MPRI C.2.3 - Concurrency

Probabilistic models and applications Lecture 3

Kostas Chatzikokolakis

Jan 17, 2014

Outline of the lectures

- o Dec 13
- o Dec 20
- o Jan 10
- o Jan 17
- o Jan 24

Outline of the lectures

- The need for randomization
- Probabilistic automata
- Probabilistic bisimulation
- Probabilistic calculi
- Testing equivalence
- Introduction to probabilistic model checking and PRISM
- Metrics for probabilistic processes
- Verification of anonymity protocols: Dining Cryptographers, Crowds

Questions from the last lecture

Question 1:

- $\cdot P +_{p} Q \sqsubseteq_{\mathbf{may}} \tau . P + \tau . Q$
- $\cdot \tau.P + \tau.Q \sqsubseteq_{\mathbf{must}} P +_{p} Q$

Questions from the last lecture

Question 2: which of the following hold?

$$\circ$$
 $A\varphi \Leftarrow \mathcal{P}_{>\lambda}\varphi$?

$$\circ A\varphi \Rightarrow \mathcal{P}_{\geq \lambda}\varphi$$
?

$$\circ E\varphi \Leftarrow \mathcal{P}_{\geq \lambda}\varphi$$
?

$$\circ E\varphi \Rightarrow \mathcal{P}_{>\lambda}\varphi$$
?

Questions from the last lecture

Question 3:

- $\cdot \ \Diamond \varphi \equiv \mathsf{true} U \varphi$
- $\cdot \Box \varphi \equiv \neg \Diamond \neg \varphi$
- $\cdot Pr_s^+ \neg \psi = 1 Pr_s^- \psi$
- $\cdot Pr_s^- \neg \psi = 1 Pr_s^+ \psi$

where the semantics of path formulas are extended with:

$$s, s_1, \ldots \models \neg \psi \text{ iff } s, s_1, \ldots \not\models \psi$$

Probabilistic bisimulation

A relation $\mathcal{R} \subseteq S \times S$ is a *strong probabilistic bisimulation* iff for all $s_1, s_2 \in \mathcal{R}$ and for all $a \in A$

- \circ if $s_1 \stackrel{a}{\longrightarrow} \mu_1$ then $\exists \mu_2$ such that $s_2 \stackrel{a}{\longrightarrow} \mu_2$ and $\mu_1 \mathcal{R} \mu_2$,
- \circ if $s_2 \stackrel{a}{\longrightarrow} \mu_2$ then $\exists \mu_1$ such that $s_1 \stackrel{a}{\longrightarrow} \mu_1$ and $\mu_1 \mathcal{R} \mu_2$.

We write $s_1 \sim s_2$ if there is a strong bisimulation that relates them.

Probabilistic bisimulation

Transitions with different probabilities are allowed, as long as we go to equivalent states.

Probabilistic bisimulation

What about transitions to non-equivalent states?

We can argue that for p close to 0.5, the processes are "close".

Pseudometrics

$$m: S \times S \rightarrow [0, \infty)$$
 s.t.

- m(s,s) = 0
- ightharpoonup m(s,t) = m(t,s)
- $m(s_1, s_3) \leq m(s_1, s_2) + m(s_2, s_3)$

Goal: find a pseudometric m such that $m(s, t) = 0 \Leftrightarrow s \sim t$

Such a pseudometric is a metric on S/\sim

Metrics on probability distributions

- ▶ *m*: metric on *S*
- ▶ Goal: create metric \hat{m} on Disc(S)
- ▶ $f: S \to \mathbb{R}$ is 1-Lipschitz wrt m iff

$$|f(s) - f(s')| \le m(s, s') \quad \forall s, s' \in S$$

- $f(\mu) = \sum_s \mu(s) f(s)$
- Kantorovich metric:

$$\hat{m}(\mu, \mu') = \sup\{|f(\mu) - f(\mu')| : f \text{ is 1-Lip wrt } m\}$$

Metrics on probability distributions

Kantorovich-Rubinstein theorem:

▶ Write $M(\mu, \mu')$ for the joint distributions $\alpha \in Disc(S \times S)$ with marginals μ, μ' , i.e.

$$\alpha(s, S) = \mu(s)$$
 $\alpha(S, t) = \mu'(t)$

► Then:

$$\hat{m}(\mu, \mu') = \inf\{\sum_{s,t} \alpha(s,t) m(s,t) \mid \alpha \in M(\mu, \mu')\}$$

Metrics on probability distributions

 $\hat{m}(\mu, \mu')$ can be computed as the solution to the following Linear program:

- ▶ Variables: $\alpha_{s,t}$, s, $t \in S$
- ightharpoonup minimize $\sum_{s,t} \alpha_{s,t} m(s,t)$
- subject to:

$$\sum_{t} \alpha_{s,t} = \mu(s) \qquad \forall s \in S$$

$$\sum_{s} \alpha_{s,t} = \mu'(t) \qquad \forall t \in S$$

$$\alpha_{s,t} \ge 0 \qquad \forall s, t \in S$$

Complete Lattices

- Partially ordered set (L, ≤) (reflexivity, antisymmetry, transitivity)
- ▶ All subsets of $A \subseteq L$ have a supremum $\bigvee A$ and an infimum $\bigwedge A$
- Examples:
 - ▶ 2^S with \subseteq
 - ▶ [0,1] with \leq
 - Equivalence relations ordered by refinement

Question: what are the \bigvee , \bigwedge in each case?

Complete Lattices

- \blacktriangleright \mathcal{M} : the set of all 1-bounded pseudometrics on S
- ▶ Ordered by: $m \le m'$ iff $m(s, t) \ge m'(s, t)$ for all $s, t \in S$
- ▶ (\mathcal{M}, \leq) is a complete lattice
- ▶ What are \top , \bot , \bigvee , \bigwedge ?

Complete Lattices

Knaster-Tarski theorem:

- ▶ (L, \leq) is a complete Lattice
- ▶ f is monotone: $a \le b$ implies $f(a) \le f(b)$
- ► Then f has a maximum and a minimum fixpoint (in fact the fixpoints form a complete Lattice under ≤)

General idea:

- ▶ Start from $m = \top$, i.e. everything is equivalent, which means distance 0 (similarly to the algorithm for computing bisimulation)
- ▶ The goal is that whenever m(s,t) = a and $s \xrightarrow{a} \mu$, t should match it with a transition $t \xrightarrow{b} \mu'$ such that $\hat{m}(\mu,\mu') \leq a$
- ▶ $F: \mathcal{M} \to \mathcal{M}$ updates m so that the above property holds
- ▶ Our metric is the maximum fixpoint of *F*

Hausdorff distance

- \triangleright Extend *m* from *S* to 2^S
- $\qquad \qquad \mathsf{m}(A,B) = \mathsf{max}\{\mathsf{sup}_{s \in A} \mathsf{inf}_{t \in B} \, m(s,t), \mathsf{sup}_{t \in B} \, \mathsf{inf}_{s \in A} \, m(s,t)\}$

- ▶ Define $F: \mathcal{M} \to \mathcal{M}$ as $F(m)(s, t) < \epsilon$ iff
 - $\forall s \xrightarrow{a} \mu \; \exists t \xrightarrow{a} \mu' : \hat{m}(\mu, \mu') < \epsilon$
 - $\forall t \xrightarrow{a} \mu \exists s \xrightarrow{a} \mu' : \hat{m}(\mu, \mu') < \epsilon$
- ► Then

$$F(m)(s,t) = \max_{a} \hat{m}(s \xrightarrow{a}, t \xrightarrow{a})$$

- ▶ F is monotone, i.e. $m \le m' \Rightarrow F(m) \le F(m')$
- ▶ Hence, it has a maximum fixpoint
- ▶ We take *m* as the maximum fixpoint of *F*
- ▶ It can be computed by iterating *F* starting from ⊤

Lemma

R: equivalence relation on S, m: metric on S s.t. $m(s,t)=0 \Leftrightarrow sRt$. Then

$$\hat{m}(\mu, \mu') \Leftrightarrow \mu R \mu'$$

Theorem

$$m \sim t \text{ iff } m(s, t) = 0$$