MPRI C.2.3 - Concurrency

Probabilistic models and applications
Lecture 3

Kostas Chatzikokolakis

Jan 10, 2012

Qutline of the lectures

o Dec 13

Dec 20

o

Jan 10

o

Jan 17

o

o Jan 24

Qutline of the lectures

o The need for randomization
o Probabilistic automata

Probabilistic bisimulation

o

o Probabilistic calculi

Encoding of the pi-calculus into the asynchronous fragment

o

o Introduction to probabilistic model checking and PRISM

o Verification of anonymity protocols: Dining Cryptographers,
Crowds

Exercises from the last lecture

Exercise 1: Show that probabilistic bisimulation is a generalization
of traditional bisimulation

Puzzle from the last lecture

| select two real numbers in some arbitrary way

(o}

o

| put them in two envelopes, you select one of them (in any
way you want)

You see the number and you have 2 options: keep it, or
exchange it with the other envelope

[e)

Your goal is to select the bigger number

(e}

o Is there any strategy that guarantees winning this game with
pb higher than 1/27

Outline

Encoding of m-calculus in the asynchronous fragment

Probabilistic asynchronous m-calculus

The input guarded choice is probabilistic.

The prefixes

a = z(y) |7 input | silent action
The processes

P =0 inaction
| Zipii. P probabilistic choice
| Ty output
| P|P parallel
| (vz)P new name
| 1P replication

where X;p; = 1

Expressive power of m, wrt

Clearly 7 is at least as expressive as T,

[e)

The latter is practically a subset of the former:
Xy (in m,) can be seen as Xy.0 (in)

o

What about the opposite direction? We need to encode:

o

- the output prefix

- the choice operator
Three types of choice: internal, separate, mixed

o

In general, in order to compare the expressive power of two
languages, we look for the existence/non existence of an
encoding with certain properties among these languages

o What is a good notion of encoding to be used as basis to
measure the relative expressive power?

A “good” notion of encoding

In general we would be happy with anenceding [[-] : # — w4 being:

- Compositional wrt the operators [P op Q] = CopllPI, [Q]]

- (Preferably) homomorphic wrt | (distribution-preserving) [P | Q] = [P]| [Q]
- Preserving some kind of semantics. Here there are several possibilities

* Preserving observables Qbs(P) = Obs([P])

+ Preserving equivalence
[P] equiv [Q] = P equiv’ Q@ (soundness)
[P] equiv [Q] <« P equiv' Q (completeness)

[P] equiv [Q] <« P equiv’ @ (full abstraction, correctness)

Testing semantics

o A test O is a process with a distinct success action w

o A process P may pass O iff there is a computation of [P|O]
where w is enabled B
eg. a.b+ a may pass a.b.w

o A process P must pass O iff all computations of [P|O] reach a
state where w is enabled
eg. a.b+ a must pass a.w

Testing semantics

o

P Emay Q Iff VO : P may O = Q may O

o

P Cmust Q iff VO : P must O = Q must O

o

Exercise: are Cinay, Emust Pre-congruences for CCS, 77

o

We would like the encodings to satisfy:
- P may pass O iff [P] may pass [O]
- P must pass O iff [P] must pass [O]

The encoding of Boudol

Encodes the output prefix (but without choice). Idea: we proceed
only when it is sure that the communication can take place, by
using a sort of rendez-vous protocol.

o [4.P] = (v2)(&= | (2(w) By | [P1))) [-] is homomorphic for all the other operators
o [2().Ql = 2(2).(vw) (Zw | w(y).1QD) e [0] =0

o [PlQI=[P]|IC]

o [(va)P] = (va)[P]

e [P] =![P]

The encoding satisfies P may pass O iff [P] may pass [O]

Encoding of Honda-Tokoro

A more compact encoding, it takes two steps instead than three.
The idea is to let the receiver take the initiative.

_ _ [-] is homomorphic for all the other operators
o [zy.P] = 2(2).Czy | [P])

o [().Q1 = () (@2 | =(v).1QD) * lol=0

(PlQl=10r111Q]

[(vz)P] = (vz)[P]

['P]=![P]

The encoding satisfies P may pass O iff [P] may pass [O]

Encoding of the output prefix

o The encodings of Boudol and Honda-Tokoro do not satisfy
P must pass O iff [P] must pass [O]

This is a problem of fairness

o

must testing is preserved if we restrict to fair computations only

o

o The encodings preserve a version of testing called “fair must
testing”

Encoding of internal choice

The blind choice (or internal choice) construct P @) has the following
semantics

PpQ - P POpQ -5 Q

Inn this operator can be represented by the construct 7.P 4+ 7.QQ

Exercise: Let 1 be m where the + operator can only occur as a blind choice.

Giveanencoding [-] : 7 — m, such that VP [P] ~ P

Encoding of input-guarded choice
Input-guarded choice is a construct of the form:

> wi(yi)-Pi
iel
Let ' be T where + can only occur in an input-guarded choice. The

following encoding of n' into i, was defined by Nestmann and Pierce [1996

[>_ =Pl = (@D(@true| [] Branchy;)
el iel
Branchy, =

zi(z) L(w).(if w

then (7 false | [P;])

else (€ false | T;z;))
Nestmann and Pierce proved that his encoding is fully abstract wrt a
divergences.

notion of equivalence called coupled bisimulation, and it does not introduce

The m-calculus hierarchy

ccs,,

e

ic
Nestmann-F’k

. ¢ asynchronous n

T
T

A m, ¢+ asynchronous n + input-guarded choic
T, - asynchronous n + output prefix
7, asynchronous n + separate choice

a; ¢ 7t with internal mobility (Sangiorgi)

ccs,, : value-passing ccs

s
\ — : Language inclusion
—_—

. Encodin,
Nestmann Ty 9

+’ : Non-encoding
%:lda—Tokoro
Boudol

L9

Ty

The separation between 7 and s

This separation result is based on the fact that it is not possible
to solve the symmetric leader election problem in s, while it is
possible in T

Leader Election Problem (LEP): All the nodes of a distributed
system must agree on who is the leader. This means that in every
possible computation, all the nodes must eventually output the
name of the leader on a special channel

o No deadlock
o No livelock

o No conflict (only one leader must be elected, every process
outputs its name and only its name)

The separation between 7 and s

Theorem
It is impossible to write in s a symmetric (having an
automorphism with a single orbit) solution to the LEP.

Crucial point: Diamond lemma: when a node P; performs an
action, any other node P; can perform the same action returning
to a symmetric state. (Note: this does not hold in)

Corollary: in a symmetric s network trying to solve the LEP,
there is at least one diverging computation.

The separation between 7 and s

Remark: In x(inn with mixed choice) we can easily write a
symmetric solution for the LEP in a network of two nodes:

-

X

Po=z.ouf 0+ g.out 1

P = youl 1 + #.0uf 0

The separation between 7 and s

Corollary: there does not exists an encoding of 7 in s which is
homomorphic wrt | and renaming, and preserves the observables
on every computation.

Proof (scketch): An encoding homomorphic wrt | and renaming
transforms a symmetric solutions to the LEP in the source
language into a symmetric solution to the LEP in the target
language.

Outline

Encoding of m-calculus in the probabilistic asynchronous 7

Probabilistic testing semantics

o

Test O: same as before (but can be probabilistic)

sexec([P|O]) the set of successful executions of [P|O] (those
containing w)

(e}

Note: sexec([P|O]) can be obtained as a countable union of
disjoint cones

o

to(sexec([P|O])) the probability of success under scheduler o

[e)

Probabilistic testing semantics

o P may pass O iff 30 us(sexec([P|O])) > 0
o P must pass O iff Vo: pgs(sexec([P|O])) =1

o Emay, Emust: Same as before
+ PEmay QIff YO : Pmay O = Q may O
- PChust Q Iff VO : P must O = Q must O

Probabilistic testing semantics

Exercises:

o Give alternative definitions that consider the exact probabilities
of success. Are they equivalent to the ones of the previous

slide?
o Show that for all probabilistic CCS processes P, Q:
*P+p QCmay TP+ 7.Q
TP+ T.Q Emust P +p Q

Encoding of 7 into m,, (high level idea)

o Similarly to the encoding of Nestmann-Pierce, the branches of
the choice are put in parallel together with a lock

o An input process will try to acquire both its own lock and its
partner’s lock

o If a lock is not available it aborts and tries again

o Crucial point: the locks are tried in random order, similarly to
the solution of the Dining Philosophers problem

o This ensures that divergences will have probability 0

Encoding of 7 into m,, (high level idea)

o This encoding satisfies:
- P may pass O iff [P] may pass [O]
- P must pass O iff [P] must pass [O]

o under a weak assumption on the schedulers (weaker than
fairness)

o For details: C. Palamidessi, M. O. Herescu. A randomized
encoding of the -calculus with mixed choice. Theoretical
Computer Science. 335(2-3): 373-404, 2005.

Outline

Non-deterministic transition systems and CTL

Model Checking

Techniques to automatically verify systems (software,
hardware, protocols, ...) using automata and temporal logics

o

o

We give a formal model M of the system (typically using some
kind of automaton)

We give a formal property ¢ to verify (typically a formula in
some temporal logic)

o

o An algorithm decides whether M satisfies the formula ¢,
written

ME

Non-deterministic Transition Systems

»8_

A tuple (S, sp, —) where
o S is a finite set of states
o Sp € S is the initial state

o —-C S x S is a transition relation.
We write s; — s, when there (s, s) €—

Non-deterministic Transition Systems

Example: a coffee machine

other

We want to verify properties like “the machine always goes back
to its initial state”.

Computation Tree Logic (CTL)

o Formulas are evaluated on a transition system M

o On each state s we assign a set L(s) of atomic propositions.
These are the propositions that we consider to be true on this

state.

o Two types of formulas:
- state formulas are evaluated on states

- path formulas are evaluated on infinite sequences of states

Computation Tree Logic (CTL)

Syntax:

p=p|loeNp | eV | o | AY | Ey state formulas
Yu=op | Op | Op | Uy’ path formulas

Path quantifiers:

Ay for all paths starting from this state 4 holds

Ev there exists a path starting from this state s.t. 9 holds
Temporal operators:

op in the next state ¢ holds (Xy)

(%) (always) in all states ¢ holds (Ge)

Qv (eventually) in some future state ¢ holds (F)

pUp

" holds in all states until a state where ¢’ holds

Computation Tree Logic (CTL)

finally p globally p next p P until g

AlpUq]

@\m\m@\

E[pUqg]

	Encoding of -calculus in the asynchronous fragment
	Encoding of -calculus in the probabilistic asynchronous
	Non-deterministic transition systems and CTL

