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Introduction
°

Deep Learning Era

What?

e Many layers of non-linear units for feature extraction and
transformation

e Lower level to higher level features form hierarchy of concepts
Why now?

e Large data available

e Computational resources (CPUs and GPUs)
Most used models:

e Convolutional Neural Network (CNNs)

e Long Short Term Memory network-LSTM (variant of RNN)

e Gated Recurrent Unit (GRU)
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Sparse vs. dense feature representations
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POS Embeddings

Word Embeddings
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Figure: Two
encodings of the
information: current
word is “dog’’;
previous word is “the”;
previous pos-tag is
“DET". (a) Sparse
feature vector. (b)
Dense,
embeddings-based
feature vector.
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What to use?

One Hot: Each feature is its own dimension.
® Dimensionality of one-hot vector is same as number of distinct features.

® Features are completely independent from one another.
Example: “word is ‘dog’ " is as dis-similar to “word is ‘thinking’ " than it

1o

is to “word is ‘cat’ "
Dense: Each feature is a d-dimensional vector.

® Model training will cause similar features to have similar vectors -
information is shared between similar features

Benefits of dense and low-dimensional vectors

e Computational efficient
® Generalization power

e Collobert & Weston, 2008; Collobert et al. 2011; Chen & Manning, 2014
. advocate the use of dense, trainable embedding vectors for all features.

Konstantinos Skianis Intro to DL for NLP 6/25



Introduction
ooe

Word Embeddings

Initialization:

e word2vec: initialize the word vectors to uniformly sampled random
numbers in the range [—3;, 5] where d is the number of
dimensions.

e xavier initialization: [—%, %]
Problems:

e Word similarity is hard to define and is usually very task-dependent

Missing words in pre-trained vectors?

e Retrain with training data
e Find synonyms?

e Open research problem...
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CNN
°

Convolutional Neural Networks

Definition

Multiple-layer feedforward neural networks where each neuron in a layer
receives input from a neighborhood of the neurons in the previous layer.
(Lecun, 1998)

From Computer Vision to NLP: 2d grid — 1d sequence

Properties

e Compositionality: learn complex features starting from small regions
< higher-order features (n-grams) can be constructed from basic
unigrams

e Local invariance: detect an object regardless the position in image
— ordering is crucial locally and not globally
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A sequence of words x = x1, ..., z,, each with their corresponding
demp dimensional word embedding v(z;)

1d convolution layer of width k& works by moving a sliding window of
size k over the sentence, and applying the same “filter” to each
window in the sequence [v(x;); v(2i41); .. ; V(Titk—1)]

Depending on whether we pad the sentence with k£ — 1 words to
each side, we may get either m = n — k + 1 (narrow convolution) or
m =n+k + 1 windows (wide convolution)

Result of the convolution layer is m vectors py, ..., py, € Reonv:

pi = g(w;W + b) where g is a non-linear activation function that is
applied element-wise, W € RFdemsXdeonv and h € Reonv are
parameters of the network.

Konstantinos Skianis Intro to DL for NLP 10/ 25



CNN for se

+ activation function

convolution 1 affine layer with
-max softmax and
pooling dropout

3 region sizes: (2,3,4) 2 feature
Sentence matrix 2 filters for each region maps for 6 entries 2 classes
7x5 o cach concatenated
otally 6 filters region size to form a

single feature
vector
\
d=5
|
like

this

movie
e -
much
| — T~

Konstantinos Skianis Intro to DL for NLP 11/25



© RNN
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Recurrent Neural Networks

e CNNs are limited to local patterns
e RNNs were specifically developed to be used with sequences

e The task of language modeling consists in learning the probability
of observing the next word in a sentence given the n — 1 preceding
words, that is Plwy|wi, ..., wnp—1].

o At given time step: sy = f(Uy, + Ws,_,)

If the sequence is a sentence of 5 words, the network would be unrolled
into a 5-layer neural network, one layer for each word.
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RNN Architecture

0

O 0!71 ot 01+1
VT W [ P P

N

‘T —) >0~ >0—>0"—>
T Unfold T W T w T w
U U U U

X X X

e 1, is the input at time step ¢. For example, 1 could be a one-hot
vector corresponding to the second word of a sentence.

e s; is the hidden state at time step ¢ (memory). s; is calculated
based on the previous hidden state and the input at the current
step: st = f(Uy, + Ws,_,). [ is usually a nonlinearity(tanh or
ReLU). s_1, which is required to calculate the first hidden state, is
typically initialized to all zeroes.

® 0; is the output at step t. l.e. if we wanted to predict the next word
in a sentence it would be a vector of probabilities across our
vocabulary. o, = softmax(Vs, ).
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Long Short Term Memory Networks

Hochreiter & Schmidhuber (1997)
LSTM is explicitly designed to avoid the long-term dependency problem.

Properties
e Chain like structure
e Instead of having a single neural network layer, there are four

e Remove or add information to the cell state, carefully regulated by
structures called gates

e Three sigmoid gates, to protect and control the cell state
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LSTM architecture
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Optimization Issues
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Learning # Pure optimization
e Performance measure P, that is defined with respect to the test set
e May also be intractable
e Reduce a different cost function J(6) hoping it will improve P
Properties
e Usually non-convex

e Any deep model is essentially guaranteed to have an extremely large
number of local minima

e Model identifiability: a sufficiently large training set can rule out all
but one setting of parameters — weight space symmetry

e Local minima is a good approximation to global minima
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More Optimization

Issues

o All of these local minima arising from non-identifiability are equivalent to
each other in cost value — not a problematic form of non-convexity

® Local minima can be problematic if they have high cost in comparison to
the global minimum

® Saddle point as being a local minimum along one cross-section of the
cost function and a local maximum along another cross-section
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Initialization of weights
® May get stuck in a local minimum or a saddle point

e Starting from different initial points (e.g. parameters) may result in
different results

® Random values has an important effect on the success of training
e Xavier initialization, Glorot and Bengio (2010):

v6 L V6

W~U| - 7
\/dzn + dout \/dzn + dout

® When using ReLU non-linearities — sampling from a zero-mean Gaussian
distribution whose standard deviation is /-2, He et al. (2015)

Vanishing and Exploding Gradients

e Error gradients to either vanish (become exceedingly close to 0) or
explode (become exceedingly high) in backpropagation
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Regularization

Overfitting
® Many parameters
® Prune to overfitting
Example: LSTM has a set of 2 matrices: U and W for each of the 3 gates. n
is the hidden layer size and m is the vocabulary size. (ie n = 100, m = 8000)
® U has dimensions n X m
® W has dimensions n x n

e there is a different set of these matrices for each of the three gates(like
Uforget for the forget gate)

e there is another set of these matrices for updating the cell state S

< total number of parameters = 4(nm + n?) = 3,240,000 !
Solution

e Dropout: randomly dropping (setting to 0) half of the neurons in the
network (or in a specific layer) in each training example. (Hinton,
Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012)
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Deep Learning models for numerous tasks

e CNNs: document classification, short-text categorization, sentiment
classification, relation type classification between entities, event
detection, paraphrase identification, semantic role labelling, qa

e Recurrent: language modeling, sequence tagging, machine
translation, dependency parsing, sentiment analysis, noisy text
normalization, dialog state tracking, response generation

e Recursive(generalization of RNN that can handle trees):
constituency-dependency parse re-ranking, discourse parsing,
semantic relation classification, political ideology detection based on
parse trees, sentiment classification, target-dependent sentiment
classification, ga
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Understanding Neural Networks

Deep “dark” networks

If the network fails, it is hard to understand what went wrong!

Hard to provide concrete interpretation
Visualization to the rescue!

http://colah.github.io/

Visualizing and understanding convolutional networks, M. Zeiler and
R. Fergus (2014)
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The end!

Future: Deep Generative Models

e Probability distributions over multiple variables

e Boltzmann Machines, RBM, Deep Belief Networks
Resources

e Natural language processing (almost) from scratch, R. Collobert et
al., 2011

e A Primer on Neural Network Models for Natural Language
Processing, Goldberd, 2015

e Deep Learning, lan Goodfellow and Yoshua Bengio and Aaron
Courville, 2016

Conference

e International Conference on Learning Representations (ICLR)
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