
MPRI C.2.3 - Concurrency

Probabilistic models and applications

Lecture 3

Kostas Chatzikokolakis

Jan 10, 2012

Outline of the lectures

◦ Dec 13

◦ Dec 20

◦ Jan 10

◦ Jan 17

◦ Jan 24

Outline of the lectures

◦ The need for randomization

◦ Probabilistic automata

◦ Probabilistic bisimulation

◦ Probabilistic calculi

◦ Encoding of the pi-calculus into the asynchronous fragment

◦ Introduction to probabilistic model checking and PRISM

◦ Verification of anonymity protocols: Dining Cryptographers,

Crowds

Exercises from the last lecture

Exercise 1: Show that probabilistic bisimulation is a generalization

of traditional bisimulation

Puzzle from the last lecture

◦ I select two real numbers in some arbitrary way

◦ I put them in two envelopes, you select one of them (in any

way you want)

◦ You see the number and you have 2 options: keep it, or

exchange it with the other envelope

◦ Your goal is to select the bigger number

◦ Is there any strategy that guarantees winning this game with

pb higher than 1/2?

Outline

Encoding of π-calculus in the asynchronous fragment

Encoding of π-calculus in the probabilistic asynchronous π

Non-deterministic transition systems and CTL

Probabilistic asynchronous π-calculus

The input guarded choice is probabilistic.

Expressive power of πa wrt π

◦ Clearly π is at least as expressive as πa

◦ The latter is practically a subset of the former:

x̄y (in πa) can be seen as x̄y .0 (in π)

◦ What about the opposite direction? We need to encode:

· the output prefix

· the choice operator

Three types of choice: internal, separate, mixed

◦ In general, in order to compare the expressive power of two

languages, we look for the existence/non existence of an

encoding with certain properties among these languages

◦ What is a good notion of encoding to be used as basis to

measure the relative expressive power?

A “good” notion of encoding

Testing semantics

◦ A test O is a process with a distinct success action ω

◦ A process P may pass O iff there is a computation of [P|O]
where ω is enabled

eg. a.b + a may pass ā.b̄.ω

◦ A process P must pass O iff all computations of [P|O] reach a

state where ω is enabled

eg. a.b + a must pass ā.ω

Testing semantics

◦ P vmay Q iff ∀O : P may O ⇒ Q may O

◦ P vmust Q iff ∀O : P must O ⇒ Q must O

◦ Exercise: are vmay,vmust pre-congruences for CCS, π?

◦ We would like the encodings to satisfy:

· P may pass O iff JPK may pass JOK

· P must pass O iff JPK must pass JOK

The encoding of Boudol

Encodes the output prefix (but without choice). Idea: we proceed

only when it is sure that the communication can take place, by

using a sort of rendez-vous protocol.

The encoding satisfies P may pass O iff JPK may pass JOK

Encoding of Honda-Tokoro

A more compact encoding, it takes two steps instead than three.

The idea is to let the receiver take the initiative.

The encoding satisfies P may pass O iff JPK may pass JOK

Encoding of the output prefix

◦ The encodings of Boudol and Honda-Tokoro do not satisfy

P must pass O iff JPK must pass JOK

◦ This is a problem of fairness

◦ must testing is preserved if we restrict to fair computations only

◦ The encodings preserve a version of testing called “fair must

testing”

Encoding of internal choice

Encoding of input-guarded choice

The π-calculus hierarchy

The separation between π and πs

This separation result is based on the fact that it is not possible

to solve the symmetric leader election problem in πs , while it is

possible in π

Leader Election Problem (LEP): All the nodes of a distributed

system must agree on who is the leader. This means that in every

possible computation, all the nodes must eventually output the

name of the leader on a special channel

◦ No deadlock

◦ No livelock

◦ No conflict (only one leader must be elected, every process

outputs its name and only its name)

The separation between π and πs

Theorem
It is impossible to write in πs a symmetric (having an

automorphism with a single orbit) solution to the LEP.

Crucial point: Diamond lemma: when a node Pi performs an

action, any other node Pj can perform the same action returning

to a symmetric state. (Note: this does not hold in π)

Corollary: in a symmetric πs network trying to solve the LEP,

there is at least one diverging computation.

The separation between π and πs

The separation between π and πs

Corollary: there does not exists an encoding of π in πs which is

homomorphic wrt | and renaming, and preserves the observables

on every computation.

Proof (scketch): An encoding homomorphic wrt | and renaming

transforms a symmetric solutions to the LEP in the source

language into a symmetric solution to the LEP in the target

language.

Outline

Encoding of π-calculus in the asynchronous fragment

Encoding of π-calculus in the probabilistic asynchronous π

Non-deterministic transition systems and CTL

Probabilistic testing semantics

◦ Test O: same as before (but can be probabilistic)

◦ sexec([P|O]) the set of successful executions of [P|O] (those

containing ω)

◦ Note: sexec([P|O]) can be obtained as a countable union of

disjoint cones

◦ µσ(sexec([P|O])) the probability of success under scheduler σ

Probabilistic testing semantics

◦ P may pass O iff ∃σ: µσ(sexec([P|O])) > 0

◦ P must pass O iff ∀σ: µσ(sexec([P|O])) = 1

◦ vmay,vmust: same as before

· P vmay Q iff ∀O : P may O ⇒ Q may O

· P vmust Q iff ∀O : P must O ⇒ Q must O

Probabilistic testing semantics

Exercises:

◦ Give alternative definitions that consider the exact probabilities

of success. Are they equivalent to the ones of the previous

slide?

◦ Show that for all probabilistic CCS processes P,Q:

· P +p Q vmay τ.P + τ.Q

· τ.P + τ.Q vmust P +p Q

Encoding of π into πap (high level idea)

◦ Similarly to the encoding of Nestmann-Pierce, the branches of

the choice are put in parallel together with a lock

◦ An input process will try to acquire both its own lock and its

partner’s lock

◦ If a lock is not available it aborts and tries again

◦ Crucial point: the locks are tried in random order, similarly to

the solution of the Dining Philosophers problem

◦ This ensures that divergences will have probability 0

Encoding of π into πap (high level idea)

◦ This encoding satisfies:

· P may pass O iff JPK may pass JOK

· P must pass O iff JPK must pass JOK

◦ under a weak assumption on the schedulers (weaker than

fairness)

◦ For details: C. Palamidessi, M. O. Herescu. A randomized

encoding of the -calculus with mixed choice. Theoretical

Computer Science. 335(2-3): 373-404, 2005.

Outline

Encoding of π-calculus in the asynchronous fragment

Encoding of π-calculus in the probabilistic asynchronous π

Non-deterministic transition systems and CTL

Model Checking

◦ Techniques to automatically verify systems (software,

hardware, protocols, . . .) using automata and temporal logics

◦ We give a formal model M of the system (typically using some

kind of automaton)

◦ We give a formal property ϕ to verify (typically a formula in

some temporal logic)

◦ An algorithm decides whether M satisfies the formula ϕ,

written

M |= ϕ

Non-deterministic Transition Systems

a b c

d

A tuple (S , s0,→) where

◦ S is a finite set of states

◦ s0 ∈ S is the initial state

◦ →⊆ S × S is a transition relation.

We write s1 → s2 when there (s1, s2) ∈→

Non-deterministic Transition Systems

Example: a coffee machine

1

2

3

4

5

coffee

tea

e2

other

e1

other

We want to verify properties like “the machine always goes back

to its initial state”.

Computation Tree Logic (CTL)

◦ Formulas are evaluated on a transition system M

◦ On each state s we assign a set L(s) of atomic propositions.

These are the propositions that we consider to be true on this

state.

◦ Two types of formulas:

· state formulas are evaluated on states

· path formulas are evaluated on infinite sequences of states

Computation Tree Logic (CTL)

Syntax:

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Aψ | Eψ state formulas

ψ ::= ◦ϕ | �ϕ | ♦ϕ | ϕUϕ′ path formulas

Path quantifiers:

Aψ for all paths starting from this state ψ holds

Eψ there exists a path starting from this state s.t. ψ holds

Temporal operators:

◦ϕ in the next state ϕ holds (Xϕ)

�ϕ (always) in all states ϕ holds (Gϕ)

♦ϕ (eventually) in some future state ϕ holds (Fϕ)

ϕUϕ′ ϕ holds in all states until a state where ϕ′ holds

Computation Tree Logic (CTL)

	Encoding of -calculus in the asynchronous fragment
	Encoding of -calculus in the probabilistic asynchronous
	Non-deterministic transition systems and CTL

