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Abstract. Nowadays polynomial system solvers are involved in sophisticated
computations in algebraic geometry as well as in practical engineering. The
most popular algorithms are based on Gröbner bases, resultants, Macaulay
matrices, or triangular decompositions. In all these algorithms, multivariate
polynomials are expanded in a monomial basis, and the computations mainly
reduce to linear algebra. The major drawback of these techniques is the expo-
nential explosion of the size of the polynomials needed to represent highly pos-
itive dimensional solution sets. Alternatively, the “Kronecker solver” uses data
structures to represent the input polynomials as the functions that compute
their values at any given point. In this paper we present the first self-contained
and student friendly version of the Kronecker solver, with a substantially sim-
plified proof of correctness. In addition, we enhance the solver in order to
compute the multiplicities of the zeros without any extra cost.

Introduction

Polynomial system solving has been a central topic in computer algebra from
the middle of the sixties. This topic may be seen from various points of view,
which explains that many kinds of solvers have been designed so far. The most
popular solvers are certainly the ones derived from the Buchberger algorithm to
compute Gröbner bases. Other popular solvers are based on triangular decom-
positions, resultants, or Macaulay matrices. Nowadays polynomial system solvers
are implemented in all the computer algebra systems, and lie at the heart of so-
phisticated tools to handle computations in algebraic geometry, but also to solve
practical problems arising from engineering. Non-specialist readers may consult the
following related books: [5, 18, 32, 20, 56, 66, 15, 16].

In all the aforementioned families of algorithms, the multivariate polynomials
are represented by the vectors of their coefficients in the canonical monomial basis.
Usually we say that the polynomials are expanded. With such a representation, each
elementary operation can often be interpreted in terms of Gaussian elimination.
Thus linear algebra subroutines often play a central role in all these methods.
Because of the analogy between the Buchberger algorithm and the Knuth-Bendix
algorithm in the language theory, we often refer to these methods as rewriting
techniques [17].

Instead of expanding a polynomial in the monomial basis, alternative suitable
data structures can be used in order to represent it as the function that computes
its values at any given points. Several solvers have been designed for more than one
decade in order to take advantage of such representations. We often refer to these
algorithms as evaluation techniques. The Kronecker solver, that is the subject of
this paper, belongs to this family of solvers.
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From the complexity point of view, expanding multivariate polynomials coming
from elimination is often a bad idea because of the exponential explosion of the
number of their monomials. On the contrary, eliminant polynomials behave very
well from the evaluation point of view. Let us illustrate these facts with three
families of examples. The first family of examples is the determinant of a n ×
n matrix. This determinant is an eliminant polynomial of degree n in the n2

entries of the matrix. It is well known that its number of monomials is n!, whereas
it can be evaluated at any point with O(n3) arithmetic operations. The second
family is the resultant of two univariate polynomials of degrees n with unknown
coefficients. This resultant is an eliminant polynomial in the 2(n + 1) unknowns.
Its number of monomials increases exponentially in n, whereas it is well known
that it can be evaluated in time almost linear in n [20, Chapter 11]. Finally, the
third family concerns a system of n dense polynomials of degree d in 2n variables.
Informally speaking, if these polynomials are sufficiently generic then their set of
common solutions has dimension n and degree dn. In this situation, eliminant
polynomials in n variables have degree dn, hence a number of monomials that
grows with dn2

when n tends to infinity, and when d is fixed. On the other hand,
the algorithms presented in [50] can evaluate such eliminant polynomials with a
number of arithmetic operations that only grows with dn.

The next paragraphs contain a short survey on evaluation techniques. Then, we
give an overview of the Kronecker solver, and we summarize the main contributions
of this paper. The two first sections of this paper contain all the mathematical
results needed to prove the correctness of the Kronecker solver, that is presented
in the last section. The third section is devoted to the representation of radical
unmixed ideals.

A Short Survey on Evaluation Techniques. The nice evaluation properties of
eliminant polynomials were first explored in a series of works initiated by Giusti,
Heintz, Morais and Pardo at the beginning of the nineties. The first algorithm, pro-
posed in [24], was computing the dimension of the solution set of a system of homo-
geneous polynomials. The multivariate polynomials occurring during the computa-
tions were represented by straight-line programs (see definition in [8, Chapter 4]).
In [29, 19, 43] it was then shown that the polynomials involved in the Nullstel-
lensätz also had nice evaluation properties, and could be thus computed efficiently.
The first step towards the design of a fast polynomial solver taking advantage of
the straight-line program representation was first done in [27, 58]. Therein the goal
was the development of a solver with a polynomial cost in geometric and Diophan-
tine invariants of the solution sets, instead of other extrinsic quantities such as the
Hilbert regularity deeply involved in the rewriting techniques. In the solver pro-
posed in [27], the input system was represented by a straight-line program and the
algorithm was incremental in the number of equations to be solved. The Noether
position (see definition in Section 1.2) appeared as a central ingredient. However
this first solver was using an evaluation data structure that was permitting loops of
finite depth. The eliminant polynomials were represented by short programs, but
their evaluation costs were still high.

As announced at the end of [27], this bad behavior could be suppressed thanks
to the use of the Newton operator. This idea was first developed in [26] in order to
“compress” the straight-line programs built in the intermediate steps of the solver.
A refined version of [27] together with new lower bounds in Diophantine approx-
imation were then published in [22]: the lifting fibers (namely, the ideals written
Ji in the sequel) appeared as an efficient representation of the positive dimensional
varieties. These works yielded a major theoretical complexity breakthrough in the
elimination theory. The different versions of the solver were sharing the following
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features: the input polynomials were encoded by a straight-line program; the res-
olution was computed equation by equation; it was assumed that the system had
only a finite number of solutions; the algorithm was computing a univariate repre-
sentation (see definition in Section 3) of the set of the solutions; the running time
was linear in the size of the input straight-line program, and was polynomial in the
largest geometric degree of the intermediate systems; straight-line programs were
used all along the computations in order to represent all the multivariate polyno-
mials. Later on an other refinement was proposed in [28] so that the cost remains
polynomial in the latter quantities and in the height of the solution set for the
classical Turing machine model.

The algorithms described in [22, 28] were simplified and their proofs detailed
in Morais’ Ph.D. Thesis [57]. The space complexity analysis and algorithmic im-
provements were then proposed in [55]. The bit-complexity analysis and impor-
tant applications for the arithmetic Nullstellensätz problem were further developed
in [33, 34].

In order to implement these solvers, it was necessary to begin with programming
efficient evaluation data structures. With this goal in mind, the first steps were
presented at the TERA’1996 conference held in Santander (Spain) by Aldaz, and
by Castaño, Llovet, and Mart̀ınez [9]. Later on a C++ implementation of straight-
line programs was done by Hägele. Then another library was written in the Haskell
language [7]. Independently, other experiments were conducted to implement the
algorithm of [24] in the Maple computer algebra system, that was readily offering
an evaluation data structure [23]. All these trials led to the conclusion that huge
evaluation data structures were involving so much memory management that the
expected theoretical costs could not be observed in practice.

The solution to this problem came from a program transformation technique
called deforestation [23], that was used in theoretical computer science to eliminate
the building of intermediate data introduced by composition of functions. In some
cases this transformation can be performed automatically, but it required some
effort to use it in the context of [24]. Informally speaking, the deforestation led
in [23] to a paradigm telling us that the computation and the storage of the inter-
mediate evaluation data structures are useless if one rewrites the algorithms in a
suitable manner. Finally, this paradigm led to a successful implementation of the
ideas contained in [24].

The deforestation paradigm was then applied to the solver given in [57]. Pre-
sented in [30], this work led to a complete rewriting of the solver, to several algo-
rithmic simplifications, and to sharp complexity bounds. Therein, the new central
ingredients were the Kronecker representation of the varieties (originally due to Kro-
necker in [44], see definition in Section 3) and the idea of the lifted curves (namely,
the ideals written Ki in the sequel). The new algorithm was programed in the Magma
computer algebra system, and was called Kronecker [46] in homage to Leopold Kro-
necker for his seminal work about the elimination theory. The complete removal of
the intermediate straight-line programs led to the following features: only the input
system needs to be represented by a straight-line program, and the algorithm han-
dles polynomials in at most two variables over the ground field. Similar complexity
analyzes and the idea of the lifted curve were independently presented in [37].

Later, evaluation techniques led to algorithms that compute the equidimensional
decomposition of any polynomial system. These algorithms either perform a pre-
treatment on the input system in order to avoid multiple components in the inter-
mediate steps of the solving, or they use a generalization of the Newton operator
to directly deal with multiple components. The former approach was developed
in [47, 41, 40, 42, 39], while the latter approach was achieved in [49, 50]. Of course,
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the rational and absolute irreducible decompositions can be easily deduced from the
equidimensional decomposition by factoring the univariate representations of the
equidimensional components. For instance, one can use the recent fast algorithms
proposed in [6, 52, 51, 14].

Evaluation techniques have been applied with success to solve overdetermined
systems [31] and parametric systems [35, 63, 59]. They are also well suited to
computations in real algebraic geometry [2, 3, 4, 62, 61]. The Kronecker software
has been used in order to solve problems arising from cryptography [21], to con-
struct the “foveal spaces” that model the visual reception on the retina [54], and
to design new multichannel wavelets [53]. Furthermore, the equation by equation
incremental approach has recently been adapted to the context of numerical solving
by homotopy continuation [65]. In this vein, theoretical comparisons between the
numerical and symbolic frameworks have been established in [12, 11, 13].

Finally, concerning lower bounds on the complexity of polynomial system solving,
the interested reader may consult [19, 58, 36, 25, 10]. In a nutshell, and under some
technical assumptions, the main result of [10] tells us that the Kronecker solver
belongs to some “optimal complexity class.”

Overview of the Kronecker Solver. Throughout this paper, K denotes a com-
mutative field of characteristic 0. The input polynomial system is given by a se-
quence of equations f1 = · · · = fn = 0 and an inequation g 6= 0, where f1, . . . , fn

and g belong to K[x1, . . . , xn]. In practice these polynomials are expected to be
represented by an evaluation data structure (a straight-line program, for instance).

We write I : g∞ = {f | ∃n ≥ 0, gnf ∈ I} for the saturation of the ideal
I ⊆ K[x1, . . . , xn] with respect to g, and we introduce the intermediate ideals

Ii = (f1, . . . , fi) : g∞, for i ∈ {1, . . . , n}.

By convention we let I0 = (0). The version of the Kronecker solver considered in
this paper requires the following hypotheses: fi+1 is a nonzerodivisor modulo Ii,
and Ii is radical, for all i ∈ {0, . . . , n − 1}. In particular we will see that these
requirements imply the finiteness of the solution set of the system. In Section 4.1
we will show that, after performing a random affine change of the variables in the
input system, the algorithm can safely compute the finite sets of zeros of the ideals

Ji =
√
Ii + (x1, . . . , xn−i),

in sequence for i from 1 to n, with a high probability of success. The set of zeros of
Ji is represented by i univariate polynomials q, wn−i+2, . . . , wn in K[xn−i+1] such
that

Ji = (q, q′xn−i+2 − wn−i+2, . . . , q
′xn − wn) + (x1, . . . , xn−i).

Such a representation is called a Kronecker representation of Ji, but it also bears
the name of rational univariate representation [1, 60].

The computation of a Kronecker representation of Ji+1 from a representation of
Ji divides into the following three steps:

(1) Lifting step. Compute a Kronecker representation of

Ki =
√
Ii + (x1, . . . , xn−i−1).

(2) Intersection step. Compute a representation of
√
Ki + (fi+1).

(3) Cleaning step. Compute a representation of
√
Ki + (fi+1) : g∞.

Of course the algorithm stops as soon as it encounters an empty set of solutions, that
is as soon as Ii = (1). Geometrically speaking, Ki is a one dimensional ideal whose
set of zeros is a solution curve of the ith first equations. This ideal is computed
from Ji by means of an effective version of the implicit function theorem. Then,
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during the intersection step, we compute the intersection of the latter curve with
the hypersurface defined by fi+1 = 0. This intersection is made of a finite set of
points, from which we remove the ones contained in the hypersurface defined by
g = 0 during the cleaning step.

Our Contributions. For the first time, this paper presents a concise version of
the Kronecker solver together with a self-contained proof of the correctness. The
only prerequisites concern elementary facts about the Zariski topology, the pri-
mary decomposition of ideals (for instances, see [45, Chapter X, Section 3] or [32,
Chapter 4]), and the theory of modules over principal rings (for instance, see [45,
Chapter III, Section 7]). In the first section, we start with a constructive treatment
of the dimension via the Noether normalization. In the second section, we prove all
the mathematical results involved in our incremental approach to solving, including
the principal ideal theorem, the definition of the degree of an ideal, and the Bézout
theorem. Of course, all these results are very classical in the literature but our
presentation is rather compact and does not make use of the Hilbert series. Our
proofs follow geometrical ideas that are directly connected to our algorithms.

Beyond the pedagogical interests, we made substantial simplifications in the
proof of the correctness of the solver, which made us possible to drop some radi-
cality hypotheses in several places. For instance our Theorem 1.27 generalizes [30,
Corollary 2] to unmixed ideals.

Our simplifications also concern the presentation of the algorithm. In partic-
ular, the intersection step detailed in 4.3 corresponds to the algorithm sketched
in [48, Chapter V, Section 4], and implemented in the Kronecker package [46]; this
algorithm is simpler than the one described in [30, Section 6.2].

Finally these simplifications and improvements have allowed us to enhance the
Kronecker solver in order to compute the multiplicities of the zeros without any
extra cost (see Section 4.3). We are now working on the propagation of this enhance-
ment to the aforementioned equidimensional decomposition algorithms in order to
compute the local algebras at the generic points of the irreducible components.
That will be a first step toward the computation of the primary decomposition by
means of evaluation techniques.

1. Dimension and Multiplication Endomorphisms

We start this section with some classical definitions: algebraic and integral de-
pendencies, and the dimension of an ideal I in a polynomial ring via the transcen-
dence degree. We present the Noether normalization as a practical ingredient to
compute the dimension. Then, we relate the unmixedness of I to some torsion-
freeness of a suitable module. At the end of this section we give some important
properties of the multiplication by a polynomial f in the quotient by I.

Throughout this paper, I denotes an ideal of K[x1, . . . , xn]. The total degree of
a polynomial q is written deg(q), and its partial degree in the variable xj is written
degxj

(q).

1.1. Algebraic and Integral Dependencies. Let A be a subring of K[x1, . . . , xn]
with unity.

Definition 1.1. Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically de-
pendent modulo I when there exists a nonzero polynomial E with s variables over
K such that E(e1, . . . , es) ∈ I. Otherwise they are algebraically independent mod-
ulo I. A polynomial e ∈ K[x1, . . . , xn] is algebraic over A modulo I if there exists
a nonzero polynomial q ∈ A[T ] such that q(e) ∈ I. Such a polynomial e is integral
over A modulo I if there exists a nonzero monic (i.e. with leading coefficient 1)
polynomial q ∈ A[T ] such that q(e) ∈ I.
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Algebraic and integral dependencies are preserved when passing to the radical
of I, as detailed in the following lemma:

Proposition 1.2. Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically
independent modulo I if, and only if, they are algebraically independent modulo√
I. A polynomial e ∈ K[x1, . . . , xn] is algebraic (respectively, integral) over A

modulo I if, and only if, it is algebraic (respectively, integral) over A modulo
√
I.

Proof. The proof is straightforward from the definitions. �

We will use the following classical properties several times:

Proposition 1.3. Let e1, e2 be in K[x1, . . . , xn].
(a) If e1 and e2 are integral over A modulo I then so are e1 + e2 and e1e2.
(b) If e1 is integral over A modulo I, and if e2 is integral over A[e1] modulo I,

then e2 is integral over A modulo I.

Proof. See for instance [45, Chapter VII, Section 1, Propositions 1.3 and 1.4]). �

For any e ∈ K[x1, . . . , xn], we denote by e] ∈ K[x0, x1, . . . , xn] the homogeniza-
tion of e with respect to the new variable x0, and by I] ⊆ K[x0, x1, . . . , xn] the
ideal generated by the homogenized polynomials of I. For any e ∈ K[x0, x1, . . . , xn]
we write e[ for e(1, x1, . . . , xn) ∈ K[x1, . . . , xn].

Lemma 1.4. Some polynomials e1, . . . , es in K[x1, . . . , xn] are algebraically de-
pendent modulo I if, and only if, x0, e

]
1, . . . , e

]
s are algebraically dependent modulo

I].

Proof. If e1, . . . , es are algebraically dependent modulo I then, by homogenizing,
we directly obtain that x0, e

]
1, . . . , e

]
s are algebraically dependent modulo I]. Con-

versely, let E be a nonzero polynomial over K such that E(x0, e
]
1, . . . , e

]
s) ∈ I].

Since I] is homogeneous, we can assume that E is homogeneous for the weighted
degree (1,deg(e1), . . . ,deg(es)). The conclusion thus follows by substituting 1 for
x0 in E(x0, e

]
1, . . . , e

]
s) ∈ I]. �

Definition 1.5. A polynomial e ∈ K[x1, . . . , xn] is generally integral over A modulo
I if there exists a nonzero monic polynomial q ∈ A[T ] such that q(e) ∈ I, and such
that

deg(q(x1, . . . , xn, T
deg(e))) = degT (q(x1, . . . , xn, T

deg(e))), (1.1)

where q is seen in K[x1, . . . , xn, T ].

For any subring A of K[x1, . . . , xn], we write A] for the subring of K[x0, x1, . . . , xn]
generated by x0 and by the homogenized polynomials of A. For example, if
A = K[x1, . . . , xr] then A] is K[x0, x1, . . . , xr]. The following properties are di-
rect consequences of the definition:

∀e ∈ A], e[ ∈ A, (1.2)

∀e ∈ A], any homogeneous component of e belongs to A]. (1.3)

Assertion (1.3) is equivalent to saying that A] inherits the usual graduation of
K[x0, x1, . . . , xn].

Lemma 1.6. Let e ∈ K[x1, . . . , xn]. The following assertions are equivalent:
(a) e is generally integral over A modulo I.
(b) e] is generally integral over A] modulo I].
(c) e] is integral over A] modulo I].



A CONCISE PROOF OF THE KRONECKER SOLVER 7

Proof. If (a) holds then there exists a polynomial q = Tα+a1T
α−1+· · ·+aα ∈ A[T ]

such that q(e) ∈ I, and such that equality (1.1) holds. It thus follows that

(e])α + x
deg(e)−deg(a1)
0 a]

1(e
])α−1 + · · ·+ x

α deg(e)−deg(aα)
0 a]

α ∈ I],

which leads to (b). Of course (b) implies (c). If (c) holds then there exists a poly-
nomial q = Tα +a1T

α−1 + · · ·+aα ∈ A][T ] such that q(e]) ∈ I]. By property (1.3),
we can take all the ai homogeneous of degree ideg(e), so that we obtain (a) from
property (1.2). �

Proposition 1.3 does not extend nicely to generally integral dependencies. Nev-
ertheless, we have the following weaker properties:

Proposition 1.7. Let e1, e2 be in K[x1, . . . , xn].
(a) If e1 and e2 are generally integral over A modulo I, then so is always e1e2,

and so is e1 + e2 whenever deg(e1 + e2) = max(deg(e1),deg(e2)).
(b) If A inherits the usual graduation of K[x1, . . . , xn], if e1 is homogeneous

and generally integral over A modulo I, and if e2 is generally integral over
A[e1] modulo I, then e2 is generally integral over A modulo I.

Proof. We start with part (a). Without loss of generality we can assume that
deg(e1) ≥ deg(e2). We know from Lemma 1.6 that e]

1 and e]
2 are integral over

A] modulo I], so are (e1 + e2)] = e]
1 + x

deg(e1)−deg(e2)
0 e]

2 and (e1e2)] = e]
1e

]
2 by

Proposition 1.3(a). Part (a) thus follows from Lemma 1.6.
As for part (b), we proceed in a similar manner: e]

1 is integral over A] modulo
I], and e]

2 is integral over (A[e1])] modulo I]. Thanks to the hypotheses on A and
e1, we obtain that (A[e1])] = A][e]

1], so that Proposition 1.3(b) implies that e]
2 is

integral over A] modulo I]. Part (b) thus follows from Lemma 1.6 again. �

Example 1.8. Let K = Q[ı], with ı =
√
−1, let I = (x2 − x2

1), e1 = x2 + ıx2
1,

and e2 = −ıx2
1. Of course e2 is generally integral over K[x1] modulo I, and since

e21 − 2x2
1e1 + 2x4

1 ∈ I so is e1. Because e1 + e2 = x2 is not generally integral over
K[x1] modulo I, the hypothesis deg(e1 + e2) = max(deg(e1),deg(e2)) is necessary
in Proposition 1.7(a). In addition, since x2 − e1/(1 + ı) ∈ I, we have that x2 is
generally integral over K[x1, e1] modulo I, which shows that the homogeneity of
e1 is necessary in Proposition 1.7(b). Finally, from x2

1 − e1/(1 + ı) ∈ I we obtain
that x1 is homogeneous and generally integral over K[e1] modulo I. Since we have
already seen that x2 is generally integral over K[x1, e1] modulo I, this shows that
the graduation hypothesis on A is necessary in Proposition 1.7(b).

1.2. Dimension and Noether Position. The transcendence degree of a field
extension F of K is classically defined as the maximal number of elements in F
which are algebraically independent. If the transcendence degree r is finite then
any maximal (with respect to the inclusion ordering) subset of elements of F that
are algebraically independent is finite and has cardinality r (for instance, see [45,
Chapter VIII, Section 1]).

Definition 1.9. If I is a prime ideal then the dimension dim(I) of I is the tran-
scendence degree of the quotient field of K[x1, . . . , xn]/I over K. In general, the
dimension of I 6= (1) is the maximum of the dimensions of its associated primes,
and, by convention, the ideal (1) has dimension −1. The ideal I is unmixed if the
dimensions of its associated primes are all equal.

Remark that the dimension of I is preserved when performing linear changes
of the coordinates. The following less classical definition will be useful for our
computational purposes:
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Definition 1.10. The ideal I is in Noether position if there exists r ∈ {0, . . . , n}
such that the variables x1, . . . , xr are algebraically independent modulo I, and such
that xr+1, . . . , xn are integral over K[x1, . . . , xr] modulo I.

Example 1.11. The ideal I = (x2 − x2
1) is in Noether position with r = 1.

By Proposition 1.3, if I is in Noether position then any e ∈ K[x1, . . . , xn] is
integral over K[x1, . . . , xr] modulo I, so that another way to say that I is in Noether
position is to say that K[x1, . . . , xn]/I is an integral ring extension of K[x1, . . . , xr].
When I 6= (1), we are to show that the integer r in Definition 1.10 coincides with
the dimension of I, hence is unique. Of course, when I = (1), I is in Noether
position with r = 0 while dim(I) = −1.

Theorem 1.12. Assume that I 6= (1).
(a) Assume that xr+1, . . . , xn are integral over K[x1, . . . , xr] modulo I. Then

we have dim(I) ≤ r. The latter inequality is an equality if, and only if,
x1, . . . , xr are algebraically independent modulo I.

(b) Assume that x1, . . . , xr are algebraically independent modulo I. Then we
have dim(I) ≥ r. If the latter inequality is an equality then xr+1, . . . , xn are
algebraic over K[x1, . . . , xr] modulo I. The converse holds if I is unmixed.

Proof. In order to prove part (a), let us first assume that I is prime. Since any
maximal subset of algebraically independent elements of {x1, . . . , xr} modulo I is
also maximal in {x1, . . . , xn}, part (a) follows from [45, Chapter VIII, Section 1,
Theorem 1.1]. If I is not prime, then we can assume that I is radical with prime
decomposition p1 ∩ · · · ∩ pm, by Proposition 1.2. Since xr+1, . . . , xn remain integral
over K[x1, . . . , xr] modulo each pl, we deduce that dim(pl) ≤ r for all l ∈ {1, . . . ,m},
whence dim(I) ≤ r. If x1, . . . , xr are algebraically dependent modulo I then they
are also algebraically dependent modulo each pl, for all l ∈ {1, . . . ,m}, whence
dim(I) < r. Conversely, if dim(I) < r, then there exists El ∈ pl ∩ K[x1, . . . , xr] \
{0} for all l. Therefore E1 · · ·Em belongs to I ∩ K[x1, . . . , xr] \ {0}, whence the
algebraically dependence of x1, . . . , xr over K modulo I, which ends part (a).

Let us now deal with part (b). If I is prime then part (b) straightforwardly
follows from [45, Chapter VIII, Section 1, Theorem 1.1]. If I is not prime then
we can assume again that I is radical. If x1, . . . , xr are algebraically independent
modulo I, then there necessarily exists l ∈ {1, . . . ,m} such that x1, . . . , xr are
algebraically independent modulo pl, whence dim(I) ≥ r. If xr+1, . . . , xn are alge-
braic over K[x1, . . . , xr] modulo I, then they are also algebraic modulo pl, whence
dim(I) = dim(pl) = r whenever I is unmixed. Conversely, assume that dim(I) = r
holds, and let i ∈ {r + 1, . . . , n}. For each l ∈ {1, . . . ,m}, if x1, . . . , xr are alge-
braically dependent modulo pl then we take El ∈ pl ∩K[x1, . . . , xr] \ {0}; otherwise
we take El ∈ pl ∩ K[x1, . . . , xr, xi] \ {0}. Since E1 · · ·Em ∈ I, it follows that xi is
algebraic over K[x1, . . . , xr] modulo I, which ends part (b). �

Example 1.13. If n = 3 and I = (x1x2 − 1, x3)∩ (x1) then x1 is algebraically inde-
pendent modulo I, and x2, x3 are algebraic over K[x1] modulo I. Since dim(I) = 2,
this shows that we can not discard the unmixedness hypothesis in Theorem 1.12(b).
This example also shows that Theorem 1.12(a) does not hold if xr+1, . . . , xn are
only supposed to be algebraic over K[x1, . . . , xr] modulo I.

Example 1.14. If n = 2 and I = (x1x2 − 1) ∩ (x1, x2) then x1 is algebraically
independent modulo I, and x2 is algebraic over K[x1] modulo I, and dim(I) = 1.
This shows that the unmixedness hypothesis in Theorem 1.12(b) is too strong.

It can be observed that the Noether position is preserved when extending the
ground field. Therefore if I is in Noether position then Theorem 1.12 implies that
dim(I) does not depend on the ground field K.
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In general the Noether position of I does not imply the Noether position of I]

(consider Example 1.11). In order for I] to be in Noether position, we need to
strengthen the preceding definition.

Definition 1.15. An ideal I of dimension r is in general Noether position if I is
in Noether position, and if, the variables xr+1, . . . , xn are generally integral over
K[x1, . . . , xr] modulo I.

Since K[x1, . . . , xr] inherits the usual graduation of K[x1, . . . , xn], Lemma 1.6
implies that the Noether and the general Noether positions coincide whenever I is
homogeneous.

Example 1.16. The ideal I = (x2
2 − x1) is in general Noether position.

Proposition 1.17. If I has dimension r and is in general Noether position then
any e ∈ K[x1, . . . , xn] is generally integral over K[x1, . . . , xr] modulo I.

Proof. This property is a direct consequence of Proposition 1.7(a). �

Given an ideal I of K[x1, . . . , xn], there is a priori no reason that it is in Noether
position even after a permutation of the variables. For example, I = (x1x2) is not
in Noether position when seen in K[x1, x2] nor in K[x2, x1]. In fact, it is well known
that almost all linear changes of the variables in I produces a new ideal in Noether
position (see for instance [45, Chapter VIII, Section 2], or [32, Chapter 3]). For
example, by substituting x1 + x2 for x1 in I = (x1x2), we obtain the new ideal
(x2

2 + x1x2) which is Noether position.
For any n×n matrix M over K, we write I ◦M for the ideal {f ◦M(x1, . . . , xn)t |

f ∈ I}. The existence of a general Noether position will follow from a repeated use
of the following lemma:

Lemma 1.18. Let i ∈ {1, . . . , n} and assume that xi+1, . . . , xn are integral (re-
spectively, generally integral) over K[x1, . . . , xi] modulo I, and that x1, . . . , xi are
algebraically dependent modulo I. Then, for any nonzero polynomial a ∈ I ∩
K[x1, . . . , xi], and for any point (α1, . . . , αi−1, 1) ∈ Ki that does not annihilate the
homogeneous component h of highest degree of a, the variables xi, . . . , xn are inte-
gral (respectively, generally integral) over K[x1, . . . , xi−1] modulo I ◦M , where M
is defined by

M(x1, . . . , xn)t = (x1 + α1xi, . . . , xi−1 + αi−1xi, xi, . . . , xn)t.

In addition, we have that degxi
(a ◦M) = deg(a ◦M).

Proof. A straightforward calculation shows that the coefficient of xdeg(a)
i in a(x1 +

α1xi, . . . , xi−1 +αi−1xi−1, xi) is h(α1, . . . , αi−1, 1). Therefore, if the latter quantity
is nonzero then xi is generally integral over K[x1, . . . , xi−1] modulo I ◦M . Since
xi+1, . . . , xn remain integral (respectively, generally integral) over K[x1, . . . , xi], the
conclusion follows from Proposition 1.3(b) (respectively, Proposition 1.7(b)). �

Theorem 1.19. There exists a Zariski dense subset of upper triangular n × n
matrices M with 1 on their diagonal such that I ◦M is general Noether position.

Proof. Let M be an upper triangular matrix with 1 on its diagonal, written in the
following form:

M =


1 α1,2 . . . α1,n

0 1 . . . α2,n

...
. . . . . .

...
0 . . . 0 1

 .
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For all i ∈ {1, . . . , n} we define the n× n matrix Mi by:

Mi(x1, . . . , xn)t = (x1 + α1,ixi, . . . , xi−1 + αi−1,ixi, xi, . . . , xn)t.

A straightforward calculation shows that M = Mn · · ·M1. Let r = dim(I).
Since Mr · · ·M1 only affects the variables x1, . . . , xr, we see that I ◦M is in gen-
eral Noether position if, and only if, I ◦ Mn · · ·Mr+1 is in general Noether po-
sition. Therefore the theorem follows from the following stronger claim: for any
i ∈ {r, . . . , n}, there exists a Zariski dense subset of values for (αk,l|i + 1 ≤ l ≤
n, 1 ≤ k ≤ l − 1) such that xi+1, . . . , xn are generally integral over K[x1, . . . , xi]
modulo I ◦Mn · · ·Mi+1.

The proof of the claim is done by descending induction on i. If i = n then the
claim holds trivially. Assume that the claim is true for some i ∈ {r + 1, . . . , n}.
Since i ≥ r + 1, Theorem 1.12(a) implies that x1, . . . , xi can not be algebraically
independent modulo I ◦Mn · · ·Mi+1. Then Lemma 1.18 asserts that there exists
a Zariski dense subset of values for (αk,i|1 ≤ k ≤ i − 1) for which xi, . . . , xn are
generally integral over K[x1, . . . , xi−1] modulo I ◦Mn · · ·Mi, which completes the
proof of the claim. �

Corollary 1.20. Theorem 1.19 holds if we replace the space of the upper triangular
matrices with 1 on their diagonal by the whole space of the invertible matrices.

Proof. The set of matrices M such that all their principal minors are nonzero is
dense. It is classical that such a matrix M can be uniquely written as the product
of a lower triangular matrix L by an upper triangular matrix U with 1 on its
diagonal [38, Section 3.5]. Since I ◦L is in general Noether position if, and only if,
I is itself in general Noether position, the conclusion follows from Theorem 1.19. �

From the existence of general Noether positions, we can now deduce:

Corollary 1.21. If I 6= (1) then dim(I]) = dim(I) + 1.

Proof. Thanks to Theorem 1.19, we can assume that I is in general Noether
position. Therefore the conclusion follows from Lemmas 1.4 and 1.6, and Theo-
rem 1.12(a). �

1.3. Unmixedness and Torsion. From now on, we assume that I 6= (1), and we
write r ≥ 0 for the dimension of I. In addition we will use the following notation:

A = K[x1, . . . , xr], B = K[x1, . . . , xn]/I,
A′ = K(x1, . . . , xr), B′ = A′[xr+1, . . . , xn]/I ′,

where I ′ denotes the extension of I to A′[xr+1, . . . , xn]. The ring B can naturally
be seen as an A-module. The following proposition gives us a useful criterion for
testing the unmixedness of I:

Proposition 1.22. Assume that I is in Noether position. Then B is a torsion-free
A-module if, and only if, I is unmixed.

Proof. Let Q1 ∩ · · · ∩ Qs represent a reduced primary decomposition of I. Here
we follow the terminology of [45, Chapter X]: “reduced” means that the associated
primes P1, . . . ,Ps belonging to Q1, . . . ,Qs respectively are distinct, and that I
can not be expressed as an intersection of a proper subset of {Q1, . . . ,Qs}. By
Theorem 1.12(a), the ideal I is unmixed if, and only if, A ∩ Pl = (0), for all
l ∈ {1, . . . , s}. On the other hand, the fact that B has torsion reformulates into the
following property: there exist a ∈ A \ {0} and b 6∈ I such that ab ∈ I. If B has
torsion then there exist a ∈ A \ {0}, l ∈ {1, . . . , s}, and b such that ab ∈ Ql and
b 6∈ Ql. Therefore we must have a ∈ Pl, hence I is not unmixed. Conversely, if I
is not unmixed then there exists a ∈ (A ∩ Pl) \ {0} for some l, hence some power
of a is a torsion element for B. �
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Example 1.23. If I = (x1x2) ⊆ K[x1, x2] then I is unmixed of dimension 1 but B
has torsion. This example shows that the Noether position is necessary in Propo-
sition 1.22.

Corollary 1.24. If I is radical, then I ′ is radical. The converse holds if I is
unmixed.

Proof. The proof is straightforward from Proposition 1.22. �

Example 1.25. If I = (x2) ∩ (x1, x2)2, then I ′ = (x2) but I is not radical. This
example shows that the unmixedness of I is in general necessary in Corollary 1.24.

Corollary 1.26. Assume that I is unmixed, and let g in K[x1, . . . , xn] be such that
I : g∞ 6= (1). Then I : g∞ is unmixed of dimension r. If I is in Noether position
or in general Noether position then so is I : g∞.

Proof. Without loss of generality we can assume that I is in Noether position
(respectively, general Noether position), by Theorem 1.19. From Proposition 1.22
we know that B is a torsion-free A-module. Therefore the assumption I : g∞ 6= (1)
implies that x1, . . . , xr are algebraically independent modulo I : g∞. On the other
hand, the inclusion I ⊆ I : g∞ gives us that xr+1, . . . , xn are integral (respectively,
generally integral) over A modulo I : g∞. It follows that I : g∞ inherits the
Noether position of I (respectively, general Noether position), whence dim(I :
g∞) = r by Theorem 1.12(a). Finally, the torsion-freeness of B implies the one of
K[x1, . . . , xn]/(I : g∞), and Proposition 1.22 completes the proof. �

If I is generated by a regular sequence, then it is known (see [18, Corollary 18.17]
for example) that B is a locally free A-module of finite rank and hence free by
the Quillen-Suslin theorem [45, Chapter XXI, Theorem 3.5]. In this situation,
one can naturally speak about the characteristic and minimal polynomials of the
endomorphism of multiplication by any f in B. In the following subsection we study
polynomials with similar properties under the only hypothesis that B is torsion-free.

1.4. Characteristic and Minimal Polynomials. If I is in Noether position then
B′ is a A′-vector space of finite dimension, so that, for any f in K[x1, . . . , xn], we
can define χ ∈ A′[T ] (respectively, µ) as the characteristic (respectively, minimal)
polynomial of the endomorphism of multiplication by f in B′. In short, we will
respectively call them the characteristic and the minimal polynomials of f modulo
I.

Theorem 1.27. Assume that I is in Noether position, and let d = deg(f).
(a) χ and µ belong to A[T ]. In addition, if I and f are homogeneous, then

χ(T d) and µ(T d) are homogeneous when seen in K[x1, . . . , xr, T ].
(b) If the Noether position is general then the total degrees of χ(T d) and µ(T d)

seen in K[x1, . . . , xr, T ] equal their respective partial degree in T .
(c) If I is unmixed then χ(f) and µ(f) belong to I.

Proof. Since f is integral over A modulo I, there exists a polynomial q ∈ A[T ] such
that q(f) ∈ I. Since q(f) = 0 holds in B′, the minimal polynomial µ divides q
in A′[T ]. In particular, all the irreducible factors of µ divide q. Since q and these
factors are monic in T , the classical Gauss lemma [45, Chapter IV, Theorem 2.1]
implies that all these factors actually belong to A[T ], so do µ and χ. If I and f
are homogeneous then q can be chosen so that q(T d) is homogeneous. Therefore
all the irreducible factors of µ(T d) are homogeneous, which concludes part (a).

If the Noether position is general then Proposition 1.17 implies that f is generally
integral over A modulo I. We can thus take q such that equality (1.1) holds. This
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equality between the degrees hold for any irreducible factor of q, hence for µ and
χ, which concludes part (b).

Since µ(f) ∈ I ′, there exist a ∈ A \ {0} and b ∈ I such that µ(f) = b/a. Thus
we have aµ(f) = 0 in B. By Proposition 1.22, B is torsion-free, whence µ(f) ∈ I.
The same proof holds for χ, which concludes part (c). �

Example 1.28. With I = (x2
2, x1x2) and f = x2 + 1, we have I ′ = (x2) and

µ = T − 1 but µ(f) = x2 6∈ I. Therefore it is necessary to assume that I is
unmixed in Theorem 1.27(c).

Example 1.29. Theorem 1.27(b) does not hold if the Noether position is not general
as exemplified by taking I = (x2 − x2

1) and f = x2 so that µ = T − x2
1.

2. Incremental Approach to Solving

In this section we carry on with the notation introduced at the beginning of
Section 1.3. We describe the devices to compute a Noether position when adding
a new polynomial f to the ideal I 6= (1), and we give a proof of the well known
principal ideal theorem. Then, we present a formula to compute a characteristic
polynomial modulo I + (f), that is the cornerstone of the Kronecker solver, but
that is also a main ingredient in the definition of the degree of an ideal, and in the
proof of a Bézout theorem.

2.1. Incremental Noether Position. If I is in Noether position then, for a given
f ∈ K[x1, . . . , xn], we are going to show how to change the variables so that I and
I + (f) become in Noether position. We start with a lemma that relates the first
properties of I + (f) to the constant coefficients χ0 and µ0 of χ and µ respectively.

Lemma 2.1. Assume that I is unmixed and in Noether position.
(a) µ0 and χ0 belong to I + (f), and (I + (f)) ∩ A ⊆

√
(µ0) =

√
(χ0).

(b) f is a zerodivisor in B if, and only if, χ0 = 0 (or equivalently, µ0 = 0), if,
and only if, x1, . . . , xr are algebraically independent modulo I + (f).

(c) I + (f) = (1) if, and only if, χ0 ∈ K \ {0} (or equivalently, µ0 ∈ K \ {0}).

Proof. From Theorem 1.27(c), we have that µ(f) ∈ I and χ(f) ∈ I, whence µ0 ∈
I + (f) and χ0 ∈ I + (f). Let a be a polynomial in (I + (f)) ∩ A, and let
g ∈ K[x1, . . . , xn] be such that a − gf ∈ I. Since g in integral over A modulo I,
there exist ν0, . . . , να−1 in A such that gα+να−1g

α−1+ · · ·+ν0 ∈ I. By multiplying
the latter expression by fα, we obtain that aα + να−1a

α−1f + · · ·+ ν0f
α ∈ I. We

deduce that µ divides ρ = aα + να−1a
α−1T + · · ·+ ν0T

α in A′[T ]. Since µ is monic,
this division holds in A[T ], and therefore aα is a multiple of µ0, which concludes
part (a).

If µ0 = 0 then we have ν(f)f = 0 in B, with ν(T ) = µ(T )/T . Since deg(ν) <
deg(µ) we obtain that ν(f) 6∈ I, whence f is a zerodivisor. Conversely, if f is a
zerodivisor then there exists g 6∈ I such that fg ∈ I. Therefore there exists a
primary component Q of I such that g 6∈ Q and fg ∈ Q. It follows that f belongs
to
√
Q, and that µ0 ∈ I + (f) ⊆

√
Q. Since I is unmixed,

√
Q has dimension r,

which implies that µ0 = 0 thanks to Theorem 1.12(a). By part (a), µ0 = 0 if, and
only if, x1, . . . , xr are algebraically independent modulo I + (f), which concludes
part (b). Finally part (c) straightforwardly follows from part (a). �

This lemma already gives us the following property: if f is a zerodivisor in B,
then x1, . . . , xr are algebraically independent modulo I + (f), and thus I + (f) is
in Noether position (the general position is also preserved). If f is a nonzerodivisor
in B, then we can compute a Noether position for I + (f) as follows:

Proposition 2.2. Assume that I is unmixed.
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(a) If f is a zerodivisor in B then dim(I + (f)) = r. In addition, if I is in
Noether position or in general Noether position then so is I + (f).

(b) If f is a nonzerodivisor in B then dim(I + (f)) equals −1 or r − 1. In
addition, if I is in Noether position (respectively, general Noether posi-
tion), then for any (α1, . . . , αr−1, 1) ∈ Kr that does not annihilate the
homogeneous component h of highest degree of µ0, the ideals I ◦ M and
(I + (f)) ◦M are in Noether position (respectively, general Noether posi-
tion), and degxr

(µ0 ◦M) = deg(µ0 ◦M), where M is the matrix defined
by

M(x1, . . . , xn)t = (x1 + α1xr, . . . , xr−1 + αr−1xr, xr, . . . , xn)t.

Proof. As previously discussed, part (a) is a consequence of Lemma 2.1(b) and
Theorem 1.12(a).

If µ0 ∈ K \ {0} then part (b) trivially holds by Lemma 2.1(c). Otherwise, if
µ0 6∈ K then we use Lemma 1.18 with I + (f), i = r and µ0: we obtain that
xr, . . . , xn are generally integral over K[x1, . . . , xr−1] modulo (I + (f)) ◦ M . In
order to complete the proof it remains to prove that x1, . . . , xr−1 are algebraically
independent modulo (I+(f))◦M . To this aim, let a ∈ K[x1, . . . , xr−1]∩(I+(f))◦M .
By Lemma 2.1(a), µ0 ◦M divides a power of a. But since Lemma 1.18 tells us that
degxr

(µ0 ◦M) = deg(µ0 ◦M) > 0, we deduce that a = 0, which finishes the proof
of part (b). �

2.2. Incremental Unmixedness of the Radical. The proof of the following
version of the classical principal ideal theorem is adapted from [64, Chapter I,
Section 6.2]. Recall that we assume that I 6= (1) from Section 1.3.

Theorem 2.3. Assume that I is unmixed, and let f ∈ K[x1, . . . , xn] be a nonze-
rodivisor in B. If I + (f) 6= (1) then

√
I + (f) is unmixed of dimension r − 1.

Proof. Thanks to Theorem 1.19, Proposition 2.2(b), and Lemma 2.1(c), we can
assume that r ≥ 1, dim(I + (f)) = r − 1, I and I + (f) are in general Noether
position, and that degxr

(µ0) = deg(µ0) ≥ 1. Let us first prove the theorem when
I and f are homogeneous.

Let E ∈ K[x1, . . . , xr−1, T ] be such that E(x1, . . . , xr−1, f) ∈ I. Since µ(T ) di-
vides E(x1, . . . , xr−1, T ), it follows that µ0 divides E(x1, . . . , xr−1, 0). Therefore the
inequality degxr

(µ0) > 0 implies that E(x1, . . . , xr−1, 0) = 0. Since f is a nonzero-
divisor in B, we deduce that E = 0. In other words x1, . . . , xr−1, f are algebraically
independent modulo I. Since degxr

(µ0) = deg(µ0), Theorem 1.27(a) implies that
xr is integral over K[x1, . . . , xr−1, f ] modulo I. Thanks to Proposition 1.3(b) we
obtain that xr+1, . . . , xn are integral over K[x1, . . . , xr−1, f ] modulo I. This way
we have shown that B is an integral ring extension of K[x1, . . . , xr−1, f ].

Thanks to Proposition 1.22, in order to prove that
√
I + (f) is unmixed, it

is sufficient to prove that K[x1, . . . , xn]/
√
I + (f) is torsion-free when seen as a

K[x1, . . . , xr−1]-module. With this aim in view, let b ∈ K[x1, . . . , xn] and a ∈
K[x1, . . . , xr−1] \ {0} be such that ab ∈

√
I + (f). We claim that a power of b

belongs to I + (f).
Let m ∈ N and g ∈ K[x1, . . . , xn] be such that ambm− fg ∈ I. In order to prove

the latter claim, we consider B as a K[x1, . . . , xr−1, f ]-module Bf , and we denote by
B′f the corresponding finitely dimensional K(x1, . . . , xr−1, f)-vector space. By the
classical Gauss lemma [45, Chapter IV, Theorem 2.1], the minimal polynomials of g
and bm in B′f belong to K[x1, . . . , xr−1, f ][T ]. Let ρ(T ) = Tα +ρα−1T

α−1 + · · ·+ρ0

denote the minimal polynomial of g in B′f . Then the minimal polynomial of bm in



14 C. DURVYE AND G. LECERF

B′f is

fαρ(amT/f)/amα = Tα + ρα−1

(
f

am

)
Tα−1 + · · ·+

(
f

am

)α

ρ0.

We deduce that (am)j divides f jρα−j in K[x1, . . . , xr−1, f ], for all j ∈ {0, . . . , α−1}.
Since x1, . . . , xr−1, f are algebraically independent, and since a ∈ K[x1, . . . , xr−1],
we obtain that (am)j divides ρα−j , whence (bm)α ∈ I + (f), which concludes the
proof in the homogeneous situation.

In the general situation, for any isolated prime p of I + (f), it can be verified
that p] is an isolated prime of I] + (f ]). It follows that dim(p]) = r, hence that
dim(p) = r − 1, by Corollary 1.21. �

Example 2.4. Let I = (x1, x2) ∩ (x3, x4). The ideal I is unmixed. If we take the
nonzerodivisor f = x2 − x3, then

√
I + (f) = (x1, x2, x3) ∩ (x2, x3, x4) is unmixed

while I + (f) = (x1, x2, x3) ∩ (x2, x3, x4) ∩ (x1, x2 − x3, x
2
3, x4) is not.

Corollary 2.5. Assume that I is unmixed and in Noether position (respectively,
general Noether position), let s ∈ {0, . . . , r}. Then

√
I + (xs+1, . . . , xr) is in

Noether position (respectively, general Noether position) and unmixed of dimension
s.

Proof. Since the minimal polynomial of f = xr modulo I is µ = T −xr, Lemma 2.1
implies that xr is a nonzerodivisor in B, and that I + (xr) 6= (1). Theorem 2.3
thus ensures that

√
I + (xr) is unmixed of dimension r − 1. Then we obtain that√

I + (xr) in Noether position (respectively, general Noether position) from Theo-
rem 1.12(a). Finally, since√√

I + (xs+1, . . . , xr) + (xs) =
√
I + (xs, . . . , xr), (2.1)

a straightforward induction completes the proof. �

Corollary 2.6. Assume that I is unmixed and in Noether position (respectively,
general Noether position), and let f ∈ K[x1, . . . , xn].

(a) If χ0 does not vanish at x1 = · · · = xr = 0, then f is a nonzerodivisor in
K[x1, . . . , xn]/(I + (x1, . . . , xr)).

(b) If f is a nonzerodivisor in B then the set of points (β1, . . . , βr) ∈ Kr such
that f is a nonzerodivisor in K[x1, . . . , xn]/(I + (x1 − β1, . . . , xr − βr)) is
Zariski dense.

Proof. Let ψ denote the specialization of χ at x1 = · · · = xr = 0, and let J =
I + (x1, . . . , xr). By Corollary 2.5, J has dimension 0, and thus is unmixed. From
Theorem 1.27 we have that χ(f) ∈ I, whence ψ(f) ∈ J . Therefore the constant
coefficient of the minimal polynomial of f in K[x1, . . . , xn]/J can not be zero, and
thus Lemma 2.1(b) implies that f is a nonzerodivisor in K[x1, . . . , xn]/J . This
concludes the proof of part (a). If f is a nonzerodivisor in B then Lemma 2.1(b)
implies that χ0 6= 0, which immediately yields part (b). �

2.3. Incremental Computation of the Characteristic Polynomial. We next
present the key formula to compute the characteristic polynomial of xr modulo
I + (f).

Proposition 2.7. Assume that I has dimension r ≥ 1, is unmixed, and is in
Noether position. Let f be a nonzerodivisor in B. Then χ0(x1, . . . , xr−1, T ) is
proportional over K(x1, . . . , xr−1) to the characteristic polynomial of xr modulo the
extension J ′ of J = I + (f) to K(x1, . . . , xr−1)[xr, . . . , xn]. The proportionality
over K holds if, and only if, J is in Noether position.
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Proof. Let Ĩ denote the extension of I to K(x1, . . . , xr−1)[xr, xr+1, . . . , xn], and let
B̃ = K(x1, . . . , xr−1)[xr, xr+1, . . . , xn]/Ĩ. By Proposition 1.22, B is a torsion-free
A-module, so is B̃ seen as a K(x1, . . . , xr−1)[xr]-module. From [45, Chapter III,
Theorem 7.3], it follows that B̃ is free, and, thanks to the Noether position of I,
that B̃ has finite rank. Therefore, by [45, Chapter III, Theorem 7.9], there exist
two bases e1, . . . , eδ and e′1, . . . , e

′
δ of B̃, and some monic polynomials h1, . . . , hδ ∈

K(x1, . . . , xr−1)[xr] such that hl divides hl+1 for all l ∈ {1, . . . , δ − 1}, and such
that fel = hle

′
l in B̃ for all l ∈ {1, . . . , δ}.

On the one hand, since a basis of B̃ induces a basis of B′, we obtain that χ0 =
ah1 · · ·hδ, for some a ∈ K(x1, . . . , xr−1). On the other hand, we claim that the
set B = {xαl

r e
′
l | 1 ≤ l ≤ δ, 0 ≤ αl ≤ deg(hl) − 1} is a basis of B̃/(f) seen as a

K(x1, . . . , xr−1)-algebra. Let us first verify that B actually generates B̃/(f). Let g ∈
B̃/(f). Any antecedant g̃ of g in B̃ can be written g =

∑δ
l=1 gle

′
l, with g1, . . . , gδ ∈

K(x1, . . . , xr−1)[xr]. Since, by construction, the ideal generated by f in B̃ equals
(h1e

′
1, . . . , hδe

′
δ), we can write g =

∑δ
l=1 rle

′
l in B̃/(f), where each rl denotes the

remainder in the division of gl by hl. Secondly, let us verify that B is free. Let
r1, . . . , rδ ∈ K(x1, . . . , xr−1)[xr] be such that deg(rl) < deg(hl) and

∑δ
l=1 rle

′
l = 0

in B̃/(f). Then there exist some polynomials q1, . . . , qδ ∈ K(x1, . . . , xr−1)[xr] such
that

∑δ
l=1 rle

′
l +
∑δ

l=1 qlhle
′
l = 0 in B̃. Therefore, for all l we obtain rl + qlhl = 0,

whence ql = rl = 0 since deg(hl) > deg(rl).
In the basis B, the matrix of multiplication by xr in B̃/(f) is a diagonal block

matrix, whose blocks are the companion matrices of the hl. Therefore the char-
acteristic polynomial q of xr in B̃/(f) equals h1 · · ·hδ. We thus obtain that χ0 is
proportional to q over K(x1, . . . , xr−1).

Let us now deal with the last assertion of the proposition. If J = (1) then
it trivially holds thanks to Lemma 2.1(c). Let us now assume that J 6= (1).
Theorem 2.3 gives us that dim(J ) = r − 1. Therefore if J is in Noether position
then there exists a monic polynomial p ∈ K[x1, . . . , xr−1][T ] such that p(xr) ∈ J .
Since Lemma 2.1(a) implies that χ0 divides a power of p(xr), we deduce that the
leading coefficients of χ0 seen in K[x1, . . . , xr−1][xr] belongs to K, and thus that χ0

is proportional over K to q(xr). Conversely, if χ0 is proportional over K to q(xr),
then xr is integral over K[x1, . . . , xr−1] modulo J by Lemma 2.1(a). We thus obtain
that J is in Noether position by Proposition 1.3(b) and Theorem 1.12(a). �

Example 2.8. The basis B in the proof of Proposition 2.7 is built from the isomor-
phism between the K(x1, . . . , xr−1)[xr]-modules B̃/(f) and

δ⊕
l=1

K(x1, . . . , xr−1)[xr]/(hl).

In general this direct sum can not be read as a decomposition of B̃/(f) into sta-
ble K(x1, . . . , xr−1)-algebras. This can be seen by taking n = 2, I = (x2

2 +
x1x2), r = 1, and f = x2

1. Then {1, x2} forms a basis of the K[x1]-module
B̃ = K[x1, x2]/Ĩ, in which the matrix of multiplication by f is the diagonal ma-
trix with h1 = x2

1 and h2 = x2
1 on its diagonal. As K[x1]-modules we thus have

B̃/(f) = K[x1]/(h1)
⊕

K[x1]/(h2)x2. These two submodules are stable by multi-
plication by x1 but K[x1]/(h1) is not stable by multiplication by x2.

2.4. Degree and Bézout’s Theorem. In this last subsection we prove the nec-
essary results in the degree theory that are needed in the cost analysis of the
Kronecker solver. We will not reproduce this analysis in this paper, and refer the
reader to [30]. The materials presented in this subsection are not used in the proof
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of the correctness of the solver; we shall only use them in Section 4 when discussing
about complexity.

Let M denote an invertible n × n matrix over K. In short, we write IM =
I ◦M , BM = K[x1, . . . , xn]/IM , B′M = A′[xr+1, . . . , xn]/I ′M , where I ′M denotes
the extension of IM to A′[xr+1, . . . , xn]. We write δ (respectively, δM ) for the
dimension of B′ (respectively, B′M ) seen as a A′-vector space. Proposition 2.7 is a
central ingredient to prove the next theorem that asserts that if I and IM are both
in general Noether position then δ = δM .

Theorem 2.9. Assume that I is unmixed and in general Noether position.
(a) δM ≤ δ.
(b) δM = δ if, and only if, IM is in general Noether position.

Proof. The proof is postponed in Appendix A. �

Theorem 2.9 ensures that the following definition of the degree of I actually
makes sense.

Definition 2.10. The degree of an unmixed ideal I, written deg(I), is the dimen-
sion of B′M seen as an A′-vector space, for any matrix M such that I ◦M is in
general Noether position.

Remark that deg((0)) = 1, and that deg(I) = 0 if, and only if, I = (1).

Proposition 2.11. Assume that I is unmixed.
(a) deg(

√
I) ≤ deg(I); the inequality is an equality if, and only if, I is radical.

(b) deg(I : g∞) ≤ deg(I), for any polynomial g; the inequality is an equality
if, and only if, g is a nonzerodivisor in B.

Proof. By Theorem 1.19, we can assume that I is in general Noether position. The
inequality of part (a) trivially follows from the inclusion of I ′ in the extension of√
I to A′[xr+1, . . . , xn]. If the equality holds in part (a) then this extension of

√
I

coincides with I ′. Therefore I ′ is radical, and so is I by Corollary 1.24. We are
done with part (a).

If I : g∞ = (1) then part (b) trivially holds. Otherwise Corollary 1.26 tells
us that I : g∞ is unmixed of dimension r and in general Noether position. On
the other hand the extension of I : g∞ to A′[xr+1, . . . , xn] coincides with I ′ : g∞.
Therefore we obtain that deg(I : g∞) ≤ deg(I). If g is a nonzerodivisor in B, then
I = I : g∞, whence deg(I : g∞) = deg(I). Conversely, if the latter equality holds
then I ′ : g∞ = I ′, whence I : g∞ = I by Proposition 1.22. �

Proposition 2.7 is also the core of the following version of the Bézout theorem:

Theorem 2.12. Assume that I is unmixed. Let f be a nonzerodivisor in B, and let
J̃ denote the intersection of the primary components Q of J = I + (f) belonging
to an isolated associated prime p. Then we have that deg(J̃ ) ≤ deg(I) deg(f). In
addition, if I and f are homogeneous, then the latter inequality is an equality.

Proof. By Theorem 1.19, we can assume that I and J are in general Noether
position. From Theorem 2.3 we know that J̃ is unmixed of dimension −1 or r− 1.
By means of Theorem 1.12(a) we observe that the extensions of J̃ and J coincide
in K(x1, . . . , xr−1)[xr, . . . , xn]. Then Proposition 2.7 tells us that deg(J̃ ) equals
the total degree of the constant coefficient χ0 of the characteristic polynomial of
f in B′. Thanks to Theorem 1.27(b), we deduce that deg(J̃ ) ≤ deg(I) deg(f).
Finally, Theorem 1.27(a) implies that the latter inequality is an equality in the
homogeneous case. �
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3. Univariate Representations

Before the presentation of the Kronecker solver in the next section, it remains
to explain how radical unmixed ideals are represented during the computations. In
this section we carry on using the notation introduced in Section 1.3. We always
write r for the dimension of I, and δ for the dimension of B′ seen as a A′-vector
space; we also assume that I 6= (1).

3.1. Existence and First Properties. We start with a classical proposition that
leads to the definition of a univariate representation of a radical unmixed ideal:

Proposition 3.1. Assume that I is radical, unmixed, and in Noether position.
Let u = λr+1xr+1 + · · · + λnxn be a K-linear form. Then, I ′ is radical, and the
following assertions are equivalent:

(a) The powers of u generate B′.
(b) The degree of the minimal polynomial of u in B′ equals δ.
(c) There exist unique polynomials q, vr+1, . . . , vn in A′[T ] such that I ′ =

(q(u), xr+1−vr+1(u), . . . , xn−vn(u)), q is monic, and deg(vj) ≤ deg(q)−1
for all j ∈ {r + 1, . . . , n}.

(d) There exist unique polynomials q, wr+1, . . . , wn in A′[T ] such that I ′ =
(q(u), q′(u)xr+1−wr+1(u), . . . , q′(u)xn−wn(u)), q is monic, and deg(wj) ≤
deg(q)− 1 for all j ∈ {r + 1, . . . , n}.

Proof. We consider the morphism ψ from A′[T ] to B′ that sends T to u. Since its
kernel is generated by the minimal polynomial of u in B′, each of the four assertions
are equivalent to saying that B′ is isomorphic to A′[T ]/ ker(ψ). �

Definition 3.2. A linear form u satisfying assertions (a)–(d) of Proposition 3.1
is a primitive element for I. The polynomials q, vr+1, . . . , vn in assertion (c) form
a univariate representation of I. The polynomials q, wr+1, . . . , wn in assertion (d)
form a Kronecker representation of I.

Let Λr+1, . . . ,Λn be new auxiliary variables, we introduce the following objects:

KΛ = K(Λr+1, . . . ,Λn), AΛ = K[Λr+1, . . . ,Λn, x1, . . . , xr],

A′Λ = K(Λr+1, . . . ,Λn, x1, . . . , xr), and B′Λ = A′Λ[xr+1, . . . , xn]/I ′Λ,
where I ′Λ denotes the extension of I to A′Λ[xr+1, . . . , xn]. We write IΛ for the
extension of I to K[Λr+1, . . . ,Λn, x1, . . . , xn] and we let

BΛ = K[Λr+1, . . . ,Λn, x1, . . . , xn]/IΛ.

We introduce the KΛ-linear form uΛ = Λr+1xr+1 + · · · + Λnxn. The minimal
polynomial of uΛ in B′Λ is written qΛ, and we let

wΛ,j = −∂qΛ
∂Λj

, for all j ∈ {r + 1, . . . , n}.

Proposition 3.3. Assume that I is unmixed and in Noether position.
(a) I is radical if, and only if, qΛ is squarefree.
(b) If I is radical then uΛ is primitive for IΛ, qΛ belongs to AΛ[T ], qΛ(uΛ)

belongs to IΛ, and qΛ is homogeneous of degree δ when seen as a polynomial
in A′[Λr+1, . . . ,Λn, T ]. In addition, if the Noether position is general, then
the total degree of qΛ is δ when seen in KΛ[x1, . . . , xr, T ].

Proof. It is easy to check that IΛ is in Noether position and unmixed of dimension
n. From Theorem 1.27, we know that qΛ ∈ AΛ[T ] and that

qΛ(uΛ) ∈ IΛ. (3.1)
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By differentiating qΛ(uΛ) with respect to Λj , we obtain that

q′Λ(uΛ)xj − wΛ,j(uΛ) ∈ IΛ. (3.2)

If I is radical then IΛ is radical, hence qΛ is squarefree. Conversely, if qΛ is square-
free then q′Λ(uΛ) is invertible in B′Λ. It thus follows from (3.2) that the monomor-
phism A′Λ[T ]/(qΛ(T )) ↪→ B′Λ that sends T to uΛ is surjective, and then that:

I ′Λ = (qΛ(uΛ), q′Λ(uΛ)xr+1 − wΛ,r+1(uΛ), . . . , q′Λ(uΛ)xn − wΛ,n(uΛ)).

Thanks to Corollary 1.24, the radicality of I ′Λ implies the one of IΛ, and thus the
one of I, which ends the proof of part (a). Since a basis of B′ induces a basis of B′Λ,
qΛ is the characteristic polynomial of a matrix whose entries are homogeneous of
degree one in Λr+1, . . . ,Λn, and thus qΛ is homogeneous of degree δ when seen in
A′[Λr+1, . . . ,Λn, T ]. The last assertion directly comes from Theorem 1.27(b). �

We are now ready to characterize the univariate representations of I. For any lin-
ear form u = λr+1xr+1 + · · ·+λnxn, we write qλ, wλ,r+1, . . . , wλ,n for the respective
specializations of qΛ, wΛ,r+1, . . . , wΛ,n at Λr+1 = λr+1, . . . ,Λn = λn.

Corollary 3.4. Assume that I is radical, unmixed, and in Noether position.
(a) u is primitive for I if, and only if, qλ is squarefree.
(b) If u is primitive for I, then qλ, wλ,r+1, . . . , wλ,n is the Kronecker represen-

tation of I associated to u. In particular, qλ, wλ,r+1, . . . , wλ,n all belong to
A[T ], and qλ(u), q′λ(u)xr+1−wλ,r+1(u), . . . , q′λ(u)xn−wλ,n(u) all belong to
I. In addition, if the Noether position is general, then the total degree of
qλ is δ, and the total degrees of wλ,r+1, . . . , wλ,n are at most δ, when seen
in K[x1, . . . , xr, T ].

Proof. By substituting λr+1, . . . , λn for Λr+1, . . . ,Λn in (3.1) and (3.2), we obtain
that deg(qλ) = δ and that

(qλ(u), q′λ(u)xr+1 − wλ,r+1(u), . . . , q′λ(u)xn − wλ,n(u)) ⊆ I.

If qλ(u) is squarefree then q′λ(u) is invertible in B′, and therefore the map from
A′[T ]/(qλ(T )) to B′ that sends T to u is surjective. It follows from Proposition 3.1(a)
that u is a primitive element. Conversely, if u is a primitive element, then the
degree of the minimal polynomial q of u equals δ, by Proposition 3.1(b), and we
thus obtain that q and qλ have the same degrees, hence are equal. In particular, qλ
is squarefree, which concludes part (a). The rest of the proof comes directly from
Proposition 3.3(b). �

Corollary 3.5. Assume that I is radical, unmixed, and in Noether position. Then
the set of points (λr+2, . . . , λn) ∈ Kn−r−1 such that u = xr+1+λr+2xr+2+· · ·+λnxn

is a primitive element for I is Zariski dense.

Proof. By Proposition 3.3, the discriminant of qΛ is nonzero and homogeneous in
the variables Λr+1, . . . ,Λn. Therefore if the specialization of this discriminant at
Λr+1 = 1,Λr+2 = λr+2, . . . ,Λn = λn is nonzero then u is a primitive element for I
by Corollary 3.4(a). �

3.2. Specialization of the Independent Variables. In this subsection, s de-
notes an integer in {0, . . . , r}, and we let J = I + (xs+1, . . . , xr). We show how to
compute a Kronecker representation of

√
J from one of I, with the same primitive

element. For this purpose, we introduce JΛ = IΛ + (xs+1, . . . , xr) for the exten-
sion of J to K[Λr+1, . . . ,Λn, x1, . . . , xn]. Let CΛ = K[Λr+1, . . . ,Λn, x1, . . . , xn]/JΛ,
and let QΛ represent the specialization of qΛ at xs+1 = · · · = xr = 0. We
write J ′

Λ for the extension of JΛ to KΛ(x1, . . . , xs)[xs+1, . . . , xn], and we let C′Λ =
KΛ(x1, . . . , xs)[xs+1, . . . , xn]/J ′

Λ.
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Proposition 3.6. Assume that I is radical, unmixed, and in Noether position
(respectively, general Noether position). Then J is in Noether position (respectively,
general Noether position),

√
J is unmixed of dimension s, and we have that:

(a) The squarefree part of QΛ is the minimal polynomial of uΛ modulo the
extension of

√
J to KΛ(x1, . . . , xs)[xs+1, . . . , xn].

(b) J is radical if, and only if, QΛ is squarefree.

Proof. The Noether position (respectively, general Noether position) of J , the un-
mixedness of

√
J , and its dimension come from Corollary 2.5 directly. Let us now

focus on the case when s = r − 1. We introduce ĨΛ for the extension of IΛ to
KΛ(x1, . . . , xr−1)[xr, xr+1, . . . , xn], and we let

B̃Λ = KΛ(x1, . . . , xr−1)[xr, xr+1, . . . , xn]/ĨΛ.

By Proposition 1.22, BΛ is a torsion-free AΛ-module, hence B̃Λ is a torsion-free
KΛ(x1, . . . , xr−1)[xr]-module. By [45, Theorem 7.3], and since ĨΛ is in Noether
position, we deduce that B̃Λ is a free KΛ(x1, . . . , xr−1)[xr]-module of finite rank.

Since qΛ is the characteristic polynomial of uΛ in B′Λ, and since a basis of B̃Λ

induces a basis of B′Λ, we deduce that qΛ is also the characteristic polynomial of
uΛ in B̃Λ. Since a basis of B̃Λ induces a basis of C′Λ, we deduce that QΛ is the
characteristic polynomial of uΛ in C′Λ. It follows that the squarefree part of QΛ

is the minimal polynomial of uΛ in KΛ(x1, . . . , xr−1)[xr, . . . , xn]/
√
J ′

Λ. Since the
extension of

√
J to KΛ(x1, . . . , xr−1)[xr, . . . , xn] is

√
J ′

Λ, we are done with part (a)
when s = r − 1. For the other values of s, we can straightforwardly proceed by
induction thanks to equality (2.1) (used in the proof of Corollary 2.5).

Let us now deal with part (b). If J is radical then J ′
Λ is radical, and thus the

characteristic polynomial QΛ of uΛ in C′Λ coincides with its minimal polynomial.
We thus obtain that QΛ is squarefree. Conversely, if QΛ is squarefree then the
minimal polynomial of uΛ modulo J ′

Λ is squarefree. Therefore J is radical by
Proposition 3.3(a). �

Example 3.7. Let I = (x1−x4, x2−x3)∩(x3, x4) = (x1x3−x3x4, x2x3−x2
3, x1x4−

x2
4, x2x4 − x3x4) ⊆ K[x1, . . . , x4]. This ideal satisfies the hypotheses of Proposi-

tion 3.6 with r = 2. We have qΛ(T ) = T 2 − (Λ1x2 + Λ2x1)T , deg(I) = 2, and
J = I + (x1 + x2) = (x1, x2, x

2
3, x3x4, x

2
4) (with s = r = 2). Therefore we get

deg(J ) = 3 > deg(I), which shows that one can not expect to obtain information
on deg(J ) from QΛ in general.

We are now ready to give formulas to compute a univariate representation of√
J , when u is a primitive element for

√
J . Let Q̃Λ represent the squarefree part

of QΛ, and let

W̃Λ,j = −∂Q̃Λ

∂Λj
.

Let Q̃λ, W̃λ,r+1, . . . , W̃λ,n represent the specializations of Q̃Λ, W̃Λ,r+1, . . . , W̃Λ,n at
Λr+1 = λr+1, . . . ,Λn = λn. By Proposition 3.6(a), Q̃Λ is the minimal polynomial
of uΛ modulo the extension of

√
J to KΛ(x1, . . . , xs−1)[xs, . . . , xn], so that by

Corollary 3.4(b), Q̃λ, W̃λ,r+1, . . . , W̃λ,n is the Kronecker representation of
√
J with

primitive element u.
Let us now assume that we only know the representation qλ, wλ,r+1, . . . , wλ,n of

I. From the only specializations Qλ,Wλ,r+1, . . . ,Wλ,n of the latter representation
at xs+1 = · · · = xr = 0, one can easily compute the Kronecker representation of√
J as follows:

Corollary 3.8. Assume that I is radical, unmixed and in Noether position, and
that u is primitive for I and for

√
J .
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Let Mλ denote the greatest common divisor of Qλ and Q′λ, let q̃ = Qλ/Mλ denote
the squarefree part of Qλ, let Pλ = Q′λ/Mλ, and let P−1

λ denote the inverse of Pλ

in K[T ]/(q̃(T )). Then Mλ divides all the Wλ,j, so that can set Vλ,j = Wλ,j/Mλ,
for each j ∈ {r + 1, . . . , n}.

We define w̃j as the remainder of q̃′Vλ,jP
−1
λ divided by q̃(T ), for all j ∈ {r +

1, . . . , n}, and we let w̃j = 0, for j ∈ {s + 1, . . . , r}. Then q̃, w̃s+1, . . . , w̃n is the
Kronecker representation of

√
J with primitive element u.

Proof. We have to prove that q̃ = Q̃λ, w̃r+1 = W̃λ,r+1, . . . , w̃n = W̃λ,n. Since u is a
primitive element for

√
J , Corollary 3.4(a) implies that Q̃λ is squarefree, whence

q̃ = Q̃λ. It follows that Mλ is the specialization of the greatest common divisor MΛ

of QΛ and Q′Λ at Λr+1 = λr+1, . . . ,Λn = λn.
Let QΛ = Qα1

Λ,1 · · ·Q
αl

Λ,l represent the irreducible factorization of QΛ. Of course,
we have Q̃Λ = QΛ,1 · · ·QΛ,l. We introduce Q̂Λ,j = Q̃Λ/QΛ,j and

W̃Λ,j,k = −∂QΛ,k

∂Λj
, for all j ∈ {r + 1, . . . , n}, and all k ∈ {1, . . . , l}.

We write Qλ,j , Q̂λ,j and W̃λ,j,k for the respective specializations of QΛ,j , Q̂Λ,j and
W̃Λ,j,k at Λr+1 = λr+1, . . . ,Λn = λn. From

WΛ,j

MΛ
=

l∑
k=1

αkW̃Λ,j,kQ̂Λ,k, where WΛ,j = −∂QΛ

∂Λj
,

we deduce that

Vλ,j =
l∑

k=1

αkW̃λ,j,kQ̂λ,k.

Independently, a straightforward computation gives us the following identities:

W̃λ,j =
l∑

k=1

W̃λ,j,kQ̂λ,k, and Pλ =
l∑

k=1

αkQ
′
λ,kQ̂λ,k.

Finally the fact that PλW̃λ,j equals Q̃′λVλ,j in K[T ]/(Q̃λ(T )) is equivalent to the
following identity in K[T ]/(Q̃λ(T )):(

l∑
k=1

αkQ
′
λ,kQ̂λ,k

)(
l∑

k=1

W̃λ,j,kQ̂λ,k

)
=

(
l∑

k=1

Q′λ,kQ̂λ,k

)(
l∑

k=1

αkW̃λ,j,kQ̂λ,k

)
,

which is clearly satisfied modulo each Qλ,k for all k ∈ {1, . . . , l}. �

Corollary 3.9. Assume that I is radical, unmixed, and in Noether position (re-
spectively, general Noether position), and that I + (x1, . . . , xr) is radical.

(a) J is radical, unmixed of dimension s, and in Noether position (respectively,
general Noether position).

(b) If u = λr+1xr+1 + · · · + λnxn is a primitive element for I + (x1, . . . , xr)
then it is a primitive element for J .

Proof. In order to prove part (a), it remains to prove that J is radical. Since
I + (x1, . . . , xr) is radical, Proposition 3.6(b) (applied with s = 0) implies that the
specialization of qΛ at x1 = · · · = xr = 0 is squarefree. We deduce that QΛ is
squarefree, and Proposition 3.6(b) thus gives us the radicality of J .

By combining Proposition 3.6 applied with s = 0 and Corollary 3.4(a) we obtain
that the specialization of qΛ at x1 = · · · = xr = 0 and Λr+1 = λ, . . . ,Λn = λn

is squarefree, so is the specialization of QΛ at Λr+1 = λ, . . . ,Λn = λn. Therefore
part (b) follows from Corollary 3.4(a). �
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Corollary 3.10. Assume that I is radical, unmixed, and in Noether position. Then
the set of points (β1, . . . , βr) ∈ Kr such that I + (x1 − β1, . . . , xr − βr) is radical is
Zariski dense.

Proof. Proposition 3.3(a) tells us that qΛ is squarefree, and thus that its discrimi-
nant is nonzero. If the specialization of this discriminant at x1 = β1, . . . , xr = βr is
nonzero, then Proposition 3.6(b) implies that I+(x1−β1, . . . , xr−βr) is radical. �

The following corollary gathers our previous genericity results in a form that will
be useful in Section 4.1. We let φ denote an affine change of the variables of the
following form: x1

...
xn

 7→


1 α1,2 . . . α1,n

0 1 . . . α2,n

...
. . . . . .

...
0 . . . 0 1


 x1

...
xn

+

 β1

...
βn

 , (3.3)

where all the αk,l and βk are taken in K.

Corollary 3.11. Assume that I is radical and unmixed of dimension r ≥ 1. Let
f and g be in K[x1, . . . , xn] such that f is a nonzerodivisor in B, and such that
(I+(f)) : g∞ 6= (1). Then

√
I + (f) and

√
I + (f) : g∞ are unmixed of dimension

r − 1, and there exists a Zariski dense subset of maps φ such that:

(a) I ◦φ,
√
I + (f)◦φ and (

√
I + (f) : g∞)◦φ are in general Noether position;

(b) I ◦ φ+ (x1, . . . , xr) is radical;
(c) (

√
I + (f) : g∞) ◦ φ + (x1, . . . , xr−1) = (

√
I + (f) ◦ φ + (x1, . . . , xr−1)) :

(g ◦ φ)∞;
(d) xr is a primitive element for

√
(I + (f)) ◦ φ+ (x1, . . . , xr−1);

(e) xr+1 is a primitive element for
√
I ◦ φ+ (x1, . . . , xr−1, xr − a), for each

root a ∈ K̄ (the algebraic closure of K) of the minimal polynomial of xr

modulo
√

(I + (f)) ◦ φ+ (x1, . . . , xr−1).

Proof. Remark that (I + (f)) : g∞ 6= (1) implies that (I + (f)) 6= (1), so that
Theorem 2.3 implies that

√
I + (f) is unmixed of dimension r − 1, and so is√

I + (f) : g∞ by Corollary 1.26. By combining Theorem 1.19, Corollary 1.26
and Proposition 2.2 we obtain that there exists a Zariski dense subset of maps φ
such that property (a) holds. Property (b) comes from Corollary 3.10. Since g is a
nonzerodivisor modulo

√
I + (f) : g∞, property (c) follows from Corollary 2.6.

Now we suppose that properties (a)–(c) hold. From Corollary 2.5, we know that√
(I + (f)) ◦ φ+ (x1, . . . , xr−1) has dimension 0. We introduce the linear forms

l1, . . . , ln defined by
(l1, . . . , ln) = φ−1(x1, . . . , xn).

By construction, l1, . . . , lr−1 are algebraically independent modulo I + (f) and
lr, . . . , ln are generally integral over K[l1, . . . , lr−1] modulo I+(f). Since the linear
part of φ is upper triangular, we deduce from Proposition 1.17 that xr, . . . , xn are
also generally integral over K[l1, . . . , lr−1] modulo I + (f). Therefore we can natu-
rally see

√
I + (f) + (l1, . . . , lr−1) as an ideal of K[xr, . . . , xn], so that Corollary 3.5

gives us that the set of points (λr+1, . . . , λn) such that lr = xr + λr+1xr+1 + · · ·+
λnxn is a primitive element for

√
I + (f) + (l1, . . . , lr−1) is Zariski dense, which

yields property (d).
Let a ∈ K̄ be as defined in part (e). By Corollary 2.5,

√
I + (l1, . . . , lr−1, lr − a)

has dimension 0. We can use Corollary 3.5 again in order to obtain that the
set of points (λr+2, . . . , λn) such that lr+1 = xr+1 + λr+2xr+2 + · · · + λnxn is
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a primitive element for
√
I + (l1, . . . , lr−1, lr − a) is Zariski dense, which yields

property (e). �

4. The Kronecker Solver

This section contains a complete presentation of the Kronecker solver together
with its proof of correctness. The top level function is given in the first subsection,
the subroutines are detailed after. We recall from the introduction that the input
system is written f1 = · · · = fn = 0, g 6= 0, and is assumed to verify that, for
all i ∈ {0, . . . , n − 1}, fi+1 is a nonzerodivisor modulo Ii, and Ii is radical. The
algorithm computes some representations of Ii = (f1, . . . , fi) : g∞ in sequence for
i from 0 to n. Since it is easy to make the algorithm stop as soon as it reaches
Ii = (1), in order to simplify the presentation, we will assume in the rest of the
paper that Ii 6= (1) for all i ∈ {0, . . . , n}.

Example 4.1. Throughout this section, we illustrate the algorithm by means of the
following example with n = 3 variables over the rational number field:

f1 = x2
1 + x2

2 + x2
3 − 2,

f2 = x2
1 + x2

2 − 1,
f3 = x1 − x2 + 3x3,

g = x3 − 1.

4.1. The Top Level Algorithm. Under our hypotheses we have the following
central properties:

Proposition 4.2. For all i ∈ {0, . . . , n− 1}, the ideals
√
Ii + (fi+1) and Ii+1 are

unmixed of dimension n− i− 1.

Proof. By definition, I0 equals (0), hence is unmixed of dimension n. By induction,
assume that Ii is unmixed of dimension n−i for some i ∈ {0, . . . , n−1}. Since fi+1 is
assumed to be a nonzerodivisor modulo Ii, Theorem 2.3 implies that

√
Ii + (fi+1)

is either (1) or unmixed of dimension n− i− 1. From√
Ii+1 =

√
(Ii + (fi+1)) : g∞ =

√
Ii + (fi+1) : g∞,

we deduce that Ii + (fi+1) has dimension n − i − 1 since Ii+1 is assumed to be
proper. When i ≤ n−2, Ii+1 is assumed to be radical, so that its unmixedness and
its dimension follow from Corollary 1.26. When i = n− 1, Ii +(fi+1) is necessarily
unmixed of dimension 0, so that Corollary 1.26 gives us that Ii+1 is unmixed of
dimension 0. �

We recall from the introduction that we have defined Ji =
√
Ii + (x1, . . . , xn−i)

and Ki =
√
Ii + (x1, . . . , xn−i−1). Before entering the main computations, the

solver performs a random affine change of the variables in the input polynomials
f1, . . . , fn and g so that the following properties hold:

(A1) Ii is unmixed of dimension n − i and in general Noether position, for all
i ∈ {0, . . . , n}.

(A2)
√
Ii + (fi+1) is unmixed of dimension n − i − 1 and in general Noether

position, for all i ∈ {0, . . . , n− 1}.

(A3)
√
Ii + (fi+1) : g∞ is unmixed of dimension n− i−1 and in general Noether

position, for all i ∈ {0, . . . , n− 1}.
(A4) Ii + (x1, . . . , xn−i) is radical for all i ∈ {0, . . . , n− 1}.

(A5) Ji+1 =
√
Ki + (fi+1) : g∞, for all i ∈ {0, . . . , n− 1}.
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(A6) xn−i is a primitive element for
√
Ki + (fi+1), for all i ∈ {0, . . . , n− 1}.

(A7) xn−i+1 is a primitive element for
√
Ki + (xn−i − a) for each root a ∈ K̄

(the algebraic closure of K) of the minimal polynomial of xn−i modulo√
Ki + (fi+1), for all i ∈ {1, . . . , n− 1}.

(A8) Ki = Ii + (x1, . . . , xn−i−1), is unmixed of dimension 1, and is in general
Noether position when seen in K[xn−i, . . . , xn], for all i ∈ {0, . . . , n− 1}.

(A9) Ji is zero dimensional, for all i ∈ {0, . . . , n}.
(A10) xn−i+1 is a primitive element for Ji, for all i ∈ {1, . . . , n}.
(A11) xn−i+1 as a primitive element for Ki, for all i ∈ {1, . . . , n− 1}.
(A12) xn−i+1 as a primitive element for Ii, for all i ∈ {1, . . . , n− 1}.

We are to show that such a change of the variables can be found at random with
a very high probability of success. More precisely, we are to prove that almost all
affine changes of the variables φ defined in (3.3) ensures properties (A1)–(A12).

Proposition 4.3. There exists a Zariski dense subset of maps φ for which proper-
ties (A1)–(A12) are satisfied if we replace the input system by f1◦φ = · · · = fn◦φ =
0, g ◦ φ 6= 0.

Proof. For any i ∈ {0, . . . , n− 1}, Corollary 3.11 applied with Ii, fi+1 and g gives
us properties (A1)–(A7) directly. Assume now that (A1)–(A7) hold. Then (A8)
and (A9) are necessarily satisfied, by Corollaries 2.5 and 3.9(a). Property (A10) is
obtained via Proposition 3.1(a) thanks to (A6) and the inclusion

√
Ki + (fi+1) ⊆

Ji+1. Finally, properties (A11) and (A12) follow from Corollary 3.9(b) thanks
to (A4). �

Example 4.4. The input system of Example 4.1 does not satisfy (A6). After the
change of variables  x1

x2

x3

 7→

 1 0 0
0 1 −2
0 0 1

 x1

x2

x3

 ,

we obtain the system

f1 = x2
1 + x2

2 + 5x2
3 − 4x2x3 − 2,

f2 = x2
1 + x2

2 + 4x2
3 − 4x2x3 − 1,

f3 = x1 − x2 + 3x3,

g = x3 − 1,

which satisfies all properties (A1)–(A12).

Here it is important to underline that such a change φ of the variables does not
spoil the evaluation cost of the input system: using evaluation data structures for
the input polynomials is a great advantage here. Once the change of the variables
is performed in the input system, the solver is organized around one main loop.
The ith iteration of this loop computes the univariate representation of Ji+1 with
primitive element xn−i from the one of Ji with primitive element xn−i+1. This
iteration divides into the three following steps:

(1) Lifting step. Compute the Kronecker representation of Ki with primitive
element xn−i+1.

(2) Intersection step. Compute the univariate representation of
√
Ki + (fi+1)

with primitive element xn−i.
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(3) Cleaning step. Compute the univariate representation of
√
Ki + (fi+1) :

g∞ = Ji+1 with primitive element xn−i.

Example 4.5. Geometrically speaking, with Example 4.1, the first lifting step com-
putes a Kronecker representation of a circle on the sphere defined by f1 = 0. The
first intersection step computes a univariate representation of four points on the
two circles defined by f1 = f2 = 0. The second cleaning step takes one of the two
circles aways by removing its two associated points in the latter representation.

Each of these steps is detailed in the next subsections. Let δi = deg(Ii) for each
i ∈ {0, . . . , n}, and let δ = max(δi | i ∈ {0, . . . , n}). The following corollary of
Theorem 2.12 is the cornerstone of the cost analysis of the Kronecker solver, which
is done in [30]:

Corollary 4.6. For all i ∈ {0, . . . , n − 1}, let Ĩi+1 denote the intersection of the
primary components of Ii + (fi+1) belonging to an isolated associated prime. Then
we have that δi+1 ≤ deg(Ĩi+1) ≤ deg(fi+1)δi. The latter inequalities are equalities
whenever g = 1 and f1, . . . , fi+1 are homogeneous.

Proof. Theorem 2.12 implies that deg(Ĩi+1) ≤ deg(fi+1)δi, with equality in the
homogeneous case. If i ≤ n− 2 then Ii+1 is assumed to be radical, whence Ii+1 =√
Ii + (fi+1) : g∞ =

√
Ĩi+1 : g∞ by Theorem 2.3. If i = n− 1, then we have that

Ĩi+1 = Ii + (fi+1). In both cases Proposition 2.11 yields δi+1 ≤ deg(Ĩi+1). Of
course the latter inequality is an equality whenever g = 1. �

4.2. Lifting Step. We are now to detail the ith lifting step. For convenience we
let I = Ii, J = Ji, K = Ki, and r = n − i, so that we can reuse the notation of
the previous sections. The input of this lifting step is the univariate representation
Q,Vr+1, . . . , Vn of J seen in K[xr+1, . . . , xn] with primitive element xr+1. We
write Q,Wr+1, . . . ,Wn for the associated Kronecker representation. The output
is the Kronecker representation Q̃, W̃r+1, . . . , W̃n of K seen in K[xr, . . . , xn] with
the same primitive element xr+1. We introduce Â = K[[x1, . . . , xr]], and B̂ =
Â[xr+1, . . . , xn]/Î, where Î represents the extension of I to Â[xr+1, . . . , xn].

Thanks to (A12), we can consider the Kronecker (respectively, univariate) repre-
sentation q, wr+1, . . . , wn (respectively, q, vr+1, . . . , vn) of I with primitive element
xr+1.

From Corollary 3.8, we know that the specializations of q, wr+1, . . . , wn at x1 =
· · · = xr = 0 coincide with Q,Wr+1, . . . ,Wn respectively, and that the specializa-
tions of q, wr+1, . . . , wn at x1 = · · · = xr−1 = 0 coincide with Q̃, W̃r+1, . . . , W̃n

respectively. Furthermore, thanks to Corollary 3.4(b), it is sufficient to compute
the approximation of q, wr+1, . . . , wn in Â[T ] to precision (x1, . . . , xr−1, x

δi+1
r ) in

order to obtain Q̃, W̃r+1, . . . , W̃n.
More generally we are going to present an algorithm that computes the approx-

imation of q, wr+1, . . . , wn in Â[T ] to any precision. This algorithm relies on a
modified version of the classical Newton method. Let o[0] be any ideal of Â con-
tained in (x1, . . . , xr). It is sufficient to describe how to go from the approximation
q[0], w

[0]
r+1, . . . , w

[0]
n to precision o[0] to the approximation q[1], w[1]

r+1, . . . , w
[1]
n to pre-

cision o[1], for any ideal o[1] containing (o[0])2. Inside the approximation algorithm
we will need the following statement, in which part (b) is part of the classical
Jacobian criterion:

Lemma 4.7. The polynomials vr+1 = wr+1(q′)−1, . . . , vn = wn(q′)−1 are well
defined in Â[T ], and the following properties hold:

(a) Î = (q(xr+1), xr+1 − vr+1(xr+1), . . . , xn − vn(xr+1)).
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(b) The Jacobian matrix J of f1, . . . , fi with respect to the variables xr+1, . . . , xn

is invertible in B̂.

Proof. We have already seen that q′ is invertible modulo q in Â[T ]. Therefore
vr+1, . . . , vn are well defined in Â[T ], and we obtain the following inclusion from
Corollary 3.4(b):

(q(xr+1), xr+1 − vr+1(xr+1), . . . , xn − vn(xr+1)) ⊆ Î.

Conversely, for any f ∈ I, we have that

f(x1, . . . , xr, vr+1(T ), . . . , vn(T )) = 0 in A′[T ]/(q(T )).

The fact that the latter equality also holds in Â[T ]/(q(T )) concludes part (a).
Let u = λr+1xr+1 + · · · + λnxn be a K-linear form, and let qλ be its minimal

polynomial in B′. By Theorem 1.27(c), there exist some polynomials h1, . . . , hi in
K[x1, . . . , xn] and a nonnegative integer α such that gαqλ(u) = h1f1 + · · · + hifi.
By differentiating with respect to xr+1, . . . , xn, and by multiplying by g both sides
of the latter equality, we deduce that all the entries of

gα+1q′λ(u)(λr+1, . . . , λn)− g(h1, . . . , hi)J (4.1)

belong to (f1, . . . , fi). Thanks to (A5), g is a nonzerodivisor in K[x1, . . . , xn]/J ,
hence the constant coefficient of the minimal polynomial of g in K[x1, . . . , xn]/J is
in K \ {0} by Lemma 2.1. Therefore by Proposition 3.6(a), the constant coefficient
of the minimal polynomial of g in B is invertible in B̂, and so is g. Since (4.1) also
holds over Â and since q′(u) is invertible in B̂, we deduce that J is invertible in B̂,
which proves part (b). �

Since q[1] coincides with q[0] to precision o[0], there exists a unique polynomial
∆ ∈ o[0][T ] defined to precision o[1], with deg(∆) ≤ δi− 1, and such that q[0](T ) di-
vides q[1](T+∆(T )) to precision o[1], namely ∆(T ) is the remainder of −q[1](q[1]′)−1

divided by q[0] to the precision o[1]. For each j ∈ {r + 1, . . . , n}, we introduce the
polynomial ṽ[1]

j (T ) as the remainder of v[1]
j (T+∆(T )) divided by q[0](T ) to precision

o[1].
From Lemma 4.7(a), we know that:

fj(x1, . . . , xr, v
[1]
r+1(T ), . . . , v[1]

n (T )) = 0 in (Â/o[1])[T ]/(q[1](T )),

for all j ∈ {1, . . . , i}. By substituting T + ∆(T ) for T in the latter equality we
deduce that:

fj(x1, . . . , xr, ṽ
[1]
r+1(T ), . . . , ṽ[1]

n (T )) = 0 in (Â/o[1])[T ]/(q[0](T )),

for all j ∈ {1, . . . , i}. But thanks to Lemma 4.7(b), ṽ[1]
r+1, . . . , ṽ

[1]
n can be obtained

by means of the following Newton iteration computed in (Â/o[1])[T ]/(q[0](T )) to
precision o[1]:

ṽ
[1]
r+1
...
ṽ
[1]
n

 =


v
[0]
r+1
...
v
[0]
n

− J−1

 f1
...
fi

 (x1, . . . , xr, v
[0]
r+1, . . . , v

[0]
n ).

Now it remains to show how the v
[1]
j can be recovered from the ṽ

[1]
j . First of

all, since v[1]
r+1(T ) = T , we easily recover ∆(T ) = ṽ

[1]
r+1(T ) − T . Then, for each

j ∈ {r + 1, . . . , n}, by means of a second order Taylor expansion, we obtain that:

ṽ
[1]
j (T ) = v

[1]
j (T ) + ∆j(T ),
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where ∆j(T ) represents the remainder of ∆(T )v[0]
j

′
(T ) divided by q[0](T ) to preci-

sion o[1]. This way we can deduce v[1]
j (T ). In a similar manner we have that

q[1](T ) = q[0](T ) + ∆q(T ),

where ∆q(T ) represents the remainder of ∆(T )q[0]
′
(T ) divided by q[0](T ) to preci-

sion o[1].

Example 4.8. Let us illustrate the first lifting step of the resolution of the system of
Example 4.1, that corresponds to the easiest case, when i = 1. At the first iteration
of the lifting step we have: q[0] = Q = T 2 − 2/5, v[0]

3 = V3 = T , o[0] = (x2), and
o[1] = (x2

2). The Newton iteration leads to ṽ
[1]
3 = T + 2/5x2. We thus obtain

∆ = 2/5x2, ∆q = −4/5x2T , and then q[1](T ) = T 2 − 2/5 − 4/5x2T , which is of
course the approximation of the monic part of f1(0, x2, T ) to precision o[1]. As
for the second and last iteration, we take o[0] = (x2

2) and o[1] = (x3
2), and obtain

q[1](T ) = T 2 − 2/5− 4/5x2T + 1/5x2
2, that is the monic part of f1(0, x2, T ).

4.3. Intersection Step. We carry on with writing I for Ii, J for Ji, K for Ki

and r for n − i. We further let f = fi+1(0, . . . , 0, xr, . . . , xn). The input of the
ith intersection step is the Kronecker representation Q̃, W̃r+1, . . . , W̃n of K seen
in K[xr, . . . , xn] with primitive element xr+1. We write Q̃, Ṽr+1, . . . , Ṽn for the
associated univariate representation. The output is the univariate representation
Q̂, V̂r, . . . , V̂n of

√
K + (f) (seen in K[xr, . . . , xn]) with primitive element xr. We

first give a formula for Q̂.

Proposition 4.9. The characteristic polynomial of xr modulo K + (f) is equal to
the following resultant in T :

χ0 = ResT (f(xr, Ṽr+1(T ), . . . , Ṽn(T )), Q̃(T )). (4.2)

In particular, Q̂(xr) is the squarefree part of χ0.

Proof. From (A8) we know that K is unmixed of dimension 1 and is in general
Noether position when seen in K[xr, . . . , xn]. Thanks to (A2), Corollary 2.5 implies
that f(xr, . . . , xn) is nonzerodivisor in K[xr, . . . , xn]/K. Therefore the conclusion
follows directly from Proposition 2.7. �

By means of Corollary 3.8, and thanks to (A7), for any root a ∈ K̄ of Q̂, we can
compute the univariate representation Q̃a, Ṽa,r+1, . . . , Ṽa,n of

√
K + (xr − a) with

primitive element xr+1, so that we have:√
K + (xr − a) = (Q̃a(xr+1), xr − a, xr+1 − Ṽa,r+1(xr+1), . . . , xn − Ṽa,n(xr+1)).

We deduce that:√
K + (xr − a) + (f) = (f(a, Ṽa,r+1(xr+1), . . . , Ṽa,n(xr+1)), Q̃a(xr+1))

+ (xr − a, xr+1 − Ṽa,r+1(xr+1), . . . , xn − Ṽa,n(xr+1)).

On the other hand, since xr is primitive for
√
K + (f) by property (A6), we have

that √
K + (f) + (xr − a) = (xr − V̂r(a), . . . , xn − V̂n(a)).

Therefore we can compute V̂r+1(a) by means of the following formula:

xr+1 − V̂r+1(a) = gcd(f(a, Ṽa,r+1(xr+1), . . . , Ṽa,n(xr+1)), Q̃a(xr+1)),

where gcd means the greatest common divisor. By substituting V̂r+1(a) for xr+1

in all the Ṽa,j , we obtain V̂j(a) ∈ K̄, for all j ∈ {r + 2, . . . , n}. Finally V̂r, . . . , V̂n

can be obtained by interpolation.
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Example 4.10. Let us carry on with Example 4.1. We enter the first intersection
step (that is i = 1) with Q̃ = T 2 − 2/5− 4/5x2 + 1/5x2

1 and Ṽ3 = T . The resultant
computation leads to χ0 = 1/25x4

2 − 2/5x2
2 + 9/25. Since χ0 is squarefree, we have

Q̂(T ) = T 4− 10T 2 +9 = (T − 1)(T +1)(T − 3)(T +3). The gcd computations then
give us: V̂3(−1) = −1, V̂3(1) = 1, V̂3(−3) = −1, and V̂3(3) = 1. By interpolating
we finally obtain V̂3(T ) = −1/12T 3 + 13/12T .

Of course in practice, computations are not really handled in K̄. Instead we
appeal classical techniques of computer algebra: for each irreducible factor Q̂l of Q̂,
we do the above computations with taking a as the residue class of z in K[z]/(Q̂l(z)),
and finally we recover the result by means of the Chinese remainder theorem.

4.4. Cleaning Step. The input of the ith cleaning step is the univariate represen-
tation Q̂, V̂r, . . . , V̂n of

√
Ki + (fi+1) seen in K[xr, . . . , xn] with primitive element

xr. The output is the univariate representation Q̌, V̌r, . . . , V̌n of
√
Ki + (fi+1) : g∞

with the same primitive element xr.

Proposition 4.11. Let e = gcd(Q̂, g(0, . . . , 0, V̂r, . . . , V̂n)), then we have that Q̌ =
Q̂/e, and that V̌j is the remainder of V̂j divided by Q̌.

Proof. The proof follows from the following straightforward calculations:√
Ki + (fi+1) : g∞ = (Q̂(xr), xr+1 − V̂r+1(xr), . . . , xn − V̂n(xr)) : g∞

= (Q̂(xr), xr+1 − V̂r+1(xr), . . . , xn − V̂n(xr)) : e(xr)∞

= (Q̌(xr), xr+1 − V̌r+1(xr), . . . , xn − V̌n(xr)). �

Example 4.12. The first cleaning step in the resolution of Example 4.1 goes as
follows: the gcd computation leads to e = T 2 − 4T + 3, and thus we get Q̌ =
T 2 + 4T + 3, V̌2 = T , and V̌3 = −1.

4.5. Example 4.1 Continued. Let us carry on with the resolution of Example 4.1.
In Example 4.12, we have obtained that J2 = (x2

2 + 4x2 + 3, x3 + 1) + (x1). The
second lifting step gives us that K2 = (x2

2 + 4x2 + 3 + x2
1, x3 + 1), and then the

second intersection step yields
√
K2 + (f3) = (x2

1− x1, x2 + 3− x1, x3 + 1). Finally
after the second and last cleaning step, we obtain J3 = (x2

1−x1, x2 +3−x1, x3 +1).
We get the solutions of the system of Example 4.1 by changing the variables back.

4.6. Computation of the Multiplicities. At the last intersection step, that is
when i = n − 1, the multiplicity of a zero of Kn−1 + (fn) can be read off from
the multiplicity of its coordinate x1 as a zero of the polynomial χ0 defined in (4.2)
(see [16, Chapter 4, Proposition 2.7] for instance). Since the primary components
of In = (Kn−1 + (fn)) : g∞ are a subset of the ones of Kn−1 + (fn), we thus
obtain the multiplicities of the zeros of In. As announced in the introduction,
these multiplicities are actually computed by the Kronecker solver without any
extra cost.

Example 4.13. Let n = 3, f1 = 2x2
2 + x2

3 + x1x2 + x1x3 + 3x2x3 + x2 + x3, f2 =
x2

1 +3x2
2 +x2

3 +4x1x2 +2x1x3 +2x2x3, f3 = x2
1 +4x2

2 +3x2
3 +4x1x2 +2x1x3 +6x2x3,

and g = 1. Properties (A1)–(A12) hold. We enter the last intersection step with
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the following Kronecker representation of K2:

Q̃ = T 4 + (2/3 + 5/3x1)T 3 + (1/3 + 2/3x1 + 7/6x2
1)T

2

+ (1/3x1 + 1/3x2
1 + 1/3x3

1)T + 1/6x2
1,

W̃2 = (−2/3− 5/3x1)T 3 − (2/3 + 4/3x1 + 7/3x2
1)T

2

− (x1 + x2
1 + x3

1)T − 2/3x2
1,

W̃3 = (−2/3 + 1/3x1)T 3 + (2/3− 4/3x1 + 1/3x2
1)T

2

+ (x1 − x2
1 − 1/3x3

1)T + 2/3x2
1 − 2/3x3

1 − 1/3x4
1.

Then we compute the following irreducible factorization of χ0 as defined in Propo-
sition 4.9:

χ0 = 2/9x4
1(5x

4
1 − 8x3

1 + 16x2
1 − 8x1 + 12).

This way, we obtain that (0, 0, 0) is a solution of multiplicity 4, and that there are
4 other simple solutions.

Appendix A. Proof of Theorem 2.9

We carry on with the notation and conventions used in Section 2.4, and we
introduce the following block notation:

M =
(
M1,1 M1,2

M2,1 M2,2

)
,

with M1,1 of size r × r; Idr will represent the r × r identity matrix.

Lemma A.1. Assume that I is unmixed and that M is in one of the following
three forms:(

Idr 0
M2,1 Idn−r

)
,

(
M1,1 0

0 Idn−r

)
, or

(
Idr 0
0 M2,2

)
.

(a) I is in Noether position (respectively, general Noether position) if, and only
if, IM is in Noether position (respectively, general Noether position).

(b) δM = δ.

Proof. In the first two cases, part (a) can be straightforwardly verified from the
definitions of the Noether positions, whereas the third case follows from Proposi-
tion 1.3 (respectively, Proposition 1.17). Since, in the three cases, M defines an
isomorphism of K[x1, . . . , xn] that leaves A globally unchanged and that sends I to
IM , we clearly have that δM = δ. �

Remark that δ is finite and positive. If x1, . . . , xr are algebraically dependent
modulo IM then I ′M = (1), whence B′M = 0 and δM = 0. In this situation, the
theorem trivially holds, so that we can assume from now that x1, . . . , xr are alge-
braically independent modulo IM . In this situation δM is finite since xr+1, . . . , xn

are necessarily algebraic over A modulo IM thanks to Theorem 1.12(b).

Claim A.2. Without loss of generality, we can assume from the outset that

M =
(
M1,1 M1,2

0 Idn−r

)
.

Proof. Since M is invertible, the rank of the submatrix
(
M1,1 M1,2

)
is r, so

that there exists a (n−r)×r matrix N such that M1,1−M1,2N is invertible. Then
a straightforward calculation gives us that

M =
(
M1,1 −M1,2N M1,2

M2,1 −M2,2N M2,2

)(
Idr 0
N Idn−r

)
.
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Thanks to Lemma A.1, we can assume from the outset that M1,1 is invertible. And
since we have that

M =
(

Idr 0
M2,1M

−1
1,1 Idn−r

)(
M1,1 M1,2

0 M2,2 −M2,1M
−1
1,1M2,1

)
,

we can now assume that M2,1 = 0, thanks to Lemma A.1 again. Finally the claim
follows by using Lemma A.1 once more time in order to reach M2,2 = Idn−r. �

Let y1, . . . , yr be new variables, and let

Ay = K[y1, . . . , yr], A′y = K(y1, . . . , yr).

For each i ∈ {1, . . . , r}, we introduce the linear form

li = yi − (ωi,1x1 + · · ·+ ωi,nxn) ∈ K[y1, . . . , yr, x1, . . . , xn],

where ωi,j stands for the (i, j)th entry of M−1. For each i ∈ {0, . . . , r}, we write Ii

for the ideal I+(l1, . . . , li) of K[y1, . . . , yr, x1, . . . , xn]. We define I ′i as the extension
of Ii to A′y[x1, . . . , xn], and let:

Bi = K[y1, . . . , yr, x1, . . . , xn]/Ii and B′i = A′y[x1, . . . , xn]/I ′i.

We define δi as the dimension of the A′y(x1, . . . , xr−i)-vector space

B′′i = A′y(x1, . . . , xr−i)[xr−i+1, . . . , xn]/I ′′i ,

where I ′′i represents the extension of I ′i to A′y(x1, . . . , xr−i)[xr−i+1, . . . , xn].
It is straightforward to check that x1, . . . , xr, yi+1, . . . , yr are algebraically inde-

pendent modulo Ii, and that xr+1, . . . , xn, y1, . . . , yi are generally integral over

K[x1, . . . , xr, yi+1, . . . , yr]

modulo Ii by Proposition 1.17. From Theorem 1.12(a) we deduce that dim(Ii) =
2r − i. Furthermore, by means of Proposition 1.22, it can be verified that the
unmixedness of I implies the one of Ii. This way, we obtain from Proposition 2.2(a)
that li+1 is a nonzerodivisor Bi.

Claim A.3. We have δ = δ0 and δM = δr. The ideal Ir is in general Noether
position if, and only if, I ◦M is in general Noether position.

Proof. The former equality is straightforward while the latter equality and the
equivalence between the Noether positions both follow from:

Ir = (f ◦M(y1, . . . , yr, xr+1, . . . , xn) | f ∈ I)+

(x1 − (m1,1y1 + · · ·+m1,ryr +m1,r+1xr+1 + · · ·+m1,nxn),
. . . ,

xr − (mr,1y1 + · · ·+mr,ryr +mr,r+1xr+1 + · · ·+mr,nxn)),

where mi,j stands for the (i, j)th entry of M . �

Claim A.3 implies that the theorem reformulates into: (a) δr ≤ δ0, and (b) the
equality holds if, and only if, Ir is in general Noether position.

It is a classical fact that the primes associated to I ′i correspond to the ones of
Ii that properly extend to A′y[x1, . . . , xn] (see [18, Chapter 3, Theorem 3.10(d)],
for instance). Let P be a prime associated to Ii such that its extension P ′ to
A′y[x1, . . . , xn] is proper. Since y1, . . . , yr are algebraically independent modulo P,
we can find a subset S of {x1, . . . , xn} of cardinality r − i such that y1, . . . , yr and
the elements of S are algebraically independent modulo P by [45, Chapter VIII,
Section 1, Theorem 1.1]. The elements of S are algebraically independent over A′y
modulo P ′, and that the variables outside of S are algebraic over A′y(S) modulo P ′.
It follows that dim(P ′) = r − i hence that I ′i is unmixed of dimension either r − i
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or −1. But since we have assumed that I ′M 6= (1), we have that I ′r 6= (1), whence
dim(I ′i) = r − i for all i ∈ {1, . . . , r}. This way, we obtain from Proposition 2.2(a)
that li+1 is a nonzerodivisor in B′i.

Claim A.4. Without loss of generality, we can assume that I ′i is in general Noether
position, for all i ∈ {0, . . . , r}.

Proof. We are going to exhibit a K-linear change of the variables that preserves δ,
and the general Noether position of I. Of course the general Noether position of
I implies the one of I ′0. Since li+1 is a nonzerodivisor in B′i, we can use Proposi-
tion 2.2(b) successively with f = l1, . . . , f = lr in order to construct a matrix

M ′ =
(
M ′

1,1 0
0 Idn−r

)
such that I ′i ◦M ′ is in general Noether position for all i ∈ {1, . . . , r}. For each
i ∈ {1, . . . , r}, we let

l′i = yi − (ω′i,1x1 + · · ·+ ω′i,nxn) ∈ A[y1, . . . , yr, x1, . . . , xn],

where ω′i,j stands here for the (i, j)th entry of M−1M ′. By construction we have
that I ◦M ′ + (l′1, . . . , l

′
i) = Ii ◦M ′ to A′y[x1, . . . , xn], so that Claim A.2 allows us

to replace I by I ◦M ′ and M by M ′−1M from the outset in the theorem. �

In order to prove that δr ≤ δ0, we prove the following stronger statement:

Claim A.5. For all i ∈ {0, . . . , r − 1}, we have that δi+1 ≤ δi.

Proof. Proposition 2.7 applied with I ′i gives us that δi+1 equals to the degree in
xr−i of the constant coefficient of the characteristic polynomial of li+1 modulo I ′i.
The conclusion thus follows from Theorem 1.27(b). �

The proof of part (a) is now completed. If IM is in general Noether position, then
part (a) applied with IM and M−1 yields δ ≤ δM , whence δ = δM . Conversely, if
the latter equality holds then we have to prove that Ir is in general Noether position
in order to complete the proof of part (b), and thus the proof of the theorem. To
this aim, we are to show the following stronger statement:

Claim A.6. If δ = δM then Ii is in general Noether position, for all i ∈ {0, . . . , r−
1}.

Proof. The general Noether position of I implies the one of I0. By induction,
assume that Ii is in general Noether position for some i ≥ 0. We can use Propo-
sition 2.7 with Ii and li+1. Since Claim A.5 implies that δi+1 = δi, we deduce
that the constant coefficient χ0 of the characteristic polynomial of li+1 in B′′i has
degree δi in xr−i. Since Theorem 1.27(b) implies that deg(χ0) ≤ δi, we deduce
from Lemma 2.1(a) that xr−i is generally integral over K[y1, . . . , yr, x1, . . . , xr−i−1]
modulo Ii+1. By Proposition 1.7(b) we finally get that Ii+1 is in general Noether
position. �
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algébriques, Ph.D. thesis, École polytechnique, Palaiseau, France, 2001.
49. , Quadratic Newton iteration for systems with multiplicity, Found. Comput. Math. 2

(2002), no. 3, 247–293.
50. G. Lecerf, Computing the equidimensional decomposition of an algebraic closed set by means

of lifting fibers, J. Complexity 19 (2003), no. 4, 564–596.
51. G. Lecerf, Improved dense multivariate polynomial factorization algorithms, manuscript, Uni-
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