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Outline of the lectures

◦ The need for randomization

◦ Probabilistic automata

◦ Probabilistic bisimulation

◦ Probabilistic asynchronous pi-calculus

◦ Encoding of the pi-calculus into the asynchronous fragment

◦ Introduction to probabilistic model checking and PRISM

◦ Verification of anonymity protocols: Dining Cryptographers,

Crowds



Outline of the lectures

◦ Dec 13

◦ Dec 20

◦ Jan 10

◦ Jan 17

◦ Jan 24



Motivation

◦ Expressiveness: some problems can only be solved through

randomization

· Dining Philosophers

· Leader election

· Consensus

· Anonymity

◦ Modeling: describe complex phenomena for which we only have

an estimation

· Message loss

· Failures

· User behaviour



The dining philosophers problem

· Each philosopher needs two forks

· Each fork is shared by 2 philosophers

· Each philosopher can access one fork at a time



The dining philosophers problem

◦ Goal: an algorithm that guarantees progress:

· Some philosopher will eventually eat

(assuming someone is hungry)

· No deadlocks or livelocks

◦ with the following constraints:

· fully distributed: no central control or memory

· works for all (fair) schedulers (deciding the order of

execution)

· symmetry: the philosophers run the same code, the initial

state is the same



No solution exists satisfying the constraints

Proof (sketch) [Lehmann and Rabin, ’81]

· Construct an infinite computation without progress

· Let P1 be the first philosopher who makes a move

· When P1 is ready to make a move, the scheduler stops him

and runs P2

· Since the state is symmetric, P2 will decide to make a

symmetric move

· Schedule P3, . . . ,Pn

· Make all moves, the system goes to a new symmetric state

· Eating means that some philosopher will have 2 forks, while

some other will have zero. This is impossible without breaking

the symmetry



The dining philosophers problem

Solutions violating the constraints:

· centralized control

· no symmetry



Randomized algorithm of Lehmann and Rabin



Randomized algorithm of Lehmann and Rabin

◦ Assuming a fair scheduler, the randomized algorithm satisfies

progress with probability 1

◦ Repeated random choices break the symmetry with prob. 1

◦ Infinite runs without progress are still possible but have

probability 0



Exercises

◦ Exercise 1: is it possible to have an algorithm that does not

depend on scheduler fairness?

◦ Exercise 2: Give a solution of the dining philosophers problem

(satisfying all constraints) in the π-calculus. Hint: use mixed

choice



The dining cryptographers protocol

◦ Goal: find whether a

cryptographer pays without

revealing who

◦ Coins are fair and only visible to

adjacent cryptographers

◦ Announce agree/disagree, the

payer says the opposite

◦ A cryptographer is the payer ⇔
the number of disagrees is odd



The dining cryptographers protocol

Sending messages:

◦ Payer: wants to send a message

m

◦ Each user outputs the sum of his

coins

◦ The sender also adds m

◦ The sum (mod 2) of all

announcements is

(c1+c2) + (c2+c3) + (c1+c3+m) = m



Anonymity of the DC protocol (intuition)

1. Attacker is an outside

observer

◦ Assume that crypt2 is the payer

◦ This is impossible given the

previous coins

◦ BUT: there is a coin outcome

that makes the same

announcement valid!

◦ The attacker cannot distinguish

the 2 cases

◦ The two coin outcomes have the

same probability



Anonymity of the DC protocol (intuition)

2. Attacker is cryptographer 3

◦ Now the attacker knows the 2

coins

◦ But he is still confused

◦ The coin that makes the

announcement valid under crypt2

is not visible to crypt3



Generalized protocol

◦ Any number of users, arbitrary

connection graph

◦ Vertices are cryptographers

◦ An edge is a coin shared between

two cryptographers

◦ Each cryptographer announces the

sum of its adjacent coins, the sender

adds m

◦ sum of all announcements = m

(each coin is added twice)



Anonymity of the generalized protocol

1. Attacker is an outside observer

◦ For any graph we can find a coin

outcome that makes any

announcement valid under any payer

◦ Strong anonymity is guaranteed



Anonymity of the generalized protocol

2. Some cryptographers are corrupted

◦ A cryptographer might be

“surrounded” by the attacker

◦ Anonymity cannot hold

◦ We remove the corrupted vertices

and their edges

◦ Strong anonymity holds inside each

connected component



DC: biased coins

◦ Is anonymity satisfied?

◦ Extreme case: totally biased

coins

◦ From the coins we can find who

said the opposite (total loss of

anonymity)

◦ Less extreme: pb(heads) = 99%

◦ It is still more probable that

crypt2 is the payer

◦ Are all cases the same?

what if pb(heads) = 51%



Probabilistic automata

◦ Nondeterminism

· Scheduling within parallel composition

· Unknown behavior of the environment

· Underspecification

◦ Probability

· Environment may be stochastic

· Processes may flip coins



Probabilistic automata

A = (S , q,A,D)

◦ S : set of states (countable)

◦ q ∈ S : initial state (or distribution on states)

◦ A: set of actions

◦ D ⊆ S × A×Disc(S): transition relation

◦ we write s
a−→ µ for (s, a, µ) ∈ D



Probabilistic automata

◦ Special case: Markov Decision Processes

D : (S × A)→ Disc(S)

◦ More abstract model: general probabilistic automata

D ⊆ S ×Disc(A× S)



Example



Example



Example

What is the probability of beeping?



Example



Example



Measure theory

◦ Ω: sample set

◦ Sigma-algebra

· F ⊆ 2Ω

· Ω ∈ F

· Closed under complement

· Closed under countable unions/intersections

◦ Probability measure on (Ω,F )

· µ : F → [0, 1]

· µ(∪IXi) =
∑
I µ(Xi)

for each countable collection {Xi}I of mutually disjoint sets

◦ Sigma algebra generated by some F ∗ ⊆ 2Ω

e.g. Borel algebra



Measure theory

Example: infinite coin tosses

◦ Ω = {h, t}∞
set of all infinite sequences of h, t

◦ What sigma-algebra can allow to define a probability measure

on this set?

◦ We want to be able to measure events such as “the first toss is

h”



Cones

Cone Cα

· set of executions with prefix α

· represents the fact that “α

occurs”

· F generated by the set of all

cones

Measure of a cone: product of

edges of α



Events expressible by cones

· Eventually action a occurs

· Union of cones where action a occurs once

· Action a occurs at least n times

· Union of cones where action a occurs n times

· Action a occurs at most n times

· Complement of “action a occurs at least n + 1 times

· Action a occurs exactly n times

· Intersection of the previous two events

· Action a occurs infinitely many times

· Intersection of “action a occurs at least n times” for all n

· Execution α occurs and nothing is scheduled after

· Cα intersected with the complement of all cones extending α
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