MPRI C.2.3 - Concurrency

Probabilistic models and applications Lecture 1

Kostas Chatzikokolakis

Dec 13, 2012

Outline of the lectures

- The need for randomization
- Probabilistic automata
- Probabilistic bisimulation
- Probabilistic asynchronous pi-calculus
- Encoding of the pi-calculus into the asynchronous fragment
- $_{\circ}\,$ Introduction to probabilistic model checking and PRISM
- Verification of anonymity protocols: Dining Cryptographers, Crowds

Outline of the lectures

- Dec 13
- Dec 20
- $_{\circ}$ Jan 10
- ∘ Jan 17
- Jan 24

Motivation

- Expressiveness: some problems can only be solved through randomization
 - · Dining Philosophers
 - · Leader election
 - · Consensus
 - · Anonymity
- Modeling: describe complex phenomena for which we only have an estimation
 - Message loss
 - Failures
 - User behaviour

The dining philosophers problem

- \cdot Each philosopher needs two forks
- \cdot Each fork is shared by 2 philosophers
- \cdot Each philosopher can access one fork at a time

The dining philosophers problem

- $\circ\,$ Goal: an algorithm that guarantees progress:
 - Some philosopher will eventually eat (assuming someone is hungry)
 - · No deadlocks or livelocks
- with the following constraints:
 - · fully distributed: no central control or memory
 - works for all (fair) schedulers (deciding the order of execution)
 - symmetry: the philosophers run the same code, the initial state is the same

No solution exists satisfying the constraints

Proof (sketch) [Lehmann and Rabin, '81]

- \cdot Construct an infinite computation without progress
- · Let P_1 be the first philosopher who makes a move
- \cdot When P_1 is ready to make a move, the scheduler stops him and runs P_2
- · Since the state is symmetric, P_2 will decide to make a symmetric move
- Schedule P_3, \ldots, P_n
- \cdot Make all moves, the system goes to a new symmetric state
- Eating means that some philosopher will have 2 forks, while some other will have zero. This is impossible without breaking the symmetry

The dining philosophers problem

Solutions violating the constraints:

- \cdot centralized control
- no symmetry

Randomized algorithm of Lehmann and Rabin

- 1. Think
- 2. randomly choose fork in {left,right} %commit
- 3. if taken(fork) then goto 3
- 4. else take(fork)
- 5. if taken(other(fork)) then {release(fork); goto 2}
- 6. else take(other(fork))
- 7. eat
- 8. release(other(fork))
- 9. release(fork)
- **10.** goto 1

Randomized algorithm of Lehmann and Rabin

- Assuming a fair scheduler, the randomized algorithm satisfies progress with probability 1
- $\circ\,$ Repeated random choices break the symmetry with prob. 1
- Infinite runs without progress are still possible but have probability 0

Exercises

- Exercise 1: is it possible to have an algorithm that does not depend on scheduler fairness?
- Exercise 2: Give a solution of the dining philosophers problem (satisfying all constraints) in the π -calculus. Hint: use mixed choice

The dining cryptographers protocol

- Goal: find whether a cryptographer pays without revealing who
- Coins are fair and only visible to adjacent cryptographers
- Announce agree/disagree, the payer says the opposite
- A cryptographer is the payer ⇔ the number of disagrees is odd

The dining cryptographers protocol

Sending messages:

- Payer: wants to send a message *m*
- Each user outputs the sum of his coins
- The sender also adds m
- The sum (mod 2) of all announcements is

$$(c_1+c_2) + (c_2+c_3) + (c_1+c_3+m) = m$$

Anonymity of the DC protocol (intuition)

- 1. Attacker is an outside observer
- Assume that crypt2 is the payer
- This is impossible given the previous coins
- BUT: there is a coin outcome that makes the same announcement valid!
- The attacker cannot distinguish the 2 cases
- The two coin outcomes have the same probability

Anonymity of the DC protocol (intuition)

- 2. Attacker is cryptographer 3
 - Now the attacker knows the 2 coins
 - But he is still confused
 - The coin that makes the announcement valid under crypt2 is not visible to crypt3

Generalized protocol

- Any number of users, arbitrary connection graph
- Vertices are cryptographers
- An edge is a coin shared between two cryptographers
- Each cryptographer announces the sum of its adjacent coins, the sender adds *m*
- sum of all announcements = m (each coin is added twice)

Anonymity of the generalized protocol

- 1. Attacker is an outside observer
- For any graph we can find a coin outcome that makes any announcement valid under any payer
- Strong anonymity is guaranteed

Anonymity of the generalized protocol

- 2. Some cryptographers are corrupted
- A cryptographer might be "surrounded" by the attacker
- Anonymity cannot hold
- We remove the corrupted vertices and their edges
- Strong anonymity holds inside each connected component

DC: biased coins

- o Is anonymity satisfied?
- Extreme case: totally biased coins
- From the coins we can find who said the opposite (total loss of anonymity)
- Less extreme: pb(heads) = 99%
- It is still more probable that *crypt2* is the payer
- Are all cases the same? what if *pb(heads)* = 51%

Probabilistic automata

- Nondeterminism
 - \cdot Scheduling within parallel composition
 - \cdot Unknown behavior of the environment
 - · Underspecification
- Probability
 - · Environment may be stochastic
 - · Processes may flip coins

Probabilistic automata

- A = (S, q, A, D)
- S: set of states (countable)
- $q \in S$: initial state (or distribution on states)
- A: set of actions
- $D \subseteq S \times A \times Disc(S)$: transition relation
- we write $s \xrightarrow{a} \mu$ for $(s, a, \mu) \in D$

- Special case: Markov Decision Processes $D: (S \times A) \rightarrow Disc(S)$
- More abstract model: general probabilistic automata $D \subseteq S \times Disc(A \times S)$

What is the probability of beeping?

Measure theory

- $\circ~\Omega$: sample set
- Sigma-algebra
 - $\cdot F \subseteq 2^{\Omega}$
 - $\cdot \ \Omega \in F$
 - \cdot Closed under complement
 - \cdot Closed under countable unions/intersections
- $_{\circ}$ Probability measure on (Ω, F)
 - $\cdot \ \mu : F
 ightarrow [0, 1]$
 - $\mu(\bigcup_I X_i) = \sum_I \mu(X_i)$ for each countable collection $\{X_i\}_I$ of mutually disjoint sets

∘ Sigma algebra generated by some $F^* \subseteq 2^{\Omega}$ e.g. Borel algebra

Measure theory

Example: infinite coin tosses

- $\Omega = \{h, t\}^{\infty}$ set of all infinite sequences of h, t
- What sigma-algebra can allow to define a probability measure on this set?
- $\circ\,$ We want to be able to measure events such as "the first toss is h "

Cones

Cone C_{α}

- \cdot set of executions with prefix α
- \cdot represents the fact that " α occurs"
- *F* generated by the set of all cones

Measure of a cone: product of edges of α

Events expressible by cones

- \cdot Eventually action a occurs
 - \cdot Union of cones where action a occurs once
- · Action a occurs at least n times
 - · Union of cones where action a occurs n times
- Action a occurs at most n times
 - · Complement of "action a occurs at least n + 1 times
- · Action a occurs exactly n times
 - \cdot Intersection of the previous two events
- · Action a occurs infinitely many times
 - · Intersection of "action a occurs at least n times" for all n
- \cdot Execution α occurs and nothing is scheduled after
 - $\cdot \ \ C_{\alpha}$ intersected with the complement of all cones extending α