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Abstract. Given a logic program that is terminating and mode-correct in an
idealised Prolog interpreter (i.e., in a top-down logic programming engine), a
bottom-up logic programming engine can be used to compute exactly the same
set of answers as the top-down engine for a given mode-correct query by rewrit-
ing the program and the query using the Magic Sets Transformation (MST). In
previous work, we have shown that focusing can logically characterise the stan-
dard notion of bottom-up logic programming if atomic formulas are statically
given a certain polarity assignment. In an analogous manner, dynamically assign-
ing polarities can characterise the effect of MST without needing to transform
the program or the query. This gives us a new proof of the completeness of MST
in purely logical terms, by using the general completeness theorem for focusing.
As the dynamic assignment is done in a general logic, the essence of MST can
potentially be generalised to larger fragments of logic.

. 1 Introduction

. It is now well established that two operational “dialects” of logic programming—top-
: down (also known as backward chaining or goal-directed) in the style of Prolog, and
. bottom-up (or forward chaining or program-directed) in the style of hyperresolution—
. can be expressed in the uniform lexicon of polarity and focusing in the sequent calculus
. for a general logic such as intuitionistic logic [8]. The difference in these diametrically
. opposite styles of logic programming amounts to a static and global polarity assignment
. to the atomic formulas. Such a logical characterisation allows a general theorem prov-
. ing strategy for the sequent calculus, which might be backward (goal sequent to axioms)
. as in tableau methods or forward (axioms to goal sequent) like in the inverse method,
: to implement either forward or backward chaining (or any combination) for logic pro-
grams by selecting the polarities for the atoms appropriately. Focused inverse method
provers, some supporting polarity assignment, have been built for linear logic [4], intu-
itionistic logic [16], bunched logic [10] and several modal logics [11] in recent years.
The crucial ingredient for the characterisation is that polarities and focusing are suf-
ficiently general that all static polarity assignments are complete [8, 1]. The two assign-
ments may be freely mixed for different atoms, which will produce hybrid strategies.
The proofs are, of course, very different: one assignment may admit exponential deriva-
tions of Fibonacci numbers, while the other might have only the linear proofs. Even
more importantly, the search space for proofs is wildly different for different assign-
ments. Sometimes the assignment can be made easily; for example, atoms that are used
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to implement actions in a state transition system generally perform better when given
an assignment that implements forward chaining, while atoms that represent computa-
tional functions perform better with assigned to implement backward chaining. How-
ever, the situation is not often this clear, and static polarity assignment has turned out to
be a coarse and somewhat unwieldy tool, as was noted in the experiments in [8, 16].

In this paper, we propose to look at dynamic polarity assignment as a means to do
better than static assignment for certain well known classes of problems. Dynamic as-
signment of a particular form has been investigated before by Nigam and Miller [17] as
a means of incorporating tables into proof objects; however, their notion of dynamics
involves changes to the underlying proof system (such as the addition of cuts that po-

. larise certain cut atoms in different ways). We propose instead to build a proof system
. that retains the same inference rules as ordinary focusing, but dynamically specialises
. them based on polarity assignments performed at runtime. (Note that “dynamic polarity
. assignment” is not a particular algorithm but a general class of algorithms for control-
. ling the search behaviour of existing algorithms. It is best to think of it by analogy with
. ordering strategies in resolution theorem proving.)

In particular, we give a dynamic assignment strategy that implements the effect of

. the so-called magic sets transformation [3, 19, 15], which is a program transformation
. constrains forward chaining to have the same set of answers as backward chaining. It
. is quite difficult to show that the transformation has this intended property. Moreover,

since it is a global transformation on the program, that might even (in the general case)
depend on the query, it is not modular and compositional. We propose, in this paper, to
give an alternative presentation of magic sets that not only avoids the transformation,
but also gives a characterisation of magic sets in the common lexicon of focusing. That
is, the magic sets approach is just a special case of dynamic polarity assignment, in
much the same way as forward and backward chaining for Horn clauses are just special
cases of static polarity assignment.

We limit our attention in this paper to the focused inverse method [4] as the particu-
lar general search strategy for the sequent calculus. Intuitively, this method “compiles”
a clause into an inference rule as follows:

'Fsumxyz

sum (s X) Y(sZ) :(-sumXYZ. — Trsms0y (6o

When this inference rule is read from premise to conclusion, the interpretation is of
forward chaining on the corresponding clause. Such rules can be repeatedly applied to
produce an infinite number of new sequents differing only in the number of ss, which
prevents saturation even for queries with a finite backward chaining search space. With
such clauses, forward chaining cannot appeal to negation by failure, unlike backward
chaining. We show how to use dynamic polarity assignment to instead produce a new
side condition on such inference rules: the conclusion (sum (s x) y (s z)) must be neg-
atively polarised for the rule to be applicable. The atoms are polarised negatively by
carefully selecting only those atoms that are in the base of the logic program.

One important feature of this re-investigation of the magic sets approach is that, be-
cause it is performed in a more general context, we can potentially generalise it to larger
fragments of logic such as the uniform fragment. Moreover, since it does not change the
underlying proof system, it can potentially co-exist with other strategies. For example,
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if the dynamic assignment algorithm gets stuck, the remaining atoms can be polarised
in some other fashion and the inverse method resumed without losing completeness.

The rest of this paper is organised as follows. In sec. 2 the magic sets transformation
is sketched by way of example. Section 3 then summarises the design of the focused
inverse method and static polarity assignment. Section 4 introduces dynamic polarity
assignment and shows how to use it to implement the magic sets restriction (sec. 4.2).
Finally, sec. 5 discusses the conclusions and scope of future work on dynamic polarity
assignment.

2 Magic Sets Transformation

This section contains a quick overview of the Magic Sets Transformation for logic pro-
grams. We use the “core” version presented in [15], which is less general than some
other designs in the literature [3, 19] but also easier to explain and reason about. The
logic programs we will consider are made up of Horn clauses and satisfy a global well-
modedness criterion.

Definition 1 (Horn clauses) A Horn clause is an iterated implication of atomic formu-
las that is implicitly closed over all its variables. That is, Horn clauses (C, D, . . .) satisfy
the following grammar:

C,D,...::za?la?—)C t,s,...:::x|ff

where a ranges over predicate symbols, [ over function symbols, and x over variables.
The notation t stands for a list, possibly empty, of terms.

Many extensions of this definition of Horn clauses exist in the literature, but they are
all generally equivalent to this fragment. A logic program is just an unordered collection
of Horn clauses where each predicate and function symbol has a unique arity. (We do
not consider particular orderings of the clauses because we are not interested in the
precise operational semantics of a logic programming language such as Prolog.)

Definition 2 (moding) Every predicate symbol of arity n can be assigned a mode,
which is a string of length n composed of the characters i and o, which are mnemonics
for “input” and “output” respectively. A mode assignment to all predicates in a logic
program is called a moding. The inputs of a predicate with respect to a mode are those
arguments corresponding to the occurrences of 1 in the mode, likewise, the outputs are
the arguments corresponding to o in the mode.

Definition 3 (well-modedness) All the following are with respect to a given moding:

— A goal query is well-moded iff its inputs are ground.

— Aclausea, ; — --- > a, f, — b § is well-moded iff foralli € 1..n, the variables
in the inputs of a; t; are contained in the union of the variables in the outputs of
aj t_} fori < j < nand of the variables in the inputs of b § .

— A logic program is well-moded iff every clause in it is well-moded.
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The definition of well-modedness for non-unit clauses intuitively states that, in a
right-to-left reading of the clause, the inputs of an atomic formula must be defined the
outputs of earlier atomic formulas and the inputs of the head. There is no fundamental
need to read the body of the clause from right to left; indeed, well-modedness can be
generalised to allow for any permutation of the body to satisfy the inclusion criteria for
input variables. Given a well-moded program and query, every derivation of an instance
of the query from the program will be ground (for the proof, see [2]).

We use the same motivating example from [15]: computing the sum of the elements
of a list of natural numbers. The clauses of the program are as follows in Prolog style.

(* mode lsum = io *)

lsum [] O.

Isum (X :: Y) k :- 1sum Y J, sum X J K.
(* mode sum = iio *)

sum 0 X X.

sum (s X) Y (s Z) :-sumX Y Z.

This program is well-moded because the outputs flow into the inputs from left to right
in the body of the clauses. A query such as ?- 1sum [1, 2, 3] X is well-moded
because the input is ground, while a query such as 7- 1sum X 20 is not well-moded.

To prove a well moded query, the backward chaining or top-down logic program-
ming approach matches the goal with the heads of the clauses in the program, and for
each successful match, replaces the goal with the matched instance of the body of the
clause as new subgoals. A well-moded program is said to be ferminating if there are no
infinite backward chaining derivations for a well-moded query.

The forward chaining or bottom-up logic programming strategy starts from the unit
clauses in the program, matches the body of a clause with these clauses, and adds the
most general instance of the matched head as a new clause. This is iterated until (a
generalisation of) the goal query is derived. This direction is not quite as obviously
goal-directed as backward chaining, but it has many fundamental merits. It builds a
database of computed facts that are all mutually non-interfering, and therefore requires
no backtracking or global, stateful updates. Moreover, facts and therefore derivations
are implicitly shared, so the loop detection issue that plagues backward chaining does
not apply here.

However, forward chaining suffers from the obvious problem that it over-approximates
the query, performing a lot of wasteful search. Fortunately, it is possible to constrain for-
ward chaining for a given program and query such that the algorithm will saturate, i.e.,
reach a state where no new facts can be generated, iff the query terminates in backward
chaining. This is achieved by rewriting the program and the query so that the forward
algorithm approximates backward search.

The common element of the approaches to constrain forward chaining is the notion
of a magic set, which is an abstract representation of the base of the program [15].
We shall illustrate it here with the example above. For each predicate a, a new magic
predicate @’ is added that has the same arity as the input arity of the original predicate.
Then, each clause of the program is transformed to depend on the magic predicate
applied to the inputs of the head. That is, we obtain the following rewritten clauses:
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Isum [] O® :- 1lsum’ [].

Isum (X :: YD) k :- 1sum’” (X :: Y), lsum Y J, sum X J K.
sum 0 X X :- sum’ 0 X.

sum (s X) Y (s Z) - sum’ (s X) Y, sum X Y Z.

As there are no longer any unit clauses, forward chaining cannot begin without some
additional input. This is provided in the form of the magic version of the goal query as
a new unit clause:

lsum’ [1, 2, 3].

Finally, clauses are added for the magic predicates to propagate information about the
base. For each non-unit clause, there is one propagation rule for each predicate in the
body of the clause. For this example, we would have:

Isum’ Y :- 1sum’ (X :: Y).
sum’ X J :- 1lsum’ (X :: Y), lsum Y J.
sum’ X Y :- sum’ (s X) Y.

Forward chaining on this transformed program will compute the same instances of the
query as backward chaining on the original program and query.

Correctness of this magic sets transformation is generally quite difficult to prove.
One of the most readable proofs was provided by Mascellani et al [15]; that paper also
contains a fully formal definition of the transformation and a number of other examples.
However, all transformational approaches suffer from the same problems outlined in the
introduction: they require drastic, non-modular, and non-compositional modifications to
the program. In the rest of the paper we will give a different explanation of the magic
sets transformation that does not suffer from these problems, and is moreover manifestly
correct because of very general proof theoretic properties of focused sequent calculi.

3 The Focused Inverse Method

In this section we review the focused inverse method for intuitionistic logic. Most of the
material of this section has already appeared in in [4, 8, 16, 9] and in references there-
from. Like other recent accounts of intuitionistic focusing [16, 6], we adopt a polarised
syntax for formulas. Intuitively, positive formulas (i.e., formulas of the positive polar-
ity) are those formulas whose left sequent rules are invertible and negative formulas
are those whose right rules are invertible. Every polarised logical connective is unam-
biguously in one of these two classes. In order to prevent an overlap, we also assign
the atomic formulas to one of the two classes. Any polarity assignment for the atoms is
complete [8].

Definition 4 (syntax) We follow this grammar:

P.Q:=p|P®Q|1|P®Q|0|Ix.P|IN NM:=n|N&M|T|P—oN|Yx.N|1P
pi={af,+) ni={af,-) P :=P|n N*:=N|p

— Formulas (A, B, ...) are either positive (P, Q, . ..) or negative (N, M, . . .).
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— Atomic formulas (or atoms) (p, g, n,m, . ..) are also polarised. Each atom consists
of an atomic predicate (a, b, . ..) applied to a (possibly empty) list of terms, and a
polarity. We shall sometimes abuse notation and write {(a t, +) as a* f, even though
it is the atom and not the predicate that carries the polarity.

— Left passive formulas (N*, M*,...) and right passive formulas (P~,Q%,...) are
used to simplify the notation slightly.

We use connectives from polarised linear logic instead of the more usual intuition-
istic connectives to make the polarities explicit. The polarity switching connectives |
and T are only bureaucratic and do not change the truth value of their operands. Both
® and & have the same truth value as the usual intuitionistic conjunction A—that is,
A® B = A & B if we ignore polarities and omit the switching connectives | and T—just

. different inference rules. In other formulations of polarised intuitionistic logic these two

polarisations of conjunction are sometimes written as A* or A~ [14], but we prefer the
familiar notation from linear logic. Likewise, @ has the same truth value as vV and —o
the same truth value as —.

The inference system for this logic will be given in the form of focused sequent
calculus rules [1, 16]. We have the following kinds of sequents:

'+ [P] right-focus on P I'; [N]-Q  left-focus on N
N - . . .
I'; Qr { o left-active on Q and right-active on N
~.___:_\,_____/
Y
. where: I == - |F, N~ is called the passive context and Q == - | Q, P is the active context.

. Both contexts are interpreted as multisets (admits only exchange). We use the usual
. convention of denoting multiset union with commas. It will turn out that the passive
. context is also a set, but we will prove this as an admissible principle instead of writing
. explicit rules of weakening and contraction. Note therefore that I'j,I'; is not the same
. as '} UT,; when the latter interpretation is needed, it will be written explicitly.

The focused sequent calculus will be presented in a stylistic variant of Andreoli’s

. original formulation [1]. The full set of ruls is in fig. 1. It has an intensional reading in

terms of phases. At the boundaries of phases are sequents of the foomI"; - + - ; Q7,
which are known as neutral sequents. Proofs of neutral sequents proceed (reading from
conclusion to premises) as follows:

1. Decision: a focus is selected from a neutral sequent, either from the passive context
or from the right. This focused formula is moved to its corresponding focused zone
using one of the rules pL or bR (D = “decision”, and rR/L = “right”/*left”). The left
rule copies the focused formula.

2. Focused phase: for a left or a right focused sequent, left or right focus rules are
applied to the formula under focus. These focused rules are all non-invertible in the
(unfocused) sequent calculus and therefore depend on essential choices made in the
proof. This is familiar from focusing for linear logic [1, §].

3. Active phase: once the switch rules |R and TL are applied, the sequents become
active and active rules are applied. The order of the active rules is immaterial as
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[,pt; Qry ILN; Qry I'; QPQOry I'; Qry
L ®L 1L

FQpiry  T:QINky" T:QPe0ry " T;Ql1ry

I'; QPry l";Q,QI—)/63 I'; Q,Nla/x]+y .
I, Q.Pa0ry " T 00y T;Q3xNry

(decision)

I'+[P] ILN; [N+ O
DR DL
r; -+ P LN k-5 O

Fig. 1. Focused sequent calculus for polarised first-order intuitionistic logic

all orderings will produce the same list of neutral sequent premises. In Andreoli’s
system the irrelevant non-determinism in the order of these rules was removed by
treating the active context Q as ordered; however, we do not fix any particular
ordering.

. The soundness of this calculus with respect to an unfocused sequent calculus, such as
. Gentzen’s LJ, is obvious. For completeness, we refer the interested reader to a number
. of published proofs in the literature [8, 13, 18, 12].

The purpose of starting with a polarised syntax and a focused calculus is that we are

. able to look at derived inference rules for neutral sequents as the basic unit of steps. For
. instance, one of the derived inference rules for the formula N 2 p ® g —o m & ([l —o n)

in the passive context is given in fig. 2. The instance of pr above forces p to be in the
passive context because that is the only rule that can be applied to contruct a sequent
of the form A + [p]. Likewise, the NL rule forces the right hand side of the conclusion
sequent to be the same as the left focused atom . Finally, the pL rule requires N to
already be present in the passive context.

As we observe, focusing compiles formulas such as N above, which may be clauses
in a program, into (derived) inference rules. Focusing can also produce new facts, which

. are neutral sequents that have no open premises after applying a derived inference rule.
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Fig. 2. One derived inference rule for N.

An example would be the case for the derivation above where, instead of &1, we were
to use &L;. In this case we would obtain the factI', N, p ; - + - ; m. If the goal were of
this form, we would be done.

This property of focusing can be exploited to give a purely proof-theoretic expla-
nation for certain dialects of proofs. For Horn clauses, consider the case where all the
atoms are negative, i.e.clauses are of the form V¥ . |m; —o---— [m;—on. If clause were
named N, then its derived inference rule is:

LN s mf/%] -+ T,N; -+ mlf/R]

=

ILN; -+ n[f/X]

Since the context is the same in all premises and the conclusion, we need only look
at the right hand side. If we read the rule from conclusion to premises, then this rule
implements back-chaining from an instance of the head of this Horn clause to the cor-

. responding instances of the body of the clause, where the neutral sequents represent

the current list of sub-goals. Thus, the general top-docn logic programming strategy (or
backward chaining) consists of performing goal-directed focused proof search on Horn
clauses with negative atoms. If the atoms were all assigned positive polarity instead,
then the same goal-directed focused proof search would perform a kind of bottom-up

: logic programming (or forward chaining). Static polarity assignment for the atoms is

therefore a logical characterization of forward and backward chaining strategies. In-
deed, if the atoms were not uniformly given the same polarities, then the focused proofs
would be a mixture of forward and backward chaining.

3.1 Forward reasoning and the inverse method

An important property of the sequent calculus of fig. 1 is that there is a structural cut-

. elimination algorithm [8]; as a consequence, the calculus enjoys the subformula prop-

erty. Indeed, it is possible to state the subformula property in a very strong form that
also respects the sign of the subformula (i.e., whether it is principal on the left or the
right of the sequent) and the parametricity of instances (i.e., the subformulas of a right
¥ or a left 3 can be restricted to generic instances). We omit a detailed definition and

. proof here because it is a standard result; see e.g. [7] for the definition.

The benefit of the strong subformula property is that we can restrict the rules of fig. 1

. to subformulas of a given fixed goal sequent. With this restriction, it becomes possibile
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: to apply the inference rules in a forward manner, from premises to conclusion. The

inputs of such a forward reasoning strategy would be the facts that correspond to focus-
ing on the passive formulas and operands of the switch connectives in the goal sequent,
subject to the subformula restriction. That is, we admit only those initial sequents (in
the rules pr and NL) where the principal atomic formula is both a left and a right signed
subformula of the goal sequent. From these initial sequents we apply the (subformula-
restricted) inference rules forward in a forward manner until we derive (a generalisation
of) the goal sequent.

In order for this kind of forward search strategy to be implementable, there needs to
be some further modifications to the inference rules. Firstly, the rule schemas must be

. restricted to remove elements that do not occur in the premises. For instance, the rule

1R is replaced with 1RrF because the context I' is not present among the premises:
e ] 1rB T ] 1RF

(The suffixes B and F are used to distinguish backward from forward rules.) As a result
of this transformation, the contexts in the premises of binary rules no longer match up

. exactly, and so they are joined in multiset union such as:

I r[Pl I E[Q]
rl,rz F [P®Q]

We then add an explicit rule of factoring to get rid of duplicates in the neutral sequents:

l",N*,N*;-I—~;(5F
INY; ;0

where 9 is of the form - or Q™. To complete the design, we then lift the ground calculus
to free variables and relax identity in rules such as pr and NL to unifiability, and compute
only most general instances of new sequents. This core design of a forward version of
a backward sequent calculus is a well known “recipe” outlined in the Handbook article

. on the inverse method [9].

One optimisation not mentioned in [9] but implemented in many inverse method
provers [4, 16] is globalisation: the forward version of the pL rule is specialized into the
following two forms:

I'; [N]JFO NQFOD I'; [NJF6 NeTly

LF| DLF»
ILN; -F-3; 6 r;-+-590

: where T’y is the passive context of the goal sequent. This context is present in every
. sequent in the backward proof, so there is no need to mention it explicitly in the forward
. direction. For logic programs, I'y will contain the clauses of the program and it is not
. important to distinguish between two computed sequents that differ only in the used
. clauses of the program.

Let us revisit the static polarity assignment question in the forward direction. The

. forward derived rule for the Horn clause VX . [m; — -+ —o [m; —o n € Ty, after lifting
. to free variables, is:

Lisokesmy - Iysebesm, @=mgu((my,...,mp),(m,...,m%))
Ty - F e )6l
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. For unit clauses, which provide the initial sequents, the passive context I' is empty

(because there are no premises remaining after globalisation). Therefore, all neutral
sequents computed by forward reasoning will have empty passive contexts, giving us
the rule:

ekesmy e ke @ =mgu(lmy, .., my), (my, L m)))

(CGRLERDIC)

Thus, this derived inference rule implements forward chaining for this clause. This sit-
uation is dual to the backward reading of the rules of fig. 1 where a static negative
assignment to the atoms implemented backward chaining. As expected, a static pos-
itive polarity assignment to the atoms implements backward chaining in the forward
calculus. The technical details of operational adequacy can be found in [8].

4 Dynamic Polarity Assignment

: The previous section demonstrates that we can implement forward chaining (or bottom

up logic programming) using the vocabulary of focusing and polarity assignment. For
the rest of this paper we shall limit or attention to forward reasoning as the global
strategy, with negative polarity assignment for the atoms as our means of implementing
forward chaining.

Obviously the benefit of polarity assignment is that completeness is a trivial con-
sequence of the completeness of focusing with respect to any arbitrary, even heteroge-
neous, polarity assignment for the atoms. Moreover, the completeness of the ivnerse

. method merely requires that the rule application strategy be fair. This minimal require-

ment of fairness does not force us to assign the polarity of all all atoms statically, as
long as we can guarantee that every atom that is relevant to the proof is eventually as-
signed a polarity (and that the rest of the inverse method engine is fair). Can we do
better than static assignment with dynamic assignment? This section will answer this

: question affirmatively.

: 4.1 The mechanism of dynamic polarity assignment

. Let us write unpolarised atoms (i.e., atoms that haven’t been assigned a polarity) simply
. in the form a 7, and allow them to be used as both positive and negative formulas in the
. syntax. That is, we extend the syntax as follows:

P.Q....:=af |p|P®Q|1|P®Q|0|3x.P|IN
NM,...:=af |n|N&M |T|P-N|VYx.N [P

For example, A Horn clause with unpolarised atoms have the syntax V¥.a; f; —o - -- —o
a;f; — b § where the ¥ are the variables that occur in the terms 71, ..., 1, §.

Consider a variant of the focused inverse method where we allow two kinds of
premises for inference rules: neutral sequents as before, and sequents that have a focus
on an unpolarised atom which we call proto sequents. An inference rule with proto
sequent premises will be called a proto rule.

10
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Definition 5 Environments (&, F, .. .) are given by the following grammar:

8,...::=P|Q
P.Q..:=0|PeQ|P2Q|PoQ|PoQ|IxP|IN
NM,. . :=0|N&M|N&M|P—-N|P-oN|Vx.N|1P

We write E(A) for the formula formed by replacing the O in & with A, assuming it is
syntactically valid. An environment & is called positive (resp. negative) if E(p) (resp.
&(n)) is syntactically valid for any positive atom p (resp. negative atom n).

Definition 6 (polarity assignment) We write Alat « +] (resp. Alaf « —]) to stand
for the positive (resp. negative) polarity assignment to the unpolarised atom a t in the
formula A. It has the following recursive definition:

— If the unpolarised atom a f does not occur in A, then Alat « +] = A.
- IfA = &(a ) and & is positive, then

Alat « +] =@ D)lat « +]
Ala? —-]1=(Ela D)ai « -]

- IfA = &@af) and & is negative, then

Alat « +]1=(ENa* P)laf « +]
Ala? « -1=(&@ D)lat « -]
This definition is extended in the natural way to contexts, (proto) sequents, and (proto)

rules.

Polarity assignment on proto rules generally has the effect of instantiating certain
schematic meta-variables. For instance, consider the following proto-rule that corre-

I[,Crlas] TI,Cr[bil L,C;lcstlt QO
I,C;-+-; 0

. All the premises of this rule are proto sequents. Suppose we assign a positive polarity

to a s; this will change the proto rule to:

[Ckla*s] T,Cr[bt] I,C;lcstlFQ
I,C;-r-; 0

(where C’ is C[a s « +]). This proto rule actually corresponds to:

ILC',a*s+[bt] T,C’,a*s;[cst]l+Q
IC,a*s;  -+-; QO

because the only way to proceed further on the first premise is with the pr rule. This
instantiates I with ', a* s. If we now assign a negative polarity to ¢ s ¢, we would obtain
the rule:
I,C”,a*sv [bi]
I,C",a*s; - +-; c st

11
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: (where C” = C’[c s t « —]) which instantiates Q™ to ¢~ s ¢. Finally, if we assign a

negative polarity to b t, we would obtain the ordinary (non-proto) inference rule with
neutral premise and conclusion:

I,C"”,a"s; +-; bt

ILC",a*s; k-5 ¢ st

(where C"" = C"[b t « -]).

4.2 Implementing magic sets with dynamic polarity assignment

This sub-section contains the main algorithm of this paper — a dynamic polarity assign-
ment strategy that implements magic sets in the inverse method. The key feature of the

. algorithm is that it involves no global rewriting of the program clauses, so soundness

is a trivial property. Completeness is obtained by showing that the algorithm together
with the inverse method performs fairly on well-moded logic programs and queries.

The algorithm consists of dynamically assigning negative polarity to unpolarised
atoms. Initially, all atoms in the program are unpolarised and the atom in the goal query
is negatively polarised. It maintains the following lists:

— Seeds, which is a collection of the negatively polarised atoms;
— Facts, which is a list of computed facts which are ordinary neutral sequents;
— Rules, which is a list of partially applied, possibly proto, rules.

Whenever a fact is examined by the inner loop of the inverse method, new facts and
partially applied (possibly proto) rules are generated. After the inner loop ends (i.e.,
after all subsumption checks and indexing), the following seeding step is repeatedly
performed until quiescence.

Definition 7 (seeding step) For every right-focused proto-sequent in the premise of ev-

. ery proto rule, if the focused atom is mode correct—that is, if the input arguments of the

atom are ground—then all instances of that atom for arbitrary outputs are assigned a
negative polarity. These new negatively polarised atoms are added to the Seeds.

For example, if the unpolarised atom sum 3 4 (f(x)) has a right focus in a proto
rule and sum has mode iio, then all atoms of the form sum 3 4 _ are assigned negative
polarity. The seeding step will generate new facts or partially applied rules, which are
then handled as usual by the inverse method.

4.3 Example

Let us revisit the example of sec. 2. Let 1 be the collection of unpolarised Horn clauses
representing the program, i.e.:

ITp = 1sum [] O, (Cy)
Vx,y, j,k.1sumy j—o sum x j k —o lsum (x :: y) k, (C)
Y. sum O x x, (C3)
Vx,y,z.sumxy z —o sum (s x) y (s z) (Cy)

12
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As before, let the modes be io for 1sum and iio for sum. The above program is termi-
nating and mode-correct for this moding. Consider the query 1sum [1,2,3] X, i.e., we
are proving the goal sequent:

Iy, Vx.1lsum [1,2,3] x —g; -+-; g

To

. Since there are no switched subformulas, the only available rules will be for clauses in

I'p and the goal g. Using the subformula restriction and globalisation, we would then
obtain the following derived proto rules:

I'; [1sum[] 0]+ QO c [y [lsum(x:y) k] - QO Tok[lsumyj] T3¢ [sumx k] c
rorso Y [0 T5; k5 O )
[; [sun0xx]+Q [ [sum(sx)y(s2)]FQ Tk [sumxyz]
[;-+;0 (C3) Lo F; O )

I [glr O Tk [lsum[1,2,3] x]
r,Ths k-5 0

(9)

There are no initial sequents, so we perform some seeding steps. The initial polarity
assignment is negative for the goal g; this produces the following instance of the proto
rule (g):

I F[1sum[1,2,3] x]
r;-+-;9

9)

Now we have a right focus on a well moded unpolarised atom, viz. 1sum [1, 2, 3] x, so
we add 1sum™ [1,2, 3] _ to the Seeds. This produces two instances of the proto rule (C5)
depending on the two ways in which the seed can match the proto premises.

[ F[Isum[2,3]j] To+ [suml jk]
I,y -k 1sum [1,2,3]k

(Car)

s (Lsum(x [1,2,3D K F Q- Tos-r-; lsum [1,2,3] st [sumx jk]
I, 005 O

(C22)

. The first premise in (C;;) is well moded and will produce further seeds. However, (Cy;)
: produces no seeds as there are no proto premises with a right focus on a well-moded
. unpolarised atom. Continuing the seeding steps for (C»;) we produce the following new
. useful proto rules:

Tk [lsum[2]j] ToF[sum?2 jk] Tk [lsum[]j] To+[sum3 jk]
- (Can) - (Can)
I',T;-F-; 1sum [2,3]k I'i,Th; -+-; 1sum™ [3]k

The rule (C»111) produces a seed 1sum™ [] _ that matches the premise of (C) to produce
our first fact: - ; - + - ; Lsum™ [] 0. This can now be applied in the premise of (Cy11;) by
the inverse method loop to produce the following partially applied instance:

't [sum30 k]
;- -+-; 1sum [3]k

(Cs)

13
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: This finally gives us our first seed for sum, viz. sum~ 3 0 _. This seed will, in turn

produce seeds sum™ 20 _, sum™ 1 0 _, and sum™ 0 O _ from instances of the rule (Cy).
The last of these seeds will instantiate (C3) to give our second fact, - ; - + - ; sum™ 000.

. The inverse method will then be able to use this rule to partially apply the instances of

the (C3) rule to produce, eventually, - ; - + - ; sum™ 3 0 3, which can be matched to (the
instance of) (Cs) to give our second derived fact about 1sum, viz. - ; - + - ; 1sum™ [3] 3.

: These steps repeat twice more until we eventually derive - ; - + - ; lsum [1,2,3] 6,

which finally lets us derive the goal sequent using (the instance of) (g).

4.4 Correctness

Crucially, no further inferences are possible in the example of the previous section.
There will never be any facts generated about 1sum™ [5, 1,2, 3, 4] x, for instance, be-
cause there is never a seed of that form. Thus, as long as there is a well-founded measure
on the seeds that is strictly decreasing for every new seed, this implementation of the
inverse method with dynamic polarity assignment is guaranteed to saturate because of

. the following property.

Lemma 8 (seeding lemma) All atoms occurring to the right of sequents in the Facts
list are instances of atoms in the Seeds.

Proof. Since the only polarity assignment is to assign an unpolarised atom the negative
polarity, the only effect it has on proto inference rules is to finish left-focused proto
sequent premises with NL, and turn right-focused proto sequent premises into neutral
sequent premises. Finishing the left-focused premises has the side effect of instantiat-
ing the right hand side with the newly negatively polarised atom. If there are no neutral
premises as a result of this assignment, then the newly generated fact satisfies the re-

. quired criterion. Otherwise, when the conclusion is eventually generated by applying

the rule in the inverse method, the right hand side will be an instance of the negatively
polarised atom. O

The main result of this paper is a simple corollary.

Corollary 9 (saturation) Given a well-moded logic program that terminates on all
well-moded queries—i.e., all derivations of a well-moded query are finite—the inverse
method with the dynamic polarity assignment algorithm of sec. 4.1 saturates for all

- well-moded queries.

: Proof (Sketch). Instead of giving a fully formal proof, which is doable in the style

of [15], we give only the intuition for the proof. Note that if the logic program is ter-
minating for all well-moded queries, then there is a bounded measure | | that is strictly
decreasing from head to body of all clauses in the program. We use this measure to
build a measure on the Seeds collection as follows:

— For each atom in Seeds, pick the element with the smallest | |-measure.
— For each atom not in Seeds, pick greatest lower bound of the | |-measure.
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— Pick a strict but arbitrary ordering of all the predicate symbols and arrange the
measures selected in the previous two steps in a tuple according to this ordering.
This tuple will be the measure of Seeds.

. It is easy to see that this measure on Seeds has a lower bound according to the lexico-
. graphic ordering. Therefore, all we need to show is that this measure is decreasing on
. Seeds for every seeding step and then we can use lem. 8 to guarantee saturation. But
. this is easily shown because the | |-measure decreases when going from the conclusion

to the premises of every derived inference rule for the clauses of the logic program (see
the example in sec. 4.3). O

The completeness of the dynamic polarity assignment algorithm follows from the
completeness of focusing with (arbitrary) polarity assignment, the completeness of the
inverse method given a fair strategy, and the observation that Seeds contains a superset

. of all predicates that can appear as subgoals in a top-down search of the given logic

program.

5 Conclusion

: We have shown how to implement the magic sets constraint on forward chaining search,

implemented in a focused theorem proving strategy, by dynamically assigning polarities
to unpolarised atoms based on where they appear in a slight generalisation of derived
inference rules in focusing. As an immediate consequence, our forward chaining search
can respond with the same answer set as a backward chaining engine for well-moded
and terminating programs, while enjoying all the benefits of the inverse method (lo-
cality, lack of backtracking, sharing of sub-derivations, etc). The notion of dynamic

: polarity assignment is novel to this work and the last word on it is far from written. The

obvious next step is to see how it generalises to fragments larger than Horn theories.
More fundamentally, while fairness in the inverse method gives a general external crite-

. rion for completeness, an internal criterion for judging when a given dynamic polarity

assignment strategy will be complete is currently an open question. A dual version of
the algorithm presented here—i.e., positive assignment for a focused tableau theorem
prover—would be worth investigating.
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