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Abstract. Given a logic program that is terminating and mode-correct in an6:

idealised Prolog interpreter (i.e., in a top-down logic programming engine), a7:

bottom-up logic programming engine can be used to compute exactly the same8:

set of answers as the top-down engine for a given mode-correct query by rewrit-9:

ing the program and the query using the Magic Sets Transformation (MST). In10:

previous work, we have shown that focusing can logically characterise the stan-11:

dard notion of bottom-up logic programming if atomic formulas are statically12:

given a certain polarity assignment. In an analogous manner, dynamically assign-13:

ing polarities can characterise the effect of MST without needing to transform14:

the program or the query. This gives us a new proof of the completeness of MST15:

in purely logical terms, by using the general completeness theorem for focusing.16:

As the dynamic assignment is done in a general logic, the essence of MST can17:

potentially be generalised to larger fragments of logic.18:

1 Introduction19:

It is now well established that two operational “dialects” of logic programming—top-20:

down (also known as backward chaining or goal-directed) in the style of Prolog, and21:

bottom-up (or forward chaining or program-directed) in the style of hyperresolution—22:

can be expressed in the uniform lexicon of polarity and focusing in the sequent calculus23:

for a general logic such as intuitionistic logic [8]. The difference in these diametrically24:

opposite styles of logic programming amounts to a static and global polarity assignment25:

to the atomic formulas. Such a logical characterisation allows a general theorem prov-26:

ing strategy for the sequent calculus, which might be backward (goal sequent to axioms)27:

as in tableau methods or forward (axioms to goal sequent) like in the inverse method,28:

to implement either forward or backward chaining (or any combination) for logic pro-29:

grams by selecting the polarities for the atoms appropriately. Focused inverse method30:

provers, some supporting polarity assignment, have been built for linear logic [4], intu-31:

itionistic logic [16], bunched logic [10] and several modal logics [11] in recent years.32:

The crucial ingredient for the characterisation is that polarities and focusing are suf-33:

ficiently general that all static polarity assignments are complete [8, 1]. The two assign-34:

ments may be freely mixed for different atoms, which will produce hybrid strategies.35:

The proofs are, of course, very different: one assignment may admit exponential deriva-36:

tions of Fibonacci numbers, while the other might have only the linear proofs. Even37:

more importantly, the search space for proofs is wildly different for different assign-38:

ments. Sometimes the assignment can be made easily; for example, atoms that are used39:
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to implement actions in a state transition system generally perform better when given40:

an assignment that implements forward chaining, while atoms that represent computa-41:

tional functions perform better with assigned to implement backward chaining. How-42:

ever, the situation is not often this clear, and static polarity assignment has turned out to43:

be a coarse and somewhat unwieldy tool, as was noted in the experiments in [8, 16].44:

In this paper, we propose to look at dynamic polarity assignment as a means to do45:

better than static assignment for certain well known classes of problems. Dynamic as-46:

signment of a particular form has been investigated before by Nigam and Miller [17] as47:

a means of incorporating tables into proof objects; however, their notion of dynamics48:

involves changes to the underlying proof system (such as the addition of cuts that po-49:

larise certain cut atoms in different ways). We propose instead to build a proof system50:

that retains the same inference rules as ordinary focusing, but dynamically specialises51:

them based on polarity assignments performed at runtime. (Note that “dynamic polarity52:

assignment” is not a particular algorithm but a general class of algorithms for control-53:

ling the search behaviour of existing algorithms. It is best to think of it by analogy with54:

ordering strategies in resolution theorem proving.)55:

In particular, we give a dynamic assignment strategy that implements the effect of56:

the so-called magic sets transformation [3, 19, 15], which is a program transformation57:

constrains forward chaining to have the same set of answers as backward chaining. It58:

is quite difficult to show that the transformation has this intended property. Moreover,59:

since it is a global transformation on the program, that might even (in the general case)60:

depend on the query, it is not modular and compositional. We propose, in this paper, to61:

give an alternative presentation of magic sets that not only avoids the transformation,62:

but also gives a characterisation of magic sets in the common lexicon of focusing. That63:

is, the magic sets approach is just a special case of dynamic polarity assignment, in64:

much the same way as forward and backward chaining for Horn clauses are just special65:

cases of static polarity assignment.66:

We limit our attention in this paper to the focused inverse method [4] as the particu-67:

lar general search strategy for the sequent calculus. Intuitively, this method “compiles”68:

a clause into an inference rule as follows:69:

sum (s X) Y (s Z) :- sum X Y Z. −→
Γ ` sum x y z

Γ ` sum (s x) y (s z)

When this inference rule is read from premise to conclusion, the interpretation is of70:

forward chaining on the corresponding clause. Such rules can be repeatedly applied to71:

produce an infinite number of new sequents differing only in the number of ss, which72:

prevents saturation even for queries with a finite backward chaining search space. With73:

such clauses, forward chaining cannot appeal to negation by failure, unlike backward74:

chaining. We show how to use dynamic polarity assignment to instead produce a new75:

side condition on such inference rules: the conclusion (sum (s x) y (s z)) must be neg-76:

atively polarised for the rule to be applicable. The atoms are polarised negatively by77:

carefully selecting only those atoms that are in the base of the logic program.78:

One important feature of this re-investigation of the magic sets approach is that, be-79:

cause it is performed in a more general context, we can potentially generalise it to larger80:

fragments of logic such as the uniform fragment. Moreover, since it does not change the81:

underlying proof system, it can potentially co-exist with other strategies. For example,82:
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if the dynamic assignment algorithm gets stuck, the remaining atoms can be polarised83:

in some other fashion and the inverse method resumed without losing completeness.84:

The rest of this paper is organised as follows. In sec. 2 the magic sets transformation85:

is sketched by way of example. Section 3 then summarises the design of the focused86:

inverse method and static polarity assignment. Section 4 introduces dynamic polarity87:

assignment and shows how to use it to implement the magic sets restriction (sec. 4.2).88:

Finally, sec. 5 discusses the conclusions and scope of future work on dynamic polarity89:

assignment.90:

2 Magic Sets Transformation91:

This section contains a quick overview of the Magic Sets Transformation for logic pro-92:

grams. We use the “core” version presented in [15], which is less general than some93:

other designs in the literature [3, 19] but also easier to explain and reason about. The94:

logic programs we will consider are made up of Horn clauses and satisfy a global well-95:

modedness criterion.96:

Definition 1 (Horn clauses) A Horn clause is an iterated implication of atomic formu-97:

las that is implicitly closed over all its variables. That is, Horn clauses (C,D, . . .) satisfy98:

the following grammar:99:

C,D, . . .F a ~t
∣∣∣ a ~t → C t, s, . . .F x

∣∣∣ f ~t

where a ranges over predicate symbols, f over function symbols, and x over variables.100:

The notation ~t stands for a list, possibly empty, of terms.101:

Many extensions of this definition of Horn clauses exist in the literature, but they are102:

all generally equivalent to this fragment. A logic program is just an unordered collection103:

of Horn clauses where each predicate and function symbol has a unique arity. (We do104:

not consider particular orderings of the clauses because we are not interested in the105:

precise operational semantics of a logic programming language such as Prolog.)106:

Definition 2 (moding) Every predicate symbol of arity n can be assigned a mode,107:

which is a string of length n composed of the characters i and o, which are mnemonics108:

for “input” and “output” respectively. A mode assignment to all predicates in a logic109:

program is called a moding. The inputs of a predicate with respect to a mode are those110:

arguments corresponding to the occurrences of i in the mode; likewise, the outputs are111:

the arguments corresponding to o in the mode.112:

Definition 3 (well-modedness) All the following are with respect to a given moding:113:

– A goal query is well-moded iff its inputs are ground.114:

– A clause a1 ~t1 → · · · → an ~tn → b ~s is well-moded iff for all i ∈ 1..n, the variables115:

in the inputs of ai ~ti are contained in the union of the variables in the outputs of116:

a j ~t j for i < j ≤ n and of the variables in the inputs of b ~s .117:

– A logic program is well-moded iff every clause in it is well-moded.118:
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The definition of well-modedness for non-unit clauses intuitively states that, in a119:

right-to-left reading of the clause, the inputs of an atomic formula must be defined the120:

outputs of earlier atomic formulas and the inputs of the head. There is no fundamental121:

need to read the body of the clause from right to left; indeed, well-modedness can be122:

generalised to allow for any permutation of the body to satisfy the inclusion criteria for123:

input variables. Given a well-moded program and query, every derivation of an instance124:

of the query from the program will be ground (for the proof, see [2]).125:

We use the same motivating example from [15]: computing the sum of the elements126:

of a list of natural numbers. The clauses of the program are as follows in Prolog style.127:

(* mode lsum = io *)128:

lsum [] 0.129:

lsum (X :: Y) k :- lsum Y J, sum X J K.130:

(* mode sum = iio *)131:

sum 0 X X.132:

sum (s X) Y (s Z) :- sum X Y Z.133:

This program is well-moded because the outputs flow into the inputs from left to right134:

in the body of the clauses. A query such as ?- lsum [1, 2, 3] X is well-moded135:

because the input is ground, while a query such as ?- lsum X 20 is not well-moded.136:

To prove a well moded query, the backward chaining or top-down logic program-137:

ming approach matches the goal with the heads of the clauses in the program, and for138:

each successful match, replaces the goal with the matched instance of the body of the139:

clause as new subgoals. A well-moded program is said to be terminating if there are no140:

infinite backward chaining derivations for a well-moded query.141:

The forward chaining or bottom-up logic programming strategy starts from the unit142:

clauses in the program, matches the body of a clause with these clauses, and adds the143:

most general instance of the matched head as a new clause. This is iterated until (a144:

generalisation of) the goal query is derived. This direction is not quite as obviously145:

goal-directed as backward chaining, but it has many fundamental merits. It builds a146:

database of computed facts that are all mutually non-interfering, and therefore requires147:

no backtracking or global, stateful updates. Moreover, facts and therefore derivations148:

are implicitly shared, so the loop detection issue that plagues backward chaining does149:

not apply here.150:

However, forward chaining suffers from the obvious problem that it over-approximates151:

the query, performing a lot of wasteful search. Fortunately, it is possible to constrain for-152:

ward chaining for a given program and query such that the algorithm will saturate, i.e.,153:

reach a state where no new facts can be generated, iff the query terminates in backward154:

chaining. This is achieved by rewriting the program and the query so that the forward155:

algorithm approximates backward search.156:

The common element of the approaches to constrain forward chaining is the notion157:

of a magic set, which is an abstract representation of the base of the program [15].158:

We shall illustrate it here with the example above. For each predicate a, a new magic159:

predicate a′ is added that has the same arity as the input arity of the original predicate.160:

Then, each clause of the program is transformed to depend on the magic predicate161:

applied to the inputs of the head. That is, we obtain the following rewritten clauses:162:
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lsum [] 0 :- lsum’ [].163:

lsum (X :: Y) k :- lsum’ (X :: Y), lsum Y J, sum X J K.164:

sum 0 X X :- sum’ 0 X.165:

sum (s X) Y (s Z) :- sum’ (s X) Y, sum X Y Z.166:

As there are no longer any unit clauses, forward chaining cannot begin without some167:

additional input. This is provided in the form of the magic version of the goal query as168:

a new unit clause:169:

lsum’ [1, 2, 3].170:

Finally, clauses are added for the magic predicates to propagate information about the171:

base. For each non-unit clause, there is one propagation rule for each predicate in the172:

body of the clause. For this example, we would have:173:

lsum’ Y :- lsum’ (X :: Y).174:

sum’ X J :- lsum’ (X :: Y), lsum Y J.175:

sum’ X Y :- sum’ (s X) Y.176:

Forward chaining on this transformed program will compute the same instances of the177:

query as backward chaining on the original program and query.178:

Correctness of this magic sets transformation is generally quite difficult to prove.179:

One of the most readable proofs was provided by Mascellani et al [15]; that paper also180:

contains a fully formal definition of the transformation and a number of other examples.181:

However, all transformational approaches suffer from the same problems outlined in the182:

introduction: they require drastic, non-modular, and non-compositional modifications to183:

the program. In the rest of the paper we will give a different explanation of the magic184:

sets transformation that does not suffer from these problems, and is moreover manifestly185:

correct because of very general proof theoretic properties of focused sequent calculi.186:

3 The Focused Inverse Method187:

In this section we review the focused inverse method for intuitionistic logic. Most of the188:

material of this section has already appeared in in [4, 8, 16, 9] and in references there-189:

from. Like other recent accounts of intuitionistic focusing [16, 6], we adopt a polarised190:

syntax for formulas. Intuitively, positive formulas (i.e., formulas of the positive polar-191:

ity) are those formulas whose left sequent rules are invertible and negative formulas192:

are those whose right rules are invertible. Every polarised logical connective is unam-193:

biguously in one of these two classes. In order to prevent an overlap, we also assign194:

the atomic formulas to one of the two classes. Any polarity assignment for the atoms is195:

complete [8].196:

Definition 4 (syntax) We follow this grammar:197:

P,QF p
∣∣∣ P ⊗ Q

∣∣∣ 1
∣∣∣ P ⊕ Q

∣∣∣ 0
∣∣∣ ∃x. P

∣∣∣ ↓N N,M F n
∣∣∣ N & M

∣∣∣ > ∣∣∣ P( N
∣∣∣ ∀x.N

∣∣∣ ↑P
pF

〈
a ~t ,+

〉
nF

〈
a ~t ,−

〉
P− F P

∣∣∣ n N+ F N
∣∣∣ p

– Formulas (A, B, . . .) are either positive (P,Q, . . .) or negative (N,M, . . .).198:
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– Atomic formulas (or atoms) (p, q, n,m, . . .) are also polarised. Each atom consists199:

of an atomic predicate (a, b, . . .) applied to a (possibly empty) list of terms, and a200:

polarity. We shall sometimes abuse notation and write
〈
a ~t ,±

〉
as a± ~t , even though201:

it is the atom and not the predicate that carries the polarity.202:

– Left passive formulas (N+,M+, . . .) and right passive formulas (P−,Q+, . . .) are203:

used to simplify the notation slightly.204:

We use connectives from polarised linear logic instead of the more usual intuition-205:

istic connectives to make the polarities explicit. The polarity switching connectives ↓206:

and ↑ are only bureaucratic and do not change the truth value of their operands. Both207:

⊗ and & have the same truth value as the usual intuitionistic conjunction ∧—that is,208:

A⊗ B ≡ A & B if we ignore polarities and omit the switching connectives ↓ and ↑—just209:

different inference rules. In other formulations of polarised intuitionistic logic these two210:

polarisations of conjunction are sometimes written as ∧+ or ∧− [14], but we prefer the211:

familiar notation from linear logic. Likewise, ⊕ has the same truth value as ∨ and (212:

the same truth value as→.213:

The inference system for this logic will be given in the form of focused sequent214:

calculus rules [1, 16]. We have the following kinds of sequents:215:

Γ ` [P] right-focus on P Γ ; [N] ` Q− left-focus on N

Γ ; Ω `

N ; ·
· ; Q−︸      ︷︷      ︸

γ

left-active on Ω and right-active on N216:

where: ΓF ·
∣∣∣Γ,N− is called the passive context and ΩF ·

∣∣∣Ω, P is the active context.217:

Both contexts are interpreted as multisets (admits only exchange). We use the usual218:

convention of denoting multiset union with commas. It will turn out that the passive219:

context is also a set, but we will prove this as an admissible principle instead of writing220:

explicit rules of weakening and contraction. Note therefore that Γ1,Γ2 is not the same221:

as Γ1 ∪ Γ2; when the latter interpretation is needed, it will be written explicitly.222:

The focused sequent calculus will be presented in a stylistic variant of Andreoli’s223:

original formulation [1]. The full set of ruls is in fig. 1. It has an intensional reading in224:

terms of phases. At the boundaries of phases are sequents of the form Γ ; · ` · ; Q−,225:

which are known as neutral sequents. Proofs of neutral sequents proceed (reading from226:

conclusion to premises) as follows:227:

1. Decision: a focus is selected from a neutral sequent, either from the passive context228:

or from the right. This focused formula is moved to its corresponding focused zone229:

using one of the rules dl or dr (d = “decision”, and r/l = “right”/“left”). The left230:

rule copies the focused formula.231:

2. Focused phase: for a left or a right focused sequent, left or right focus rules are232:

applied to the formula under focus. These focused rules are all non-invertible in the233:

(unfocused) sequent calculus and therefore depend on essential choices made in the234:

proof. This is familiar from focusing for linear logic [1, 8].235:

3. Active phase: once the switch rules ↓r and ↑l are applied, the sequents become236:

active and active rules are applied. The order of the active rules is immaterial as237:
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(right-focus)

Γ, p `
[
p
] pr Γ ; · ` N ; ·

Γ ; [↓N]
↓r

Γ ` [P] Γ ` [Q]
Γ ` [P ⊗ Q]

⊗r
Γ ` [1] 1r

Γ ` [Pi]
Γ ` [P1 ⊕ P2]

⊕ri
Γ ; [P[t/x]]
Γ ; [∃x. P] ∃r

(left-focus)

Γ ; [n] ` n
nl

Γ ; P ` · ; Q−

Γ ; [↑P] ` Q−
↑l

Γ ; [Ni] ` Q−

Γ ; [N1 & N2] ` Q−
&li

Γ ` [P] Γ ; [N] ` Q−

Γ ; [P( N] ` Q−
(l

Γ ; [N[t/x]] ` Q−

Γ ; [∀x.N] ` Q−
∀l

(active)

Γ ; Ω ` · ; n
Γ ; Ω ` n ; ·

nr
Γ ; Ω ` · ; P
Γ ; Ω ` ↑P ; ·

↑r
Γ ; Ω ` N ; · Γ ; Ω ` M ; ·

Γ ; Ω ` N & M ; · &r

Γ ; Ω ` > ; ·
>r

Γ ; Ω, P ` N ; ·
Γ ; Ω ` P( N ; ·

(r
Γ ; Ω ` N[a/x] ; ·
Γ ; Ω ` ∀x.N ; · ∀r

a

Γ, p ~t ; Ω ` γ

Γ ; Ω, p ~t ` γ
pl

Γ,N ; Ω ` γ

Γ ; Ω, ↓N ` γ
↓l

Γ ; Ω, P,Q ` γ
Γ ; Ω, P ⊗ Q ` γ

⊗l
Γ ; Ω ` γ

Γ ; Ω, 1 ` γ 1l

Γ ; Ω, P ` γ Γ ; Ω,Q ` γ
Γ ; Ω, P ⊕ Q ` γ

⊕l
Γ ; Ω, 0 ` γ 0l

Γ ; Ω,N[a/x] ` γ
Γ ; Ω,∃x.N ` γ ∃l

a

(decision)
Γ ` [P]

Γ ; · ` · ; P
dr

Γ,N ; [N] ` Q−

Γ,N ; · ` · ; Q−
dl

Fig. 1. Focused sequent calculus for polarised first-order intuitionistic logic

all orderings will produce the same list of neutral sequent premises. In Andreoli’s238:

system the irrelevant non-determinism in the order of these rules was removed by239:

treating the active context Ω as ordered; however, we do not fix any particular240:

ordering.241:

The soundness of this calculus with respect to an unfocused sequent calculus, such as242:

Gentzen’s LJ, is obvious. For completeness, we refer the interested reader to a number243:

of published proofs in the literature [8, 13, 18, 12].244:

The purpose of starting with a polarised syntax and a focused calculus is that we are245:

able to look at derived inference rules for neutral sequents as the basic unit of steps. For246:

instance, one of the derived inference rules for the formula N , p ⊕ q( m & (↓l( n)247:

in the passive context is given in fig. 2. The instance of pr above forces p to be in the248:

passive context because that is the only rule that can be applied to contruct a sequent249:

of the form ∆ `
[
p
]
. Likewise, the nl rule forces the right hand side of the conclusion250:

sequent to be the same as the left focused atom n. Finally, the dl rule requires N to251:

already be present in the passive context.252:

As we observe, focusing compiles formulas such as N above, which may be clauses253:

in a program, into (derived) inference rules. Focusing can also produce new facts, which254:

are neutral sequents that have no open premises after applying a derived inference rule.255:
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Γ,N, p `
[
p
] pr

Γ,N, p `
[
p ⊕ q

]

Γ,N, p ; · ` · ; l
Γ,N, p ; · ` l ; ·

Γ,N, p ` [↓l] Γ,N, p ; [n] ` n
nl

Γ,N, p ; [↓l( n] ` n
Γ,N, p ; [m & (↓l( n)] ` n

&l2

Γ,N, p ; [N] ` n
Γ,N, p ; · ` · ; n

dl i.e.,
Γ,N, p ; · ` · ; l
Γ,N, p ; · ` · ; n

Fig. 2. One derived inference rule for N.

An example would be the case for the derivation above where, instead of &l2 we were256:

to use &l1. In this case we would obtain the fact Γ,N, p ; · ` · ; m. If the goal were of257:

this form, we would be done.258:

This property of focusing can be exploited to give a purely proof-theoretic expla-259:

nation for certain dialects of proofs. For Horn clauses, consider the case where all the260:

atoms are negative, i.e.clauses are of the form ∀~x . ↓m1( · · ·(↓m j(n. If clause were261:

named N, then its derived inference rule is:262:

Γ,N ; · ` · ; m1[~t /~x ] · · · Γ,N ; · ` · ; m j[~t /~x ]
Γ,N ; · ` · ; n[~t /~x ]

Since the context is the same in all premises and the conclusion, we need only look263:

at the right hand side. If we read the rule from conclusion to premises, then this rule264:

implements back-chaining from an instance of the head of this Horn clause to the cor-265:

responding instances of the body of the clause, where the neutral sequents represent266:

the current list of sub-goals. Thus, the general top-docn logic programming strategy (or267:

backward chaining) consists of performing goal-directed focused proof search on Horn268:

clauses with negative atoms. If the atoms were all assigned positive polarity instead,269:

then the same goal-directed focused proof search would perform a kind of bottom-up270:

logic programming (or forward chaining). Static polarity assignment for the atoms is271:

therefore a logical characterization of forward and backward chaining strategies. In-272:

deed, if the atoms were not uniformly given the same polarities, then the focused proofs273:

would be a mixture of forward and backward chaining.274:

3.1 Forward reasoning and the inverse method275:

An important property of the sequent calculus of fig. 1 is that there is a structural cut-276:

elimination algorithm [8]; as a consequence, the calculus enjoys the subformula prop-277:

erty. Indeed, it is possible to state the subformula property in a very strong form that278:

also respects the sign of the subformula (i.e., whether it is principal on the left or the279:

right of the sequent) and the parametricity of instances (i.e., the subformulas of a right280:

∀ or a left ∃ can be restricted to generic instances). We omit a detailed definition and281:

proof here because it is a standard result; see e.g. [7] for the definition.282:

The benefit of the strong subformula property is that we can restrict the rules of fig. 1283:

to subformulas of a given fixed goal sequent. With this restriction, it becomes possibile284:
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to apply the inference rules in a forward manner, from premises to conclusion. The285:

inputs of such a forward reasoning strategy would be the facts that correspond to focus-286:

ing on the passive formulas and operands of the switch connectives in the goal sequent,287:

subject to the subformula restriction. That is, we admit only those initial sequents (in288:

the rules pr and nl) where the principal atomic formula is both a left and a right signed289:

subformula of the goal sequent. From these initial sequents we apply the (subformula-290:

restricted) inference rules forward in a forward manner until we derive (a generalisation291:

of) the goal sequent.292:

In order for this kind of forward search strategy to be implementable, there needs to293:

be some further modifications to the inference rules. Firstly, the rule schemas must be294:

restricted to remove elements that do not occur in the premises. For instance, the rule295:

1rb is replaced with 1rf because the context Γ is not present among the premises:296:

Γ ` [1] 1rb
· ` [1] 1rf

(The suffixes b and f are used to distinguish backward from forward rules.) As a result297:

of this transformation, the contexts in the premises of binary rules no longer match up298:

exactly, and so they are joined in multiset union such as:299:

Γ1 ` [P] Γ2 ` [Q]
Γ1,Γ2 ` [P ⊗ Q]

⊗rf

We then add an explicit rule of factoring to get rid of duplicates in the neutral sequents:300:

Γ,N+,N+ ; · ` · ; δ
Γ,N+ ; · ` · ; δ

f

where δ is of the form · or Q−. To complete the design, we then lift the ground calculus301:

to free variables and relax identity in rules such as pr and nl to unifiability, and compute302:

only most general instances of new sequents. This core design of a forward version of303:

a backward sequent calculus is a well known “recipe” outlined in the Handbook article304:

on the inverse method [9].305:

One optimisation not mentioned in [9] but implemented in many inverse method306:

provers [4, 16] is globalisation: the forward version of the dl rule is specialized into the307:

following two forms:308:

Γ ; [N] ` δ N < Γ0

Γ,N ; · ` · ; δ
dlf1

Γ ; [N] ` δ N ∈ Γ0

Γ ; · ` · ; δ
dlf2

where Γ0 is the passive context of the goal sequent. This context is present in every309:

sequent in the backward proof, so there is no need to mention it explicitly in the forward310:

direction. For logic programs, Γ0 will contain the clauses of the program and it is not311:

important to distinguish between two computed sequents that differ only in the used312:

clauses of the program.313:

Let us revisit the static polarity assignment question in the forward direction. The314:

forward derived rule for the Horn clause ∀~x . ↓m1 ( · · ·( ↓m j ( n ∈ Γ0, after lifting315:

to free variables, is:316:

Γ1 ; · ` · ; m′1 · · · Γ j ; · ` · ; m′j θ = mgu(〈m1, . . . ,m j〉, 〈m′1, . . . ,m
′
j〉)

(Γ1, . . . ,Γn ; · ` · ; n)[θ]

9



For unit clauses, which provide the initial sequents, the passive context Γ is empty317:

(because there are no premises remaining after globalisation). Therefore, all neutral318:

sequents computed by forward reasoning will have empty passive contexts, giving us319:

the rule:320:

· ; · ` · ; m′1 · · · · ; · ` · ; m′j θ = mgu(〈m1, . . . ,m j〉, 〈m′1, . . . ,m
′
j〉)

(· ; · ` · ; n)[θ]

Thus, this derived inference rule implements forward chaining for this clause. This sit-321:

uation is dual to the backward reading of the rules of fig. 1 where a static negative322:

assignment to the atoms implemented backward chaining. As expected, a static pos-323:

itive polarity assignment to the atoms implements backward chaining in the forward324:

calculus. The technical details of operational adequacy can be found in [8].325:

4 Dynamic Polarity Assignment326:

The previous section demonstrates that we can implement forward chaining (or bottom327:

up logic programming) using the vocabulary of focusing and polarity assignment. For328:

the rest of this paper we shall limit or attention to forward reasoning as the global329:

strategy, with negative polarity assignment for the atoms as our means of implementing330:

forward chaining.331:

Obviously the benefit of polarity assignment is that completeness is a trivial con-332:

sequence of the completeness of focusing with respect to any arbitrary, even heteroge-333:

neous, polarity assignment for the atoms. Moreover, the completeness of the ivnerse334:

method merely requires that the rule application strategy be fair. This minimal require-335:

ment of fairness does not force us to assign the polarity of all all atoms statically, as336:

long as we can guarantee that every atom that is relevant to the proof is eventually as-337:

signed a polarity (and that the rest of the inverse method engine is fair). Can we do338:

better than static assignment with dynamic assignment? This section will answer this339:

question affirmatively.340:

4.1 The mechanism of dynamic polarity assignment341:

Let us write unpolarised atoms (i.e., atoms that haven’t been assigned a polarity) simply342:

in the form a ~t, and allow them to be used as both positive and negative formulas in the343:

syntax. That is, we extend the syntax as follows:344:

P,Q, . . .F a ~t
∣∣∣ p

∣∣∣ P ⊗ Q
∣∣∣ 1

∣∣∣ P ⊕ Q
∣∣∣ 0

∣∣∣ ∃x. P
∣∣∣ ↓N

N,M, . . .F a ~t
∣∣∣ n

∣∣∣ N & M
∣∣∣ > ∣∣∣ P( N

∣∣∣ ∀x.N
∣∣∣ ↑P

For example, A Horn clause with unpolarised atoms have the syntax ∀~x. a1 ~t1 ( · · ·(345:

a j ~t j ( b ~s where the ~x are the variables that occur in the terms ~t1, . . . , ~t j, ~s.346:

Consider a variant of the focused inverse method where we allow two kinds of347:

premises for inference rules: neutral sequents as before, and sequents that have a focus348:

on an unpolarised atom which we call proto sequents. An inference rule with proto349:

sequent premises will be called a proto rule.350:
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Definition 5 Environments (E,F , . . .) are given by the following grammar:

E, . . .F P
∣∣∣ Q

P,Q, . . .F �
∣∣∣ P ⊗ Q

∣∣∣ P ⊗ Q
∣∣∣ P ⊕ Q

∣∣∣ P ⊕ Q
∣∣∣ ∃x.P

∣∣∣ ↓N
N ,M, . . .F �

∣∣∣N & M
∣∣∣ N &M

∣∣∣ P( N
∣∣∣ P(N

∣∣∣ ∀x.N
∣∣∣ ↑P

We write E(A) for the formula formed by replacing the � in E with A, assuming it is351:

syntactically valid. An environment E is called positive (resp. negative) if E(p) (resp.352:

E(n)) is syntactically valid for any positive atom p (resp. negative atom n).353:

Definition 6 (polarity assignment) We write A[a ~t ← +] (resp. A[a ~t ← −]) to stand354:

for the positive (resp. negative) polarity assignment to the unpolarised atom a ~t in the355:

formula A. It has the following recursive definition:356:

– If the unpolarised atom a ~t does not occur in A, then A[a ~t ← ±] = A.357:

– If A = E(a ~t ) and E is positive, then358:

A[a ~t ← +] = (E(a+ ~t ))[a ~t ← +]

A[a ~t ← −] = (E(↓a− ~t ))[a ~t ← −]

– If A = E(a ~t ) and E is negative, then359:

A[a ~t ← +] = (E(↑a+ ~t ))[a ~t ← +]

A[a ~t ← −] = (E(a− ~t ))[a ~t ← −]

This definition is extended in the natural way to contexts, (proto) sequents, and (proto)360:

rules.361:

Polarity assignment on proto rules generally has the effect of instantiating certain362:

schematic meta-variables. For instance, consider the following proto-rule that corre-363:

sponds to a left focus on the unpolarised Horn clause C , ∀x, y. a x( b y( c x y:364:

Γ,C ` [a s] Γ,C ` [b t] Γ,C ; [c s t] ` Q−

Γ,C ; · ` · ; Q−

All the premises of this rule are proto sequents. Suppose we assign a positive polarity365:

to a s; this will change the proto rule to:366:

Γ,C ` [a+s] Γ,C ` [b t] Γ,C ; [c s t] ` Q−

Γ,C ; · ` · ; Q−

(where C′ is C[a s← +]). This proto rule actually corresponds to:367:

Γ,C′, a+s ` [b t] Γ,C′, a+s ; [c s t] ` Q−

Γ,C′, a+s ; · ` · ; Q−

because the only way to proceed further on the first premise is with the pr rule. This368:

instantiates Γ with Γ, a+s. If we now assign a negative polarity to c s t, we would obtain369:

the rule:370:

Γ,C′′, a+s ` [b t]
Γ,C′′, a+s ; · ` · ; c−s t

11



(where C′′ = C′[c s t ← −]) which instantiates Q− to c−s t. Finally, if we assign a371:

negative polarity to b t, we would obtain the ordinary (non-proto) inference rule with372:

neutral premise and conclusion:373:

Γ,C′′′, a+s ; · ` · ; b−t
Γ,C′′′, a+s ; · ` · ; c−s t

(where C′′′ = C′′[b t ← −]).374:

4.2 Implementing magic sets with dynamic polarity assignment375:

This sub-section contains the main algorithm of this paper – a dynamic polarity assign-376:

ment strategy that implements magic sets in the inverse method. The key feature of the377:

algorithm is that it involves no global rewriting of the program clauses, so soundness378:

is a trivial property. Completeness is obtained by showing that the algorithm together379:

with the inverse method performs fairly on well-moded logic programs and queries.380:

The algorithm consists of dynamically assigning negative polarity to unpolarised381:

atoms. Initially, all atoms in the program are unpolarised and the atom in the goal query382:

is negatively polarised. It maintains the following lists:383:

– Seeds, which is a collection of the negatively polarised atoms;384:

– Facts, which is a list of computed facts which are ordinary neutral sequents;385:

– Rules, which is a list of partially applied, possibly proto, rules.386:

Whenever a fact is examined by the inner loop of the inverse method, new facts and387:

partially applied (possibly proto) rules are generated. After the inner loop ends (i.e.,388:

after all subsumption checks and indexing), the following seeding step is repeatedly389:

performed until quiescence.390:

Definition 7 (seeding step) For every right-focused proto-sequent in the premise of ev-391:

ery proto rule, if the focused atom is mode correct—that is, if the input arguments of the392:

atom are ground—then all instances of that atom for arbitrary outputs are assigned a393:

negative polarity. These new negatively polarised atoms are added to the Seeds.394:

For example, if the unpolarised atom sum 3 4 ( f (x)) has a right focus in a proto395:

rule and sum has mode iio, then all atoms of the form sum 3 4 _ are assigned negative396:

polarity. The seeding step will generate new facts or partially applied rules, which are397:

then handled as usual by the inverse method.398:

4.3 Example399:

Let us revisit the example of sec. 2. Let Π0 be the collection of unpolarised Horn clauses400:

representing the program, i.e.:401:

Π0 = lsum [] 0, (C1)
∀x, y, j, k. lsum y j( sum x j k( lsum (x :: y) k, (C2)
∀x. sum 0 x x, (C3)
∀x, y, z. sum x y z( sum (s x) y (s z) (C4)
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As before, let the modes be io for lsum and iio for sum. The above program is termi-402:

nating and mode-correct for this moding. Consider the query lsum [1, 2, 3] X, i.e., we403:

are proving the goal sequent:404:

Π0,∀x. lsum [1, 2, 3] x( g︸                              ︷︷                              ︸
Γ0

; · ` · ; g

Since there are no switched subformulas, the only available rules will be for clauses in405:

Γ0 and the goal g. Using the subformula restriction and globalisation, we would then406:

obtain the following derived proto rules:407:

Γ ; [lsum [] 0] ` Q−

Γ ; · ` · ; Q−
(C1)

Γ1 ;
[
lsum (x :: y) k

]
` Q− Γ2 `

[
lsum y j

]
Γ3 `

[
sum x j k

]
Γ1,Γ2,Γ3 ; · ` · ; Q−

(C2)

Γ ; [sum 0 x x] ` Q−

Γ ; · ` · ; Q−
(C3)

Γ1 ;
[
sum (s x) y (s z)

]
` Q− Γ2 `

[
sum x y z

]
Γ1,Γ2 ; · ` · ; Q−

(C4)

Γ1 ; [g] ` Q− Γ2 ` [lsum [1, 2, 3] x]
Γ1,Γ2 ; · ` · ; Q−

(g)

There are no initial sequents, so we perform some seeding steps. The initial polarity408:

assignment is negative for the goal g; this produces the following instance of the proto409:

rule (g):410:

Γ2 ` [lsum [1, 2, 3] x]
Γ ; · ` · ; g−

(g′)

Now we have a right focus on a well moded unpolarised atom, viz. lsum [1, 2, 3] x, so411:

we add lsum− [1, 2, 3] _ to the Seeds. This produces two instances of the proto rule (C2)412:

depending on the two ways in which the seed can match the proto premises.413:

Γ1 `
[
lsum [2, 3] j

]
Γ2 `

[
sum 1 j k

]
Γ1,Γ2 ; · ` · ; lsum− [1, 2, 3] k

(C21)

Γ1 ; [lsum (x :: [1, 2, 3]) k] ` Q− Γ2 ; · ` · ; lsum− [1, 2, 3] j Γ3 `
[
sum x j k

]
Γ1,Γ2,Γ3 ; · ` · ; Q−

(C22)

The first premise in (C21) is well moded and will produce further seeds. However, (C22)414:

produces no seeds as there are no proto premises with a right focus on a well-moded415:

unpolarised atom. Continuing the seeding steps for (C21) we produce the following new416:

useful proto rules:417:

Γ1 `
[
lsum [2] j

]
Γ2 `

[
sum 2 j k

]
Γ1,Γ2 ; · ` · ; lsum− [2, 3] k

(C211)
Γ1 `

[
lsum [] j

]
Γ2 `

[
sum 3 j k

]
Γ1,Γ2 ; · ` · ; lsum− [3] k

(C2111)

The rule (C2111) produces a seed lsum− [] _ that matches the premise of (C1) to produce418:

our first fact: · ; · ` · ; lsum− [] 0. This can now be applied in the premise of (C2111) by419:

the inverse method loop to produce the following partially applied instance:420:

Γ ` [sum 3 0 k]
Γ ; · ` · ; lsum− [3] k

(C5)
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This finally gives us our first seed for sum, viz. sum− 3 0 _. This seed will, in turn421:

produce seeds sum− 2 0 _, sum− 1 0 _, and sum− 0 0 _ from instances of the rule (C4).422:

The last of these seeds will instantiate (C3) to give our second fact, · ; · ` · ; sum− 0 0 0.423:

The inverse method will then be able to use this rule to partially apply the instances of424:

the (C3) rule to produce, eventually, · ; · ` · ; sum− 3 0 3, which can be matched to (the425:

instance of) (C5) to give our second derived fact about lsum, viz. · ; · ` · ; lsum− [3] 3.426:

These steps repeat twice more until we eventually derive · ; · ` · ; lsum−[1, 2, 3] 6,427:

which finally lets us derive the goal sequent using (the instance of) (g).428:

4.4 Correctness429:

Crucially, no further inferences are possible in the example of the previous section.430:

There will never be any facts generated about lsum− [5, 1, 2, 3, 4] x, for instance, be-431:

cause there is never a seed of that form. Thus, as long as there is a well-founded measure432:

on the seeds that is strictly decreasing for every new seed, this implementation of the433:

inverse method with dynamic polarity assignment is guaranteed to saturate because of434:

the following property.435:

Lemma 8 (seeding lemma) All atoms occurring to the right of sequents in the Facts436:

list are instances of atoms in the Seeds.437:

Proof. Since the only polarity assignment is to assign an unpolarised atom the negative438:

polarity, the only effect it has on proto inference rules is to finish left-focused proto439:

sequent premises with nl, and turn right-focused proto sequent premises into neutral440:

sequent premises. Finishing the left-focused premises has the side effect of instantiat-441:

ing the right hand side with the newly negatively polarised atom. If there are no neutral442:

premises as a result of this assignment, then the newly generated fact satisfies the re-443:

quired criterion. Otherwise, when the conclusion is eventually generated by applying444:

the rule in the inverse method, the right hand side will be an instance of the negatively445:

polarised atom. ut446:

The main result of this paper is a simple corollary.447:

Corollary 9 (saturation) Given a well-moded logic program that terminates on all448:

well-moded queries—i.e., all derivations of a well-moded query are finite—the inverse449:

method with the dynamic polarity assignment algorithm of sec. 4.1 saturates for all450:

well-moded queries.451:

Proof (Sketch). Instead of giving a fully formal proof, which is doable in the style452:

of [15], we give only the intuition for the proof. Note that if the logic program is ter-453:

minating for all well-moded queries, then there is a bounded measure | | that is strictly454:

decreasing from head to body of all clauses in the program. We use this measure to455:

build a measure on the Seeds collection as follows:456:

– For each atom in Seeds, pick the element with the smallest | |-measure.457:

– For each atom not in Seeds, pick greatest lower bound of the | |-measure.458:
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– Pick a strict but arbitrary ordering of all the predicate symbols and arrange the459:

measures selected in the previous two steps in a tuple according to this ordering.460:

This tuple will be the measure of Seeds.461:

It is easy to see that this measure on Seeds has a lower bound according to the lexico-462:

graphic ordering. Therefore, all we need to show is that this measure is decreasing on463:

Seeds for every seeding step and then we can use lem. 8 to guarantee saturation. But464:

this is easily shown because the | |-measure decreases when going from the conclusion465:

to the premises of every derived inference rule for the clauses of the logic program (see466:

the example in sec. 4.3). ut467:

The completeness of the dynamic polarity assignment algorithm follows from the468:

completeness of focusing with (arbitrary) polarity assignment, the completeness of the469:

inverse method given a fair strategy, and the observation that Seeds contains a superset470:

of all predicates that can appear as subgoals in a top-down search of the given logic471:

program.472:

5 Conclusion473:

We have shown how to implement the magic sets constraint on forward chaining search,474:

implemented in a focused theorem proving strategy, by dynamically assigning polarities475:

to unpolarised atoms based on where they appear in a slight generalisation of derived476:

inference rules in focusing. As an immediate consequence, our forward chaining search477:

can respond with the same answer set as a backward chaining engine for well-moded478:

and terminating programs, while enjoying all the benefits of the inverse method (lo-479:

cality, lack of backtracking, sharing of sub-derivations, etc). The notion of dynamic480:

polarity assignment is novel to this work and the last word on it is far from written. The481:

obvious next step is to see how it generalises to fragments larger than Horn theories.482:

More fundamentally, while fairness in the inverse method gives a general external crite-483:

rion for completeness, an internal criterion for judging when a given dynamic polarity484:

assignment strategy will be complete is currently an open question. A dual version of485:

the algorithm presented here—i.e., positive assignment for a focused tableau theorem486:

prover—would be worth investigating.487:
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