
Reasoning About Higher-Order Relational Specifications

Yuting Wang
University of Minnesota, USA

yuting@cs.umn.edu

Kaustuv Chaudhuri
INRIA, France

kaustuv.chaudhuri@inria.fr

Andrew Gacek
Rockwell Collins, USA

andrew.gacek@gmail.com

Gopalan Nadathur
University of Minnesota, USA
gopalan@cs.umn.edu

ABSTRACT
The logic of hereditary Harrop formulas (HH) has proven
useful for specifying a wide range of formal systems that are
commonly presented via syntax-directed rules that make use
of contexts and side-conditions. The two-level logic approach,
as implemented in the Abella theorem prover, embeds the HH

specification logic within a rich reasoning logic that supports
inductive and co-inductive definitions, an equality predicate,
and generic quantification. Properties of the encoded systems
can then be proved through the embedding, with special
benefit being extracted from the transparent correspondence
between HH derivations and those in the encoded formal
systems. The versatility of HH relies on the free use of nested
implications, leading to dynamically changing assumption
sets in derivations. Realizing an induction principle in this
situation is nontrivial and the original Abella system uses
only a subset of HH for this reason. We develop a method
here for supporting inductive reasoning over all of HH. Our
approach relies on the ability to characterize dynamically
changing contexts through finite inductive definitions, and on
a modified encoding of backchaining for HH that allows these
finite characterizations to be used in inductive arguments.
We demonstrate the effectiveness of our approach through
examples of formal reasoning on specifications with nested
implications in an extended version of Abella.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Specifica-
tion Techniques; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic—Proof Theory

Keywords
formal specifications, meta-theoretic reasoning, higher-order
abstract syntax, induction over higher-order specifications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PPDP’13, September 16–18 2013, Madrid, Spain.
Copyright 2013 ACM 978-1-4503-2154-9/13/09 ...$15.00.
http://dx.doi.org/10.1145/2505879.2505889.

1. INTRODUCTION
We are concerned in this paper with the task of reason-
ing about formal systems such as programming languages,
proof systems and process calculi. The data objects that
are of interest within such systems often embody binding
constructs. Higher-order abstract syntax (HOAS) provides an
effective means for representing such structure. In an HOAS

representation, which is based on using a well-calibrated
λ-calculus as a metalanguage, the binding structure of ob-
ject language expressions is encoded using abstractions in
λ-terms. For example, consider an object language that is
itself a λ-calculus. Letting tm be a type for the representation
of these terms, their HOAS encoding can be built around two
constructors, app : tm→ tm→ tm and abs : (tm→ tm)→ tm:
the object term λx. λy. y x would, for instance, be repre-
sented as abs (λx. abs (λy. app y x)). Observe that there
is no constructor for variables in this encoding; object-level
variables are directly represented by the variables of the
meta-language, bound by an appropriate abstraction. The
virtue of HOAS is that if the metalanguage is properly cho-
sen, i.e., if it incorporates λ-conversion but is otherwise weak
in a computational sense, then it provides a succinct and
logically precise treatment of object-level operations such as
substitution and analysis of binding structure.

Formal systems are usually defined by the relations that
hold between the data objects that constitute them. Such
relations are conveniently presented through syntax-directed
rules. When they pertain to data embodying binding struc-
ture, these specifications naturally tend to be higher-order,
i.e., their rule-based presentation involves the use of contexts.
Moreover, these contexts can contain conditional assertions
whose use may require the construction of sub-derivations.
Towards understanding this issue, consider the alternative no-
tation for λ-terms due to De Bruijn in which bound variables
are not named and their occurrences are represented instead
by indexes that count the abstractions up to the one binding
them [6]. Using the type dtm for the representation of λ-
terms in this form, we can encode them via the constructors
dvar : nat → dtm (for variables), dapp : dtm → dtm → dtm

and dabs : dtm → dtm. Now, there is a natural bijection
between the named and nameless representation of λ-terms.
Writing Γ `m ≡h d to denote the correspondence between
the HOAS-encoded term m that occurs at depth h (i.e., un-
der h λ-abstractions) and the De Bruijn term d where Γ
determines the mapping between free variables in the two
representations, we can define this relation via these rules:

Γ `m ≡h d Γ ` n ≡h e
Γ ` app m n ≡h dapp d e

(1)

Γ, ∀i, k. ((h+ k = i) ⊃ x ≡i dvar k) `m ≡h+1 d

Γ ` abs (λx.m) ≡h dabs d
(2)

∀i, k. ((h+ k = i) ⊃ x ≡i dvar k) ∈ Γ `h+ k = i
Γ ` x ≡i dvar k

(3)

The rule for relating applications is straightforward. To relate
abs (λx.m) to a De Bruijn term at depth h, we must relate
each occurrence of x in m, which must be at a depth h+k for
some k > 0, to the De Bruijn term dvar k. To encode this
correspondence, the context is extended in the premise of
rule (2) with a (universally quantified) implicational formula.
Note also that this rule carries with it the implicit assumption
that the name x used for the bound variable is fresh to Γ, the
context for the concluding judgment. Eventually, when the
HOAS term on the right of ` is a variable, rule (3) provides
the means to complete the derivation by using the relevant
assumption from Γ. Observe that the use of this rule entails
a construction of an auxiliary derivation for `h+ k = i.

Our ultimate interest is in reasoning about such higher-
order relational specifications. For example, we might be
interested in showing that the relation that we have defined
above identifies a bijective mapping between the two represen-
tations of λ-terms. One part of establishing this fact is prov-
ing that the relation is deterministic from left to right, i.e.,
that every term in the named notation is related to at most
one term in the nameless notation. Writing {Γ ` m ≡h d}
to denote derivability of the judgment Γ ` m ≡h d by virtue
of the rules (1), (2) and (3), this involves providing a proof
for the following assertion:

∀Γ,m, h, d, e. {Γ `m ≡h d} ⊃ {Γ `m ≡h e} ⊃ d = e. (4)

Note that ∀ and ⊃ in (4) are logical constants at the reasoning
level in contrast to the ones in (1) – (3) that are at the object
level. Such a proof must obviously be based on an analysis
of derivability using the rules that define the relation. To
formalize such reasoning, we need a logic that can encode
these rules in a way that allows case analysis to be carried out
over their structure. Furthermore, the logic must embody
an induction principle since proofs of general theorems of
the kind we are interested in must be inductive over the
structure of object-level derivations. A particular difficulty
in articulating such inductive arguments relative to higher-
order relational specifications is that they may need to take
into account derivations in the object system that rely on
hypotheses in changing contexts. For example, a proof of
(4) must accommodate the fact that Γ can be dynamically
extended in a derivation of Γ`m ≡h d and that the particular
content of Γ influences the derivation in the variable case via
the rule (3).

In this paper we develop a framework that provides an
elegant solution to this reasoning problem. Formally, our
framework is a realization of the two-level logic approach [11,
13], which is based on embedding a specification logic inside a
reasoning logic. Within this setup, we take our specification
logic to be that of hereditary Harrop formulas (HH). This
logic extends the well-known logic of Horn clauses essentially
by employing simply typed λ-terms as a means for represent-
ing data objects and by permitting universal quantification
and implications in the bodies of clauses. As such, it provides
an excellent basis for encoding rule-based higher-order spec-
ifications over HOAS representations [14]. Moreover, these
formulas can be given a proof-theoretic interpretation that
simultaneously is complete with respect to intuitionistic logic

and reflects the structure of derivations based on the object-
level rules they encode. For the reasoning logic we use the
system G from [10]. This logic permits atomic predicates to
be defined through clauses in a way that allows case analysis
based reasoning to be carried out over them. The treatment
of definitions in G can also be specialized to interpret them
inductively. The capability for formally proving properties
about relational specifications is realized in this setting by
first encoding HH derivability in G via an inductive definition
and then using this encoding to reflect reasoning based on
object-level rules into reasoning over HH derivations that
formalize these rules.

The two-level logic approach has previously been imple-
mented in the Abella system and has been used successfully
in several reasoning tasks [9]. However, the original version
of Abella uses a fragment of HH that is capable of treating
syntax-directed rules only when the dynamic additions to
their contexts is restricted to atomic formulas. There is an
inherent difficulty in structuring the reasoning when contexts
can be extended with formulas having an implicational struc-
ture. For example, as already noted, case analysis over the
derivation of Γ `m ≡h d in a proof of (4) must take into
account the fact that the derivation can proceed by using
a hypothesis that was dynamically added to Γ. Without
well-defined constraints on Γ, it is difficult to predict how
such hypotheses might be used and indeed the assertion may
not even be true.

In the example under consideration, there is an easy res-
olution to the dilemma described above. We are not inter-
ested in proving assertion (4) for arbitrary Γ but only for
those Γs that result from additions made through the rule
(2). The elements of Γ must therefore all be of the form
∀i, k. ((h + k = i) ⊃ x ≡i dvar k) where h is some depth
and x is some variable not otherwise present in Γ. More-
over, the use of such assumptions in derivations can occur
only through rule (3) that is in fact another instance of a
backchaining step that is manifest explicitly in the rules (1)
and (2). Thus, the structure of Γ can be encoded into an
inductive definition in G and treated in a finitary fashion by
the machinery that G already provides for reasoning about
backchaining steps.

The key insight underlying this paper is that the above
observation generalizes cleanly to other reasoning situations
that involve contexts with higher-order hypotheses. Con-
cretely, the contexts that need to be considered in these
situations are completely determined by the additions that
can be made to them. Further, the structure of such addi-
tions must already be manifest in the original specifications
and can therefore always be encapsulated in an inductive
definition. To take advantage of this observation we modify
the encoding of HH derivations in Abella to support reason-
ing also over the backchaining steps that result from using
dynamically added assumptions. We then demonstrate the
power of this extension through its use in explicitly proving
the bijectivity property discussed above as well as another
non-trivial property about paths in λ-terms and their rela-
tion to reduction. These exercises also show the benefits of
using a logic for specifications: the meta-theoretic properties
of this logic greatly simplify the reasoning process.

In summary, we make three contributions through this
work: we propose a methodology for reasoning about higher-
order relational specifications, we present an implemented
system for supporting this methodology and we show its

effectiveness through actual reasoning tasks. The framework
we describe exploits the HOAS representation style to struc-
ture and simplify the reasoning process. To the best of our
knowledge, the only other systems that use such an approach
to similar effect are Twelf [18] and Beluga [19]. In contrast
to these systems, the one we develop here provides a rich
language for stating meta-theoretic properties of specifica-
tions and an explicit logic for articulating their proofs. We
elaborate on these comparisons in a later section.

The rest of the paper is structured as follows. In the
next two sections, we present the specification logic HH, the
reasoning logic G, and the two-level logic approach that is
built out of their combination. Section 4 illustrates the use of
the resulting framework and the associated methodology for
a novel and non-trivial example. The focus in this example is
on specifications that have a rich higher-order character and
on showing how context definitions and context relations can
be used to structure and realize the reasoning process. The
last two sections discuss related work and conclude the paper
by providing a perspective on its technical contributions.

The extended Abella system that is the outcome of this
work is available at [1]. Besides the examples described in
this paper, this version of Abella also contains a number of
other examples of reasoning about higher-order relational
specifications that illustrate our approach.

2. THE SPECIFICATION LOGIC
In this section, we present the specification logic HH, show
how it can be used to encode rule-based descriptions, and
discuss some of its meta-theoretic properties that turn out
to be useful in reasoning about specifications developed in it.

2.1 The HHHHHH Proof System
The logic HH of hereditary Harrop formulas is a predicative
fragment of Church’s Simple Theory of Types [5] whose ex-
pressions are simply typed λ-terms. Types are built freely
from primitive types, which must include the type o of for-
mulas, and the function type constructor →. Terms are built
from a user-provided signature of typed constants, and are
considered identical up to αβη-conversion. We write Σ` t : τ
to denote that t is a well-formed term of type τ relative
to Σ. Well-formed terms of type o relative to Σ are called
Σ-formulas or just formulas when Σ is implicit.

Logic is introduced into this background via a countable
family of constants containing: ⇒,& : o→ o→ o (written
infix, and associating to the right and left, respectively),
and for every type τ not containing o, the (generalized)
universal quantifier Πτ : (τ → o)→ o. An atomic formula,
denoted by A possibly with a subscript, is one that does
not have a logical constant as its head symbol. We use the
abbreviations Πx:τ. F for Π (λx:τ. F), Πx1:τ1, . . . , xn:τn. F
for Πx1:τ1. . . .Πxn:τn.F , and Πx̄:τ̄ . F where x̄ = x1, . . . , xn
and τ̄ = τ1, . . . , τn for Πx1:τ1. . . .Πxn:τn. F . We will omit
the types when they are irrelevant or can be inferred from
context. Finally, we will often write G ⇐ F (with “⇐”
associating to the left and pronounced “if”) to mean F ⇒ G.

The HH proof system has two kinds of sequents:

Σ; Θ; Γ `G goal-reduction sequent

Σ; Θ; Γ, [F] `A backchaining sequent

In these sequent forms, Σ is a signature; Γ and Θ are multisets
of Σ-formulas; G is a Σ-formula and A is an atomic Σ-formula.

Goal reduction rules

Σ; Θ; Γ, F `G
Σ; Θ; Γ ` F ⇒ G

⇒R
Σ; Θ; Γ `G1 Σ; Θ; Γ `G2

Σ; Θ; Γ `G1 &G2
&R

(c /∈ Σ) Σ, c:τ ; Θ; Γ ` (G c)

Σ; Θ; Γ `ΠτG
ΠR

Backchaining rules

Σ; Θ; Γ `G Σ; Θ; Γ, [F] `A
Σ; Θ; Γ, [G⇒F] `A

⇒L
Σ; Θ; Γ, [Fi] `A

Σ; Θ; Γ, [F1 & F2] `A &L

Σ ` t : τ Σ; Θ; Γ, [(F t)] `A
Σ; Θ; Γ, [ΠτF] `A ΠL

Structural rules

Σ; Θ; Γ, [A] `Amatch

(F ∈ Θ) Σ; Θ; Γ, [F] `A
Σ; Θ; Γ `A

prog
(F ∈ Γ) Σ; Θ; Γ, [F] `A

Σ; Θ; Γ `A dyn

Figure 1: Rules for HH. In &L, i ∈ {1, 2}.

The context Θ is called the static context because it contains
a finite and unchanging HH program. The context Γ, called
the dynamic context, contains the assumptions introduced
during the goal reduction procedure, and can therefore grow.
The members of Θ and Γ are called the static clauses and
the dynamic clauses respectively.

Figure 1 contains the inference rules of HH. Reading the
rules as a computation of premise sequents from goal sequents,
the goal reduction rules decompose the goal on the right of `
until it becomes atomic. The ⇒R rule extends the dynamic
context with the antecedent of the implication, while the
ΠR rule extends the signature with a fresh constant for the
universally quantified variable.

Once the goal becomes atomic, the only rules that apply
are the final two structural rules that select a backchaining
clause. The prog rule selects a static clause, while the dyn
rule selects a dynamic clause. In either case, the premise is
a backchaining sequent with the selected clause indicated by
[−]. The HH proof system does not prescribe a strategy for
selecting clauses, so to reason about HH derivations we will
have to consider every possibility.

While the selected clause is non-atomic, the backchaining
rules are used to reduce it. The⇒L rule changes the selection
to the succedent of the implication, moving in the direction
of the head of the clause, and additionally checks that the
antecedent is derivable. The &L rules change the selection to
one of the operands of a &. The ΠL rule changes the selection
to some instance of a universally quantified clause. When
the selected clause has been reduced to atomic form, the
corresponding branch of the proof finishes by the rule match
which requires that the atomic clause match the atomic goal.
Therefore, if the right hand side does not match, then this
branch of the proof is invalid and some choice made earlier
in the proof needs to be revisited.

In the common case of a clause with the form Πx̄:τ̄ . G1 ⇒
· · · ⇒ Gn ⇒ A, the match rules and the backchaining rules
compose to give this derived rule:

Σ ` t̄ : τ̄ Σ; Θ; Γ ` [t̄/x̄]G1 · · · Σ; Θ; Γ ` [t̄/x̄]Gn
Σ; Θ; Γ, [Πx̄:τ̄ . G1 ⇒ · · · ⇒ Gn ⇒ A] ` [t̄/x̄]A

This derived form can readily be seen as implementing the
backchaining procedure: the goal on the right of ` is matched
against the head of a selected clause, and then new goals are
generated corresponding to the body of the clause.

2.2 Example: HOAS vs. De Bruijn λ-termsλ-termsλ-terms
As a concrete example of a higher-order relational specifica-
tion in HH, let us consider the example in the introduction of
λ-terms represented in two different ways, one with higher-
order abstract syntax (HOAS) and the other using De Bruijn
indexes. The signature of this specification consists of the
following basic types: nat (for natural numbers), tm (for
HOAS terms) and dtm (for De Bruijn terms), together with
the following constants.

nat HOAS (tm) De Bruijn (dtm)

z : nat app : tm→ tm→ tm dapp : dtm→ dtm→ dtm
s : nat→ nat abs : (tm→ tm)→ tm dabs : dtm→ dtm

dvar : nat→ dtm

The static context specifies two relations, add : nat →
nat → nat → o and hodb : tm → nat → dtm → o, that
define addition relationally and relate the two encodings of
terms at a given depth. These relations are given by the
following static clauses.

add z X X. (Raddz)

add (s X) Y (s Z)⇐ add X Y Z. (Radds)

hodb (app M N) H (dapp D E)⇐
hodb M H D & hodb N H E. (Rapp)

hodb (abs M) H (dabs D)⇐
Πx. hodb (M x) (s H) D ⇐

Πi, k. hodb x i (dvar k)⇐ add H k i. (Rabs)

The clauses are written using the standard convention of indi-
cating variables that are universally quantified using capital
letters; that is, the clause Raddz stands for ΠX. add z X X,
etc. The clauses Rapp and Rabs provide a transparent encod-
ing of rules (1) and (2) relative to the HH proof system. Note
especially the embedded implication in the body of Rabs:
as we see in more detail in the example derivation below,
when combined with the derived backchaining and the goal
reduction rules, this implication leads to proving a sequent
with an extended dynamic context that closely resembles the
premise of (2). There is no clause corresponding to rule (3);
it will arise from clauses in the dynamic context as part of
the backchaining mechanism of HH.

Let Σ be the signature above and Θ be Raddz, Radds,
Rapp, Rabs. Let us try to show that the term λx. λy. (y x)
corresponds to the De Bruijn term λ. λ. (1 2). This amounts
to proving the following HH sequent:

Σ; Θ; · `
hodb (abs (λx. abs (λy. app y x))) z

(dabs (dabs (dapp (dvar (s z)) (dvar (s (s z))))))).

The dynamic context is empty and the goal is atomic, so
only the prog rule is applicable. Selecting Raddz or Radds will
fail because the heads are different predicates, and selecting
Rapp will also fail because the first-argument of hodb is abs,
which does not unify with app. Therefore, the only choice is
backchaining Rabs, which changes the proof obligation to:

Σ, x:nat; Θ;(Πi, k. hodb x i (dvar k)⇐ add z i k) `
hodb (abs (λy. app y x)) (s z)

(dabs (dapp (dvar (s z)) (dvar (s (s z))))).

Attempting to backchain the new dynamic clause using dyn
will fail because the new signature constant x does not unify

with abs. Hence, the sole possibility that remains is back-
chaining Rabs again, yielding:

Σ, x, y:nat; Θ;(Πi, k. hodb x i (dvar k)⇐ add z k i),

(Πi, k. hodb y i (dvar k)⇐ add (s z) k i) `
hodb (app y x) (s (s z))

(dapp (dvar (s z)) (dvar (s (s z)))).

Now we can only backchain Rapp to yield two new proof
obligations, the first of which is:

Σ, x, y:nat; Θ;(Πi, k. hodb x i (dvar k)⇐ add z k i),

(Πi, k. hodb y i (dvar k)⇐ add (s z) k i) `
hodb y (s (s z)) (dvar (s z)).

The only clause that we can select for backchaining is the
second dynamic clause for y using dyn; none of the other
clauses have a matching head. This modifies the goal to:

Σ, x, y:nat; Θ;(Πi, k. hodb x i (dvar k)⇐ add z k i),

(Πi, k. hodb y i (dvar k)⇐ add (s z) k i) `
add (s z) (s z) (s (s z)).

This sequent is then proved by backchaining Radds and Raddz.
The other proof obligation is handled similarly.

2.3 Meta-theorems of HHHHHH
As a logic, HH possesses several properties that can be useful
in analyzing derivability and therefore in reasoning about
specifications written in it. The following meta-theorems will
be specifically useful in the examples we consider.

Theorem 1 (meta theorems of HH).

1. If Σ; Θ; Γ ` F and Σ; Θ; Γ, F `G are derivable, then so
is Σ; Θ; Γ `G (cut).

2. If Σ ` t : τ and Σ, c:τ ; Θ; Γ `G (where c is not free in
Θ) is derivable, then so is Σ; Θ; [t/c]Γ ` [t/c]G, where
[t/c] stands for the capture-avoiding substitution of t
for c (instantiation).

3. If Σ; Θ; Γ `G is derivable, and F ∈ Γ implies F ∈ ∆,
then Σ; Θ; ∆ `G is also derivable (monotonicity).

Proof. Each theorem follows by a straightforward induc-
tive argument. See also Thm. 2.

A direct corollary of the monotonicity theorem is that weak-
ening and contraction are admissible for the dynamic context.
Observe that the static context Θ never changes, even in the
case of cut and instantiation. Obviously this theorem holds
even if Θ is empty, so a variant proof system that combines
the static and dynamic contexts into a single context will
also enjoy the same properties. However, when reasoning
about the specification of a computational system, we are
almost never interested in considering situations where the
static rules of the system change.

3. THE TWO-LEVEL LOGIC APPROACH
We describe now the reasoning logic G and outline the en-
coding of HH in G that underlies our particular use of the
two-level logic approach. We then illustrate the resulting
framework by using it to formalize and prove the bijectiv-
ity property of the relation between HOAS and De Bruijn
representations of λ-terms.

(B ≈ B′)
Ξ; ∆, B
B′ id

Ξ; ∆
B Ξ; ∆, B′
 C (B ≈ B′)
Ξ; ∆
 C cut

Ξ,Σ, C ` t : τ Ξ; ∆, B t
 C
Ξ; ∆, ∀τB
 C ∀L

(h /∈ Ξ) (c̄ = supp(B)) Ξ, h; ∆
B (h c̄)

Ξ; ∆
 ∀τ B ∀R

(a ∈ C \ supp(B)) Ξ; ∆, (B a)
 C
Ξ; ∆,∇τ B
 C

∇L

(a ∈ C \ supp(B)) Ξ; ∆
 (B a)

Ξ; ∆
∇τ B
∇R

Figure 2: Selected rules of G.

3.1 The Reasoning Logic GGG
Specifications based on derivation rules are usually given
a closed-world reading, where relations are considered to
be characterized fully by the rules that describe them. For
instance, the rules that assign simple types to λ-terms can be
used not only to identify types with well-formed terms, but
also to argue that a term such as λx. x x cannot be typed.
The HH logic can be used to realize only the positive part
of such specifications. To completely formalize the intended
meaning of rule-based specifications, we use the logic G [10]
that supports inductive fixed-point definitions.

The basis for G is also an intuitionistic and predicative
version of Church’s Simple Theory of Types. Types are
determined in G as in HH except that the type of formulas is
prop rather than o. We assume a fixed collection Σ of logical
and non-logical constants none of whose members other than
the ones mentioned below contains prop in its argument
types. The logical constants of G consist initially of > and ⊥
of type prop; ∧, ∨ and ⊃ of type prop→ prop→ prop; for
every type τ not containing prop, the quantifiers ∀τ and ∃τ
of type (τ → prop)→ prop; and the equality symbol =τ of
type τ → τ → prop. To provide the capability of reasoning
about open λ-terms, which is necessary in many arguments
about HOAS, G also supports generic reasoning. Specifically,
for every type τ not containing prop, G includes an infinite
set of nominal constants of type τ , and a generic quantifier
∇τ of type (τ → prop)→ prop [16]. Like with HH, we often
omit types and adopt the usual syntactic conventions for
displaying the logical connectives.

The proof system for G is presented as a sequent calculus
with sequents of the form Ξ; ∆
 C where ∆ is a set of
formulas (i.e., terms of type prop), C is a formula, and Ξ
contains the free eigenvariables in ∆ and C. The treatment
of fixed-point definitions in G results in the eigenvariables
being given an extensional interpretation; in other words,
unfolding a definition on the left may instantiate some of
the eigenvariables and introduce other eigenvariables. We
write Ξ,Σ, C ` t : τ to mean that t is a well-formed term of
type τ all of whose free variables, constants, and nominal
constants are drawn from the respective sets to the left of `.
Here and elsewhere, we use C to denote the collection of all
nominal constants that we assume to be disjoint from the
eigenvariables contained in Ξ and the (logical and non-logical)
constants contained in the signature, Σ.

Nominal constants are used to simplify generic judgments
in the course of proof search. A correct formalization of this
idea needs two provisos: that quantifier scopes be respected
and that judgments that differ only in the names of nominal

constants be identified. Figure 2 contains a few rules of G that
show how these conditions are realized; the full system can
be found in [10]. The essential feature of nominal constants
is equivariance: two terms B and B′ are considered to be
equal, written B ≈ B′, if they are λ-convertible modulo a
permutation of the nominal constants. We write supp(B)—
called the support of B—for the (finite) collection of nominal
constants occurring in B. The rules for ∇ are the same on
both sides of the sequent; in each case a nominal constant
that doesn’t already exist in the support of the principal
formula is chosen to replace the ∇-quantified variable. In the
∀R rule of Fig. 2, the eigenvariable is raised over the support
of the principal formula; this is needed to express permitted
dependencies on these nominal constants in a situation where
later substitutions for eigenvariables will not be allowed to
contain them. Note, however, that nominal constants may
be used in witnesses in the ∀L rule.

To accommodate fixed-point definitions, G is parameterized
by sets of definitional clauses. Each such clause has the form
∀x̄. (∇z̄. A) , B where A is an atomic formula (called the
head) whose free variables are drawn from x̄ and z̄, and B is
an arbitrary formula (called the body) whose free variables
are also free in ∇z̄. A. Each clause partially defines a relation
named by the predicate in the head. In every definitional
clause ∀x̄. (∇z̄. A) , B, we require that supp(∇z̄. A) and
supp(B) are both empty. Consistency of G also requires
predicate occurrences in the body of a clause to also satisfy
certain stratification conditions, explained in [10].
G also includes special rules for interpreting definitional

clauses. When an atom occurs on the right of a sequent,
then any of the clauses with a matching head may be used to
replace the atom by the corresponding body of the clause; in
other words, clauses may be backchained. Matching the head
of a clause requires some care with regard to the quantifiers.
To match the head of a clause ∀x̄. (∇z̄. A) , B against
the atom A′, we look for a collection of distinct nominal
constants c̄ and witness terms t̄ that do not contain any of
the elements of c̄ such that [t̄/x̄, c̄/z̄]A ≈ A′. If these can
be found, then A′ is replaced on the right by [t̄/x̄]B. When
an atom A occurs on the left in a sequent, for every clause
and every way of unifying the head of the clause to that
atom, a new premise is created with the corresponding body
added to the context. This amounts to a case analysis over
the clauses in a definition. Note that substitutions into the
clause must respect the order of the ∀ and ∇ quantifiers at its
head and that different unifiers may result from considering
different distinct nominal constant instantiations for the ∇
quantifiers. Some of the eigenvariables may be instantiated
in the premises thus created so the eigenvariable context
should be modified to reflect the resulting changes.

The final crucial component derived from G that we use in
this paper is the ability to mark certain predicates as being
inductive, whereby the set of clauses for that predicate is
interpreted as a least fixed-point definition. When deriving
a sequent of the form

Ξ; ∆
 ∀x̄. F1 ⊃ · · · ⊃ A ⊃ · · · ⊃ Fn ⊃ G

by induction on the atom A, G produces this premise:

Ξ, x̄; ∆, (∀x̄. F1 ⊃ · · · ⊃ A∗ ⊃ · · · ⊃ Fn ⊃ G),

F1, . . . , A
@, . . . , Fn
G

Here, A∗ and A@ are simply annotated versions of A standing
for strictly smaller and equal sized measures respectively. If

A@ is unfolded using a definitional clause, the predicates in
the body of the corresponding clause are given the ∗ anno-
tation; thus, the inductive hypothesis (containing A∗) only
becomes usable after at least one unfolding of A@. For each
following use of induction, a new set of annotations is pro-
duced (e.g., ∗∗ and @@). This use of annotations is justified
by using λx̄.F1 ⊃ · · · ⊃ A ⊃ · · · ⊃ Fn ⊃ G as inductive
invariant in a more general (and also more abstract) rule
that codifies a least fixed-point treatment of the definition of
A. A formal development of the connection and a correctness
argument can be found in [9].

3.2 Encoding HHHHHH in GGG
The logic G has the necessary ingredients to represent the
HH proof system as an inductive definition. Formally, the
type o of HH is imported as an uninterpreted type in G. Two
HH formulas H,G : o may be compared only for syntactic
equality (or unifiability) in G; in other words, the G formula
H = G does not check for logical equivalence (in HH) ofH and
G. The connectives of HH are thus treated as constructors
of o, so (F ⇒ G) = (F ′ ⇒ G′) in G would entail that
F = F ′ and G = G′ because of congruence (i.e., injectivity
of constructors), and (F ⇒ G) = G would not hold, even if
F were known to be derivable in HH, because F ⇒ G and G
are not unifiable.

To encode HH sequents in G, we first note that G and
HH share the same type system. The HH signature can
therefore be imported transparently into G, so the signatures
of HH sequents will not be explicitly encoded. The contexts
of HH are represented in G as lists of HH formulas (i.e.,
lists of terms of type o). The type olist with constructors
nil : olist and (::) : o→ olist→ olist is used for these
lists, and, per tradition, the :: constructor is written infix.
Membership in a context is defined inductively as a predicate
member : o→ olist→ prop with these clauses:

member E (E :: L) , >

member E (F :: L) , member E L.

Observe that the two clauses have overlapping heads; there
will be as many ways to show member E L as there are
occurrences of E in L. This validates the view of HH contexts
as multisets.

The sequents of HH are then encoded in G using the predi-
cates seq and bch.

HH G notation

Θ; Γ `G seq L G {L `G}
Θ; Γ, [F] `A bch L F A {L, [F] `A}

Here, L is an olist representation of Γ. The third column
contains a convenient and evocative notation for the equiv-
alent G atom in the second column; we shall often use this
notation in the rest of this paper. Note that while the HH

contexts are unordered multisets, the olist representations
are ordered. This is not a limitation because we will always
reason about the contexts using member.

The static program clauses in Θ are not part of the G
encoding of sequents. Rather, we use the inductively defined
predicate prog : o → prop that has one clause of the form
prog F , > for each F ∈ Θ.

The rules of the HH proof system in Fig. 1 are used to
build mutually inductive definitions of the seq and bch pred-
icates. This definition is depicted in Fig. 3; each clause

of the definition corresponds to a single rule of HH. The
goal reduction rules are systematically translated into the
clauses, the only novelty being that universally quantified
variables of the specification logic are represented as nom-
inal constants in G using the ∇ quantifier. This use of ∇
is necessary because the encoding must completely charac-
terize provability in HH. In particular, in HH the sequent
·; (Πx. eq x x) `Πy, z. eq y z is not derivable, meaning that
the G formula seq ((Πx. eq x x) :: nil) ((Πy, z. eq y z) ⊃
⊥) should be true. This is achievable since it unfolds to
(∇y, z. seq ((Πx. eq x x) :: nil) (eq y z)) ⊃ ⊥. As a point
of comparison, if we were to use this clause instead:

seq L (Πτ G) , ∀x:τ. seq L (G x)

then the non-derivability property of the HH sequent above,
now encoded as (∀y, z. seq ((Πx. eq x x)::nil) (eq y z)) ⊃ ⊥,
would not be true. (In particular, the antecedent is satisfiable
in models with only a single inhabitant.)

The backchaining rules of HH are encoded as clauses of
bch in a straightforward manner.

For the structural rules of HH, we have to enforce the
invariant that the right hand side of the sequent is atomic.
This is achieved by means of a predicate atomic : o→ prop

defined by the following clause:

atomic F ,
(
∀G. (F = Πτ G) ⊃ ⊥

)
∧
(
∀G1, G2. (F = (G1 &G2)) ⊃ ⊥

)
∧
(
∀G1, G2. (F = (G1 ⇒ G2)) ⊃ ⊥

)
.

Effectively, atomic characterizes atomic formulas negatively
by saying that an atomic formula cannot be constructed with
a HH connective. It is important to note that there is a small
issue with all three of seq, bch, and atomic: they treat Πτ G
as if it were a single object, but, since the reasoning and
specification logics share the type system, it actually stands
for all instances for the type τ . To keep these definitions finite,
we would require polymorphism, which G currently lacks. In
the Abella implementation, therefore, these definitions are
treated specially. Note that the meta-theory of G does not
require that inductive definition have finitely many clauses,
so even an infinitary interpretation of the clauses of Fig. 3,
as was done in [11], is compatible with our approach.

The faithfulness of our encoding allows us to state and
prove known properties of HH in G. For example, the meta-
theoretic properties discussed in Thm. 1 have the following
counterparts relative to the encoding in G. Having proved
them in G, we can use the cut rule to invoke them as lemmas
in arguments concerning particular specifications.

Theorem 2. The earlier discussed meta-theoretic prop-
erties of HH are validated by their encoding in G. In other
words, each of the following is provable in G.

1. ∀L,F,G. {L ` F} ⊃ {L,F `G} ⊃ {L `G} (cut).
2. ∀L,G.∇x. {L x `G x} ⊃ ∀t. {L t `G t} (instntiation).
3. ∀L,L′, G. {L`G} ⊃ (∀F. member F L ⊃ member F L′) ⊃
{L′ `G} (monotonicity).

Proof. These are fairly straightforward inductive theo-
rems of G. We have proved them formally in the Abella [1]
implementation of G; the proofs can be found in the file
hh_meta.thm.

3.3 Example: HOAS vs. De Bruijn Revisited
We are now in a position to formally verify that the relation
presented in the introduction between the encodings of the

seq L (G1 &G2) , seq L G1 ∧ seq L G2

seq L (F ⇒ G) , seq (F :: L) G

seq L (Πτ G) , ∇x:τ. seq L (G x)

seq L A , atomic A ∧ member F L ∧ bch L F A

seq L A , atomic A ∧ prog F ∧ bch L F A

bch L (F1 & F2) A , bch L F1 A ∨ bch L F2 A

bch L (G⇒ F) A , seq L G ∧ bch L F A

bch L (Πτ F) A , ∃t:τ. bch L (F t) A

bch L A A , >

Figure 3: Encoding of HH rules as inductive definitions in G.

named and nameless representations of λ-terms actually
specifies an isomorphism. We do this by showing that its
rendition in HH described in Sec. 2.2 is deterministic in both
its first and third arguments. As expected, we work within
G with the encoding of HH described in the previous section.
We also assume that the (static) clauses Raddz, Radds, Rapp,
and Rabs have been reflected into the definition of prog in
this context.

As mentioned in the introduction, we will need to finitely
characterize the possible dynamic context extensions during
the derivation of hodb. The inductive definition of these
dynamic contexts of hodb has the following pair of clauses.

ctx nil , >(
∇x. ctx ((Πi, k. hodb x i (dvar k)⇐ add H k i) :: L)

)
, ctx L.

As usual, the capitalized variables H and L are universally
quantified over the entire clause. Note the occurrence of
∇x at the head of the second clause of the definition: it
guarantees that x does not occur in H or L. Therefore, in
any L for which ctx L holds, it must be the case that there is
exactly one such dynamic clause for each such x ∈ supp(L).
It is easy to establish this fact in terms of a pair of lemmas.

The first of these lemmas characterizes the dynamic clauses.

∀L,E. ctx L ⊃ member E L ⊃
∃x,H.E =

(
Πi, k. hodb x i (dvar k

)
⇐ add H k i

)
∧ namex.

(5)

Here, namex is a predicate that asserts that x is a nominal
constant; this predicate can be defined in G with the clause
(∇x. namex) , >. To prove (5), we proceed by induction on
the first hypothesis, ctx L. As mentioned in Sec. 3.1, this is
achieved by assuming a new inductive hypothesis ih:

∀L,E. (ctx L)∗ ⊃ member E L ⊃
∃x,H.E =

(
Πi, k. hodb x i (dvar k

)
⇐ add H k i)

∧ namex.

(ih)

Moreover, the proof obligation is modified to the following G
sequent, where L and E are promoted to eigenvariables, and
the assumptions of the lemma are converted to hypotheses.

L,E; (ctx L)@, member E L

∃x,H.E =
(
Πi, k. hodb x i (dvar k

)
⇐ add H k i) ∧ namex.

The ih cannot be immediately used because the anno-
tations of ctx L do not match. To make progress, the
definition of ctx L needs to be unfolded. As explained in
Sec. 3.1, this amounts to finding all ways of unifying ctx L
with the heads of the clauses in the definition of ctx. The
complete set of unifiers is characterized by L = nil and
L = (Πi, k. hodb n i (dvar k) ⇐ add H k i) :: L′ for new
eigenvariables H and L′ and a nominal constant n. In the
latter case we also have a new hypothesis, (ctx L′)∗, that

comes from the body of the second clause for ctx. There are
two things to note: first, the ∇ at the head of the second
clause of ctx is turned into a nominal constant in the proof
obligation, and the second is that the new hypothesis in the
second case is annotated with ∗, which suits the ih.

In each case for L, the argument proceeds by analyzing
the second hypothesis, member E L. The case of L = nil

is vacuous, because there is no way to infer member E nil,
making that hypothesis equivalent to false. In the case of
L = (Πi, k. hodb n i (dvar k) ⇐ add H k i) :: L′, we have
two possibilities for member E L: either

E = (Πi, k. hodb n i (dvar k)⇐ add H k i),

or member E L′. The former possibility is exactly the conclu-
sion that we seek, so this branch of the proof finishes. The
latter possibility lets us apply ih to the hypotheses (ctx L′)∗

and member E L′, which also yields the desired conclusion.
The second necessary lemma asserts that there is at most

a single clause for each variable in the dynamic context.

∀L, x, H1, H2. ctx L ⊃
member (Πi, k. hodb x i (dvar k)⇐ add H1 k i) L ⊃
member (Πi, k. hodb x i (dvar k)⇐ add H2 k i) L ⊃
H1 = H2.

(6)

Note that from H1 = H2, we are able to conclude that the
two dynamic clauses relating x to a De Bruijn term must be
the same. Like the previous lemma, it is proved by induction
on the hypothesis ctx L.

Armed with these lemmas, we can then show both direc-
tions of determinacy for hodb. In the forward direction the
statement is as follows.

∀L,M,H,D,E. ctx L ⊃
{L ` hodb M H D} ⊃ {L ` hodb M H E} ⊃ D = E.

We prove this by induction on {L ` hodb M H D}; this
amounts to assuming the lemma ih below:

∀L,M,H,D,E. ctx L ⊃ {L ` hodb M H D}∗ ⊃
{L ` hodb M H E} ⊃ D = E (ih)

and proving the G sequent

L,M,H,D,E; ctx L, {L ` hodb M H D}@,
{L ` hodb M H E}
D = E.

Now, {L ` hodb M H D}@ is just a notation for the G
atom seq L (hodb M H D)@ whose definition is given by
the clauses in Fig. 3. Unfolding the definition amounts to
finding all the clauses in Fig. 3 whose heads match

seq L (hodb M H D).

Only the final two clauses of seq, corresponding to the rules
dyn and prog of HH, are therefore relevant.

Let us consider backchaining the static clauses first, i.e., the
applications of the prog rule. There are only a finite number

of them, so the assumption prog F can be immediately
turned into a branched tree with one case for every static
program clause. For the first static clause, we are left with a
new assumption:{
L,
[
ΠM ′, N ′, H′, D′, E′. hodb (app M ′ N ′) H′ (dapp D′ E′)⇐

hodb M ′ H′ D′ & hodb N ′ H′ E′
]
` hodb M H D

}∗
The annotation ∗ here was obtained from unfolding the
definition of a @-annotated atom per the technique outlined
in Sec. 3.1. Note that this is just a backchaining sequent
(bch) whose definition in Fig. 3 can be unfolded. Doing this
instantiates the Π prefix in the bakchaining clause in such
a way that the head hodb (app M ′ N ′) H ′ (dapp D′ E′)
unifies with the HH formula on the right, hodb M H D; this
produces the substitutions M = app M ′ N ′, H = H ′, and
D = dapp D′ E′ for fresh eigenvariables M ′, N ′,H ′,D′, E′.
Moreover, by the second clause for bch in Fig. 3, we get this
goal reduction sequent as a fresh hypothesis:

{L ` hodb M ′ H′ D′ & hodb N ′ H′ E′}∗

which is reduced by the first clause for seq to:

{L ` hodb M ′ H′ D′}∗ and {L ` hodb N ′ H′ E′}∗

We can almost apply the induction hypothesis ih—we
know ctx L and {L`hodb M ′ H ′ D′}∗ already—but we still
must find the third argument. To get this argument we need
to case analyze the other hypothesis, {L ` hodb M H E},
which becomes {L ` hodb (app M ′ N ′) H ′ E} as a result of
the previous unification. It has no size annotations because
the induction was on the first hypothesis. Nevertheless, we
can perform a case analysis of its structure by unfolding its
definition (using the clauses in Fig. 3). Once again, we have
a choice of using a static program clause or a dynamic clause
from L. If we use a static clause, then by a similar argument
to the above we will get the following fresh hypotheses, for
new eigenvariables D′′ and E′′ such that E = dapp D′′ E′′:

{L ` hodb M ′ H′ D′′} and {L ` hodb N ′ H′ E′′}

We can now apply the ih twice, yielding D′ = D′′ and
E′ = E′′, so D = dapp D′ E′ = dapp D′′ E′′ = E.

If, on the other hand, we use a dynamic clause in L, then
the two fresh hypotheses we get are:

member F L and {L, [F] ` hodb (app M ′ N ′) H E}.

for some new eigenvariable F . This is the first place where
the context characterization hypothesis ctx L becomes useful.
By Lem. (5) above, we should be able to conclude that F

is of the form
(
Πi, k. hodb n i (dvar k) ⇐ add H̃ k i

)
for

some term H̃ and nominal constant n. By looking at the
clauses for bch in Fig. 3, it is clear that there is no way to
prove the sequent {L, [F]`hodb (app M ′ N ′) H E}, because
the term n will never unify with app M ′ N ′. Hence this
hypothesis is vacuous, which closes this branch. We have
now accounted for all the cases of backchaining a static clause
for the inductive assumption {L ` hodb M H D}@.

This leaves only the dynamic clauses in L—which are
backchained using the dyn rule—which corresponds to the
following pair of new hypotheses:

member F L∗ and {L, [F] ` hodb M H D}∗

Theorem ctx_inv : ∀L,E. ctx L ⊃ member E L ⊃
∃x,H.E = (Πi, k. hodb x i (dvar k)⇐ add H k i) ∧ name x.

Theorem ctx_unique : ∀L, x,H1, H2. ctx L ⊃
member (Πi, k. hodb x i (dvar K)⇐ add H1 k i) L ⊃
member (Πi, k. hodb x i (dvar K)⇐ add H2 k i) L ⊃ H1 = H2.

Theorem add_det2 : ∀L,X, Y1, Y2, Z. ctx L ⊃
{L ` add X Y1 Z} ⊃ {L ` add X Y2 Z} ⊃ Y1 = Y2.

Theorem hodb_det3 : ∀L,M,D,E,H. ctx L ⊃
{L ` hodb M H D} ⊃ {L ` hodb M H E} ⊃ D = E.

induction on 2. intros cH dH eH. dcH:case dH.

% case of M = app M‘ M2

ecH:case eH.

apply IH to cH dcH ecH.

apply IH to cH dcH1 ecH1. search.

bcH:apply ctx_inv to cH. case bcH. case ecH.

% case of M = abs M ′

ecH:case eH.

apply IH to _ dcH ecH. search.

bcH:apply ctx_inv to cH ecH1. case bcH. case ecH.

% backchaining on L

bcH:apply ctx_inv to cH dcH1. aH:case dcH.

ecH:case eH. case bcH. case bcH.

uH:apply ctx_inv to cH bH1. case uH.

bH:case ecH. apply ctx_unique to cH dcH1 ecH1.

apply add_det2 to cH aH bH search.

Figure 4: Abella proof that hodb is deterministic in
its third argument

As these hypotheses come from unfolding an inductive as-
sumption, they are ∗-annotated. Once again, we can apply
lem. (5) to conclude that

F =
(
Πi, k. hodb n i (dvar k)⇐ add H k i

)
where n denotes a nominal constant, We then continue using
the definitional clauses for bch to get the fresh assumption

{L ` add H k i}∗

for new eigenvariables k and i, and the equations M = n

and D = dvar k. Then, since n does not occur in the static
clauses Θ, the only way to prove the second hypothesis
{L ` hodb n H E} would be to use a dynamic clause in L.
Once again, by lem (5) and unfolding the definition of bch
as above, we see that this clause must have been of the form
Πi, k. hodb n i (dvar k)⇐ add Ĥ k i for some eigenvariable

Ĥ. We can now use the other lemma (6) to show that H = Ĥ.
Hence, {L ` hodb n H E} backchains on the same clause in
L as {L ` hodb n H D}, so it must be that E = dvar k as
well, i.e., D = E.

This proof, which has been explained here in some detail,
is concisely expressed using the tactics language of Abella [1]
as shown in Fig. 4. Induction and case analyses are indi-
cated explicitly using the induction and case tactics, while
lemmas are applied using the apply tactic. The seq and
bch definitions are used implicitly by the case and search

tactics; in particular case handles reasoning on backchaining
sequents. The tactics language of Abella therefore remains
unchanged from earlier versions that were designed to sup-
port only second-order hereditary Harrop formulas.

The hodb relation is also deterministic in its first argument—
i.e., given a De Bruijn indexed term, there is at most a single
HOAS term it corresponds to—which is proved in a similar
fashion. Thus, the hodb relation is manifestly an isomorphism

between the two representations of λ-terms. If we were
to specify the translations functionally, then we would not
only have to repeat the clauses for both directions of the
translation, but we would also have to prove separately that
they are injective and inverses. We do not sacrifice any of the
executable power of a functional specification: the program
hodb is directly executable in the language λProlog [17].

4. CASE STUDY: RELATING MARKED RE-
DUCTION TO LAMBDA PATHS

The example of the previous section was simple enough that
the dynamic context could always be characterized directly
by an inductive definition. In the general case, we will
need to prove properties about a collection of higher-order
relations where each relation has its own separate form of
dynamic context. We will therefore need to generalize unary
definitions such as ctx of the previous section to context
relations of higher arities. This section contains a case study
of such an example, which is independently novel.

The example is drawn from [14, Sec. 7.4.2] and involves
a structural characterization of reductions on λ-terms. A
path through a λ-term is a way to reach any non-binding
occurrence of a variable in the term [14, Sec. 4.2]. In HH, we
can use a basic type p for paths with the following construc-
tors: left, right : p→ p to descend to the function or the
argument sub-trees in an application, and bnd : (p→ p)→ p

to descend through a λ-abstraction. Crucially, bnd has the
same binding structure as the λ-abstractions encountered
along the path. The predicate path : tm→ path→ o asserts
that a given λ-term contains a given path; it is defined by
the following three HH clauses.

path (app M N) (left P)⇐ path M P.

path (app M N) (right P)⇐ path N P.

path (abs M) (bnd P)⇐
Πx, p. path (M x) (P p)⇐ path x p.

As these paths record the specific structure of a λ-term, β-
reduction changes the paths in the term. On the other hand,
a path through the result of reducing app (abs (λx.Mx))N
would be a path through M x with the additional proviso
that any path through N is also a path through x. Paths
are a useful tool for structural characterization of terms. For
instance, if two terms have the same paths, then they must
be identical; this corresponds to the following theorem of G:

∀M,N.

(∀P. { ` path M P} ⊃ { ` path N P}) ⊃
M = N.

(7)

This theorem is provable in the version of Abella described
in [11] that only has the second-order fragment of HH as its
specification logic.

Unfortunately, this structural characterization is not pre-
served by λ-conversion. Suppose we want to compute the
paths in a term that result from reducing certain marked
β-redexes. Formally, we can add a new constructor for
marked redexes, beta : (tm → tm) → tm → tm with the
understanding that betaM N denotes the same λ-term as
app (absM)N , except that the redex is marked. We can
then define a relation bred : tm → tm → o that reduces all
the marked β-redexes in a term, with the following clauses.

bred (app M N) (app U V)⇐ bred M U & bred N V.

bred (abs M) (abs U)⇐
Πx. bred (M x) (U x)⇐ bred x x.

bred (beta M N) V ⇐
Πx. bred (M x) V ⇐ Πu. bred x u⇐ bred N u.

We also need a static clause for a path in a marked redex.

path (beta M N) P ⇐
Πx. path (M x) P ⇐ Πq. path x q ⇐ path N q.

Since different terms can have the same paths as long as they
reduce to the same term, the theorem (7) will need to be
updated to account for reduction. That is, if two terms have
the same paths, then they are joinable by bred:

∀M,N,U, V.

(∀P. { ` path M P} ⊃ { ` path N P}) ⊃
{ ` bred M U} ⊃ { ` bred N V } ⊃ U = V.

(8)

How would one prove (8)? Note that there are two different
higher-order predicates: proofs of bredM U will add dynamic
clauses involving bred, while proofs of pathM P will add
dynamic clauses involving path. We would like to prove that
bred preserves path, so the statement of the theorem would
have to account for proofs of both kinds, and hence for both
kinds of dynamic clauses. The general technique in G for
such situations is to relate the two kinds of dynamic contexts
for the two different relations. The following definition of
ctx2 : olist→ olist→ prop achieves this.

ctx2 nil nil , >(
∇x, p. ctx2 (bred x x ::K) (path x p :: L)

)
, ctx2 K L;(

∇x. ctx2 ((Πu. bred N u⇒ bred x u) ::K)

((Πp. path N p⇒ path x p) :: L)
)
, ctx2 K L.

It is important to note that the ctx2 predicate not only
says how two such contexts are related, but also contains
a specification of the contexts themselves. A hypothesis
ctx2 K L where L, say, is not used elsewhere in the theorem
is equivalent to assuming just that K is a dynamic context
for bred. As before, the ∇-bound variables at the head
guarantee that every such variable has a unique dynamic
clause in both contexts, which we can establish separately
using a lemma.

The proof of (8) now proceeds as follows: first we note
that if bred M N , then a path in M must also be in N and
vice versa. Then, we separately show that if bred M N , then
it must be that N is free of any subterms involving beta.
Finally, we prove the lemma that if two beta-free terms
have the same paths, then they must be identical, which is
essentially the same theorem as (7).

Let us consider the first of these lemmas: that bred pre-
serves path. In the G encoding of HH, the statement of the
theorem is:

∀K,L,M,U, P.

ctx2 K L ⊃ {K ` bred M U} ⊃
{L ` path M P} ⊃ {L ` path U P}.

(9)

This theorem is proved by induction on {K ` bred M U}.
Just as in the inductive proofs in Sec. 3.3, there will be some
cases for backchaining static program clauses and some for
dynamic clauses. The static cases are fairly straightforward,
so we concentrate below on the dynamic cases.

Per the definition in Fig. 3, backchaining a dynamic clause
for {K ` bred M U} produces the new hypotheses:

(member E K)∗ and {K, [E] ` bred M U}∗

for some eigenvariable E. From ctx2 K L and member E K,
it must follow that:

(∃X. (E = bred X X) ∧ nameX)

∨ (∃N,X.E = (Πu. bred X u⇐ bred N u) ∧ nameX)

which is itself proven (as a lemma) by induction on the
hypothesis ctx2 K L. We therefore need to consider only
these two cases for the dynamic clause E.

The first case where E = bred X X is easy to prove.
For the second case, we are left with the following problem:
although we can characterize the cases for E, this is not
enough to reason about path because E is a dynamic clause
for bred. This is where we use the fact that ctx2 is a relation
to prove the following lemma.

∀K,L,N.∇n. ctx2 (K n) (L n) ⊃
member (Πu. bred n u⇐ bred N u) (K n) ⊃

member (Πq. path n q ⇐ path N p) (L n)

(10)

Its proof is by induction on the hypothesis ctx2 K L. It
can be seen as a kind of translation between the formal rela-
tion, given as an inductive definition, to a way of reasoning
about the elements of the related contexts. The lemma (10)
states, in particular, that a dynamic clause about reduction
of marked redexes in the dynamic contexts for bred must
have a corresponding dynamic clause for paths through a
marked redex in the dynamic contexts for path.

We now have nearly everything to finish the proof of (9).
The only remaining wrinkle is that in the case where the term
M is a variable that unifies with a nominal constant n, we
will need to look up its dynamic clause in a suitable dynamic
context and continue by backchaining it. This amounts to
the following inversion lemma:

∀K,L,N, P.∇n. ctx2 (K n) (L n) ⊃
member (Πq. path n q ⇐ path N q) (L n) ⊃
{(L n) ` path n P} ⊃ {(L n) ` path N P}.

(11)

Effectively, this lemma says that the only way that {(L n) `
path n P} could have been proved is by backchaining on the
given clause, which has the premise {(L n)`path N P}. We
can show this lemma because we have completely character-
ized the dynamic context (L n), and the static program has
no clauses with nominal constants. Note that the nesting
order of ∀ and ∇ is crucial here: the nominal constant n
must not be allowed to occur in N . However, it is obviously
allowed to occur in the dynamic context, so we indicate this
by means of an explicit dependency, indicated here using the
application (L n). This punning between the two levels is
possibly because HH and G are both based on a common
λ-calculus. The proof of (9) can now be completed by using
(11) for the variable case.

The full development of this example in Abella, including
the formal proofs, can be found in examples/hhw/breduce.

thm in the Abella distribution [1].

5. RELATED WORK
The HH proof system presented in Sec. 2 is largely similar
to the focused sequent calculus LJF [12] for the fragment

of intuitionistic logic containing implication, universal quan-
tification, negatively polarized atoms, and the negatively
polarized variant of conjunction. It is also straightforwardly
a version of the calculus formalizing uniform provability [15].
The term “logic of hereditary Harrop formulas” is often used
to indicate an extended logic where disjunction and exis-
tential quantification are also allowed in a limited form [14,
chap. 3]. Specifications in the full language with these connec-
tives can be compiled into our HH language, possibly with an
increase in the number of static clauses in the specifications.

Representational techniques for data with binding can
be broadly classified into two styles: first-order and higher-
order. Regardless of style, a primary requirement of the
representation is that it not distinguish between terms that
are α-equivalent. The traditional first-order approach to
realizing this requirement is to represent bound variables by
De Bruijn indexes, which yields canonical representatives
of α-equivalence classes of λ-terms. A very different first-
order alternative to De Bruijn indexes is the approach of
nominal logic that forgoes canonical representatives of the
α-equivalence classes; instead, two terms are considered iden-
tical if they are equivariant, meaning that the names used in
one term can be permuted to the names in the other. This
approach is the basis of Nominal Isabelle [4], and there are
also a number of libraries for programming with nominal
data, such as Fresh OCaml [21] and Alpha Prolog [3, 23].

A drawback with first-order representations, whether of
the De Bruijn or the nominal logic kind, is that they typi-
cally do not offer support for binding related notions beyond
α-equivalence. Typical reasoning applications require a re-
alization of operations such as substitution and analysis of
syntactic structure that respects binding. With first-order
approaches, these have to be implemented explicitly and
the reasoning process must also show their correctness. In
particular, the operation of substitution of a term for a
free variable, which is at the heart of much of the meta-
theory of deductive systems, requires careful book-keeping
and fairly detailed correctness arguments (see e.g. [20] for
a recent example done in Coq). In contrast, higher-order
representations reflect binding constructs into the meta-level
abstraction operation and thereby absorb arguments about
the correctness of binding related operations into a one-time
argument, external to the object-level reasoning task, about
the correctness of the the meta-language implementation.

Besides Abella, there are three other systems designed to
reason about specifications in HOAS: Hybrid [8], Beluga [19],
and Twelf [18]. All of these systems are broadly two-level or
nested systems, but they make different choices for the spec-
ification and reasoning formalisms. Of these, only Hybrid is
integrated with popular existing formal reasoning systems
(Coq and Isabelle), which allows it to leverage the trusted
kernels of the existing systems instead of implementing new
trusted components. On the other hand, Hybrid is limited
to the second-order hereditary Harrop fragment for the spec-
ification level (which makes it similar in this respect to the
earlier version of Abella described in [11]) and does not have
support for generic reasoning. The second-order restriction is
significant when reasoning about higher-order deductive sys-
tems: the dynamic clauses of higher-order specifications must
be named and transferred to the static program beforehand.
For example, the path predicate in the second-order fragment
requires an auxiliary predicate jump and the following clauses

for marked redexes.

path (beta M N) P ⇐ Πx. path (M x) P ⇐ jump x N.

path X P ⇐ jump X N & path N P.

Writing such auxiliary predicates is not only error-prone and
anti-modular, but they also complicate reasoning about the
relations. For instance, in HH it is a direct consequence of
cut that {L, path N q ` path x q} and {L, (Πq. path x q ⇐
path N q)`G} imply {L`G}. However, for the second-order
encoding above, the fact that {L, path N q ` path x q} and
{L, jump x N ` G} imply {L ` G} would need a separate
inductive proof.

Beluga and Twelf both use the LF dependent type the-
ory for their specification languages. It is known that LF

specifications can be systematically and faithfully translated
into HH [7, 22]. The encoding of an LF signature in HH uses
higher-order features pervasively, and, indeed, was an early
motivation for the present work of supporting reasoning over
higher-order specifications in Abella. The main difference be-
tween LF and HH is their type systems, which directly affects
their reasoning principles. Briefly, LF encourages a “com-
bined contexts” reasoning approach, while HH encourages
a “context relations” approach. Because LF is dependently
typed, the dynamic signature extensions for universally quan-
tified goals cannot be separated from other assumptions; in
fact, contexts in LF are interpreted as ordered. It is difficult
to place the same LF term in two different contexts.

In both Beluga and Twelf, therefore, the most direct way
to reason about different higher-order relations is to use a
common dynamic context for the relations. This is achieved
formally by specifying contexts schematically by means of
regular grammars, and using subordination analysis on the
signature to determine when one regular context may be
subsumed by another. For example, since there is no way to
embed a λ-term value inside a nat value using the provided
constructors, and the clauses for add do not mention λ-
terms, it must stand to reason that properties of add must
hold even in a context of assumptions about λ-terms. Such
subsumption properties are often useful; for examples, in the
example of Sec. 3.3, if the required properties of add are used
in a non-empty dynamic context, we must separately prove
that earlier theorems still hold, such as the theorem add_det2

in Fig. 4. In Abella, context definitions are no different
from any other inductive definition; there is no automatic
subsumption of context relations and such lemmas must
be proven manually. On the other hand, reasoning about
contexts is not part of the trusted base of Abella, and many
properties about arbitrary context relations can be separately
proved and used in a modular fashion, as we have done in
the examples in Sec. 3.3 and 4.

The differences between the Abella approach and that
of Twelf and Beluga taken together can be summarized by
the following observations. Firstly, Twelf and Beluga make
many kinds of reasoning about context membership, such
as (5), automatic and available to the user for free. Explicit
reasoning about context members in Abella can be tedious, so
it is conceivable that some aspects of the context reasoning of
Twelf and Beluga can be imported into Abella in the future.
In particular, theorems such as (5), (6), and (10) have entirely
predictable proofs that should be easy to automate.

Secondly, the reasoning logic G has a well-developed proof-
theory that includes a sequent calculus with a cut-admis-
sibility result [10]. This logic has a number of features: an

equality predicate at all types, generic reasoning, and both
inductive and co-inductive fixed-point definitions. Twelf’s
M+

2 meta-logic also has a sequent calculus with proof-terms,
and the consistency of this logic is proved by giving the
proof terms an operational semantics and verifying that they
represent total functions under this interpretation. Beluga
(as of version 0.5) supports only inductive reasoning in terms
of recursive fixed-points, and does not support co-induction.
Twelf supports inductive reasoning for Π1

0 theorems, but also
has no support for co-induction. Neither Twelf nor Beluga
has a built-in equality predicate. For generic reasoning, Bel-
uga’s contextual modal types can achieve many of the same
goals as the ∇ quantifier of G, but the global nature of nomi-
nal constants and equivariant unification makes it possible to
reason about open terms with free variables, unaccompanied
by any contexts [2]. Much of the informal meta-theory of
the λ-calculus uses open terms in this style, but a first order
representation of variables requires an explicit treatment of
α-equivalence and substitution. The ∇ quantifier lets us
combine the benefits of HOAS and reasoning on open terms.

Finally, the type systems of Twelf and Beluga are endowed
with an associated natural induction principle that allows
reasoning by induction on the structure of well-typed terms.
In Abella, typing is not treated as a definition, so if one wants
to induct on the structure of λ-terms, for example, one would
have to use a well-formedness predicate is_tm : tm→ o with
the following clauses:

is_tm (app M N)⇐ is_tm M & is_tm N.

is_tm (abs M)⇐ Πx. is_tm (M x)⇐ is_tm x.

Then, whenever one needs to reason by induction on the
structure of a term M , one reasons instead on { ` is_tm M}.
Because such predicates essentially reify the well-typedness
relation, they will generally need higher-order clauses if the
types of the constructors are higher-order. For instance,
the abs constructor has a second-order type and requires a
second-order clause for is_tm. Note that such definitions
cannot be made in the reasoning logic G because they are
not stratified, i.e., to prove is_tm M , one needs to make
assumptions of the form is_tm x. It is of course possible to
automatically generate HH predicates like is_tm for a given
HH signature, but in any theorem that involves inductive
reasoning on the structure of terms one would still need to
make hypotheses such as { ` is_tm M} explicit. Note that
∀M :tm. { ` is_tm M} is not a theorem of G.

6. CONCLUSION
We have presented an extension to the two-level logic ap-
proach that lets one use the full richness of HH to specify
and formally reason about higher-order deductive formalisms.
The essence of our method is characterizing the contexts of
these higher-order formalisms as inductive relations, and a
variant of the backchaining procedure that allows us to use
properties of these inductive characterizations in a modular
way. We have validated our design and methodology by
implementing an extended Abella system and by using it to
develop a number of non-trivial examples of reasoning over
higher-order specifications.

Acknowledgments: We thank Dale Miller, Olivier Savary-
Bélanger and the anonymous reviewers for helpful discussions
and comments on earlier drafts. This work has been partially
supported by the NSF Grants OISE-1045885 (REUSSI-2) and

CCF-0917140 and by the INRIA Associated Team RAPT.
Opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion.

7. REFERENCES
[1] The Abella prover, 2013. Available at

http://abella-prover.org/.

[2] B. Accattoli. Proof pearl: Abella formalization of
lambda calculus cube property. In C. Hawblitzel and
D. Miller, editors, Second International Conference on
Certified Programs and Proofs, volume 7679 of LNCS,
pages 173–187. Springer, 2012.

[3] J. Cheney and C. Urban. Alpha-Prolog: A logic
programming language with names, binding, and
alpha-equivalence. In B. Demoen and V. Lifschitz,
editors, Logic Programming, 20th International
Conference, volume 3132 of LNCS, pages 269–283.
Springer, 2004.

[4] J. Cheney and C. Urban. Nominal logic programming.
ACM Trans. Program. Lang. Syst., 30(5):1–47, 2008.

[5] A. Church. A formulation of the simple theory of types.
J. of Symbolic Logic, 5:56–68, 1940.

[6] N. G. de Bruijn. Lambda calculus notation with
nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser
Theorem. Indagationes Mathematicae, 34(5):381–392,
1972.

[7] A. Felty and D. Miller. Encoding a dependent-type
λ-calculus in a logic programming language. In
M. Stickel, editor, Proceedings of the 1990 Conference
on Automated Deduction, volume 449 of LNAI, pages
221–235. Springer, 1990.

[8] A. Felty and A. Momigliano. Hybrid: A definitional
two-level approach to reasoning with higher-order
abstract syntax. J. of Automated Reasoning, 48:43–105,
2012.

[9] A. Gacek. A Framework for Specifying, Prototyping,
and Reasoning about Computational Systems. PhD
thesis, University of Minnesota, 2009.

[10] A. Gacek, D. Miller, and G. Nadathur. Nominal
abstraction. Information and Computation,
209(1):48–73, 2011.

[11] A. Gacek, D. Miller, and G. Nadathur. A two-level
logic approach to reasoning about computations. J. of
Automated Reasoning, 49(2):241–273, 2012.

[12] C. Liang and D. Miller. Focusing and polarization in
linear, intuitionistic, and classical logics. Theoretical
Computer Science, 410(46):4747–4768, 2009.

[13] R. McDowell and D. Miller. Reasoning with
higher-order abstract syntax in a logical framework.
ACM Trans. on Computational Logic, 3(1):80–136,
2002.

[14] D. Miller and G. Nadathur. Programming with
Higher-Order Logic. Cambridge University Press, June
2012.

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125–157, 1991.

[16] D. Miller and A. Tiu. A proof theory for generic
judgments. ACM Trans. on Computational Logic,
6(4):749–783, Oct. 2005.

[17] G. Nadathur and D. Miller. An Overview of λProlog.
In Fifth International Logic Programming Conference,
pages 810–827, Seattle, Aug. 1988. MIT Press.

[18] F. Pfenning and C. Schürmann. System description:
Twelf — A meta-logical framework for deductive
systems. In H. Ganzinger, editor, 16th Conf. on
Automated Deduction (CADE), number 1632 in LNAI,
pages 202–206, Trento, 1999. Springer.

[19] B. Pientka and J. Dunfield. Beluga: A framework for
programming and reasoning with deductive systems
(system description). In J. Giesl and R. Hähnle, editors,
Fifth International Joint Conference on Automated
Reasoning, number 6173 in LNCS, pages 15–21, 2010.

[20] E. Polonowski. Automatically generated infrastructure
for De Bruijn syntaxes. In Interactive Theorem Proving
(ITP), volume 7998 of LNCS, pages 402–417. Springer,
July 2013.

[21] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay.
FreshML: Programming with binders made simple. In
Eighth ACM SIGPLAN International Conference on
Functional Programming (ICFP 2003), Uppsala,
Sweden, pages 263–274. ACM Press, Aug. 2003.

[22] Z. Snow, D. Baelde, and G. Nadathur. A
meta-programming approach to realizing dependently
typed logic programming. In ACM SIGPLAN
Conference on Principles and Practice of Declarative
Programming (PPDP), pages 187–198, 2010.

[23] C. Urban and J. Cheney. Avoiding equivariance in
Alpha-Prolog. In P. Urzyczyn, editor, Typed Lambda
Calculi and Applications, Proceedings, volume 3461 of
Lecture Notes in Computer Science, pages 401–416.
Springer, 2005.

