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. Introduction

Goal: Perform graph classification

Motivation: class: inactive ) 5 class: active
@ Graph classification is a very important task with numerous significant real-world applications (e.g. E
chemoinformatics, bioinformatics) 5 A

® Existing algorithms generate features by considering the whole graph structure
7 However, significant subgraph patterns often confined only to small neighborhoods within the graph

7 Example: in the interaction networks of complex diseases, only specific subgraphs associated with the
disease

7 Processing the entire graph may cause noise to be introduced into the generated features

Two graphs and their corresponding subgraphs that determine class membership. Existing
Contributions: algorithms generate features by considering the whole graph structure which may cause noise to

T _ _ _ _ o be introduced into the generated representations.
e A graph classification approach that can identify regions in the graphs that are most predictive of the

class labels

e |t combines the learning potential of CNNs with the flexibility of graph kernels

Il. CNINs: From Images to Graphs

I11. Kernel Graph Convolutional Neural Network (KCNN)

CNNs: Can identify indicative local predictors in a large structure, and combine them to Main steps:
produce a fixed size vector representation of the structure e Extract a set of subgraphs that will play the role of patches (i.e. using community detection
algorithms)
Idea: Use CNNSs to identify subgraphs that constitute strong clues regarding class membership e Use graph kernels to generate kernel matrix between subgraphs (or approximate it using
Nystrom)

e Decompose kernel matrix to get subgraph representation

e These representations are convolved with the filters of a 1-d CNN

e A pooling layer is followed by a fully-connected one to output class probabilities
Example: -
Figure illustrates a graph and a 0 0T
convolution filter that slides over all *
subgraphs K / B P .

) T jeo
full connection
k() subsampling
Problem: Standard filters cannot be used to filter graph data. How to perform convolutions |
convolutions
on graphs?
— Use graphs as filters and graph kernels as activation functions
Graph kernels: Models:
e Symmetric positive semidefinite functions on the set of graphs § Two single channel models:
e For any graph kernel kK : G X G — R e KCNN SP employs the shortest path kernel  [Borgwardt and Kriegel, ICDM ’'05]
o There exists a map ¢ : § — H into a Hilbert space H e KCNN WL employs the Weisfeiler-Lehman subtree kernel ~ [Shervashidze et al., JMLR
5 It holds that k(G, G') = (¢(G), ¢(G'))y for all G, G' € G '09]

Updating graph filters during backpropagation is challenging A model with two channels:
— Use graph kernels to normalize subgraphs (i.e., transform them to vectors) e KCNN SP+WL employs both kernels as different channels

IV. Graph Classification Results

Real-world Datasets Synthetic Dataset
DATASET .. : : : C e ..
NErion ENZYMES NCI1 PROTEINS  PTC-MR D&D Constructed to empirically verify that KCNN can identify the significant subgraph patterns inside a
SP 40.10 (4 1.50) 73.00 (£ 0.51) 75.07 (+ 0.54) 58.24 (4 2.44) > 3 DAYS graph: o
GR 26.61 (+ 0.99) 62.28 (£ 0.29) 71.67 (+ 0.55) 57.26 (£ 1.41) 78.45 (+ 0.26) e Step 1: generate an Erdos-Rényi graph
RW 24.16 (£ 1.64) > 3 DAYS  74.22 (£ 0.42) 57.85 (+ 1.30) > 3 DAYS - number of vertices sampled from {1007 101, . .. 7200}
WL 53.15 (£ 1.14) 80.13 (£ 0.50) 72.92 (+ 0.56) 56.97 (+ 2.01) 77.95 (+ 0.70) '~ edee probability 0.1
DEEP KERNELS 53.43 (+ 0.91) 80.31 (+ 0.46) 75.68 (+ 0.54) 60.08 (+ 2.55) NA 8¢ P y L
PSCN k = 10 NA 76.34 (+ 1.68) 75.00 (+ 2.51) 62.29 (+ 5.68) 76.27 (+ 2.64) e Step 2: generate randomly either a 10-clique (class —1) or a 10-star graph (class 1)
KCNN 5P 46.35 (£ 0.39) 75.70 (£ 0.31) 74.27 (+ 0.22) 62.94 (& 1.69) 76.63 (& 0.09) e Step 3: connect pairs of vertices of the two graphs with probability 0.1
KCNN WL 43.08 (4 0.68) 75.83 (4 0.25) 75.76 (+ 0.28) 61.52 (+ 1.41) 75.80 (£ 0.07)
KCNN SP + WL 48.12 (+ 0.23) 77.21 (£ 0.22) 73.79 (£ 0.29) 62.05 (+ 1.41) 78.83 (+ 0.29)
DATASET
S
DATASET IMDB IMDB REDDIT REDDIT COLLAR METHOD YNTHETIC
METHOD BINARY MULTI BINARY MULTI-5K Sp -5 47
GR 65.87 (4 0.98) 43.89 (£ 0.38) 77.34 (£ 0.18) 41.01 (+ 0.17) 72.84 (+ 0.28) CR 69 .34
DEep GR 66.96 (+ 0.56) 44.55 (+ 0.52) 78.04 (£ 0.39) 41.27 (+ 0.18) 73.09 (+ 0.25) WL 65 38
PSCN k = 10 71.00 (£ 2.29) 45.23 (+ 2.84) 86.30 (+ 1.58) 49.10 (+ 0.70) 72.60 (+ 2.15) KONN SP 0820
KCNN SP 69.60 (+ 0.44) 45.99 (+ 0.23) 77.23 (£ 0.15) 44.86 (+ 0.24) 70.78 (+ 0.12) KCNN WL 97 925
KCNN WL 70.46 (+ 0.45) 46.44 (+ 0.24) 81.85 (+ 0.12) 50.04 (+ 0.19) 74.93 (+ 0.14) KCNN SP+WI 98.40
KCNN SP + WL |71.45 (+ 0.15) 47.46 (+ 0.21) 78.35 (£ 0.11) 44.63 (£ 0.18) 74.12 (£ 0.17) 10-fold cross validation average classification accuracy of the proposed models and the baselines on the synthetic dataset.
10-fold cross validation average classification accuracy (4 standard deviation) of the proposed models and the
baselines. Best performance per dataset in bold, among the variants of Kernel CNN underlined. TR R R R R R R R R R, -
e All three variants achieved accuracies greater than 97% '
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" . ® Conversely, graph kernels failed to discriminate between the two categories :
e On 7/10 datasets, the proposed models outperformed the baselines g RSSO p e e e B e el s e e e C i =
e The multi-channel architecture (KCNN SP + WL) led to better results on 5/10
datasets Implementation available at: https://github.com/giannisnik/cnn-graph-classification
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