Magically Constraining the Inverse Method with Dynamic Polarity Assignment

1 Introduction

It is now well established that two operational "dialects" of logic programming-topdown (also known as backward chaining or goal-directed) in the style of Prolog, and bottom-up (or forward chaining or program-directed) in the style of hyperresolutioncan be expressed in the uniform lexicon of polarity and focusing in the sequent calculus for a general logic such as intuitionistic logic [8]. The difference in these diametrically opposite styles of logic programming amounts to a static and global polarity assignment to the atomic formulas. Such a logical characterisation allows a general theorem proving strategy for the sequent calculus, which might be backward (goal sequent to axioms) as in tableau methods or forward (axioms to goal sequent) like in the inverse method, to implement either forward or backward chaining (or any combination) for logic programs by selecting the polarities for the atoms appropriately. Focused inverse method provers, some supporting polarity assignment, have been built for linear logic [4], intuitionistic logic [16], bunched logic [10] and several modal logics [11] in recent years.

The crucial ingredient for the characterisation is that polarities and focusing are sufficiently general that all static polarity assignments are complete [8, 1]. The two assignments may be freely mixed for different atoms, which will produce hybrid strategies. The proofs are, of course, very different: one assignment may admit exponential derivations of Fibonacci numbers, while the other might have only the linear proofs. Even more importantly, the search space for proofs is wildly different for different assignments. Sometimes the assignment can be made easily; for example, atoms that are used ign an assignment that implements forward chaining, while atoms that represent computational functions perform better with assigned to implement backward chaining. However, the situation is not often this clear, and static polarity assignment has turned out to be a coarse and somewhat unwieldy tool, as was noted in the experiments in $[8,16]$.

In this paper, we propose to look at dynamic polarity assignment as a means to do better than static assignment for certain well known classes of problems. Dynamic assignment of a particular form has been investigated before by Nigam and Miller [17] as a means of incorporating tables into proof objects; however, their notion of dynamics involves changes to the underlying proof system (such as the addition of cuts that polarise certain cut atoms in different ways). We propose instead to build a proof system that retains the same inference rules as ordinary focusing, but dynamically specialises them based on polarity assignments performed at runtime. (Note that "dynamic polarity assignment" is not a particular algorithm but a general class of algorithms for controlling the search behaviour of existing algorithms. It is best to think of it by analogy with ordering strategies in resolution theorem proving.)

In particular, we give a dynamic assignment strategy that implements the effect of the so-called magic sets transformation $[3,19,15]$, which is a program transformation constrains forward chaining to have the same set of answers as backward chaining. It is quite difficult to show that the transformation has this intended property. Moreover, since it is a global transformation on the program, that might even (in the general case) depend on the query, it is not modular and compositional. We propose, in this paper, to give an alternative presentation of magic sets that not only avoids the transformation, but also gives a characterisation of magic sets in the common lexicon of focusing. That is, the magic sets approach is just a special case of dynamic polarity assignment, in much the same way as forward and backward chaining for Horn clauses are just special cases of static polarity assignment.

We limit our attention in this paper to the focused inverse method [4] as the particular general search strategy for the sequent calculus. Intuitively, this method "compiles" a clause into an inference rule as follows:

$$
\operatorname{sum}(\mathrm{s} \mathrm{X}) \mathrm{Y}(\mathrm{~s} Z):-\operatorname{sum} \mathrm{X} \mathrm{YZ.} \longrightarrow \frac{\Gamma \vdash \operatorname{sum} x y z}{\Gamma \vdash \operatorname{sum}(\mathrm{~s} x) y(\mathrm{~s} z)}
$$

70:
71:
72: p

73: p

When this inference rule is read from premise to conclusion, the interpretation is of forward chaining on the corresponding clause. Such rules can be repeatedly applied to produce an infinite number of new sequents differing only in the number of ss, which prevents saturation even for queries with a finite backward chaining search space. With such clauses, forward chaining cannot appeal to negation by failure, unlike backward chaining. We show how to use dynamic polarity assignment to instead produce a new side condition on such inference rules: the conclusion (sum ($\mathrm{s} x) y(\mathrm{~s} z)$) must be negatively polarised for the rule to be applicable. The atoms are polarised negatively by carefully selecting only those atoms that are in the base of the logic program.

One important feature of this re-investigation of the magic sets approach is that, because it is performed in a more general context, we can potentially generalise it to larger fragments of logic such as the uniform fragment. Moreover, since it does not change the underlying proof system, it can potentially co-exist with other strategies. For example,

89:

if the dynamic assignment algorithm gets stuck, the remaining atoms can be polarised in some other fashion and the inverse method resumed without losing completeness.

The rest of this paper is organised as follows. In sec. 2 the magic sets transformation is sketched by way of example. Section 3 then summarises the design of the focused inverse method and static polarity assignment. Section 4 introduces dynamic polarity assignment and shows how to use it to implement the magic sets restriction (sec. 4.2). Finally, sec. 5 discusses the conclusions and scope of future work on dynamic polarity assignment.

2 Magic Sets Transformation

This section contains a quick overview of the Magic Sets Transformation for logic programs. We use the "core" version presented in [15], which is less general than some other designs in the literature $[3,19]$ but also easier to explain and reason about. The logic programs we will consider are made up of Horn clauses and satisfy a global wellmodedness criterion.

Definition 1 (Horn clauses) A Horn clause is an iterated implication of atomic formulas that is implicitly closed over all its variables. That is, Horn clauses (C, D, \ldots) satisfy the following grammar:

$$
C, D, \ldots:=a \vec{t}|a \vec{t} \rightarrow C \quad t, s, \ldots:=x| f \vec{t}
$$

where a ranges over predicate symbols, f over function symbols, and x over variables. The notation \vec{t} stands for a list, possibly empty, of terms.

Many extensions of this definition of Horn clauses exist in the literature, but they are all generally equivalent to this fragment. A logic program is just an unordered collection of Horn clauses where each predicate and function symbol has a unique arity. (We do not consider particular orderings of the clauses because we are not interested in the precise operational semantics of a logic programming language such as Prolog.)

Definition 2 (moding) Every predicate symbol of arity n can be assigned a mode, which is a string of length n composed of the characters i and o , which are mnemonics for "input" and "output" respectively. A mode assignment to all predicates in a logic program is called a moding. The inputs of a predicate with respect to a mode are those arguments corresponding to the occurrences of i in the mode; likewise, the outputs are the arguments corresponding to o in the mode.

Definition 3 (well-modedness) All the following are with respect to a given moding:

- A goal query is well-moded iff its inputs are ground.
- A clause $a_{1} \overrightarrow{t_{1}} \rightarrow \cdots \rightarrow a_{n} \overrightarrow{t_{n}} \rightarrow b \vec{s}$ is well-moded iff for all $i \in 1 . . n$, the variables in the inputs of $a_{i} \vec{t}_{i}$ are contained in the union of the variables in the outputs of $a_{j} \overrightarrow{t_{j}}$ for $i<j \leq n$ and of the variables in the inputs of $b \vec{s}$.
- A logic program is well-moded iff every clause in it is well-moded.

The definition of well-modedness for non-unit clauses intuitively states that, in a right-to-left reading of the clause, the inputs of an atomic formula must be defined the outputs of earlier atomic formulas and the inputs of the head. There is no fundamental need to read the body of the clause from right to left; indeed, well-modedness can be generalised to allow for any permutation of the body to satisfy the inclusion criteria for input variables. Given a well-moded program and query, every derivation of an instance of the query from the program will be ground (for the proof, see [2]).

We use the same motivating example from [15]: computing the sum of the elements of a list of natural numbers. The clauses of the program are as follows in Prolog style.

```
(* mode lsum = io *)
lsum [] 0.
lsum (X :: Y) k :- lsum Y J, sum X J K.
(* mode sum = iio *)
sum 0 X X.
sum (s X) Y (s Z) :- sum X Y Z.
```

This program is well-moded because the outputs flow into the inputs from left to right in the body of the clauses. A query such as ?- lsum [1, 2, 3] X is well-moded because the input is ground, while a query such as ?- 1sum X 20 is not well-moded.

To prove a well moded query, the backward chaining or top-down logic programming approach matches the goal with the heads of the clauses in the program, and for each successful match, replaces the goal with the matched instance of the body of the clause as new subgoals. A well-moded program is said to be terminating if there are no infinite backward chaining derivations for a well-moded query.

The forward chaining or bottom-up logic programming strategy starts from the unit clauses in the program, matches the body of a clause with these clauses, and adds the most general instance of the matched head as a new clause. This is iterated until (a generalisation of) the goal query is derived. This direction is not quite as obviously goal-directed as backward chaining, but it has many fundamental merits. It builds a database of computed facts that are all mutually non-interfering, and therefore requires no backtracking or global, stateful updates. Moreover, facts and therefore derivations are implicitly shared, so the loop detection issue that plagues backward chaining does not apply here.

However, forward chaining suffers from the obvious problem that it over-approximates the query, performing a lot of wasteful search. Fortunately, it is possible to constrain forward chaining for a given program and query such that the algorithm will saturate, i.e., reach a state where no new facts can be generated, iff the query terminates in backward chaining. This is achieved by rewriting the program and the query so that the forward algorithm approximates backward search.

The common element of the approaches to constrain forward chaining is the notion of a magic set, which is an abstract representation of the base of the program [15]. We shall illustrate it here with the example above. For each predicate a, a new magic predicate a^{\prime} is added that has the same arity as the input arity of the original predicate. Then, each clause of the program is transformed to depend on the magic predicate applied to the inputs of the head. That is, we obtain the following rewritten clauses:

$$
\begin{gathered}
P, Q::=p|P \otimes Q| \mathbf{1}|P \oplus Q| \mathbf{0}|\exists x . P| \downarrow N \quad N, M::=n|N \& M| \top|P \multimap N| \forall x . N \mid \uparrow P \\
p::=\langle a \vec{t},+\rangle \quad n::=\langle a \vec{t},-\rangle \quad P^{-}::=P\left|n \quad N^{+}: \because N\right| p
\end{gathered}
$$

```
lsum [] 0 :- lsum' [].
lsum (X :: Y) k :- lsum' (X :: Y), lsum Y J, sum X J K.
sum ( X X :- sum' ( X X.
sum (s X) Y (s Z) :- sum' (s X) Y, sum X Y Z.
```

As there are no longer any unit clauses, forward chaining cannot begin without some additional input. This is provided in the form of the magic version of the goal query as a new unit clause:

```
lsum' [1, 2, 3].
```

Finally, clauses are added for the magic predicates to propagate information about the base. For each non-unit clause, there is one propagation rule for each predicate in the body of the clause. For this example, we would have:

```
lsum' Y :- lsum' (X :: Y).
sum' X J :- lsum' (X :: Y), lsum Y J.
sum' X Y :- sum' (s X) Y.
```

Forward chaining on this transformed program will compute the same instances of the query as backward chaining on the original program and query.

Correctness of this magic sets transformation is generally quite difficult to prove. One of the most readable proofs was provided by Mascellani et al [15]; that paper also contains a fully formal definition of the transformation and a number of other examples. However, all transformational approaches suffer from the same problems outlined in the introduction: they require drastic, non-modular, and non-compositional modifications to the program. In the rest of the paper we will give a different explanation of the magic sets transformation that does not suffer from these problems, and is moreover manifestly correct because of very general proof theoretic properties of focused sequent calculi.

3 The Focused Inverse Method

In this section we review the focused inverse method for intuitionistic logic. Most of the material of this section has already appeared in in $[4,8,16,9]$ and in references therefrom. Like other recent accounts of intuitionistic focusing [16, 6], we adopt a polarised syntax for formulas. Intuitively, positive formulas (i.e., formulas of the positive polarity) are those formulas whose left sequent rules are invertible and negative formulas are those whose right rules are invertible. Every polarised logical connective is unambiguously in one of these two classes. In order to prevent an overlap, we also assign the atomic formulas to one of the two classes. Any polarity assignment for the atoms is complete [8].

Definition 4 (syntax) We follow this grammar:

- Formulas (A, B, \ldots) are either positive (P, Q, \ldots) or negative (N, M, \ldots).
- Atomic formulas (or atoms) (p, q, n, m, \ldots) are also polarised. Each atom consists of an atomic predicate (a, b, \ldots) applied to a (possibly empty) list of terms, and a polarity. We shall sometimes abuse notation and write $\langle a \vec{t}, \pm\rangle$ as $a^{ \pm} \vec{t}$, even though it is the atom and not the predicate that carries the polarity.
- Left passive formulas $\left(N^{+}, M^{+}, \ldots\right)$ and right passive formulas $\left(P^{-}, Q^{+}, \ldots\right)$ are used to simplify the notation slightly.

We use connectives from polarised linear logic instead of the more usual intuitionistic connectives to make the polarities explicit. The polarity switching connectives \downarrow and \uparrow are only bureaucratic and do not change the truth value of their operands. Both \otimes and $\&$ have the same truth value as the usual intuitionistic conjunction \wedge-that is, $A \otimes B \equiv A \& B$ if we ignore polarities and omit the switching connectives \downarrow and \uparrow-just different inference rules. In other formulations of polarised intuitionistic logic these two polarisations of conjunction are sometimes written as \wedge^{+}or \wedge^{-}[14], but we prefer the familiar notation from linear logic. Likewise, \oplus has the same truth value as \vee and \multimap the same truth value as \rightarrow.

The inference system for this logic will be given in the form of focused sequent calculus rules $[1,16]$. We have the following kinds of sequents:

$$
\begin{array}{ccc}
\Gamma \vdash[P] & \text { right-focus on } P & \Gamma ;[N] \vdash Q^{-}
\end{array} \quad \text { left-focus on } N
$$

where: $\Gamma::=\cdot \mid \Gamma, N^{-}$is called the passive context and $\Omega::=\cdot \mid \Omega, P$ is the active context. Both contexts are interpreted as multisets (admits only exchange). We use the usual convention of denoting multiset union with commas. It will turn out that the passive context is also a set, but we will prove this as an admissible principle instead of writing explicit rules of weakening and contraction. Note therefore that Γ_{1}, Γ_{2} is not the same as $\Gamma_{1} \cup \Gamma_{2}$; when the latter interpretation is needed, it will be written explicitly.

The focused sequent calculus will be presented in a stylistic variant of Andreoli's original formulation [1]. The full set of ruls is in fig. 1. It has an intensional reading in terms of phases. At the boundaries of phases are sequents of the form $\Gamma ; \cdot \vdash \cdot ; Q^{-}$, which are known as neutral sequents. Proofs of neutral sequents proceed (reading from conclusion to premises) as follows:

1. Decision: a focus is selected from a neutral sequent, either from the passive context or from the right. This focused formula is moved to its corresponding focused zone using one of the rules DL or DR ($\mathrm{D}=$ "decision", and $\mathrm{R} / \mathrm{L}=$ "right"/"left"). The left rule copies the focused formula.
2. Focused phase: for a left or a right focused sequent, left or right focus rules are applied to the formula under focus. These focused rules are all non-invertible in the (unfocused) sequent calculus and therefore depend on essential choices made in the proof. This is familiar from focusing for linear logic $[1,8]$.
3. Active phase: once the switch rules \downarrow_{R} and $\uparrow \mathrm{L}$ are applied, the sequents become active and active rules are applied. The order of the active rules is immaterial as

$$
\begin{aligned}
& \text { (right-focus) } \quad \frac{}{\Gamma, p \vdash[p]} \mathrm{PR} \quad \frac{\Gamma ; \cdot+N ; \cdot}{\Gamma ;[\downarrow N]} \downarrow_{\mathrm{R}} \\
& \frac{\Gamma \vdash[P] \quad \Gamma \vdash[Q]}{\Gamma \vdash[P \otimes Q]} \otimes \mathrm{R} \quad \overline{\Gamma \vdash[\mathbf{1}]} \mathbf{1}_{\mathrm{R}} \quad \frac{\Gamma \vdash\left[P_{i}\right]}{\Gamma \vdash\left[P_{1} \oplus P_{2}\right]} \oplus \mathrm{R}_{i} \quad \frac{\Gamma ;[P[t / x]]}{\Gamma ;[\exists x . P]} \exists \mathrm{R}
\end{aligned}
$$

(left-focus)

$$
\begin{gathered}
\quad \overline{\Gamma ;[n] \vdash n} \mathrm{NL} \quad \frac{\Gamma ; P \vdash \cdot ; Q^{-}}{\Gamma ;[\uparrow P]+Q^{-}} \uparrow \mathrm{L} \\
\frac{\Gamma ;\left[N_{i}\right]+Q^{-}}{\Gamma ;\left[N_{1} \& N_{2}\right]+Q^{-}} \mathrm{L}_{i} \frac{\Gamma \vdash[P] \quad \Gamma ;[N]+Q^{-}}{\Gamma ;[P \multimap N]+Q^{-}} \multimap \mathrm{L} \frac{\Gamma ;[N[t / x]]+Q^{-}}{\Gamma ;[\forall x . N]+Q^{-}} \forall_{\mathrm{L}}
\end{gathered}
$$

(active)

$$
\begin{aligned}
& \overline{\Gamma ; \Omega \vdash \mathrm{T} ; \cdot} \mathrm{TR}_{\mathrm{R}} \frac{\Gamma ; \Omega, P \vdash N ; \cdot}{\Gamma ; \Omega \vdash P \multimap N ; \cdot}-\mathrm{R} \frac{\Gamma ; \Omega \vdash N[a / x] ; \cdot}{\Gamma ; \Omega \vdash \forall x . N ; \cdot} \forall \mathrm{R}^{a} \\
& \frac{\Gamma, p \vec{t} ; \Omega \vdash \gamma}{\Gamma ; \Omega, p \vec{t} \vdash \gamma} \mathrm{PL} \quad \frac{\Gamma, N ; \Omega \vdash \gamma}{\Gamma ; \Omega, \downarrow N \vdash \gamma} \downarrow \mathrm{~L} \quad \frac{\Gamma ; \Omega, P, Q \vdash \gamma}{\Gamma ; \Omega, P \otimes Q \vdash \gamma} \otimes \mathrm{~L} \frac{\Gamma ; \Omega \vdash \gamma}{\Gamma ; \Omega, \mathbf{1}+\gamma} \mathbf{1}_{\mathrm{L}} \\
& \frac{\Gamma ; \Omega, P \vdash \gamma \quad \Gamma ; \Omega, Q \vdash \gamma}{\Gamma ; \Omega, P \oplus Q \vdash \gamma} \oplus \mathrm{~L} \quad \overline{\Gamma ; \Omega, \mathbf{0} \vdash \gamma} \mathbf{0} \quad \frac{\Gamma ; \Omega, N[a / x] \vdash \gamma}{\Gamma ; \Omega, \exists x . N \vdash \gamma} \exists_{\mathrm{L}}{ }^{a}
\end{aligned}
$$

(decision)

$$
\frac{\Gamma \vdash[P]}{\Gamma ; \cdot \vdash \cdot ; P} \mathrm{DR} \quad \frac{\Gamma, N ;[N] \vdash Q^{-}}{\Gamma, N ; \cdot \vdash \cdot ; Q^{-}} \mathrm{DL}
$$

Fig. 1. Focused sequent calculus for polarised first-order intuitionistic logic
all orderings will produce the same list of neutral sequent premises. In Andreoli's system the irrelevant non-determinism in the order of these rules was removed by treating the active context Ω as ordered; however, we do not fix any particular ordering.

The soundness of this calculus with respect to an unfocused sequent calculus, such as Gentzen's LJ, is obvious. For completeness, we refer the interested reader to a number of published proofs in the literature [8, 13, 18, 12].

The purpose of starting with a polarised syntax and a focused calculus is that we are able to look at derived inference rules for neutral sequents as the basic unit of steps. For instance, one of the derived inference rules for the formula $N \triangleq p \oplus q \multimap m \&(\downarrow l \multimap n)$ in the passive context is given in fig. 2. The instance of PR above forces p to be in the passive context because that is the only rule that can be applied to contruct a sequent of the form $\Delta \vdash[p]$. Likewise, the nL rule forces the right hand side of the conclusion sequent to be the same as the left focused atom n. Finally, the dL rule requires N to already be present in the passive context.

As we observe, focusing compiles formulas such as N above, which may be clauses in a program, into (derived) inference rules. Focusing can also produce new facts, which are neutral sequents that have no open premises after applying a derived inference rule.

Fig. 2. One derived inference rule for N.

An example would be the case for the derivation above where, instead of $\& \mathrm{~L}_{2}$ we were to use $\& \mathrm{~L}_{1}$. In this case we would obtain the fact $\Gamma, N, p ; \cdot \vdash \cdot m$. If the goal were of this form, we would be done.

This property of focusing can be exploited to give a purely proof-theoretic explanation for certain dialects of proofs. For Horn clauses, consider the case where all the atoms are negative, $i . e . c l a u s e s ~ a r e ~ o f ~ t h e ~ f o r m ~ \forall \vec{x} . \downarrow m_{1} \multimap \cdots \multimap \downarrow m_{j} \multimap n$. If clause were named N, then its derived inference rule is:

$$
\frac{\Gamma, N ; \cdot \vdash \cdot ; m_{1}[\vec{t} / \vec{x}] \quad \cdots \quad \Gamma, N ; \cdot \vdash \cdot ; m_{j}[\vec{t} / \vec{x}]}{\Gamma, N ; \cdot \vdash \cdot ; n[\vec{t} / \vec{x}]}
$$

Since the context is the same in all premises and the conclusion, we need only look at the right hand side. If we read the rule from conclusion to premises, then this rule implements back-chaining from an instance of the head of this Horn clause to the corresponding instances of the body of the clause, where the neutral sequents represent the current list of sub-goals. Thus, the general top-docn logic programming strategy (or backward chaining) consists of performing goal-directed focused proof search on Horn clauses with negative atoms. If the atoms were all assigned positive polarity instead, then the same goal-directed focused proof search would perform a kind of bottom-up logic programming (or forward chaining). Static polarity assignment for the atoms is therefore a logical characterization of forward and backward chaining strategies. Indeed, if the atoms were not uniformly given the same polarities, then the focused proofs would be a mixture of forward and backward chaining.

3.1 Forward reasoning and the inverse method

An important property of the sequent calculus of fig. 1 is that there is a structural cutelimination algorithm [8]; as a consequence, the calculus enjoys the subformula property. Indeed, it is possible to state the subformula property in a very strong form that also respects the sign of the subformula (i.e., whether it is principal on the left or the right of the sequent) and the parametricity of instances (i.e., the subformulas of a right \forall or a left \exists can be restricted to generic instances). We omit a detailed definition and proof here because it is a standard result; see e.g. [7] for the definition.

The benefit of the strong subformula property is that we can restrict the rules of fig. 1 to subformulas of a given fixed goal sequent. With this restriction, it becomes possibile
to apply the inference rules in a forward manner, from premises to conclusion. The inputs of such a forward reasoning strategy would be the facts that correspond to focusing on the passive formulas and operands of the switch connectives in the goal sequent, subject to the subformula restriction. That is, we admit only those initial sequents (in the rules PR and NL) where the principal atomic formula is both a left and a right signed subformula of the goal sequent. From these initial sequents we apply the (subformularestricted) inference rules forward in a forward manner until we derive (a generalisation of) the goal sequent.

In order for this kind of forward search strategy to be implementable, there needs to be some further modifications to the inference rules. Firstly, the rule schemas must be restricted to remove elements that do not occur in the premises. For instance, the rule $\mathbf{1}_{\mathrm{Rb}}$ is replaced with $\mathbf{1}_{\mathrm{RF}}$ because the context Γ is not present among the premises:

$$
\overline{\Gamma \vdash[\mathbf{1}]} \mathbf{1}_{\mathrm{RB}} \quad \overline{\cdot \vdash[\mathbf{1}]} \mathbf{1}_{\mathrm{RF}}
$$

(The suffixes в and F are used to distinguish backward from forward rules.) As a result of this transformation, the contexts in the premises of binary rules no longer match up exactly, and so they are joined in multiset union such as:

$$
\frac{\Gamma_{1}+[P] \quad \Gamma_{2}+[Q]}{\Gamma_{1}, \Gamma_{2}+[P \otimes Q]} \otimes \mathrm{RF}
$$

We then add an explicit rule of factoring to get rid of duplicates in the neutral sequents:

$$
\frac{\Gamma, N^{+}, N^{+} ; \cdot \vdash \cdot ; \delta}{\Gamma, N^{+} ; \cdot \vdash \cdot ; \delta} \mathrm{F}
$$

where δ is of the form \cdot or Q^{-}. To complete the design, we then lift the ground calculus to free variables and relax identity in rules such as PR and nL to unifiability, and compute only most general instances of new sequents. This core design of a forward version of a backward sequent calculus is a well known "recipe" outlined in the Handbook article on the inverse method [9].

One optimisation not mentioned in [9] but implemented in many inverse method provers $[4,16]$ is globalisation: the forward version of the dL rule is specialized into the following two forms:

$$
\frac{\Gamma ;[N] \vdash \delta \quad N \notin \Gamma_{0}}{\Gamma, N ; \cdot \vdash \cdot ; \delta} \operatorname{DLF}_{1} \quad \frac{\Gamma ;[N] \vdash \delta \quad N \in \Gamma_{0}}{\Gamma ; \cdot \vdash \cdot ; \delta} \mathrm{DLF}_{2}
$$

where Γ_{0} is the passive context of the goal sequent. This context is present in every sequent in the backward proof, so there is no need to mention it explicitly in the forward direction. For logic programs, Γ_{0} will contain the clauses of the program and it is not important to distinguish between two computed sequents that differ only in the used clauses of the program.

Let us revisit the static polarity assignment question in the forward direction. The forward derived rule for the Horn clause $\forall \vec{x} . \downarrow m_{1} \multimap \cdots \multimap \downarrow m_{j} \multimap n \in \Gamma_{0}$, after lifting to free variables, is:

$$
\frac{\Gamma_{1} ; \cdot \vdash \cdot ; m_{1}^{\prime} \quad \cdots \quad \Gamma_{j} ; \cdot \vdash \cdot ; m_{j}^{\prime} \quad \theta=\operatorname{mgu}\left(\left\langle m_{1}, \ldots, m_{j}\right\rangle,\left\langle m_{1}^{\prime}, \ldots, m_{j}^{\prime}\right\rangle\right)}{\left(\Gamma_{1}, \ldots, \Gamma_{n} ; \cdot \vdash \cdot ; n\right)[\theta]}
$$

$$
\begin{gathered}
P, Q, \ldots::=a \vec{t}|p| P \otimes Q|\mathbf{1}| P \oplus Q|\mathbf{0}| \exists x . P \mid \downarrow N \\
N, M, \ldots:=a \vec{t}|n| N \& M|\top| P \multimap N|\forall x . N| \uparrow P
\end{gathered}
$$

For example, A Horn clause with unpolarised atoms have the syntax $\forall \vec{x} . a_{1} \overrightarrow{t_{1}} \multimap \cdots \multimap$ $a_{j} \overrightarrow{t_{j}} \multimap b \vec{s}$ where the \vec{x} are the variables that occur in the terms $\overrightarrow{t_{1}}, \ldots, \overrightarrow{t_{j}}, \vec{s}$.

Consider a variant of the focused inverse method where we allow two kinds of premises for inference rules: neutral sequents as before, and sequents that have a focus on an unpolarised atom which we call proto sequents. An inference rule with proto sequent premises will be called a proto rule.

Definition 5 Environments $(\mathcal{E}, \mathcal{F}, \ldots)$ are given by the following grammar:

$$
\begin{aligned}
\mathcal{E}, \ldots::=\mathcal{P} \mid Q \\
\mathcal{P}, Q, \ldots:=\square|\mathcal{P} \otimes Q| P \otimes Q|\mathcal{P} \oplus Q| P \oplus Q|\exists x . \mathcal{P}| \downarrow \mathcal{N} \\
\mathcal{N}, \mathcal{M}, \ldots::=\square|\mathcal{N} \& M| N \& \mathcal{M}|\mathcal{P} \multimap N| P \multimap \mathcal{N}|\forall x . \mathcal{N}| \uparrow \mathcal{P}
\end{aligned}
$$

We write $\mathcal{E}(A)$ for the formula formed by replacing the \square in \mathcal{E} with A, assuming it is syntactically valid. An environment \mathcal{E} is called positive (resp. negative) if $\mathcal{E}(p)$ (resp. $\mathcal{E}(n))$ is syntactically valid for any positive atom p (resp. negative atom n).

Definition 6 (polarity assignment) We write $A[a \vec{t} \leftarrow+]$ (resp. $A[a \vec{t} \leftarrow-]$) to stand for the positive (resp. negative) polarity assignment to the unpolarised atom a \vec{t} in the formula A. It has the following recursive definition:

- If the unpolarised atom a \vec{t} does not occur in A, then $A[a \vec{t} \leftarrow \pm]=A$.
- If $A=\mathcal{E}(a \vec{t})$ and \mathcal{E} is positive, then

$$
\begin{aligned}
& A[a \vec{t} \leftarrow+]=\left(\mathcal{E}\left(a^{+} \vec{t}\right)\right)[a \vec{t} \leftarrow+] \\
& A[a \vec{t} \leftarrow-]=\left(\mathcal{E}\left(\downarrow a^{-} \vec{t}\right)\right)[a \vec{t} \leftarrow-]
\end{aligned}
$$

- If $A=\mathcal{E}(a \vec{t})$ and \mathcal{E} is negative, then

$$
\begin{aligned}
& A[a \vec{t} \leftarrow+]=\left(\mathcal{E}\left(\uparrow a^{+} \vec{t}\right)\right)[a \vec{t} \leftarrow+] \\
& A[a \vec{t} \leftarrow-]=\left(\mathcal{E}\left(a^{-} \vec{t}\right)\right)[a \vec{t} \leftarrow-]
\end{aligned}
$$

This definition is extended in the natural way to contexts, (proto) sequents, and (proto) rules.

Polarity assignment on proto rules generally has the effect of instantiating certain schematic meta-variables. For instance, consider the following proto-rule that corresponds to a left focus on the unpolarised Horn clause $C \triangleq \forall x, y . a x \multimap b y \multimap c x y$:

$$
\frac{\Gamma, C \vdash[a s] \quad \Gamma, C \vdash[b t] \quad \Gamma, C ;[c s t] \vdash Q^{-}}{\Gamma, C ; \cdot \vdash \cdot Q^{-}}
$$

All the premises of this rule are proto sequents. Suppose we assign a positive polarity to $a s$; this will change the proto rule to:

$$
\frac{\Gamma, C \vdash\left[a^{+} s\right] \quad \Gamma, C \vdash[b t] \quad \Gamma, C ;[c s t] \vdash Q^{-}}{\Gamma, C ; \cdot \vdash \cdot ; Q^{-}}
$$

(where C^{\prime} is $C[a s \leftarrow+]$). This proto rule actually corresponds to:

$$
\frac{\Gamma, C^{\prime}, a^{+} s+[b t] \quad \Gamma, C^{\prime}, a^{+} s ;[c s t] \vdash Q^{-}}{\Gamma, C^{\prime}, a^{+} s ; \cdot \vdash \cdot Q^{-}}
$$ instantiates Γ with $\Gamma, a^{+} s$. If we now assign a negative polarity to $c s t$, we would obtain the rule:

$$
\frac{\Gamma, C^{\prime \prime}, a^{+} s+[b t]}{\Gamma, C^{\prime \prime}, a^{+} s ; \cdot+\cdot c^{-} s t}
$$

(where $C^{\prime \prime}=C^{\prime}\left[\begin{array}{c} \\ s\end{array} t \leftarrow-\right]$) which instantiates Q^{-}to $c^{-} s t$. Finally, if we assign a negative polarity to $b t$, we would obtain the ordinary (non-proto) inference rule with neutral premise and conclusion:

$$
\frac{\Gamma, C^{\prime \prime \prime}, a^{+} s ; \cdot \vdash \cdot ; b^{-} t}{\Gamma, C^{\prime \prime \prime}, a^{+} s ; \cdot \vdash \cdot ; c^{-} s t}
$$

(where $C^{\prime \prime \prime}=C^{\prime \prime}[b t \leftarrow-]$).

4.2 Implementing magic sets with dynamic polarity assignment

This sub-section contains the main algorithm of this paper - a dynamic polarity assignment strategy that implements magic sets in the inverse method. The key feature of the algorithm is that it involves no global rewriting of the program clauses, so soundness is a trivial property. Completeness is obtained by showing that the algorithm together with the inverse method performs fairly on well-moded logic programs and queries.

The algorithm consists of dynamically assigning negative polarity to unpolarised atoms. Initially, all atoms in the program are unpolarised and the atom in the goal query is negatively polarised. It maintains the following lists:

- Seeds, which is a collection of the negatively polarised atoms;
- Facts, which is a list of computed facts which are ordinary neutral sequents;
- Rules, which is a list of partially applied, possibly proto, rules.

Whenever a fact is examined by the inner loop of the inverse method, new facts and partially applied (possibly proto) rules are generated. After the inner loop ends (i.e., after all subsumption checks and indexing), the following seeding step is repeatedly performed until quiescence.

Definition 7 (seeding step) For every right-focused proto-sequent in the premise of every proto rule, if the focused atom is mode correct-that is, if the input arguments of the atom are ground-then all instances of that atom for arbitrary outputs are assigned a negative polarity. These new negatively polarised atoms are added to the Seeds.

For example, if the unpolarised atom sum $34(f(x))$ has a right focus in a proto rule and sum has mode iio, then all atoms of the form sum 34 _ are assigned negative polarity. The seeding step will generate new facts or partially applied rules, which are then handled as usual by the inverse method.

4.3 Example

Let us revisit the example of sec. 2. Let Π_{0} be the collection of unpolarised Horn clauses representing the program, i.e.:

$$
\begin{array}{rll}
\Pi_{0}= & \operatorname{lsum}[] 0, & \left(C_{1}\right) \\
& \forall x, y, j, k .1 \operatorname{sum} y j \multimap \operatorname{sum} x j k \multimap \operatorname{lsum}(x:: y) k, & \left(C_{2}\right) \\
& \forall x \cdot \operatorname{sum} 0 x x, & \left(C_{3}\right) \\
& \forall x, y, z \cdot \operatorname{sum} x y z \multimap \operatorname{sum}(\mathrm{~s} x) y(\mathrm{~s} z) & \left(C_{4}\right)
\end{array}
$$

$$
\underbrace{\Pi_{0}, \forall x .1 \operatorname{sum}[1,2,3] x \multimap \mathrm{~g}}_{\Gamma_{0}} ; \cdot \vdash \cdot ; \mathrm{g}
$$

Since there are no switched subformulas, the only available rules will be for clauses in Γ_{0} and the goal g . Using the subformula restriction and globalisation, we would then obtain the following derived proto rules:

$$
\begin{aligned}
& \frac{\Gamma ;[1 \operatorname{sum}[] 0]+Q^{-}}{\Gamma ; \cdot \vdash \cdot ; Q^{-}}\left(C_{1}\right) \quad \frac{\Gamma_{1} ;[1 \operatorname{sum}(x:: y) k] \vdash Q^{-} \quad \Gamma_{2}+[1 \operatorname{sum} y j] \quad \Gamma_{3}+[\operatorname{sum} x j k]}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; \cdot \vdash \cdot ; Q^{-}}\left(C_{2}\right) \\
& \frac{\Gamma ;[\operatorname{sum} 0 x x] \vdash Q^{-}}{\Gamma ; \cdot \vdash \cdot ; Q^{-}}\left(C_{3}\right) \frac{\Gamma_{1} ;[\operatorname{sum}(\mathrm{s} x) y(\mathrm{~s} z)] \vdash Q^{-} \quad \Gamma_{2}+[\operatorname{sum} x y z]}{\Gamma_{1}, \Gamma_{2} ; \cdot \vdash \cdot ; Q^{-}}\left(C_{4}\right) \\
& \frac{\Gamma_{1} ;[\mathrm{g}]+Q^{-} \quad \Gamma_{2}+[\operatorname{lisum}[1,2,3] x]}{\Gamma_{1}, \Gamma_{2} ; \cdot \vdash \cdot ; Q^{-}}(\mathrm{g})
\end{aligned}
$$

There are no initial sequents, so we perform some seeding steps. The initial polarity assignment is negative for the goal g ; this produces the following instance of the proto rule (g):

$$
\frac{\Gamma_{2} \vdash[\operatorname{lisum}[1,2,3] x]}{\Gamma ; \cdot \vdash \cdot ; \mathrm{g}^{-}}\left(\mathrm{g}^{\prime}\right)
$$

Now we have a right focus on a well moded unpolarised atom, viz. Isum $[1,2,3] x$, so we add lsum ${ }^{-}[1,2,3]$ _ to the Seeds. This produces two instances of the proto rule $\left(C_{2}\right)$ depending on the two ways in which the seed can match the proto premises.

$$
\begin{gathered}
\frac{\Gamma_{1}+[\operatorname{lsum}[2,3] j] \quad \Gamma_{2}+[\operatorname{sum} 1 j k]}{\Gamma_{1}, \Gamma_{2} ; \cdot \vdash \cdot ; 1 \operatorname{sum}^{-}[1,2,3] k}\left(C_{21}\right) \\
\frac{\Gamma_{1} ;[\operatorname{lsum}(x::[1,2,3]) k] \vdash Q^{-} \quad \Gamma_{2} ; \cdot \vdash \cdot ; 1 \operatorname{sum}^{-}[1,2,3] j \quad \Gamma_{3}+[\operatorname{sum} x j k]}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; \cdot \vdash \cdot ; Q^{-}}\left(C_{22}\right)
\end{gathered}
$$

The first premise in $\left(C_{21}\right)$ is well moded and will produce further seeds. However, $\left(C_{22}\right)$ produces no seeds as there are no proto premises with a right focus on a well-moded unpolarised atom. Continuing the seeding steps for $\left(C_{21}\right)$ we produce the following new useful proto rules:

$$
\frac{\Gamma_{1}+[\operatorname{lsum}[2] j] \quad \Gamma_{2}+[\operatorname{sum} 2 j k]}{\Gamma_{1}, \Gamma_{2} ; \cdot \vdash \cdot ; 1 \operatorname{sum}^{-}[2,3] k}\left(C_{211}\right) \quad \frac{\Gamma_{1} \vdash[\operatorname{lsum}[] j] \Gamma_{2}+[\operatorname{sum} 3 j k]}{\Gamma_{1}, \Gamma_{2} ; \cdot \vdash \cdot ; 1 \operatorname{sum}^{-}[3] k}\left(C_{2111}\right)
$$

The rule $\left(C_{2111}\right)$ produces a seed 1 sum $^{-}[]$that matches the premise of $\left(C_{1}\right)$ to produce our first fact: $\cdot ; \cdot \vdash \cdot ;$ l sum ${ }^{-}[]$. This can now be applied in the premise of $\left(C_{2111}\right)$ by the inverse method loop to produce the following partially applied instance:

$$
\frac{\Gamma \vdash[\operatorname{sum} 30 k]}{\Gamma ; \cdot \vdash \cdot ; \text { lsum }^{-}[3] k}\left(C_{5}\right)
$$

This finally gives us our first seed for sum, viz. sum ${ }^{-} 30$ _. This seed will, in turn produce seeds sum $20 _$, sum $^{-} 10_{-}$, and sum 00_{-}from instances of the rule $\left(C_{4}\right)$. The last of these seeds will instantiate $\left(C_{3}\right)$ to give our second fact, $\cdot ; \cdot \vdash \cdot$; sum ${ }^{-} 000$. The inverse method will then be able to use this rule to partially apply the instances of the $\left(C_{3}\right)$ rule to produce, eventually, $\cdot ; \cdot \vdash \cdot$; sum ${ }^{-} 303$, which can be matched to (the instance of $\left(C_{5}\right)$ to give our second derived fact about lsum, viz. $\cdot ; \cdot \vdash \cdot ; 1$ sum $^{-}$[3] 3 . These steps repeat twice more until we eventually derive $\cdot ; \cdot \vdash \cdot ; 1$ sum $^{-}[1,2,3] 6$, which finally lets us derive the goal sequent using (the instance of) (g).

4.4 Correctness

Crucially, no further inferences are possible in the example of the previous section. There will never be any facts generated about 1 sum $^{-}[5,1,2,3,4] x$, for instance, because there is never a seed of that form. Thus, as long as there is a well-founded measure on the seeds that is strictly decreasing for every new seed, this implementation of the inverse method with dynamic polarity assignment is guaranteed to saturate because of the following property.

Lemma 8 (seeding lemma) All atoms occurring to the right of sequents in the Facts

 list are instances of atoms in the Seeds.Proof. Since the only polarity assignment is to assign an unpolarised atom the negative polarity, the only effect it has on proto inference rules is to finish left-focused proto sequent premises with nL, and turn right-focused proto sequent premises into neutral sequent premises. Finishing the left-focused premises has the side effect of instantiating the right hand side with the newly negatively polarised atom. If there are no neutral premises as a result of this assignment, then the newly generated fact satisfies the required criterion. Otherwise, when the conclusion is eventually generated by applying the rule in the inverse method, the right hand side will be an instance of the negatively polarised atom.

The main result of this paper is a simple corollary.
Corollary 9 (saturation) Given a well-moded logic program that terminates on all well-moded queries-i.e., all derivations of a well-moded query are finite-the inverse method with the dynamic polarity assignment algorithm of sec. 4.1 saturates for all well-moded queries.

Proof (Sketch). Instead of giving a fully formal proof, which is doable in the style of [15], we give only the intuition for the proof. Note that if the logic program is terminating for all well-moded queries, then there is a bounded measure || that is strictly decreasing from head to body of all clauses in the program. We use this measure to build a measure on the Seeds collection as follows:

- For each atom in Seeds, pick the element with the smallest ||-measure.
- For each atom not in Seeds, pick greatest lower bound of the ||-measure.
- Pick a strict but arbitrary ordering of all the predicate symbols and arrange the measures selected in the previous two steps in a tuple according to this ordering. This tuple will be the measure of Seeds.
It is easy to see that this measure on Seeds has a lower bound according to the lexicographic ordering. Therefore, all we need to show is that this measure is decreasing on Seeds for every seeding step and then we can use lem. 8 to guarantee saturation. But this is easily shown because the $|\mid$-measure decreases when going from the conclusion to the premises of every derived inference rule for the clauses of the logic program (see the example in sec. 4.3).

The completeness of the dynamic polarity assignment algorithm follows from the completeness of focusing with (arbitrary) polarity assignment, the completeness of the inverse method given a fair strategy, and the observation that Seeds contains a superset of all predicates that can appear as subgoals in a top-down search of the given logic program.

5 Conclusion

We have shown how to implement the magic sets constraint on forward chaining search, implemented in a focused theorem proving strategy, by dynamically assigning polarities to unpolarised atoms based on where they appear in a slight generalisation of derived inference rules in focusing. As an immediate consequence, our forward chaining search can respond with the same answer set as a backward chaining engine for well-moded and terminating programs, while enjoying all the benefits of the inverse method (locality, lack of backtracking, sharing of sub-derivations, etc). The notion of dynamic polarity assignment is novel to this work and the last word on it is far from written. The obvious next step is to see how it generalises to fragments larger than Horn theories. More fundamentally, while fairness in the inverse method gives a general external criterion for completeness, an internal criterion for judging when a given dynamic polarity assignment strategy will be complete is currently an open question. A dual version of the algorithm presented here-i.e., positive assignment for a focused tableau theorem prover-would be worth investigating.

References

[^0]
A Changelog

 Springer, 2007.6. K. Chaudhuri. Classical and intuitionistic subexponential logics are equally expressive. Accepted to CSL 2010. Available from http://www.lix.polytechnique.fr/~kaustuv/ papers/clasint.pdf, Aug. 2010.
7. K. Chaudhuri and F. Pfenning. A focusing inverse method theorem prover for first-order linear logic. In Proceedings of the 20th Conference on Automated Deduction (CADE), volume 3632 of LNCS, pages 69-83, Tallinn, Estonia, July 2005.
8. K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward chaining in the inverse method. J. of Automated Reasoning, 40(2-3):133-177, Mar. 2008.
9. A. Degtyarev and A. Voronkov. The inverse method. In Handbook of Automated Reasoning, pages 179-272. Elsevier and MIT Press, 2001.
10. K. Donnelly, T. Gibson, N. Krishnaswami, S. Magill, and S. Park. The inverse method for the logic of bunched implications. In Proceedings of the 11th International Conference on Programming, Artificial Intelligence, and Reasoning (LPAR), volume 3452 of LNCS, pages 466-480, Montevideo, Uruguay, Mar. 2004.
11. S. Heilala and B. Pientka. Bidirectional decision procedures for the intuitionistic propositional modal logic IS4. In F. Pfenning, editor, Proceedings of the 21st International Conference on Automated Deduction (CADE), volume 4603 of LNAI, pages 116-131, Bremen, Germany, July 2007. Springer.
12. J. M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of St Andrews, Dec. 1998. Available as University of St Andrews Research Report CS/99/1.
13. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science, 410(46):4747-4768, 2009.
14. C. Liang and D. Miller. A unified sequent calculus for focused proofs. In LICS: 24th Symp. on Logic in Computer Science, pages 355-364, 2009.
15. P. Mascellani and D. Pedreschi. The declarative side of magic. In Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 83-108, London, UK, 2002. Springer-Verlag.
16. S. McLaughlin and F. Pfenning. Imogen: Focusing the polarized focused inverse method for intuitionistic propositional logic. In I. Cervesato, H. Veith, and A. Voronkov, editors, 15th International Conference on Logic, Programming, Artificial Intelligence and Reasoning (LPAR), volume 5330 of LNCS, pages 174-181, Nov. 2008.
17. D. Miller and V. Nigam. Incorporating tables into proofs. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of LNCS, pages 466-480.
18. D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in linear logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of $L N C S$, pages 405-419. Springer, 2007.
19. J. D. Ullman. Principles of Database and Knowledge-base Systems, Volume II: The New Techniques. Principles of Computer Science. Computer Science Press, 1989.

The online version of this paper at:
http://www.lix.polytechnique.fr/~kaustuv/papers/magassign.pdf
will be updated with corrections as they are noticed. See the changelog below.
15 pages limit will be respected for final draft by various standard tricks.

- version 1.0, submitted on 2010-06-18

[^0]: 1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and Computation, 2(3):297-347, 1992.
 2. K. R. Apt and E. Marchiori. Reasoning about prolog programs from modes through types to assertions. Formal Aspects of Computing, 6(A):743-764, 1994.
 3. C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming, 10(1/2/3\&4):255-299, 1991.
 4. K. Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon University, Dec. 2006. Technical report CMU-CS-06-162.
 5. K. Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. In I. Cervesato, H. Veith, and A. Voronkov, editors, 15th International Conference on Logic, Programming, Artificial Intelligence and Reasoning (LPAR), volume 5330 of $L N C S$, pages 467-481, Nov. 2008.
