this value in u? + p® = 0 we recover an approximation of (2):

21=0, zi+p°+3p°(t—p)=0+0((t-p))

We could repeat this process once more and reach the precision O((t — p)*). In this
way we recover (2) completely.

8

Preliminary version — 9th November 2001

Example 3 We are coming back to the example of the beginning: n =3, 0 =7Z, k = Q,
and F' = fla f27 f3a where

fi = 2@ +222 +2mp + 222 + 23— 1,
fo = (z14+32— 25 —1)° — a3,
fs = (22} + 523 + 103 + 523 +5)° — 10003

The root z* = (0,0, —1) lies in k% and has multiplicity 18. For the sake of simplicity
we chose an example without algebraic extension. The Jacobian matrix of F' at x* has

rank 1. We can not treat this example now, it will serve to illustrate our algorithm later
in §3.2 and §4.5.

2 Preliminaries

In this section we present the foundations of our generalized Newton iterator.

2.1 Local and Global Point of Views

We explain in [GLSO01, §4] how to lift an algebraic eliminant polynomial in a global way.
Informally speaking we recall that the local point of view corresponds to situations when
the parameterization of the variables are known with greater precision than the minimal
polynomial defining the algebra in which the computations are done. The global point of
view is when the minimal polynomial is updated at each improvement of the precision.
The following proposition enlightens a bit the results of [GLS01, §4]. It says that both
computations are equivalent.

Proposition 1 Let Q and q be monic polynomials in 6[T] such that Q@ — q has all its
coefficients in m and the discriminant of Q is a unit in 6/m. Then o[T]/(Q(T)) is home-
omorphic to 0[T)/(q(T)). For any integer k > 1, (6/m")[T]/(Q(T)) is homeomorphic to

(0/m*)[T]/(q(T))-

Proof. The idea is to construct a root of ¢ in 6[T"]/(Q(T)) and a root of @ in 6[T]/(¢(T))
and use these roots to construct the homeomorphisms. We denote by U (resp. u) the
image of T in o6[T]/(Q(T')) (resp. o6[T]/(g(T))). Since @ — ¢ has all its coefficients in m
the discriminant of g equals the discriminant of @ in 6/m. Hence the derivative ¢/(U) is
invertible in o[7"]/(Q(T)). In o[T]/(Q(T")) we build the sequence (a)x>0:

a
ag = U, Q1 = Qg — ;1,(((;:)), K Z 0.

Since ¢(U) = 0 modulo m the sequence (a,) converges quadratically to a root a of ¢ in
o[T]/(Q(T)):
a— ay € m2 (a[T]/(Q(T))).

9

Preliminary version — 9th November 2001

Since a is a root of ¢ the following map ¢ is well-defined as a continuous o¢-algebra

morphism:

g: o[T1/(¢(T)) — o[T1/(Q(T))
u = oa
Exchanging the roles of () and ¢ we construct b as a root of @ in 6[7"/(¢(T)) and define

h:
h: o[T]/(Q(T)) [T1/(q(T))
U
Since g(u) = 0in 6[T"]/(q(T)) then h(g(g(w))) = ¢q(h(g(u))) = 0. Since h(g(u)) = 0 mod-
ulo m, it follows that h(g(u)) = u in 6[T"]/(¢(T)) and in a similar way that g(h(U)) =U
in 8[T]/(Q(T)). This proves that g is an isomorphism and that g~* = h. By construction
g and h are both continuous and can be restricted modulo m” for any x > 1. O

-
—

2.2 Basic Notations and Definitions

Let k be a field and S denote k[[z1,...,z,]], the power series ring in n variables over k.
We denote by val(¢) the valuation of ¢ in S. By convention the valuation of 0 is +oo.
For any subset ® of S we define val(®) as the minimum of the valuations of its elements.
If ® is empty, it has valuation +o0o. The support of a polynomial or a series is its set of
monomials with a nonzero coefficient.

The first tool we need is a local counterpart of the classical Noether normalization
lemma for algebraic varieties (see for instance [Mat86, §33]). Let ¥ be an ideal of S
of valuation m, we say that a variable z; is in Weierstraff position if there exists an
element of ¥ of valuation m and having 27" in its support.

Like Noether positions, Weierstrat positions are easy to obtain: if m is the valuation
of the ideal ¥ (assume that ¥ # (0)), then there exists an element v in ¥ of valuation
m. Let 1, be the homogeneous component of valuation m of ¥ and a1,...,a, 1 in
k such that v, (a1,...,ap—1,1) is not zero (assume that such a point exists), then the
following change of variables puts x, into Weierstralt position: replace z; by z; + a;z,
for 1 < ¢ < n— 1. In particular, if £ has characteristic zero it is always possible to find
such a;.

Lemma 1 Let U be an ideal of S, there exists an algebraic hypersurface of k"1 such
that for any element (a1,...,an—1) outside of it the following change of variables yields
a Weierstrafl position for x,: replace x; by z; + a;x, for 1 <i<n—1.

Let ® be a subset of S, we define its first partial derivative g—i with respect to

the variable z; as the set ® U {a%%, ¢ € ®}. If U is an ideal of S then so is g—z,. Moreover
the derivative of the ideal generated by ® is generated by the derivative of ®.

Lemma 2 Leta; >0,1=1,....,n. If oy > 1 then
a—1 _oyp—1 o4 an)

0
a1 (e% — a1
ot apt) = (2w)t e Ty

8—551(1"

10

Preliminary version — 9th November 2001

Corollary 1 Let o; > 0, B; > 0, fori =1,...,n. Let 1y = (z*,...,2%) and mp =
(xflw"amgn)y ifag > 1 and B > 1 then

- 871'1 67'('2
g, MNm) =G NG

2.3 Gradient of an Ideal

In order to compute effectively in S we need to fix the precision of the series. The
precisions used by our algorithm are built on what we call the gradient of an ideal. This
construction is motivated by the following situation.

Let 0 be a Noetherian domain, k be its field of fractions, f be a polynomial function
in o[z1,...,x,] given by a straight-line program (see §4.1 for precise considerations) and
7 is a zero-dimensional monomial ideal of S := k[[z1,...,z,]] (an ideal generated by
monomials). For short, we write monomials using multi-indices: if @ = (a1,...,an),
then 2% denotes z{" ---z%" and |a| the sum of the o;: |a| := a1 + --- + ap. For each
monomial z¢ which does not belong to 7 we want to compute the corresponding partial
derivative of f at a given point a := (a1,...,a,): %(a) = MW((J). It is classical
to handle this situation by evaluating f at the point (a1 + z1,...,a, + z,) modulo the
ideal 7 and picking up the right coefficients. Introducing the function coeff(f,z®) that

returns the coefficient of ¢ in f, we know that for all z¢ & =:
olelf
oz

We are interested in extending this computation in order to compute the values of

(a) = (1! --an!)coeff(f(al +1,...,0n —I—xn),ma). (3)

the gradients of the allf. For this purpose we construct an ideal denoted by V7 (where

L stands for the set a{xl, ...,n}, for the moment) such that the evaluation modulo V .7
instead of 7 yields the gradients of %{f for all % at point a via (3). It suffices to take
Ve as the biggest monomial ideal not containing the z;z%, for all 7 € £ and all ¢ not
in 7.

We first prove that this construction is optimal and then give the properties used in
the proof of the correctness of our algorithm presented in §4.

Let us now formalize the above construction. We consider the set M of monomials
generated by n indeterminates z1, ..., z, with nonnegative exponents:

M={zzp", @; >0, i=1,...,n},

it is a semigroup (a group without an inverse operation) for the multiplication of monomi-
als. A subset m of M stable under multiplication by any element of M, that is Mn = 7,
is called a stable subset. We denote by (z”!,...,z%) the stable subset Ule./\/lxﬂi
generated by the monomials 271, ..., 2%,

Let 7 be a stable subset of M, T its complement (in M) and £ a subset of {1,...,n},
we define V.7, the gradient of m with respect to the variables in £, as the complement
set of T U Ujecz;m. For example, if n = 2, 7 = (27", 25?) and £ = {1,2} then V7 =

ar+1 _as+1l a1, a2
(7', 2" 2 xg?).

11

Preliminary version — 9th November 2001

Lemma 3 With the above notations, Vem is a stable subset of M.

Proof. Let £ be a monomial of V7, it suffices to prove that for each ¢ the monomial
z;x% is in Vow. If it were not the case then z;x® would be either in 7 or one of the
:L‘j.’I,‘ﬁ with j € £ and z? in 7. The first situation immediately leads to a contradiction.
As for the second situation, if i were equal to j we could deduce that z® = z# € T,
hence 7 would be different from j. From z;x%* = xja;ﬂ we could construct « such that
28 = z;z7 and 2@ = z;x7. Hence, 27 would belong to 7 and * would be in x;7, which
is a contradiction again. O

We extend this construction to monomial ideals. If 7 is a monomial ideal of S (an ideal
generated by monomials) and £ a subset of {1,...,n} we define the gradient of © with
respect to the variables in £, denoted by V.7, as the monomial ideal generated by the
gradient with respect to L of the stable subset spanned by a set of monomials generating
7 (this construction is independent of the choice of the generating set).

If 7 is a zero-dimensional ideal of S (in the sense that the quotient ring S/m has
Krull dimension zero) we denote by deg(w) the degree of 7 that is the dimension of the
finite dimensional k-algebra S/m. For a zero-dimensional ideal m the complement in M
of N .M is finite: we call it the support of 7. The support of 7 is a basis of the quotient
ring S/m as a k-linear space. The cardinal of the support is finite and equals the degree
of 7. For example, if n = 2, supp(z{*,25?) = {ziz), 0<i<a; -1, 0<j<ag—1}

Proposition 2 For two subsets L1 and Lo of {1,...,n} and for any monomial ideal :
Veoc,™ = Ve, mN Ve,

Proof.
Supp(VE1UE27T)
= supp(7) U Uie£,uc, Zisupp(m)

= supp(m) U (Uie£1 wiSUPP(W)) U (Uiec2 ﬂciSUPP(W))
= supp(V,) Usupp(Ve,).

Let 7 = (7*,...,2%"), for a; > 0,72 =1,...,n. Let [€ {1,...,n} then

(e Q1 o+l Qg o
Vyr = (a1 o 2 o, T,

we deduce:

Corollary 2 Let a; > 0, 1 = 1,...,n and L be a subset of {1,...,n}. We have the
following formula:

Qi Qan\ _ fe31 ai—1 o+l | Q41 a
Vel o) = Miec(a - o7t 2 oy, - o).

Combined with Corollary 1 we deduce:

12

Preliminary version — 9th November 2001

Corollary 3 Let ; > 0, 5 = 1,...,n, L be a subset of {1,...,n} and | such that
a; > 1. We have the following equality:

%vﬁ(zgl,...,xgn) - Vg(aixl(m‘fl,...,z%")).
From Corollary 2 we also deduce:
Corollary 4 If a; > 0, for alli=1,...,n, then
Vit,np (@0 zp™) NE[[T2, - 2n]] = Vi oy (752, 2p).
We give two useful bounds on the degree of the gradients:

Proposition 3 According to the above notations, if m is zero-dimensional of degree M
then Vym is zero-dimensional and

deg(Vem) < (1 4 #L)deg(),
where #L denotes the cardinal of the set L.

If 7 is generated by x7*, ..., x0", with a; > 1, for i =1,...,n, we have:
1
deg(m) =aq -+ ap, deg(Vew) = deg(n) (1 + Z —)
‘ ;
€L
Proof. The proof is straightforward from the definition of the gradient. O
In our complexity estimates we use the first bound only. But one has to keep in mind
that it is not sharp at all as soon as @ C (z1,...,Zy).
Proposition 4 For any monomial ideal © and two subsets L1 C Loy of the set {1,...,n}

the following inclusions hold:

72 CVe,mC Ve, mCm.
Proof. The inclusions Vg,m C Vg, m C 7 are true by construction. We prove that
72 C V,m. Let 2% be a monomial in the support of 7 and i € Lo. If the monomial z;z®
were in 72 we could write it as the product of two monomials of 7: z;z* = z%z?. One

of them would be a multiple of z;, say z?, then £® would be a multiple of z?. This is a
contradiction. O

The last technical result about gradients of ideals we need is:
Proposition 5 For any positive integer X > 1 the following inclusion holds:
(2}, z, . .. ,$n)v{1,___,n}(33’1\, Z9y...,Tpn) C V{l,___,n}(ac%)‘, T2y ...y Tp)-
Proof. Let ¢y denote (z7,o,...,7,). By construction we have:
supp(Vir,) = {21, 0<j <A =1} U{alz;, 1<i<n, 0<j<A-1}
We want to prove that any monomial of the support of Vi .1(2x is not in J =

GV {1,...n1Cx; let * be one of these monomials. First, if 2 is zl, with j < 2), then it
can not be in J, since the smallest power of z1 in Vi ,1(xis A+ 1and Ain (5. If

% = w{xi, with 0 < 7 <2XA—1 and ¢ # 1, were in J then it could only be the product
of z} and z7*z;, with m > X and [>), which is not possible. O

13

Preliminary version — 9th November 2001

2.4 Deflation Lemma

The deflation lemma is the key for bounding the complexity of the deflation algorithm
of §4: it shows that our deflation process has a good complexity behavior.

Lemma 4 Let k be a field and U be an ideal of S := k[[z1,...,zy,]] of valuation m such
that

o S/V is a finite dimensional k-vector space of dimension M > 1;
o x, is in Weierstrafl position with respect to V;
e Fither k has characteristic zero or m + 1 < char(k).

We define \TJ, the deflated ideal of ¥V by

- m—1
gy
awnmfl

this 1s an ideal containing VU of valuation 1 and the dimension M of the k-vector space
S/ satisfies the following inequality:

1< M < M/m.

Proof. Since T contains U, the quotient S/ U is a finite dimensional k-vector space.
Now we order the monomials according to the anti-graded lexicographic order defined by
g exln > ot et b an <Pt fporifartban =i+ Gy

and (ai,...,qy,) is greater than (0, ...,[8,) for the pure lexicographic order:
1 > z, > xp-1 > >z
> a:% > ITpTp—1 > TpTp—2 > 0 > ITpdi
> 2, >

This order is compatible with the differentiation with respect to x,: if both the derivatives
of two monomials are not zero, they are in the same order as the monomials.

We denote by Im(¥) (resp. Im(¥)) the monomial ideal constituted by the leading mono-
mials of ¥ (resp. \T/) according to the above order. Note that the cardinal of the comple-
ment of Im(¥) (resp. Im(¥)) is M (resp. M). Let T be the subset of the complement of
lm(¥) composed of the monomials having the power m — 1 with respect to z,:

T:={z{" - zo" ¢ 1lm(¥), o, =m — 1}.

Since M is at least m|T'| (where |T'| denotes the cardinal of T'), it suffices to prove that

M is at most |T|. Let A be a leading monomial z3'z3? - - - 2 of ¥ such that a, = m—1

then 5);;7:_‘41 is not zero (for we have char(k) > m + 1) and is a leading monomial of ¥

(Note that 28252 - - - 2% cannot be z™1).

n
Now using the monomial 4 = z{'---z,"7'z™ which belongs to Im(¥) for any tuple

(a1,...,an-1) by the Weierstraf position property and from the fact that char(k) >

14

Preliminary version — 9th November 2001

m + 1, we deduce that the monomial z&' ... 2%" 7'z, is a leading monomial of ¥. We
deduce that the complement of Im(¥) is included in the set

{zfregdnt | 2Pt e T

We are done. 0

We exhibit an example where the Weierstralt condition is a necessary hypothesis: let
n:=2and U := (2119, 7¢,75), with a > 3 and b > 3. Withm =2and M =a+b—1,
the ideal U satisfies the hypotheses of the deflation lemma save the Weierstral position.
Its corresponding deflated ideal ¥ = a— is (z1, a:g 1) and has degree M :=b—1 so that

the conclusion of the lemma holds if and only if b < a + 1.

3 Deflation Sequence

We recall that F := {f1,..., fs} is a finite subset of o[z1,...,z,] and z* is an isolated
root of f; =--- = fs; = 0 with multiplicity M. First we construct a sequence of ideals of
k[[z1 — 27, ..., zn — z}]] starting from F' with decreasing multiplicity. Then we examine

the branchings and deduce conditions under which the computations remain valid when
replacing k by A = 6[T]/(¢(T")) and z* by an approximate root. We assume that either
char(k) = 0 or char(k) > M + 1.

3.1 Exact Construction

In this subsection we assume that we are given a root z* € k" of f1,..., fs isolated for
the Zariski topology, and of multiplicity M. We denote by ® the set F' viewed as a
subset of S := k[[z1 —z3,..., 2z, — z}]]. The ideal generated by the elements of ® in S is
not trivial and the quotient ring S/® is a finite dimensional k-vector space of dimension
M (M > 1). We construct a sequence of deflated ideals. This sequence starts from @,
each step is achieved by combining the action of a well chosen differentiation and the
elimination of well chosen variables.

By induction we define the sequences of integers R; and the deflated subsets ®; of S,
for ¢+ > 1 as follows:

o Ry :=1,;
[] (Pl = 0.

At step i > 1 we know R; and ®;, we now describe how we compute R;;1 and ®;4 1.
We use the following notations:

° Si: [[‘TRz - 'TR soeesTn = Tp]);

o m; := val(®;).

15

Preliminary version — 9th November 2001

We assume that
(Wi) zg, is in Weierstral position with respect to ®;.

The ideal ®; satisfies the conditions of the deflation lemma (Lemma 4), we deflate it

once. We write % for the Jacobian matrix of the elements of &'Z with respect to

the variables zg;,...,Zn.
&, . _omi! .
* &= 5 = Pis
1

o M; = dim(S;/®;);

o 7= rank(%(m}i,...,w;‘l)), this is the rank of the set of the gradient

vectors at z* of the elements of 51
According to Lemma 4 the following properties hold:
e 1<rm<n—R;+1;
o 1< M; < M;/m,.

We set R;1 := R; + r; and extract a subset §2; of cardinal r; from 51 such that: the
gradient of ; at (z%,,...,z;) has rank r; and, up to a permutation of the variables,
there exist power series yr;, ..., YR, 1 in Sj;1 satisfying z; = y; in §;/Q;, for R; < j <
R; ;1 — 1 (thanks to the implicit function theorem). We define the elimination map G;
as follows:
Gi: S — Si+1

¢ = D(YRir--- YRip1 15 TRiprs- - > Tn)-
From a practical point of view the rank computation and the extraction of such a subset
; can be achieved using classical Gaussian elimination. The lucky choice of the maximal
ideal m, involved with this part of the computation, relates to all the equality tests and
inversions. We discuss these aspects more in Proposition 14 of §4.3.

Lemma 5 The following property holds:
val(G;(®;)) > 2.

Proof. From Lemma 4, ®; has valuation 1. Let ¢ be an element of ®; of valuation 1;
since the gradient of ¢ is a linear combination of the gradients of the elements of 2;, the
valuation of G;(¢) is at least 2. O

Corollary 5 m; > 2, for i > 2.

Last, we define _
q)i-f—l = Gz((ﬁz)

16

Preliminary version — 9th November 2001

The above construction stops once we have exhausted all the variables, that is when
Ri11 =n+1. Welet v be such that R,11 = n+1 and call it the depth of the deflation.
The main output of this process is the sequence (Qi)izl,___,u such that

Qi (g, 25) =0,
QQ(.Z‘*RZ,...,JJ;) = 0,
Q(z%,,---,25) =0,

and the Jacobian matrix of the union of the €Q; is invertible at £*. Our algorithm presented
in §4 consists essentially in applying the classical Newton iterator on the above system.
The difficulty is to find an efficient way for evaluating the €2;s and their gradient vectors
in a neighborhood of z*.

The sequence myq,...,m, is called the multiplicity sequence associated to the
deflation. The crucial quantity appearing in the complexity estimate of our algorithm is
my ---m,. Noting that M, ; equals M;, we deduce the following proposition:

Proposition 6 For 1 <i < v we have the following inequalities:
my---mi_1M; < M, my---my, < M.
Concerning the Weierstraf conditions (W;), we successively apply Lemma 1 to deduce:

Proposition 7 The linear changes of variables for which not all the (W;) hold are en-
closed in an algebraic hypersurface of GLy(k).

From a computational point of view we first perform a generic linear change of coor-
dinates and then apply a deterministic deflation process (performing no random choice).
With respect to this generic linear change of coordinates we can speak about a generic
multiplicity sequence as the multiplicity sequence found on a Zariski open subset of
GL, (k). We detail this point of view later in §3.5 more precisely.

Block Notations It is natural to introduce the following block notation, for each i,
1< <w:

® A= TRi5-- s TR1—15

b4 Y; ‘= YR;»-- - YRjy1-1-

By convention we consider that Y is the empty sequence.

3.2 Example 3 continued

We are coming back to the example of the beginning: n = 3, 0 = Z, k = Q, and
F = fi1, fa, f3, where

fi = 2x1+2w%+2x2+2x%+w§—1,
fa = (z1+m0—23—1)% — a3,
f3 = (223 +523+10x3 + 523 +5)° —10003.

17

Preliminary version — 9th November 2001

The root z* = (0,0, —1) lies in k* and has multiplicity 18. We illustrate the construction
of the deflation sequence. At z* we examine the rank of the Jacobian matrix of f1, fo, f3:

df1 dfz df3
dr dr dr
We find that mq =1, (51 = &y, 1 is in Weierstraf position, 7y = 1 and O = {f1}. We

compute y; as the power series solution of fi(y1,x2,x3) = 0 in k[[z2, z3 + 1]] such that
y1 =0+ O(z2,z3 + 1):

—— (") = (2,2,2), =~ (") = (0,0,0), == (") = (0,0,0).

3 33
y1=(x3+1) - 5($3 +1)° +3(xs +1)° = Z($3 +1)*

203
+x2(—1+2(x3+1)—7(x3+1) +26 (2 +1)° - (e 3+1)“)

+a:2(— 2 +8 (3 +1) — 40 (z3 + 1) + 196 (x5 + 1) — 949 (w3 + 1)4)

+ (4432 (x3 + 1) — 216 (z3 + 1)® + 1320 (x3 + 1)° — 7610 (x3 + 1)4)

+ b (12 4136 (23 + 1) — 1148 (23 + 1) + 8360 (w3 + 1)* — 55710 (3 + 1)4)
+ x2< 40 4 592 (x3 + 1) — 6008 (x3 + 1)* + 50736 (z3 + 1)° — 383124 (x3 + 1)4)

+ 5 (— 144 + 2624 (z3 + 1) — 31104 (z3 + 1) + 298592 (z3 + 1)*
2517368 (23 + 1)4) + O, (z3 + 1)°).
Substituting z1 by y1 in F we deduce o = {¢1, d2, p3} where:
b1 =0+ O(z}, (x3 + 1)%),
¢2=—(xs+1)° + g(.’lis +1)*

+$2(3($3+1)2 —15(zs +1)° + %(3+1)4)

45 2367
8(@a+1)+ 3 (ea+1)* ~ 123 (23 +1)° +T($3+1))

:(-
+z‘2(1 — 18 (w3 + 1) + 135 (zs + 1)° — 822 (z3 + 1) + 9357(w3+ 1)4)
(6 — 84 (3 + 1) + 708 (x5 + 1) — 5112 (w3 + 1)* + 33699 (x5 + 1)4)
+ad (24 360 (23 + 1) + 3636 (3 + 1) — 30480 (3 + 1) + 228324 (23 + 1))
+z5 (84 — 1560 (z3 + 1) + 18468 (z3 + 1)* — 176520 (z3 + 1)*
+1480290 (23 + 1)4) + O, (zs +1)%),
$3 = 5000 z3 (x5 + 1)*
+m§(— 10000 (z3 + 1) + 95375 (23 + 1)4)
+ (10000 (x5 + 1)% — 130000 (z3 + 1)* + 1031450 (z3 + 1)4)

+m‘2‘(— 5000 (3 + 1) 4+ 107875 (23 + 1)% — 1113950 (23 + 1)° + 8959725 (x3 + 1)4)

137720739

+ x5 (1000 — 50000 (3 + 1) + 774250 (z3 + 1)* — 8043910 (z3 + 1)° + 5 (z3 + 1)4)

+ x5 (10125 — 319550 (x3 + 1) + 4815785 (x5 + 1) — 53037098 (z3 + 1)*

978677779
+ [———

5 (s +1)") + O, (a5 +1)°).

18

Preliminary version — 9th November 2001

We see that mg = 3 and that zo is in Weierstral position. We deduce &)2 at precision
O(z3, (z3 + 1)°), it contains 9 elements:

2= {6100, 00, 201, 202 002 Pp Py Py
2 1, %2, ¥3, (9.1‘2’ ax2’ a$2’ ax22’ 8$22’ 8122 :

The gradients at point (0, —1) of these elements are respectively

(0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (0,0), (6,—6), (0,0).

8% po
0zo?

%(yg,xg) =0 in k[[z3 + 1]] such that yo =0+ O(z3 + 1):

Therefore we get ro = 1, Qo = { } and compute y, as the power series solution of

ys = (zs + 1) — g(mg +1)° +3(z3+1)° + %(903 + 1) 4+ O((ws + 1)°).

Substituting z2 by ys in ® we find &5 = {¢1,--.,p9} where

o = dg(yQ,xg), for 1 =1,2,3,

Y= Bd(fvlz (y2,3), for 1 =4,5,6,
2

o = 2%y, m), forl=17,8,9.

We compute ¢; = 0+O((x3+1)°) for I = 1,...,8 and @g = 9000(z3+1)* + O((x3+1)°).
We deduce that m3 = 4 and P3:

égz{aijilj, I=1,....9, jzo,...,3}.

All the elements of ®3 equal 0+O((z3+1)2) except g;i% = 216000(z3+1)+O((z3+1)?).

It is obvious that z3 is in Weierstral position. We deduce r3 = 1 and finally the depth
v = 3. As expected, the product mimgymsz = 12 is bounded by the multiplicity M = 18.

3.3 Smoothness Hypotheses

We revisit the construction of the deflation sequence presented above. We gather condi-
tions on m under which the Y; are well-defined over A. Theses conditions are weak in the
sense that they do not allow the computations of the ranks and the selections of €2; over
A instead of k(u). Stronger conditions are established in Proposition 14 of §4.3 during
the presentation of the algorithm.

Let A; := Al[zgr, —2%,,...,%n —z}]], for i =1,...,v. We assume by induction on ¢
that Y; is well-defined in A; ;. Since Y; is the empty sequence, this is trivially true for
1 = 0. Let us assume that this holds for ¢ > 1. To go from step 7 — 1 to ¢ we assume that
the Jacobian matrix of €2; with respect to the variables in X; evaluated at x* is invertible
in A/mA:

. %
(Hg;) The determinant of 5%

ax (TR;s---»23) is a unit of A/mA.

19

Preliminary version — 9th November 2001

In particular, from the implicit function theorem this condition implies that Y; belongs
to Aj11. We denote by (Hq) the set of hypotheses (Hg,) for i = 1,...,v. We recall
from §1.1 that p is the canonical projection from k[T] to k[u] and p~—! the linear map
such that pop~! = Id and p~'(2) has degree strictly less than deg(Q). We define a; € k
as the resultant of pil(det(g%; (TR,»---+2y))) with Q. We can write a; = po, /pg, with
po; € 0, and pg, & m.

Proposition 8 Let pq = pa, -+ pa,. For any mazimal ideal m of o that does not contain
pa, hypothesis (Hq) is satisfied.

Indeed (Hgq) generalizes (H) of §1.1 in the following sense:

Proposition 9 Under hypothesis (Hq). Let z be an approximation of x* (that is z—z* €
(mA)") such that

Ql(le, . ,Zn) = O,

Qz(sz, . ,Zn) = 0,

QI/(ZR,,a--- ,Zn) = 0,

then z = x*.

Proof. The proof is immediate since the Jacobian matrix of the above system is
invertible at * modulo mA. O

In the example of §3.2 the computation of the deflation sequence can be performed
modulo any prime number p different from 2, 3 and 5: we need to invert 2, 6 and
216000 = 263353,

3.4 Nested Coordinates

The idea behind our lifting algorithm is to use the classical Newton iterator on the system
of equations of Proposition 9. Hence, we only need to compute values and gradients of
the ; at various points in a neighborhood of z* efficiently. Computing these values
straightforwardly as in §3.2 is not the best way: the requested precision with respect to
the variable zg is mg 4+ m3 = 7 whereas the method we are to present requires precision
Vi3 ()", 25, 3") only. Our method relies on what we call the nested coordinates
associated to the deflation sequence.

We introduce a new set of variables dz1,...,dz, with its associated blocks dX; (as
in §3.1). Fori=1,...,u:

o dXz = d:ERZ., e ,dl‘RH_I,l.

e The associated power series rings over k: dS; := k[[dzg,, . .., dz,]].

e The associated power series rings over A: dA; := A[[dzg,,...,dz,]].
20

Preliminary version — 9th November 2001

We also introduce the function coeff;(f,dz*) returning the coefficient of f with respect
to the monomial dz®, seen as a power series in the variables dX7,...,dX; only.
The definition of ®;,1 of §3.1 yields the following recursive formula:

iy = Gi(®)
omi—1ld,
= o T (Yo TRiss o)
= {Oéi!coeﬁ'i(ﬁb(n—i—dXi,.’ERHl,...,g:n)’dmaRi)’

ped;, 0<a; <m;—1}.

Solving this recurrence leads to a fast evaluation scheme for the ®;s. For this purpose
and each ¢ = 1,...,v, we introduce the ith nested coordinates Y* as the sequence
(Y?,...,Y}) with entries in

k[[dX1,...,dXi)|[zR,,, — TRyyys>Tn — Tp)l-

The entries of Y are recursively defined from the last one to the first one:

Y:LZ = Y;(‘TRi-;-;a o 7$n)7
Yél—l = Yiil(y;l+dXi,$Ri+1,...,£En),
Yf = Yl(YQi—|—dX2,...,Y;i+dXi,:L'Ri+1,...,£En).

By convention we set Y°(z1,...,z,) to be the empty sequence. Under hypothesis (Hy),
Y* is well-defined over A instead of k. Next proposition describes how nested coordinates
are related. Note that we use the comma operator for the concatenation of sequences.

Proposition 10 Let V denote zg,,,,---,Tn. The nested coordinates are related to each
other by the following formula:

Y = YY1 (V) 4+ dXig1, V), Yigr (V),
fori=0,...,v—1.

The deflated sets ®; can be computed by evaluating the input set F' at the nested
coordinates.

Proposition 11 Fori=0,...,v —1, the (i + 1)st deflated set ;11 is given by:
P, = {al! -+~ ! coef; <¢(1/12 +dXq,... ,Y;i + dXZ',.'ERH_I, e X)),

dx?zﬁ"'dw?zi), peF, 0<a; <mj—1, 13;‘9}.

21

Preliminary version — 9th November 2001

Proof. The proof is done by induction on i. If i = 0, we have ®; = F and Y is the
empty sequence, the formula is true. Assume that the formula holds for 1 > 0. First we
have:

i1 P44
Ozg,,,™i+1~1

= {ai—H! COeﬁ'i+1(¢(n+1 + dXi_H, .QTRH_Q, e ,:En), d.’EaH'l),

D10 (Y;+la TRty ,SEn)

Rit1

¢ € Pir1, 0 < a1 <myyr — 1}-

Using the induction hypothesis giving ®;;1 and letting
Vii=Yi1 +dXit1,ZR, 05+ Tn,
we obtain:
By = {al! g coeffiy g (¢(Yf(v;-) +dXy,..., YAV} +dXi, Vi),

Ao, -+ dafitt), g€ F, 0< oy <my—1, 1<j <i+1}.

Using Proposition 10 we recognize the desired formula for 7 + 1. O

At last, we show in §4 how to compute Y efficiently:

YUU = YI/()’
Y, = Ya(Y +dX,),
YY = Yi(Y¥+dXo,...,YY +dX,).

But before this, it remains to make the deflation process deterministic with respect to
the choices of the sets §2; and to present the complexity model we consider.

Example 3 (continued from §3.2) Here are the nested coordinates Y3:
vy = -1,

Yy = ya(Y3 + das)
= dzs— gdxé +3dad + %dmé + O(dx}),
VP = g (Y3 + dae, Y3 + das)
= —22—1dm34+ dmz(— 1—2dzs + 3da? — 6 dad — %dmé)

+dm§(— 2 — ddzs +2da} — 126dm§)

+dx§(— 4 —16dws + 8dz} + 18542 dxg)

+dm3(— 12 — 64 dxs — 48 dzl + 19120 dad — 351000 dxg)
+da3(— 40 — 272 dws + 11032 dz — 162096 da + 1733652 da')

+ dxg(— 144 + 2624 dzs — 31104 dz? + 298592 dz® — 2517368 dmg)
+0(dz}, dz3).

22

Preliminary version — 9th November 2001

3.5 Tracing the Deflation

During the deflation process presented in §3 the choice of the {2;s are not really specified:
different choices may be possible for the Weierstralt positions and the variables with
respect to which the implicit function theorem is applied. We adopt the following point
of view: the deflation process is seen as a deterministic procedure. In particular the
variables on which the implicit function theorem is applied are not chosen at random.
But the deflation process is parametrized by the change of the coordinates. From this
point of view, Proposition 7 tells us that the deflation process works well for almost all
choices of this parameter.

In order to explain how we track the deflation process in practice, we introduce
notations. For ¢ = 1,...,v, we let w; denote the monomial ideal

m
;= (dz ' dTR,41,--.,dTR, 1_1)
R; +

and m; ; denote the monomial ideal m; + --- + m;, for ¢ < 7. We use these ideals over
various base rings. We shall specify the considered base ring in each case.

From Proposition 11 it follows that each element of ®;,1 is determined by an element
of F and a monomial dz® in the support of 7 ;, where 7y ; is seen as an ideal in the
variables dX1,...,dX;. In the same way, to each element of 5,-4_1 corresponds a triple
7= (l,dz® p) in {1,...,s} x supp(m1;) x {0,...,m;y1 —1}: this element of ®;,; is the

pth derivative with respect to dzg,,, of the element of ®;; corresponding to f; and dz®.

The trace of the deflation is a sequence (7;)1<i<y,; each 7; is itself a sequence
Ti,...,Tr; of rj elements of {1,..., s} xsupp(mi;—1)x{0,...,m;—1}. Bach 7; = (I, dz®, p)
is bijectively related to an element of ;. That is: Q; = {wTj, 7; € Ti}, where

v, = AT +dXy, .. Y v dXir, xR, .- o) and
oM

wr, = al!---ai_ﬂWcoeﬂi_l(%,dxa). (4)

The smoothness hypothesis (Hq) is equivalent to the fact that the trace of the defla-
tion sequence over o/m is the same as over k.

It is important to notice that there exists a Zariski open subset of G L, (k) for the
change of coordinates on which the trace is constant: we call this constant the generic
trace. From now on we say that the change of coordinates taken as parameter of the
deflation process is generic enough if the Weierstrafi positions are satisfied and if the
trace of the deflation process equals the generic trace.

The generic trace depends on the deflation algorithm used: two different deflation
programs may lead to distinct generic traces according to their choices of the subsets
Q;. Therefore our lifting process has two stages: first we must compute a generic trace,
then we can apply the classical Newton iterator on the corresponding system of ;. The
smoothness conditions (Hg) restricting the choices of m ensure that the second stage
works fine but not necessarily the first one. We come back to this point in §4.3.

23

Preliminary version — 9th November 2001

Example 3 (continued from §3.2) The trace is 71 = (1,1,0), 7> = (2,dz?,2),
T3 = (3,dz%dz2,3). For instance the element of 23 is obtained from the evaluation of f3
this way:

63
Qs(Y3 + dXs) { ad ———coeffa(f3(Yy + dX1,Ys + dXs, Y5 + dX;), dacld:c2)}

2 3coeﬁ"2 (4500 dzidzs + O(d:cz, dwg) dmldw2)}

(o
= {2 83 4500d:c3+(9(d:c3)}
{

odx

216000 das + O(dw3)}

4 Algorithm

We are now ready to present our algorithm. It is based on the following idea: we compute
the nested coordinates Y associated to the input system F' at the root z* in A modulo
mA first and then lift these coordinates modulo (mA)* for arbitrary integer k. During
the first stage we compute a generic trace as defined in §3.5, m must be lucky and the
coordinates generic to ensure the correctness of the answer. Once a generic trace is found
together with the nested coordinates modulo mA then we are sure that the lifting process
works fine. We first detail the complexity model we use and the costs of each elementary
operation.

4.1 Complexity Model

Two data structures are used by the algorithm. First the input polynomials fi,..., fs €
o[z1,...,zy] are given by a straight-line program [Str72, Gat86, Sto89, Hei89| of
length L containing neither test nor branching: for any ring R, for any partially defined
ring morphism ¢ from o to R and any point a := (a1,...,a,) in R™ we can compute
the values fi(a),..., fs(a) performing L binary operations in R (additions, subtractions
and multiplications) and at most L calls to ¢. Therefore each evaluation costs at most
L times the maximum of the cost of an elementary binary arithmetic operation in R or
call to c.

The second data structure we use is for multivariate power series. For any ring R and
any zero-dimensional monomial ideal 7w of S := RJ[[z1,...,Z,]], we need to compute in
S/m. We count the number of arithmetic operations performed in R (4, X, =) but also
the arithmetic operations with the exponents of the monomials.

Proposition 12 For a given 7, we can construct S/m in
(@) (7’1,2deg(7r)2 log(deg(w))) .

Then we have the following complexity estimates.

24

Preliminary version — 9th November 2001

o The construction of an element given by a list of I terms (couple of coefficient and
ezponent) costs O(nl log(deg(w))).

o The extraction of a coefficient costs (’)(n 10g(deg(7r))>.

o The cost of each elementary binary arithmetic operations (+, —, X, =) in S/w is

in O(deg(w)Q).
e The inverse costs (9(deg(7r)2 log(deg(n))).
e Foranyi, 1 <i<mn, and any 3 € S/, g—i costs (’)(deg(w)).

e For any z® ¢ m and any ¢ € S/, % costs O(deg(ﬂ)Q).

e For any z® € R[[z1,...,z;]] withx® & m and any ¥ € S/w, the extraction of the co-
efficient of the monomial % of 1) seen as an element of R[[Zi11,- .., Zs)][[Z1,-- -, Zi]]

costs O (ndeg(w) log(deg(w))) .

Proof. We use a dense representation and naive algorithms for the arithmetic operations.
The dense representation is implemented as follows: first we choose a total order on the
monomials such that each comparison between two monomials of supp(w) costs O(n)
(for instance we can take the lexicographical order). Then we sort the support of 7
according to this order, we obtain an array E representing a map from the integer range
N := [1,...,deg(w)] to supp(w). Each element of S/7 is stored in an array of size
deg(m): the ith entry is its coefficient with respect to the monomial E(i). During the
initialization of S/ we also precompute the multiplication table of the monomials of the
support of m: this is a two dimensional array F : N x N — N, such that F(s,j) is
zero if 8 := E(i)E(j) is in = and E~'(2f) otherwise. Let us detail the costs of these
precomputations:

e The construction of E costs O(ndeg(w)log(deg(n))), using a classical fast sorting
algorithm.

e Each call to E has cost O(1).
e Each call to E~! has cost O(nlog(deg(n))), by dichotomic search.

e F can be built with cost O(ndeg(m)? log(deg(n))), performing one call to E~* for
each possible product of the monomials of the support.

e Each call to F costs O(1).

Finally this part of initialization of S/m requires

O (ndeg(7r)2 log(deg(w)))

operations. Let us now specify the costs of the arithmetic operations in S/7:

25

Preliminary version — 9th November 2001

The construction of an element given by a list of I terms requires [calls to E~L.

The function coeff just performs one call to E~1.

Binary additions (resp. subtractions) are done in deg(w) binary additions (resp.
subtractions) in R.

A binary multiplication requires at most deg(w)? binary additions and multiplica-
tions in R and also deg(m)? calls to the multiplication table F.

If v € S/m is a unit, we compute its inverse thanks to the classical iterator N(z) =
z + z(1 — z1)), starting from the inverse of the constant coefficient of 1. The number of
iterations is in O(log(deg(w))).

In order to speed up the derivations we compute look-up tables Dq,...,D,. For i =
1,...,n:
D;: N - NxN

[— (E‘l(%),ai), where z¢ = E(I).

The construction of each D; requires O(ndeg(n) log(deg(m))). The cost of the construc-
tion of all the D; dominates the cost of the initialization of S/.

Let ¢ € S/m. In order to compute g—i we differentiate v term by term: for each [€ N

we look up (m,) = D;(l) and set the mth entry of % to A times the [th entry of).
The total cost is in O(deg(w)).

We deduce that for any 2% ¢ 7 the cost of Y 5sin O(deg(n)?), for we have |a| < deg(T).

oz™
As for the last statement of the proposition it suffices to select in 1) the monomials match-
ing % and construct the answer in S/7. This is done within O(ndeg(w) log(deg(w))).
O

For the sake of clarity, we denote by Cg(7) the following expression

Cs(m) := deg(m)?log(deg(m)).

It denotes the maximum of the numbers of binary additions, subtractions, multiplications
and inversion in R needed to compute a binary addition, subtraction, multiplication or
inverse in S/m. Unfortunately, we do not know better complexity result in general. We
only know an optimal algorithm (up to logarithmic factors and when R is a field of
characteristic zero) when = is a power of (z1,...,z,) [LSO1].

Concerning the complexity of linear algebra, €2 is a constant such that matrix determinant
and adjoint computation require @ (n?) arithmetic operations in the base ring. Therefore
Q is less than 4 [Abd97, Ber84, Csa76, Lev40]. In order to simplify the presentation we
take Q > 3. Using a better {2 would not improve our complexity estimates.

26

Preliminary version — 9th November 2001

4.2 Incremental Lifting Step

The method we propose to compute the nested coordinates follows an approximation
and correction scheme. The function IncrementalLift presented below is the core of
our algorithm: for a given i it lifts an approximate value of Y*. The input and output
precisions are governed by integers x > 1 and A > 1. We define the ideals {; and (s:

¢1 = (d.’li?-‘t +17d‘TRi+l+1, cee ,d.’IIn) +m”,
G2 = (de +17dei+1+1’ T ’d‘rn) + m?"

We lighten the notations: Vmy, ;, stands for V{Rl oo Biy 11 -1} Tl and we write V(; in-
stead of Vg, . . n1Gi, for ¢ = 1,2. Quantities appearing in the core of the function that
are not input nor local variables refer to global variables. As discussed in §3.5 we assume
that the coordinates are generic enough.

Incrementallift
Input:
e Wii1 := zg;,y>---,%n in a neighborhood of w}iﬂ,...,w;, let dW;i1 == 2zgp,, +
ATR;, |55 2n + dTp.

e Two integers x > 1 and A > 1.

® T1,...,7T;, the first 7 elements of the generic trace.

o 71 =Y (dWii1),..., Z;i = Y}(dW,41) at precision m ; + V(.
Output:

e Yi(dW;y1) at precision 1 + V(o +m~(y.

This subroutine will be used in two situations: either we want to improve the precision
A with respect to the variables dzg, , and x =1 holds (§4.3) or we want to improve the
precision x with respect to m and 7 = v holds (§4.6). Our presentation combines both
these situations.

Algorithm:

We improve the precision of the nested coordinates in sequence. At step | we know
an improved value of Y!. More precisely:

(L;) At step I we know Y (Z,11+dX41,. .., Z;+dX;,dW;;1) at precision 71 ;+0741,
where
o1 = Vg + mg1i + VG +me(.

The computation goes from (Ly) to (L;). Along the presentation of the algorithm we
introduce the quantities 6, 8, 6 and V. They are detailed in Lemma 6 below.

The initialization is trivial since Y is the empty sequence. At the end (when [= 4)
we get Y*(dW;41) at precision 71 ; + o1 = 71, + V(o + m"(;.

Going from (L;) to (L;41) is performed by the following computations:

27

Preliminary version — 9th November 2001

. First we let dWj o := Zj19 +dXi49,...,Z; + dX;,dW;;1 and we compute for each
j=1...,8:
Vi = [(Yll(ZH-l + dXip1,dWito) +d Xy, ..,

YHZi1 + dXpj1, dWigo) + dXg, Zygy + d X4, dWl+2)-

. Since coeff;(vy;,dz*) is known at precision oy 1, then for each 7 := (j,dz*, u) € Ti41
and according to formula (4), we deduce the value

| O coeffy (v, dz*)

wr(Zp41 + dXpy1,dWig2) == on!l - oyl (5)

E)deHl“

at precision at least
. 6ml+1_lal+1
T my41—1°
6d:ch+1

. We deduce Q1(Z11,dWiy9) = (wr(Zy11,dWiys), T € Ti1) at precision at least
6 := 0 N dA; 4o and valuation at least O := Ti+2,i + V(i (by hypothesis).

. We also deduce

Ow ow .
adT;_l(ZHl,dWHQ) = <8de]- (Zi+1,dWit2), § = Rija,- .. Rigo — 1)

at precision 6V.

. We are looking for a value dZ; 1 of dX;;1 such that Z;;1 + dZ;;1 is Y11 (dWi9)
at precision o;,9. This value satisfies the following equation obtained from the first
order Taylor expansion of ;11 at (Z;41,dW42):

W1(Zig1 +dZy 1, dWiy) € 0149

—
041

Q Z d
1+1(Z141,dWi42) + 94X,

(Zi1, dWit2)dZ141 € 014

We prove in Lemma 6 below that 0?2 + 60V + 69 C 01+2. Therefore dZ;, 1 exists,
is unique at precision o9 and is given by:

o0 !
dZp1 = — Bl (Zigr, dWiss)) Quir(Zigr, dWia).
0dXi 41

. From the value Y, 1(dW; 9) = Z;11 + dZ; 41 at precision 0,49 and using Propo-
sition 10, it remains to compute Y!(Yj 1 (dWjt2) + dX;11,dW;) at precision

28

Preliminary version — 9th November 2001

T14+1 + 0142 in order to reach (L;1). For this purpose we use the following first

order Taylor expansion formula:

Y Zi1 + dX i1 + dZpg1, dWige) = YHZi + dX 4, dWio)

OYYZyy1 + dXpy1,dW40)
0d X4

dZi11 + O((dZ111)?)

(6)

We know dZ;,; at precision 0,49 and each of its entries is in 6g. The derivative

3Y1(Zl+1+Xm+1,dWl+2)
Odx;
Corollary 3 and Proposition 4 we deduce that

o' aV7Tl+1 i

+ G
on Tl+1,4
Tt V{RH—la wRit1-1} "adx; +G
87rl+1 i
T4+ Vi) ade; TG
T+ Ty + G-

T+

NN 1NN

Therefore the precision of Y we reached is in

41 + (T2, +) (T2 + VEG),

which is itself included in 7y ;41 + 0742, using again Lemma 6 below.

Lemma 6 The following inclusions hold 0% C 0142, Vo, C o142 and 9?2 C 0y42.

2]
for dz; € dX;44 is known at precision 0’ := %wjl“)

. From

Proof. First we prove that % C 0;,5. Combining Corollary 3 and Lemma 2 we get that:

O+ Iy
i1 = ViR, —13 (X141 + Tip24).

odx Riy1
We deduce that

g O™ o

C——F17 = Vir Ri1—13(dX11 + m494)
admRH_lmHlfl {Ri41,-Riy1—1} ,

+(dXp11 + m424)C + Vo + mR(.
As for the projection 87 = @ N dS; .o we use Corollary 4:
ViRt Rip1—13 (X141 + Tip2,) N dSp10 = Vg,

This leads to
0% = V9, + T2, + Vi + m¢ = o4

From (7) we deduce roughly that
0V C mioi+Gi

Finally
0V0q C (M40, + C1)(Migoi + V&) = 7Tl2+2,i + m42,C1 + GV,

29

Preliminary version — 9th November 2001

and using Propositions 4 and 5 yields
0V0q +mF¢; C Vo, + Mol + Ve = 0749

O

For complexity estimate we recall that the constant 2 is less than 4 and at least 3 (see
definition in §4.1). We observe that all the computations can be done modulo the ideal
Vi, (T + C2) + m?s:

Lemma 7 For anyi=0,...,v and anyl =1,...,1, the following inclusion holds:
Vit (i +C2) C T+ ouy1
Proof. It suffices to prove that
Vi, oy +) Cmyg+ Vi + my1iG + Ve

We prove the reverse inclusion for the support of the ideals. We write dz®dz?dz?
a monomial of the support of m; + Vm1; + my1;¢ + V{, where dz® is in the
variables dX1,...,dX;, dz® in the variables dX;,1,...,dX; and dz” in the variables
dzpg,,,,-.-,dz,. Necessarily we have: dz® € supp(mi,), dz® € supp(Vmi1,), dz7 €
supp(V(z). We examine the two possible cases. In the first case dz? € supp(m41,i), we
conclude thanks to Corollary 4. The second situation is dz? € 41, necessarily we have
dz” € supp({1) C supp((2), hence dz®dz’dx” € supp(Vy,.. u1(m1i + C2))- O

Proposition 13 Let ¢ denote nmq---my;A. In terms of arithmetic operations in
A/(m?%A), the complezity of the function IncrementalLift is in

o ((nL + nf)c? log(c)>.

Proof. Let S := A/(mA)?*[[x1 — z%,...,2, — z}]] and 7 = Vi,..ny (7 + (). Using
Lemma 7, we perform the computations is S/m. Let C := Cg(w). From Proposition 3 we
know that deg(w) € O(c). Using Proposition 12 we deduce that C € O(c?log(c)) and
that the initialization of S/ is done within O(n?C).

We analyze the complexity for going from (L;) to (L;y1) in terms of the number of
operations in A/(m?*A).

Step 1 costs O(LC). Since n < ¢, coeff; requires O(C). Therefore Step 2 costs
O(r141C). Step 3 can be done within O(r;41C). Step 4 performs 7, calls to coeff, this
needs O(rleC). In Step 5 one has to inverse an r; 1 X r;41 invertible matrix over a ring
it can be done in O(r% ,C). Last, Step 6 performs at most nry;; differentiations and n
matrix vector products in dimension r;;q1. This yields O(nr?HC). Summing all these
costs yields O((L + rﬁ_l +nri ;)C). Now summing for [from 0 to ¢ and the assumption
Q > 3 yield the claimed bound O((nL + n®)C). O

30

Preliminary version — 9th November 2001

4.3 Computation of the Nested Coordinates

Now we explain how to compute the nested coordinates over the residue field o/m together
with a generic trace. We call this part of the algorithm NestedCoordinates. This
function is always called before entering a lifting process.

NestedCoordinates
Input:
e fi,...,fs polynomials in o[z1,...,z,].

e A monic polynomial ¢ in o/m[T]. We let A :=o[T]/(q).

e An approximation z* in (A/mA)" of an isolated root with multiplicity M of f; =
co=fy=0.
Output:

e If the coordinates are generic enough and if m is lucky then the function returns
the nested coordinates Y”() in o/m[[dz1,...,dzy]] at precision 7 ,. The function
also returns a generic trace for the deflation.

Algorithm:

In order to shorten the notations we let

dWit1 =2k, +dTR ..., Ty, +dTy,

(n = (doy,, dTRey, 41, -, dTn) and VO := Vg, (o

The computation of the nested coordinates is incremental: we get the 7th nested coor-
dinates Y*(dW;41) in sequence for i = 0,...,v. The initialization (for 7 = 0) is trivial
since YO is the empty sequence.

We enter the ith step of the computation with
(C;) We know
—T1,---5T%;

- my,..., My,

— Y*(dW;41) at precision 71 ; + V(3.

We explain how to go from (C;) to (C;41). All the calls to IncrementalLift are done at
precision s = 1.

31

Preliminary version — 9th November 2001

In a first stage we search the value of m;; 1. These computations are organized around
one main loop. We initialize A = 1 and enter the following loop:

1. repeat:

e Compute ®;1(dW;41) at precision V() using the formula of Proposition 11.

e Find the smallest [< X such that the monomial dIlRH_l is in the support of
the elements of ®;1(dWj41). If such an [exists then it equals m;;1. In this
case break the loop.

e (Call Incrementallift in order to reach the precision V(5) and the replace A
by 2A.

The value of m;1 is known. It remains to compute r;+1 and T;41.

2. Compute
8mi+1—1

Di11(dWits) = Sdzp i1
i+1

Pit1(dWit1)

at precision V(;.
3. Build the (smjq---m;it1) X (n — Rj+1 + 1) matrix J:

0P 1(dWis1)

J =
8{d$Ri+1,. .. ,dxn}

0,...,0).

This is the row matrix of the gradients of the elements of CT>Z-+1 at x*.

4. Let

dWH_Q = (E*Ri+2 + d.TRH_z, . ,IE:L + diI,‘n

Compute the rank r;;; of the matrix J and the expression of Y 1(dW; o) at
precision Vig, ., . 3 (dTR,,,--.,dT,). Deduce the trace 7;11. We let

dZZ+1 = YZ+1(dWZ+2) - (zﬁi_{_l’ st 7‘T}<{i+2—1)'
5. We deduce the value

Y (dWige) = (V(Yig1(dWit2) + dXip1, dWit2), Yie1 (dWig2))

at precision Vig, ., n3(dzR,,,,...,dr,) using the following first order Taylor ex-
pansion:

; ; oY (dW;
Y'(Yit1(dWis2) +d X1, dWito) = Y (dWiy1) + Mdziﬂ +0((dZi11)?).

0dX; 1

The computation of the rank and the determination of 7,11 can be done using the clas-
sical Gaussian elimination process for instance. Indeed we can use any linear algebra
algorithm. But it is important to notice that, according to this choice, the luckiness of
m differs. We can only say that:

32

Preliminary version — 9th November 2001

Proposition 14 There exists an element a # 0 in o such that any m that does not
contain a is lucky for NestedCoordinates.

Proof. Formally, one can think about the execution of NestedCoordinates over k(u)
instead of A. The function performs a finite number of equality tests and divisions.
The maximal ideal m is lucky if this mental computation can be specialized modulo m.
Therefore the element a is a multiple of all the denominators of all the elements of &
occurring in this computation. O

Proposition 15 If the coordinates are generic enough and if m is lucky then the function
NestedCoordinates requires

o (n3 (nL 4+ n*)M? log(nM))
arithmetic operations in AJ/mA.

Proof. Let ¢y := nmi---m;A and C, = cilog(cA). From Proposition 13 the
call of Incrementallift with input precision V() and output precision V() costs
O((nL + n%)Cyy) operations in A/mA. The computation of ®;,1(dW;,) requires
O(LCQ)\ + 8myq + - - M;Nnco) 10g(c2)\)) C 0((L + 5)62)\) - O(LCQ,\).

We deduce that the total cost of the loop is in O((nL + n)Cp,,).

The cardinal of ®;;1 equals smj---m;. The computation of the value &)Hl(dVViH)
requires O(sm1 -+ mjt16m; ;) € O(8Cm,;,,). The construction of J requires

O(smy -+ miy1ncm,,, 10g(cm;.1)) € O(sCrmy,,)-
The Gaussian elimination can be done within
O(smy ---mipn?) C O(sCrm;yy)-
Last, updating the value of Y requires
O(nrivicmiy, +17i41Cm;y) € O(nrip1Cmyyy)-

The total of these last operations is in O((s + nri11)Cn;,,)-

We conclude that going from Step (C;) to (C;41) requires O((nL +n?)Cp,,,). It remains
to sum these costs from (Cp) to (C,) to get the claimed bound. O

4.4 An a posterior: probabilistic luckiness test

We give a variant of the function NestedCoordinates taking the generic trace as argu-
ment and returning the nested coordinates. Computations are essentially the same as in
NestedCoordinates but no rank determination is necessary.

33

Preliminary version — 9th November 2001

NestedCoordinatesWithTrace

Input:
e fi,...,fs polynomials in o[z1,...,Zy)-
e a monic polynomial ¢ in o/m[T]. We let A :=0[T]/(q).
e A approximation z* in (A/mA)" of an isolated root of f; =--- = fs = 0.
e The generic trace 7.
Output:

o If the coordinates are generic enough and if m satisfies the smoothness hypotheses
of §3.3 then the function returns the nested coordinates Y”() in o/m[[dz1, ..., dz,]]
at precision 7y .

Proposition 16 If the coordinates are generic enough and if m is lucky then Nested-
CoordinatesWithTrace requires

O <n3 (nL + nS)M? log(nM))
arithmetic operations in A/mA.

Once we know the generic trace it is sometimes useful to have a probabilistic test of
the smoothness hypotheses for another maximal ideal m. From a practical point of view,
NestedCoordinatesWithTrace raises a “division by zero” error message if the inversion
of an element which is not zero is not possible. This message occurs when m does not
satisfy the smoothness hypotheses.

Proposition 17 Let T be the generic trace of £* if the coordinates are gemeric enough
then if NestedCoordinates does not raise “division by zero” them the smoothness hy-
potheses (Hq) are satisfied.

Proof. The only inversions occurring in NestedCoordinates are the ones of the Jacobian
matrices of the ;. These inversions involve determinants only. This corresponds to the
smoothness hypotheses exactly. O

4.5 Example 3 continued from §3.2

We illustrate NestedCoordinates on Example 3 of §3.2. In order to make the reading of
the computation easier we work over k instead of o/m, for some lucky maximal ideal m.
Moreover we do not change the coordinates to generic ones since we know from 3.2 that
all the Weierstrall positions we need are satisfied.

We enter NestedCoordinates at step (Cg). It is easy to check that mqy =1, r =1
and compute

Yll (dzo, —1+ dxs) = —dxs + dx3 + O((dz1) + V{ng} (dzo,dzs)).

34

Preliminary version — 9th November 2001

We arrive at step (Cq).

We compute Y (dzg, —1+dz3) = Yi(dzo, —1+dz3) as the solution of f1(Y{ (dze, —1+
dr3),dry, —1+dz3) satisfying the condition Y;! (dza, —1+dz3) = 0 at precision O((dz)+
V{2’3}(dazg, dzs3)). After 2 calls to IncrementallLift we obtain:

Y (dzy, —1 4 dz3) = daz+ doy(—1+ 2dxs) + dzi(—2 + 8dxz) — 4dzd
+O((dz1) + V{2,3}(dx§, dzxs)).

Substituting z1 by Yi'(dzo, —1 + dx3) in F, we get v1,v2,73:

i = fi(Yi(dzy, -1+ dx3) + dz1,dzo, —1 + dz3)

= 0+ O((dz1) + V{o,3)(dz3, dz3)),
ve = fo(Yi(dzy, =1+ dx3) + dz1, dzo, —1 + dx3)

= —3daidrs +dod + O((dz,) + V{2,3}(dwg, dz3)),
ve = f3(Yi(dzy, -1+ dx3) + dz1, dzo, —1 + d3)

= 0+ O((dz1) + V{o,3)(da3, dx3)).

Then we deduce @2 = {1, ¢2, p3} where

coeffy (71, dz?)
= 0+ O(Vya,3)(dz3, dz3)),

(]51(d.’1,‘2, -1+ d:Bg)

$o(dzo, —1 +dz3) = coeffy(yo,dz?)
= —3drjdzs + dzj + O(Vyg3(da3, dzs)),
$3(dzo, —1 +dz3) = coeff;(y3,dz?)

= 04 O(Vyps(dz3,dz3)).

WeNﬁnd that ms = 3 and we have to study the rank ry of the gradients of the elements
of @22

®y(dzg, —1 + dz3) = {¢1,¢2,¢3,% O¢p 0¢3 0%¢1 0*¢y 32(/53}_

8562 ’ 8172’ a.’L‘Q, 8.7,‘22’ 3.7,‘22’ 85622

All the elements of ®, equal 0+ O(Vy2,3)(dx2,dr3)) except 38;:;22: we deduce that 7o =1
and examine

0%¢s
8d.’1322

(dea -1+ d.’L'3) =—6 dl‘g + Gdl'g + O(V{2,3} (dﬁEQ, d.’L’g))

This yields the first order approximation of Y2(—1 + dz3):

Yy (—1 + dws) = Ya(—1 + das) = dzg + O((dw1, dx3) + V (3y(dws)).

35

Preliminary version — 9th November 2001

We can now update Y3(1 + dz3):

Y2(=1+dz3) = YHYP(—14dzs) + dry, —1 + das)
0Y (dz2,1 + dx3)
8d12

= Y{(dzo,—1+dz3) + d$3< —1—4dzy —12dz3
+0O((dz1,dz3) + (d£133)))

= dzo(—1—2dx3) + dri(—2 — 4dx3)
+0((dzy,dz3) + Visy(dzs3))-

= Y{(dzy,—1+ dz3) + dz3

Step (C2) of NestedCoordinates is reached.

We check that the precision is not enough and enter IncrementalLift again. Let z;
and z2 denote the former approximations of Y#(—1+dz3) and Y?(—1+dx3) respectively.
The evaluation of f; yields:

fi(z1 + dz1, 20 + dzo, —1 + dx3) = 3dw§ + de%dwg + deg
+dz1(2 — 4dzy — 8dz?)
+0 (V1,93 (dz1, dz3) + (day, dzi) (dwg) + Vigy(de3)).

We deduce
3dz?2 + 8dx2dz? + 8dx3
B = byt OV (ded) + (453 (des) + Vs (d)
_ —gda;g — 3dwoda’ — 16 dalda’ — 4dx

+O(V (9} (da3) + (d3)(dz3) + V 3)(dx3)).
Therefore we arrive at Step (L;) with
Yll(ZQ + dzo,—1 + d.Z‘g) =z1+dz
= —gdwg + dzy(—1 — 2dzs — 3dz3) + dz3(—2 — 4dzs — 16 dz3)
—4dz3 + O((dz1) + Via (dz3) + (d3)(dz3) + V{3}(dm§)).
We deduce the new value of Qs:
QQ(ZQ + dzxo,—1+ d:L‘3) =
{%coeffl(fg(Yf(zz + dzo, —1 + dz3) + dz1, 20 + dzo, —1 + dx3), 1)}
- {9 da + 6 dos + O(V (3 (dmo) + (d2) (dz3) + v{3}(dx§))}.
We get dzo = —%d:c% + O(V3(dz3)) and improve the precision of Y?(—1 + dz3):
Y22(—1 + d$3) = 29 +dzy
= drz— gda:g + O((dz1,dz3) + V3(dz2)).

36

Preliminary version — 9th November 2001

The new value of Y12 becomes:

Y2(—1+4dz3) = Y{'(z0+dzy +daxy, —1 + da3)
8Y11 (22 +dzo,1+ d.’Eg)
8d$2

= Y{'(2 +dz, —1+ dzs) — gdxg(—1—4dz

= Y{(z +dzy, —1 4+ dz3) + dz

—12dz3 + O((dz1) + V93 (dz3) + (dxg)))

3
= Y11(22 + dzo, —1 + dzx3) + idmg + Gd.’,CQd.’E%

+18 dzbdas + O((dw1, dw3) + Vi3 (da3))
= dzo(—1—2dxz + 3dz3) + dz3(—2 — 4dxz + 2dz3)
+0((dz1,dz3) + V33 (dz3)).

Step (Lo) is reached but the precision is not enough to find mg and r3. We enter
Incrementallift again. Let z; and z; denote the last approximations of Y2(—1 + dz3)
and Y2(—1 + dz3) respectively. The evaluation of f; yields:

fi(z1 +dz1, 20 + dze, —1 + dx3) =

—6dx3 + gdxél + dz3(—24 dxs + 18 dx3) + da (8 + 32 dx3)

+dz1(2 + dzo(—4 — 8dx3) + dri(—8 — 16 dr3))

+0 (V1,23 (dz1, dz3) + (dzy,dzd)(dz3) + Vis (dwg))
We find

—6dz3 + 2dz§ + dz3(—24 dad + 18dzs) + dr3(8 + 32dz3)
2 + dzo(—4 — 8dz3) + dzi(—8 — 16 dz3)
+O(V (93 (dz) + (do3)(dx3) + V(31(dw3))
= 3dzi — %dx}f + dzo(6 dzl + 12—5d:c§) + dz3(36 dr + 45 dz3)
+dz3(—4 — 16 dz3) + O(V 9y (dad) + (da3)(dz3) + V3 (da3)).

d21 =

Therefore we arrive at Step (L;) with
Yll(ZQ +dxo,—1+ d.fl?3) =z +dz =
1
3dz3 — %dz}f + dzy(—1 — 2dzs + 3dz3 + 6 dad + ;dwg)

+d23(—2 — 4dzz + 2dz3 + 36 da3 + 45dx3)
+dz3(—4 — 16 dz3) + O((dz1) + Vo (dad) + (dz3)(da3) + Vi3 (das)).

We deduce the new value of Qs:

QQ(ZQ +dzo,—1+ dlL‘g) =

37

Preliminary version — 9th November 2001

{%Coeﬁll(fQ(Yll(ZQ + dzo, —1 + dz3) + dz1, 22 + dzo, —1 + dx3), 1)}

= { ~ 184z} — 22dz} + doa(6 + 36 dry)

+O(V (2 (ds§) + (da)(da}) + V3 (da$) }.
We get dzy = 3da3 + 2dz} + O(V3(dzr})) and improve the precision of Y?(—1 + dz3):

Y2 (—1+dzs) = 2 + dzo =
dzrs — gdxg + 3dz3 + deé + O((dzy,dz3) + V3(dz3)).

The new value of Y12 becomes:

Y2(—1+dzs) = Yi(z+dz +dzy, —1 + dz3)
0Y ! (29 + dzo, —1 + dx3)
Odxo

21 4 2 3
= _7d$3 +dzo(—1 — 2dzs + 3dzs — 6drs —

+dz3(—2 — 4dzs + 2dz3 — 126 dz3)
+0((dz1,dz3) + V3)(dz3)).

= Y{(z +dxy, —1 4 dx3) + dz

51

Step (L2) is reached. We deduce ®3 = {¢1,..., 99}, where ¢y = 0+ O(V 3} (dz3)) for
1=1,...,8 and @9 = 9000 dz5 + (’)(V{?,}(dw%)). Therefore, m3 = 4, r3 = 1 and ®5. All

the elements of ®3 equal 0 + O(Vy3)(dz3)) except 66;;;;93 = 216000 dz3 + O(V3y(dz3)).

4.6 Lifting the Nested Coordinates

Once we know the nested coordinates Y” over A/(m*A) we can lift them in A/(m?¢A),
for any k > 1.

LiftNestedCoordinates

Input:
e f1,..., fs polynomials in o[z, ..., z,].
e a monic irreducible polynomial ¢ in o/m[T]. We let A := 6/m[T]/(q).

e Y” at precision m*A+ 7y ,, the nested coordinates with respect to an isolated root
xof fi=---=fs=0.

e The generic trace 7 of the deflation computed by NestedCoordinates.
Output:
e YV at precision m** A + -

38

Preliminary version — 9th November 2001

Algorithm: Call straightforwardly the procedure IncrementallLift. Recall that the co-
ordinates must be generic enough.

Proposition 18 If the coordinates are generic enough and if m is lucky then the function
LiftNestedCoordinates requires

O(n%(nL 4+ nt)M? log(nM))

arithmetic operations in A/(m?FA).

4.7 Example 3 continued from §4.5
In §4.5 we computed over k = Q the nested coordinates Y3. As discussed in §3.3, m = (7)

is a lucky maximal ideal in 0 = Z. We could have computed the nested coordinates in
Z/pZ, they coincide with the value modulo 7 of the ones computed over Q:
Y2 = dzo(6 + 5drz + 3dz3 + dz3 + 6 dz3) + dzi(5 + 3 dxs + 2dx?)
+0(dzy, dzs, dz3),
Yy = dxz+2dz3 +3dxd + ddas + O(dzy, dad, dxy),
Yy = 6+ 0O(dzy,dz3,drs).
Modulo 7 our approximated root z is (0,0,6). We call the function LiftNested-
Coordinates and get modulo 72 the new nested coordinates Y3:
Y2 = 21dzi + duo(48 4 47dxs + 3dz3 + 43 das + 27 dxh)
+ dz3(47 + 45 dxz + 2dz?) + O(dzy, dz3, dxs),
Y3 = drs+23dx3 + 3da3 + 4dxs + O(dxy, dx3, dzi),
Y: = 48+ O(dzy,dz3, dzs).

The new approximation of z* = (0,0, —1) we get modulo 49 is (0, 0,48), which is correct.

4.8 Summary of the Algorithm

We gather the above algorithms in order to get a proof of Theorem 1. The existence of
a in the theorem comes from Proposition 8 and Proposition 14. The restriction on the
characteristic of k& comes from the deflation lemma 4.

In §3.5 it is shown that the change of coordinates that are not generic enough are
contained in an algebraic hypersurface of GL, (k). From Proposition 15 the computation
of the nested coordinates is done within

(@] (n3 (nL + n't) M? log(nM))

arithmetic operations in A/mA.
Once the nested coordinates are computed modulo m we can lift them using the
procedure LiftNestedCoordinates. Reaching precision m?* from precision m® costs

O (n2 (nL + nS)M? log(nM))
arithmetic operations in A/(m?FA).

39

Preliminary version — 9th November 2001

5 Splittings

From the beginning we have assumed that the root x* is given by means of an irreducible
minimal polynomial (). The question arising naturally is to know what happens if @) is
not irreducible any more: in this case * represents several irreducible sets of roots. It is
a well-known fact that such a systematic extension of our method for a reducible square
free polynomial @) is possible via dynamic evaluation. This general framework has been
developed both from theoretical and practical point of views in the Axiom [Sut92] com-
puter algebra system in a series of papers by Duval and her collaborators: Della Dora,
Delliére, Dicrescenzo, Gomez Diaz, Reynaud [DDD85, Duv87, DD89, Duv89, Duv94,
Dia94, Duv94, DR94a, DR94b, BGW95, Duv95, Del99]. Following the dynamic evalua-
tion scheme, we develop in this section a special function for handling a non irreducible
situation and estimate its complexity.

From now on we assume that () is not necessarily irreducible anymore: @) is square free
in k[T], we let k[u] := k[T]/(Q(T)) and z* is given by a vector of n polynomials of k[T.
If Q@ =Q;---Qy is the irreducible decomposition of @) in k[T'] then k[u] is isomorphic to
the Cartesian product of the field extensions k[T']/(Q1(T)) x - -+ X k[T']/(Qr(T)). We still
assume that hypotheses (Hg) and (H,+) hold. In consequence, (Hg,) holds and (Hyx)
holds in each k[T]/(Q;(T)), fori=1,...,r.

We denote by A; the quotient 6[7"/(Qi(T)) and still write z* for the image of z*
in A;. Note that A is isomorphic to the product A; x --- x A,. We shall write 7" for
the generic trace of the deflation process executed in A;, as defined in §3.5. Having the
same trace induces a partition pi,...,p; of the set {1,...,7}. Let Qp, be the product
of the Q); for all j € p;. The aim of the following algorithm is to compute the @), and
their associated generic traces 7P:. We write M; for the multiplicity of 2* as a root
of the system f; = --- = fs = 0 in k[T]/(Qi(T)), for i = 1,...,r. We say that z* is
DA-irreducible if ¢ = 1.

If we execute the function NestedCoordinates in A directly to compute the nested
coordinates modulo m from the knowledge of * modulo m we probably run into an error
due to the fact that A/mA is not a field. Such an error occurs when the computation
requires a division by an element that is not zero and not invertible. In order to build up
the splitting method we assume that the function NestedCoordinates raises the message
“division by zero” and returns the element causing the trouble.

We introduce the function DaSplit which takes as input the polynomial) known
modulo m and the value of z* modulo m in the algebra A. It returns the sequences

(Qp;)i=1,....t and (TPi);=1,. 4.
DaSplit
Input:
e a square free monic polynomial @ in o[T]. We let A = 6/m[T"]/(Q).
e a vector (Vi,...,V,) of polynomials in o[T"] of degree less than deg(®) such that
z*=Vi,...,V,) in A/mA.

40

Preliminary version — 9th November 2001

e a sequence fi,..., fs of polynomials such that x* represents an isolated set of roots
of fy="--=fs=0.

Output:

e If the coordinates are generic enough and if m is lucky then it returns the sequences
Qpi» 1=1,...,tand TP i =1,...,t.

Algorithm:

1. Call NestedCoordinates with). If the error “division by zero” is raised then the
function returns an element P of 6/m[T"] that is not divisible by Q. Let Q. be the
greatest common divisor of P and @ and @, = Q/Q.. We have deg(Q.) > 1 and
deg(Qy) > 1, this induces a splitting. If no error occurs then return @ and 7 found
by NestedCoordinates.

2. Call recursively the function with Q., then with (),,, merge the returned sequences
and return.

As for complexity estimate we need to count the costs of the operations in A. We in-
troduce the function I such that all the elementary arithmetic operations (multiplication,
division, greatest common divisor) can be performed within O(U(deg(QR))) operations in
o/m.

Proposition 19 In case of success the complezxity of DaSplit is in
(@] (log(d)n*(nL + nQ)DZU(deg(Q))) ,

in terms of arithmetic operations in the residue field o/m, where

D := Z M;deg(Q;).

=1

Proof. There are 2t — 1 calls to NestedCoordinates: ¢ of them leading to the @), and
t — 1 raising the “division by zero” error. We perform the complexity analysis in the worst
case as if all the computations were performed in A. First we examine the cost of the
failing calls. It suffices to observe that the failing computations can be embedded in the
successful ones: to each failing call we associate a successful one performing the same
operations in A until the error. Therefore, in terms of arithmetic operations in A, the
sum of the costs of the calls to NestedCoordinates raising the error is bounded by the
sum of the costs of the finishing ones.

Let My, = min;e,, My, for j =1,...,¢. In terms of arithmetic operations in o/m, the
sum of the costs of the NestedCoordinates finishing without any error is in

O(D2 nP(nL +n®) M2 log(nMy, U (deg(Q)))-

j=1

41

Preliminary version — 9th November 2001

Noticing that M; < d" for each i = 1,...,r, this yields the bound log(nM;) €
O(log(nd™)) C O(nlog(d)). We conclude the proof this way:

2

t t
ZMP Z > deg(Qp;) ZM,,] deg(Qp,) | < D™
j=1 j=1

j=1

Concerning the probabilistic aspects it is easy to deduce that

Proposition 20 There exists an element a # 0 in o such that for any m which does not
contain a DaSplit returns a correct answer if the linear change of coordinates is chosen
outside an algebraic hypersurface of GLy(k).

Conclusion

A numerical translation of the algorithm presented here seems possible if we take care
of the convergence of the power series. Experiments on small examples indicates that
everything works fine. The main problem is the numerical computation of the generic
trace.

During our deflation process we do not compute the multiplicity of the root, we only
get a lower bound. The natural question we would like to answer is: how to compute
efficiently the multiplicity? Another direction we are planning to to explore is the exten-
sion of the Jacobian criterion: can we prove that a given root is isolated within a small
complexity?

Acknowledgments

I greatly thank M. Giusti, B. Salvy, M. Stillman and the anonymous referees for their
useful comments.

References

[Abd97] J. Abdeljaoued. Algorithmes rapides pour le calcul du polynéme caractéris-
tiqgue. PhD thesis, Université de Franche-Comté, Besangon, France, 1997.

[Ass94] A. Assi. On flatness of generic projections. Journal of Symbolic Computation,
18(5):447-462, 1994.

[BC89| G. Butler and J. Cannon. Cayley version 4: The user language. In Proceedings
of ISSAC’88, volume 358 of Lecture Notes in Computer Science, pages 456—
466. New York: Springer, July 1989.

42

Preliminary version — 9th November 2001

[BCYO]

[BCY5|

[BCM94]|

[BCP97]

[Ber84]

[BGW95]

[CP96]

[CsaT6]

[DD8Y]

[DDDS5|

[Del99]

[Dia94]

[Dix82]

[DR94a|

G. Butler and J. Cannon. The design of Cayley, a language for modern
algebra. In A. Miola, editor, Design and Implementation of Symbolic Com-
putation Systems, volume 429 of Lecture Notes in Computer Science, pages
10-19. New York: Springer, July 1990.

W. Bosma and J. Cannon. Handbook of Magma functions. Sydney: School
of Mathematics and Statistics, University of Sydney, 1995.

W. Bosma, J. Cannon, and J. Matthews. Programming with algebraic struc-
tures: design of the Magma language. In M. Giesbrecht, editor, Proceedings
of ISSAC’94. ACM, 1994.

W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The
user language. Journal of Symbolic Computation, 24, 1997.

S. J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147-150,
1984.

P. A. Broadbery, T. Gomez Diaz, and S. M. Watt. On the implementation
of dynamic evaluation. In ISSAC’95, pages 77-84, 1995.

J. Cannon and C. Playoust. Magma: A new computer algebra system. Fu-
romath Bulletin, 2(1):113-144, 1996.

L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal of Com-
puting, 5(4):618-623, 1976.

C. Dicrescenzo and D. Duval. Symbolic and algebraic computation. Lecture
Note in Computer science, Springer Verlag, 358:440-446, 1989.

J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for
computing in algebraic number fields. In EuroCal’85, volume 204 of Lecture
Notes in Computer Science, pages 289-290, 1985.

S. Delliére. Triangularisation de systémes constructibles — Application a
l’évaluation dynamique. PhD thesis, Université de Limoges, 1999.

T. Gémez Diaz. Quelques applications de l’évaluation dynamique. PhD thesis,
Université de Limoges, 1994.
ftp://medicis.polytechnique.fr/pub/src/dynamic__evaluation.

J. Dixon. Exact solution of linear equations using p-adic expansions. Nu-
merische Mathematik, 40:137-141, 1982.

D. Duval and J.-C. Reynaud. Sketches and computation - I : Basic defini-
tion and static evaluation. In Mathematical Structures in Computer Science,
volume 4. Cambridge University Press, 1994.

43

Preliminary version — 9th November 2001

[DR94b]

[Duv87]

[Duv89]

[Duv94]

[Duv95]

[Gat86]

[GFT00]

[GHH*97]

[GHL*00]

[GHM 98]

[GHMP97]

[Gia87]

[GLS01]

D. Duval and J.-C. Reynaud. Sketches and computation - IT : Dynamic eval-
uation and applications. In Mathematical Structures in Computer Science,
volume 4. Cambridge University Press, 1994.

D. Duval. Diverses questions relatives au calcul formel avec des nombres
algebriques. PhD thesis, Université de Grenoble 1, 1987.

D. Duval. Simultaneous computation in fields of arbitrary characteristic. In
Computer and mathematics 89, pages 321-326. Springer-Verlag, 1989.

D. Duval. Algebraic numbers: an example of dynamic evaluation. Journal
of Symbolic Computation, 18:429-445, 1994.

D. Duval. Evaluation dynamique et cloture algébrique en Axiom. Journal of
pure and Applied Algebra, 99:267-295, 1995.

J. von zur Gathen. Parallel arithmetic computations: a survey. In B. Rovan J.
Gruska and J. Wiedermann, editors, Proceedings of the 12th Symposium on
Mathematical Foundations of Computer Science, volume 233 of Lecture Notes
in Computer Science, pages 93—-112, Bratislava, Czechoslovakia, August 1986.
Springer.

P. Gianni, E. Fortuna, and B. Trager. Degree reduction under specialization.
Exposé & MEGA 2000, 2000.

M. Giusti, K. Hégele, J. Heintz, J. E. Morais, J. L. Montafa, and L. M. Pardo.
Lower bounds for Diophantine approximation. In Proceedings of MEGA’96,
volume 117,118, pages 277-317. Journal of Pure and Applied Algebra, 1997.

M. Giusti, K. Héagele, G. Lecerf, J. Marchand, and B. Salvy. Computing
the dimension of a projective variety: the projective Noether Maple package.
Journal of Symbolic Computation, 30(3):291-307, September 2000.

M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo. Straight-
line programs in geometric elimination theory. Journal of Pure and Applied
Algebra, 124:101-146, 1998.

M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. Le role des structures
de données dans les problémes d’élimination. Comptes Rendus de I’Académie
des Sciences de Paris, 325:1223-1228, 1997.

P. Gianni. Properties of Grébner bases under specializations. In Furopean
Conference on Computer Algebra, number 378 in Lecture Notes in Computer
Science, pages 293-297, 1987.

M. Giusti, G. Lecerf, and B. Salvy. A Grobner free alternative for polynomial
system solving. Journal of Complezity, 17(1):154-211, 2001.

44

Preliminary version — 9th November 2001

[GMS9]

[GPS01]

[Gra93]

[Hag98]

[Hei89)

[HKP+00]

[HMWO1]

[7500]

|Kal87]

[Kal97]

[KP96]

[Lan93]
[Lec99|

P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations
using Grobner bases. In Applied Algebra, Algebraic Algorithms and Error
Correcting Codes, Proceedings of AAECC-5, volume 356 of Lecture Notes in
Computer Science, pages 247-257. Springer, 1989.

G.-M. Greuel, G. Pfister, and H. Schénemann. Singular 2.0. A Computer
Algebra System for Polynomial Computations, Centre for Computer Algebra,
University of Kaiserslautern, 2001.

http://www.singular.uni-kl.de.

H.-G. Gridbe. On lucky primes. Journal of Symbolic Computation, 15:199—
209, 1993.

K. Hégele. Intrinsic height estimates for the Nullstellensatz. PhD thesis,
Universidad de Cantabria, Santander, 1998.

J. Heintz. On the computational complexity of polynomials and bilinear
mappings. A survey. In Applied Algebra, Algebraic Algorithms and Error
Correcting Codes, Proceedings of AAECC-5, volume 356 of Lecture Notes in
Computer Science, pages 269-300. Springer, 1989.

J. Heintz, T. Krick, S. Puddu, J. Sabia, and A. Waissbein. Deformation
techniques for efficient polynomial equation solving. Journal of Complexity,
16(1), 2000.

J. Heintz, G. Matera, and A. Waissbein. On the time-space complexity of
geometric elimination procedures. Applicable Algebra in Engineering, Com-
munication and Computing, 11(4):239-296, 2001.

G. Jeronimo and J. Sabia. Probabilistic equidimensional decomposition.
Comptes rendus de I’Académie des sciences de Paris, 331(1), 2000.

M. Kalkbrener. Solving systems of algebraic equations by using Grébner
bases. In Furopean Conference on Computer Algebra, number 378 in Lecture
Notes in Computer Science, pages 282-292, 1987.

M. Kalkbrener. On stability of Grobner bases under specializations. Journal
of Symbolic Computation, 24(1):51-58, 1997.

T. Krick and L. M. Pardo. A computational method for Diophantine approx-
imation. In L. Gonzélez-Vega and T. Recio, editors, Algorithms in Algebraic
Geometry and Applications. Proceedings of MEGA 94, volume 143 of Progress
in Mathematics, pages 193-254. Birkhduser Verlag, 1996.

S. Lang. Algebra. Addison Wesley, 1993.

G. Lecerf. Kronecker, a Magma package for polynomial system solving, from
1999.
http://kronecker.medicis.polytechnique.fr.

45

Preliminary version — 9th November 2001

[Lec00]

[Lec01]

[Lev40]

[LSO1]

[Mat86]

[Mor97]

[MS95]

[Nau98|

[0i82]

[0ji87]

[OWMS3]

[Pau92]

[SchO00]

G. Lecerf. Computing an equidimensional decomposition of an algebraic
variety by means of geometric resolutions. In Proceedings of ISSAC’2000,
pages 209-216. ACM, 2000.

G. Lecerf. Une alternative auz méthodes de réécriture pour la résolution des
systéemes algébriques. PhD thesis, Ecole polytechnique, 2001.

U. J. J. Leverrier. Sur les variations séculaires des éléments elliptiques des
sept planétes principales : Mercure, Vénus, la terre, Mars, Jupiter, Saturne
et Uranus. Journal de Mathématiques Pures et Appliquées, 4:220-254, 1840.

G. Lecerf and E. Schost. Fast multivariate power series multiplication in char-
acteristic zero. Manuscrit, Laboratoire GAGE, Ecole polytechnique, France,
April 2001.

H. Matsumura. Commutative Ring Theory. Cambridge University Press,
1986.

J. E. Morais. Resolucion eficaz de sistemas de ecuaciones polinomiales. PhD
thesis, Universidad de Cantabria, Santander, Spain, 1997.

H. M. Moller and H. J. Stetter. Multivariate polynomial equations with
multiple zeros solved by matrix eigenproblems. Numerische Mathematik,
70:311-329, 1995.

R. Nauheim. Systems of algebraic equations with bad reduction. Journal of
Symbolic Computation, 25(5):619-641, 1998.

T. Ojika. Deflation algorithm for the multiple roots of simultaneous nonlinear
equations. Memoirs of Osaka Kyoikuw University. III. Natural Science and
Applied Science, 30:197-209, 1982.

T. Ojika. Modified deflation algorithm for the the solution of singular prob-
lems. I. a system of nonlinear algebraic equations. Journal of Mathematical
Analysis and Applications, 123:199-221, 1987.

T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple
roots of a system of nonlinear equations. Journal of Mathematical Analysis
and Applications, 96:463-479, 1983.

F. Pauer. On lucky ideals for Grébner basis computation. Journal of Symbolic
Computation, 14(5):471-482, 1992.

E. Schost. Sur la résolution des systémes polynomiauz & paramétres. PhD
thesis, Ecole polytechnique, 2000.
http://www.gage.polytechnique.fr/schost.html.

46

Preliminary version — 9th November 2001

[Ste96]

[Sto89]

[Str72]

[Sut92]

[Trig5]

[Win8s]

[Yak00]

[Zas69]

H. J. Stetter. Analysis of zero clusters in multivariate polynomial systems.
In International Symposium on Symbolic and Algebraic Computation, pages
127-136, 1996.

H.-J. Stof. On the representation of rational functions of bounded complexity.
Theoretical Computer Science, 64:1-13, 1989.

V. Strassen. Berechnung und Programm. I, II. Acta Informatica, 1(4):320—-
355; ibid. 2(1), 64-79 (1973), 1972.

J. Sutor. Aziom The Scientific Computation System. Springer-Verlag, 1992.

W. Trinks. On improving approximate results of Buchberger’s algorithm
by Newton’s method. In B. Caviness, editor, Proceedings of FEUROCAL’85,
number 204 in Lecture Notes in Computer Science, pages 608-611. Springer-
Verlag, 1985.

F. Winkler. A p-adic approach to the computation of Grébner bases. Journal
of Symbolic Computation, 6:287-304, 1988.

J.-C. Yakoubsohn. Finding a cluster of zeros of univariate polynomials. Jour-
nal of Complexity, 16, 2000.

H. Zassenhaus. Hensel factorization 1. Journal of Number Theory, 1:291-311,
1969.

47

Preliminary version — 9th November 2001

