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Introduction

� Online social media and networking platforms produce a vast
amount of textual data

� Analyze and extract useful information from textual data is a
crucial task

� Text categorization (TC) refers to the supervised learning task
of assigning a document to a set of two or more pre-defined
categories, based on learning models that have been trained
using labeled data

� Plethora of applications
� Opinion mining for risk assessment and management
� Email filtering
� Spam detection
� News classification
� ...
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Text categorization: the pipeline

Basic pipeline of the text categorization task

Textual Data

Preprocessing

Model
Learning Categorization

Text
Evaluation

Feature
Extraction

Document-Term
Matrix

Dimensionality
Reduction
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Term weighting in the Bag-of-words model

Vector Space Model

� D = {d1, d2, . . . , dm} denotes a collection of m documents
� T = {t1, t2, . . . , tn} be the dictionary

Feature extraction

Every document is represented by a feature vector that contains boolean or weighted
representation of unigrams or n-grams

� TF (Term Frequency), TF-IDF (Term Frequency - Inverse Document Frequency)

tf -idf (t, d) = tf (t, d)× idf (t,D),

where idf (t,D) = log
m + 1

|{d ∈ D : t ∈ d|}
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Contributions of this work

� Graph-based term weighting schemes for TC
� Propose a simple graph-based representation of documents for

text categorization
� Derive novel term weighting schemes, that go beyond single term

frequency

� Exploration of model’s parameter space and experimental
evaluation

� We discuss how to construct the graph
� We examine the performance of the different proposed weighting

criteria using standard document collections
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Graph-of-words: overview

Why Graph-of-words?

� Capture relationships between terms
� Questioning the term independence assumption
� Already applied in other data analytics tasks (e.g., IR

[Blanco and Lioma, ’12], [Rousseau and Vazirgiannis, ’13])

Representation of a document

Each document d ∈ D is represented by a graph Gd = (V , E)

� Nodes correspond to the terms t of the document
� Edges capture co-occurence relations between terms within a

fixed-size sliding window of size w
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Proposed graph-based term weighting method for TC

Input: Collection of documents D = {d1, d2, . . . , dm} and set (dictionary)
of terms T = {t1, t2, . . . , tn}

Output: Term weights tw(t, d) for each term t ∈ T to each document
d ∈ D

1: for d ∈ D do
2: (Graph Construction) Construct a graph Gd = (V , E). Each node

v ∈ V corresponds to a term t ∈ T of document d . Add edge
e = (u, v) between terms u and v if they co-occur within the same
window of size w

3: (Term Weighting) Consider a node centrality criterion. For each term
t ∈ T , compute the weight tw(t, d) based on the centrality score of
node t in graph Gd and fill in the Document-Term matrix

4: end for
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Graph construction: parameters of the model

� Directed vs. undirected graph
� Directed graphs are able to preserve actual flow of a text
� In undirected ones, an edge captures co-occurrence of two terms

whatever the respective order between them is X
� Weighted vs. unweighted graph

� Weighted: the higher the number of co-occurences of two terms in
the document, the higher the weight of the corresponding edge

� Unweighted (our choice due to the simplicity of the model) X
� Size w of the sliding window

� We add edges between the terms of the document that co-occur
within a sliding window of size w

� w = 3 performed well in TC X
� Larger window sizes produce graphs that are relatively dense
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Example: text to graph representation

Graph representation of a document (w = 3; undirected graph)

Data Science is the extraction of knowledge from large volumes of data
that are structured or unstructured which is a continuation of the field of
data mining and predictive analytics, also known as knowledge discovery
and data mining.

data
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knowledg
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Term weighting criteria

� Utilize node centrality criteria of the graph

� The importance of a term in a document can be inferred by the
importance of the corresponding node in the graph

� Consider information of the graph:
� Local: degree centrality, in-degree/out-degree centrality in directed

networks, weighted degree in weighted graphs, clustering
coefficient

� Global: PageRank centrality, eigenvector centrality, betweenness
centrality, closeness centrality

degree centrality(i) =
|N (i)|
|V | − 1

, closeness(i) =
|V | − 1∑

j∈V dist(i, j)

� Proposed weighting schemes for TC:
� TW
� TW-IDF
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Experimental set-up

� Datasets
1 Reuters-21578 R8: documents of Reuters newswire in 1987

� # of train docs: 5, 485; # of test docs: 2, 189; total: 7, 674
� # of categories: 8

2 WebKB: academic webpages
� # of train docs: 2, 803; # of test docs: 1, 396; total: 4, 199
� # of categories: 4

� Evaluation
� Linear SVM classifier
� Train the model on the train documents
� Report classification results from the test documents
� Macro-averaged F1 score and classification accuracy

� Baseline methods
� Traditional TF and TF-IDF weighting schemes vs. the proposed TW

and TW-IDF (degree, in-degree, out-degree and closeness
centrality; window-size=3)
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Experimental results
Reuters-21578 R8 and WebKB datasets

Weighting F1-score Accuracy

TF 0.9127 0.9634
TW, degree 0.8991 0.9611
TW, in-degree 0.8037 0.9438
TW, out-degree 0.8585 0.9546
TW, closeness 0.9125 0.9625

TF-IDF 0.8962 0.9616
TW-IDF, degree 0.9175 0.9661
TW-IDF, in-degree 0.8985 0.9629
TW-IDF, out-degree 0.8854 0.9625
TW-IDF, closeness 0.8846 0.9547

Reuters-21578 R8

Weighting F1-score Accuracy

TF 0.8741 0.8853
TW, degree 0.8962 0.9032
TW, in-degree 0.8286 0.8545
TW, out-degree 0.8365 0.8603
TW, closeness 0.8960 0.9004

TF-IDF 0.8331 0.8538
TW-IDF, degree 0.8800 0.8882
TW-IDF, in-degree 0.7890 0.8381
TW-IDF, out-degree 0.8049 0.8474
TW-IDF, closeness 0.8505 0.8674

WebKB
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Conclusions and future work

Contributions:
� Introduce a new paradigm for TC

� Potential of graph-based weighting mechanisms in TC

Future work:
� Exploration of parameter’s space: many diverse centrality criteria can be

applied in order to weight the terms

� Graph-based inverse collection weight: a more thorough theoretical
analysis of its properties is also an interesting future direction

� Graph-based dimensionality reduction: extend the task of dimensionality
reduction to the graph representation of the documents
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École Polytechnique, France
kskianis@lix.polytechnique.fr

www.lix.polytechnique.fr/∼kskianis

20/20 F. D. Malliaros and K. Skianis Graph-Based Term Weighting for Text Categorization


	Introduction
	Graph-Based Term Weighting for Text Categorization
	Experimental Evaluation
	Conclusions and Future Work

