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Abstract. It is well-known that focusing striates a sequent derivation into phases
of like polarity where each phase can be seen as inferring a synthetic connective.
We present a sequent calculus of synthetic connectives based on neutral proof pat-
terns, which are a syntactic normal form for such connectives. Different focusing
strategies arise from different polarisations and arrangements of synthetic infer-
ence rules, which are shown to be complete by synthetic rule permutations. A
simple generic cut-elimination procedure for synthetic connectives respects both
the ordinary focusing and the maximally multi-focusing strategies, answering the
open question of cut-admissibility for maximally multi-focused proofs.

1 Introduction

The story of focusing has been told several times since Andreoli [3] with essentially the
same construction. The inference rules of the sequent calculus divide into two groups:
invertible and non-invertible, and, during proof search, the invertible rules can be ea-
gerly applied until only non-invertible rules remain. Then, one connective is selected for
focusand a maximal sequence of non-invertible rules are applied until invertible rules
become available again. Focused proof search alternates between these two phases,
invertible and non-invertible, ornegativeandpositive, until no unproven goals remain.
Furthermore, the principal formulas of the positive and negative rules, themselves called
positive and negative, are perfectly dual, evoking a numberof dualities that have re-
cently been explained via focusing; a short list includes: call-by-value (positive) dual
to call-by-name (negative) [16]; the Q-protocol (positive) dual to the T-protocol (neg-
ative) [14]; the proponent (positive) dual to the opponent (negative)[2]; and forward-
chaining (positive) dual to backward-chaining (negative)[7] (see [18] for a survey).

Proof theoretically, the innovation of focusing is not its operational interpretation,
however, but the derived notion of asynthetic connective. If the operand of a positive
(resp. negative) connective is itself positive (resp. negative), then the two connectives
fuse into a larger positive (resp. negative) connective; this fusion eventually synthesises
connectives whose operands have the opposite polarity and whose internal structure
does not matter; thus,− ⊗ (− ⊗ −) and (− ⊗ −) ⊗ − are essentially the same ternary pos-
itive synthetic connective when applied to three negative operands. A focused derivation
amounts to a derivation using synthetic inference rules forsuch synthetic connectives.

But are synthetic connectives true connectives, and can oneconstruct a traditional
sequent calculus based on synthetic inferences? A first approximation to an answer is



to note that the focused sequent calculus admits identity and cut-elimination [7,14], so
provability-wise there is no problem with synthetic inferences. However, if one looks
at theproofsthemselves, the question gets more clouded. Ordinary unfocused rules of
like polarity freely permute with each other (as long as not prohibited by the subformula
relation), but synthetic positive rules never do. Indeed, the question of positive-positive
permutation is meaningless in the standard presentation offocusing because the neigh-
bours of a positive phase are negative. Yet, a positive-positive permutation is not a du-
bious concept: consider the sequent⊢a⊥ ⊗ ⊥, b⊥ ⊗ ⊥, a, b, 1, for instance, where indeed
the two⊗ rules are non-interfering and permute. In game-theoretic terms, the equivalent
⊗moves aretruly concurrent; however, the focused sequent calculus can only represent
a serialisation, which has been a long standing criticism offocusingqua syntax [1].
This limitation was partially removed in [5] by the use ofmulti-focusingto represent
the truly concurrent foci, but in that work the question of synthetic permutation was
answered by discarding one half of the synthetic connectives (the negatives) in their
entirety– very unsatisfactory!

The second break in the proof theory of synthetic derivations comes from the ex-
plicit polarity switches ordelays. These switching connectives are commonly used to
define a so-calledpolarised linear logic[10,12]; in fact, careful use of switches allows
one to mimic “strongly focusing” calculi like LJQ and LJT in ageneral focusing frame-
work [14]. This connective, however, has an incarnation only in the polarised world;
the unfocused calculus cannot detect it (e.g., by cut-reduction). Why should one coun-
tenance the invention of new connectives from one’s choice of proofs?

In this paper we propose an answer to both questions by paringfocusing down
into three orthogonal concepts, each involving choices specific forms, that are usually
confused together:neutral expressions, proof patterns, andfocusing strategies. To be
concrete, we limit ourselves to propositional, although the construction itself is as
general as focusing. The central component, proof patterns, is a technical device used
to construct static synthetic inference rules by explicitly representing a normal form of
the branchingsearch treefor a synthetic connective. Synthetic identity, syntheticcut-
elimination, and synthetic permutations can be defined by simple analysis of these static
proof patterns. The other two concepts are dynamic. Neutralexpressions represent the
polarisation of a connective by recording the phase changeswith the switch; however,
the switches themselves are not connectives but part of the dynamics of the proof: pro-
longing phases as long as possible, as in ordinary focusing,is amaximalpolarisation,
while switching phases always, as in unfocused calculi, is aminimal polarisation. The
third concept, focusing strategies, defines recipes for applying the synthetic inference
rules; ordinary focusing is a negative-eager strategy, andmaximal multi-focusing [5]
is a positive-eager strategy. The generic synthetic cut elimination preserves both these
strategies using a priority assignment to cut permutations.

Our main departure from ordinary focusing is an abolishmentof the regimented
phase alternation. Relaxed phase alternation is a recent innovation in focusing, but it
has appeared at least three times before: first in [15] where thefocalisation graphex-
posed several roots that could be simultaneously or sequentially focused on, second
in [9] where a neutral game is forced to pick multiple positive foci to maintain parity
with the multiple negative “foci”, and third in [5] which recovers a limited form of
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permutative canonicity by requiring the foci to be as large as possible. Our presenta-
tion is reminiscent of several related exegeses of focusing: the generic cut-elimination
is present in ludics [10], even though it is phase alternating (and monistic, which our
presentation decidedly isn’t); proof patterns are a generalisation of a similar construct
in the calculus [18]; neutral expressions are present in [9], although their use there
was to define a neutral game that grows a dual pair of mutually normalising derivations.

This paper is organised as follows. In sec.2, neutral expressions and proof patterns
are formally introduced and the sequent calculus of synthetic inferences is defined.
The key identity (theorem.11) and cut (theorem.12) theorems are proved. In sec.3,
permutation is defined for synthetic connectives. Sec.4 introduces focusing strategies
and sketches the two main variants: ordinary and maximally multi-focused.

2 A sequent calculus of synthetic connectives

This section will reconstruct a cut-free sequent calculus,called-, of synthetic
connectives and inference rules for propositional multiplicative-additive linear logic.
 is selected for simplicity and clarity; it contains the important features of focusing
without the distraction of polarising the exponentials. Weshall adopt a polarised syntax
similar to [13], but polarised propositions will be seen as dual interpretations of neutral
expressions.

Definition 1 Neutral expressions, written E, F, etc., have the following syntax.

E, F, . . . F a | E × F | 1 | E + F | 0 | lE

Here, a represents an atomic proposition with unassigned polarity. Thel operator rep-
resents an explicit switch of polarities.

Definition 2 (polarisation) A polarised proposition is defined as either a positive or
a negative polarisation of a neutral expression, given respectively by the polarisation
functions〈−〉+ and〈−〉−:

〈a〉+ = a+ 〈a〉− = a−

〈E × F〉+ = 〈E〉+ ⊗ 〈F〉+ 〈1〉+ = 1 〈E × F〉− = 〈E〉− M 〈F〉− 〈1〉− = ⊥

〈E + F〉+ = 〈E〉+ ⊕ 〈F〉+ 〈0〉+ = 0 〈E + F〉− = 〈E〉− & 〈F〉− 〈0〉− = ⊤

〈lE〉+ = 〈E〉− 〈lE〉− = 〈E〉+

Here, a+ (resp. a−) refers to a positively (resp. negatively) polarised atom.We write
〈E〉± to refer to either〈E〉+ or 〈E〉−, and〈E〉∓ to refer to its dual polarisation.

Note that polarisation is an injection: infinitely many expressions can polarise to
the same proposition by means of repeated “administrative”ls. Nevertheless, all
propositions are either positive or negative polarisations of some expression. This re-
striction will need to be relaxed when moving to non-linear logics such as classical
logic where the propositional connectives have ambiguous polarities. Note also that the
representation of & as a polarisation of a sum (+) differs starkly from the popular view
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of & as a “conjunction”, possibly because the two polarised interpretations of the clas-
sically ambiguous∧ are⊗ and & [14]. Our view of & as a “sum” (andM as a “product”)
is supported by distributivity:AM (B & C) ≡ (AM B) & ( AMC).

Indeed, the rules of the calculus will be given not for polarised neutral expressions
but for an associated uniqueproof patternthat reorganises the expression into a dis-
junctive normal form up to the atoms or the polarity switches, using distributivity to
move the+s to the surface through the×s. This reorganisation will generally repeat a
sub-expression—for example,a× (b+ c) is reorganised to (a× b) + (a× c), repeating
a—butwill not duplicate any sub-derivations because of thel guards. For instance, the
duplication of the⊢B in the following derivation is syntactically prohibited.

⊢ A,C ⊢ A,D
⊢ A,C & D

&
⊢ B

⊢ A⊗ B,C & D
⊗

⊢(A⊗ B)M (C & D)
M ≡

⊢ A,C ⊢ B
⊢ A⊗ B,C

⊗
⊢A,D ⊢ B
⊢A⊗ B,D

⊗

⊢A⊗ B,C & D
&

⊢(A⊗ B)M (C & D)
M

The propositionsA⊗ B andC & D are of opposite polarities, so we only observe the
equivalencel(E × F) × (G+ H) ≡ (l(E × F) ×G) + (l(E × F) × H) (for suitableE, F,
G andH), both of which have identical sub-derivations after the outer negative phase.

Definition 3 (proof patterns) Product patterns(π) andsum patterns(σ) are generated
by the following grammars:

πF Ê | 1 | π1 · π2 σF π | 0 | σ1 + σ2

whereÊ is either an atom or of the formlE. The structures〈Π, ·, 1〉 and 〈Ξ,+, 0〉 are
commutative monoids, whereΠ is the set of product patterns andΞ the set of sum
patterns. A product pattern will always be depicted in its normal form

∏

i∈I Êi , and
a sum pattern similarly as

∑

i∈I πi , where I is a finite index set. The unqualified term
“proof pattern” will refer to sum patterns.

Notation 4 We write⇓
〈

Ê
〉±

for (a)± if Ê = a and for〈F〉∓ if Ê = lF.

Abstractly, a proof pattern
∑

i∈I πi represents the proof search tree for a synthetic
connective. In the positive interpretation of the connective, the outer sum represents the
disjunctive (⊕) choices, while eachπi represents the multiplicative (⊗) structure. In the
negative interpretation, the outer sum represents the alternatives (&), while the inner
product represents the sequent structure (M).

Definition 5 Given two patternsσ =
∑

i∈I πi andσ′ =
∑

j∈J π
′
j , their product, written

σ × σ′ is the pattern
∑

i∈I
∑

j∈J πi · π
′
j.

Fact 6 〈Ξ,+, 0,×, 1〉 is a commutative semiring. ⊓⊔

Every neutral expression has a corresponding pattern derived simply by treating the
expression constructors as these semiring operators. Precisely, we can define a judge-
mentσ  E with the following rules:

a  a lE  lE
σ  E σ′  F
σ × σ′  E × F 1  1

σ  E σ′  F
σ + σ′  E + F 0  0
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For example, (a · c) + (a · lE) + c+ lE  (a+ 1) × (c+ lE).
Before proceeding further, we note that a similar notion of “pattern” has been de-

veloped in the realm of focused lambda calculi in the system [18,17]. The differ-
ences are as follows: we define patterns for both positive andnegative propositions and
furthermore represent both the product and the sum structure; patterns in, on the
other hand, are defined only for the positive propositions and keep just the products,
forgetting one half of each sum. patterns are therefore a slice of the disjunctive nor-
mal form—indeed, the disjunctive normal forms cannot be computed at all unless the
sums are represented—which necessitates quantification over (their equivalent of) the
 judgement to recover the full sum. This quantification makesthe synthetic rules in
higher-order. (This is most likely by design, as is intended as a logical explanation
for higher-order abstract syntax.)

Definition 7 (contexts and sequents)
– A contextis a finite multiset of expressions annotated with polarities,(E1)±, . . . , (En)±,

written∆. Two contexts that differ only on(E)± and(F)± with E , F are considered
different even if(E)± = (F)± (defn.2).

– A sequent⊢∆, where∆ is a context, is a judgement that the context∆ is linearly
contradictory. The form⊢ξ ∆ is used to indicate thatξ is a derivation of⊢∆.

– A focused sequentis a structure of the form⊢∆ ; (π)± where∆ is a context and(π)±

is a product patternπ annotated with a polarisation.

Definition 8 Let D = 〈∆i〉i∈1..n be a list of contexts. Then,

1.
⊗

D stands for the list of sequents⊢∆1, . . . ,⊢∆n.
2. MD stands for the sequent⊢∆1, . . . , ∆n.

For non-atomic principal formulas, we define the synthetic rules on the proof pattern
of the underlying neutral expression. The outer sum in the pattern represents an enu-
meration of choices. If the corresponding proposition werepositively polarised, then it
represents a disjunction of choices of which only one needs to be taken. For a negatively
polarised proposition it represents an alternation of choices,all of which must be taken.
Thebottom halfof the two synthetic rules thus looks as follows:
∑

i∈I πi  E ∃u ∈ I . ⊢∆ ; (πu)+

⊢∆, (E)+
P↓

∑

i∈I πi  E ∀u ∈ I . ⊢∆ ; (πu)−

⊢∆, (E)−
N↓

In each case, we obtain a number of focused sequents of the form ⊢∆ ; (π)±. If
the polarisation is positive, i.e., the product pattern represents a⊗, then the context∆
must be distributed into the components of the product. Thisdemultiplexionoperation
is defined by a ternary relation.

Definition 9 (demultiplexion) Given a context∆ and a product patternπ =
∏

i∈1..k Êi ,
a demultiplexionof ∆ along(π)± produces a list of contextsD = ∆1 ; · · · ; ∆k, written
∆ ; (π)+ ≫ D, generated by the following rules:

∆ ; (π)+ ≫ D
∆, (a)− ; (π · a)+ ≫ D ; (a)−, (a)+
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∆ ; (π)− ≫ D
∆, ∆′ ; (π · a)− ≫ D ; ∆′, (a)−

∆ ; (π)± ≫ D
∆, ∆′ ; (π · lE)± ≫ D ; ∆′, (E)∓

The upper half of the positive rule, P↑, is then obvious: we select a demultiplexion of
the context along the positive pattern and interpret every context in it as a sequent.

∃D : (∆ ; (π)+ ≫ D).
⊗

D

⊢∆ ; (π)+
P↑

Somewhat surprisingly, the upper half of the negative rule,N↑, can be written analo-
gously:

∀D : (∆ ; (π)− ≫ D).MD
⊢∆ ; (π)−

N↑

The demultiplexion used to constructD is simply undone by theM operator. It therefore
does not matter how the demultiplexion is done, and there is always a way to demulti-
plex along a negative pattern (for example, all of the context can be “sent” to the first
element of the product pattern, if one exists). The premise of the N↑ rule is therefore
uniquely determined.

We shall henceforth ignore the halves of the rules and just consider the combined
rules P and N, each of which is a polarisation of the followingneutral rule (whereE is
non-atomic and

∑

i∈I πi  E):

Qu∈ I . QD : (∆ ; (πu)p ≫ D).©D
⊢∆, (E)p R(p,Q,©)

In the positive interpretation P= R(+,∃,
⊗

), there is one premise corresponding to
each element of a demultiplexion of the context along a product pattern; in the negative
interpretation N= R(−,∀,M), there is one premise for each element of the outer sum
pattern. The rules have been written in this way to highlightthe precise duality of their
premises.

It is important to note that the use of the∀ and∃ in the rules is merely a notational
device. As the pattern that corresponds to an expression is statically known, we actually
have instances of the P and N rules specialised to the index sets of these statically known
patterns. Thus, the P and N rules are “first-order”: they do not depend on reasoning in
the meta-language.

There is one additional synthetic rule for atomic propositions:

⊢ (a)+, (a)−
I

This rule is neither positive, nor negative, and can only be applied at the leaves of a
derivation. As usual, it is only defined for atoms, but it can be proved for arbitrary
expressions. This is a syntactic completeness theorem thatis usually called theidentity
principle. Its proof is almost immediate in-.

Notation 10 We shall adopt the following notational shorthands:{∆i}i∈I for the multiset
union of the∆i , 〈Γi〉i∈I for the list of contextsΓi , and〈⊢Γi〉i∈I for the list of premises⊢Γi .
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Theorem 11 (identity principle) The sequent⊢ (E)+, (E)− is derivable for any E.

Proof. We reason by induction on the structure of the proof pattern for E. The atomic
case follows simply by I. For the non-atomic cases, suppose

∑

i∈I
∏

j∈Ji
Êi j  E. We

have:

∀u ∈ I .

〈

⊢ ⇓
(

Êu j

)+

, ⇓
(

Êu j

)−
〉

j∈Ju

⊢ (E)+,
{

⇓
(

Êu j

)−
}

j∈Ju

P

⊢ (E)+, (E)−
N

because
{

⇓
(

Êu j

)−
}

j∈Ju

;
(

∏

j∈Ju Êu j

)+



〈

⇓
(

Êu j

)+

,⇓
(

Êu j

)−
〉

j∈Ju

.

We then use the induction hypothesis on the sequents of the form ⊢ ⇓
(

Êu j

)+
, ⇓
(

Êu j

)−
,

which contain strictly smaller expressions. ⊓⊔

For syntactic soundness, we turn to admissibility of the following cut rule:

⊢∆, (E)+ ⊢Γ, (E)−

⊢∆, Γ
C

Theorem 12 (cut elimination) The C rule is admissible

Proof. We shall prove this by first admitting C as an inference rule and then eliminating
it by (non-deterministically) rewriting it out of a proof that uses it. This rewrite−→ is
generated from the following cases.

– Initial cuts, where one of the premises is derived from I. In these cases, the elimi-
nation is trivial because we can just drop the C and the initial premise.

– Principal cuts, where the cut-expression is principal in P and N in the two premises.
Suppose

∑

i∈I πi  E, πi =
∏

j∈Ji
Êi j andu ∈ I , such that:

〈

⊢ξ( j) Γ j ,⇓
(

Êu j

)+
〉

j∈Ju

⊢ {Γ j} j∈Ju , (E)+
P

∀i ∈ I . ⊢ζ(i) ∆,
{

⇓
(

Êi j

)−
}

j∈Ji

⊢ ∆, (E)−
N

⊢ {Γ j} j∈Ju , ∆
C

Let φ : 1..n→ Ju be a bijection. We rewrite the above cut as follows:

⊢ξ(φ(1))Γφ(1),⇓
(

Êuφ(1)

)+

⊢ξ(φ(2))Γφ(2),⇓
(

Êuφ(2)

)+

⊢ξ(φ(n)) Γφ(n),⇓
(

Êuφ(n)

)+

⊢ζ(u) ∆,

{

⇓
(

Êuφ(k)

)−
}

k∈1..n

⊢Γφ(n), ∆,

{

⇓
(

Êuφ(k)

)−
}

k∈1..n−1

C

. .
.

⊢ {Γφ(k)}k∈2..n, ∆,⇓
(

Êiφ(1)

)− C

⊢ {Γφ(k)}k∈2..n, ∆
C

Each instance of C is now on a strictly smaller cut expression.
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– Commutative cuts, where the cut-expression is not principal in one derivation. In
each of the following two cases, we suppose that

∑

i∈I
∏

j∈Ji
F̂i j  F, u ∈ I and

v ∈ Ju. The two cases of the rewrite are named [PCC] and [NCC] for positive and
negative commutative cuts respectively.

⊗

D ⊢ξ ∆v, (E)±,⇓
(

F̂uv

)+ ⊗

D′

⊢ {∆ j} j∈Ju , (F)+, (E)±
P

⊢ζ Γ, (E)∓

⊢ {∆ j} j∈Ju , (F)+, Γ
C −→[PCC]

⊗

D

⊢ξ ∆v, (E)±, ⇓
(

F̂uv

)+

⊢ζ Γ, (E)∓

⊢∆v, (E)±, ⇓
(

F̂uv

)+

, Γ
C

⊗

D′

⊢ {∆ j} j∈Ju , (F)+, Γ
P

∀i ∈ I . ⊢ξ ∆, (E)±,
{

⇓
(

F̂i j

)−
}

j∈Ji

⊢∆, (F)−, (E)±
P

⊢ζ Γ, (E)∓

⊢∆, (F)−, Γ
C −→[NCC]

∀i ∈ I .

⊢ξ ∆, (E)±,
{

⇓
(

F̂i j

)−
}

j∈Ji

⊢ζ Γ, (E)∓

⊢∆, Γ,

{

⇓
(

F̂i j

)−
}

j∈Ji

C

⊢ ∆, (F)−, (E)±
P

In these cases the instance of C on the right is on a smaller derivation. ⊓⊔

The cut-elimination proof above is remarkable for several reasons. First, it is a
generic argument that is independent of any logical connective. Second, it is obviously
correct for each cut can be seen to be smaller by inspection.1 Lastly, it is compact: there
is no important detail missing in the proof. To be sure, theseremarkable properties are
also observed in [18,17], but in -, because the rules are first-order, we do not
need to depend on the meta language for the proof of coverage.

As already mentioned, a key distinguishing feature of- from other focusing
systems such as [3] or  is that the positive and negative rules do not alternate.
In this sense, it would be a mistake to call- a “focusing” system, so we cannot
prove- complete with respect to the unfocused (rules in fig.1) by citation.
Fortunately, we can easily recover the unfocused rules by selecting a suitably minimal
polarisation.

Definition 13 Theminimal polarisation⌊−⌋ is given inductively as follows:

⌊a⌋ = a
⌊

a⊥
⌋

= a

⌊A⊗ B⌋ = ⌊A⌋− × ⌊B⌋− ⌊1⌋ = 1 ⌊AM B⌋ = ⌊A⌋+ × ⌊B⌋+ ⌊⊥⌋ = 1

⌊A⊕ B⌋ = ⌊A⌋− + ⌊B⌋− ⌊0⌋ = 0 ⌊A & B⌋ = ⌊A⌋+ + ⌊B⌋+ ⌊⊤⌋ = 0

1 This proof does get more complex if, in some extension of-, the index sets are infinite,
because in that case the result of eliminating a principal cut would be a derivation of infinite
depth.
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⊢a, a⊥
I
⊢Γ,A ⊢∆, B
⊢Γ, ∆,A⊗ B

⊗
⊢1 1

⊢∆,A, B
⊢∆,AM B

M
⊢∆

⊢∆,⊥
⊥

⊢∆,Ai

⊢∆,A1 ⊕ A2
⊕ no 0

⊢∆,A ⊢∆, B
⊢∆,A & B

&
⊢ ∆,⊤

⊤

Fig. 1. rules

⌊P⌋− = l l ⌊P⌋ ⌊N⌋− = l⌊N⌋ ⌊P⌋+ = l⌊P⌋ ⌊N⌋+ = l l ⌊N⌋

Here P (resp. N) refers to any positive (resp. negative) proposition.

Note that the polarisation of every strict subformula uses at least one administrativel
switch, and that(⌊P⌋)+ = P and(⌊N⌋)− = N. The rules of the ordinary calculus
then reappear as- rules for these minimal polarisations.

Theorem 14 (completeness of-) If ∆ is a context of unpolarised propositions,
let ⌊∆⌋ represent that context that replaces every positive P∈ ∆ with (⌊P⌋)+ and every
negative N∈ ∆ with (⌊N⌋)−. If ⊢∆ in , then⊢ ⌊∆⌋ in -.

Proof (sketch).By induction on the structure of the given derivation.

Case of I: the I rules in and- are identical.
Case of ⊗: Consider⌊P⊗ N⌋ = ⌊P⌋− × ⌊N⌋− = l l ⌊P⌋ × l⌊N⌋. Its proof pattern is just

l l ⌊P⌋ · l⌊N⌋, so its derivation is:

⊢∆1, (⌊P⌋)
+ i.h.

⊢ ∆1, (l⌊P⌋)
− N

⊢ ∆2, (⌊N⌋)
− i.h.

⊢∆1, ∆2, (l l ⌊P⌋ × l⌊N⌋)
+

=

⊢∆1, ∆2, (⌊P⊗ N⌋)+

P

because∆1, ∆2 ; (l l ⌊P⌋ × l⌊N⌋)+  ∆1, (l⌊P⌋)
− ; ∆2, (⌊N⌋)

−. We thus obtain the
⊗ rule for P⊗ N in . This characteristic case shows the way the induction
works for subformulas of the same and opposite polarities, and the remaining
cases are similar. ⊓⊔

Theorem14 shows that the ordinary unfocused is recoverable in- by
picking specific polarisations. This is a strong indicationthat synthetic rules with delays
are a more primitive notion than the usual binary connectives, an observation already
made in the genesis of ludics [10], but not well appreciated outside a certain section of
the proof theory community.

On the other hand, theorem.14does not show completeness for other polarisations.
In ordinary (unpolarised) focusing [3] the polarity of the rules matches the natural po-
larity of the principal propositions. This suggests a maximal polarisation of the ordinary
connectives that contains no administrative switches.

9



Definition 15 E is a maximal polarisationfor A if A = (E)± and E contains no sub-
expressions of the forml l E′. We write⌈A ⌉ to refer to the unique maximal polarisation
of A because of the following trivial fact.

Fact 16 If E and F are maximal polarisations for A, then E= F. ⊓⊔

Lemma 17 ⊢ (⌊P⌋)−, (⌈P ⌉)+ and⊢ (⌊N⌋)+, (⌈N ⌉)− are derivable in-.

Proof (Sketch).Replay the proof of theorem.11, but in one half of the reduction replay
the maximally polarised synthetic rule with many minimallypolarised synthetic rules.

⊓⊔

Minimal polarisations can thus be used to simulate maximal polarisations, directly giv-
ing the key focalisation result by an appeal to synthetic cuts.

Corollary 18 (Focalisation) If ∆ is a context of unpolarised propositions, let⌈∆ ⌉ rep-
resent that context that replaces every positive P∈ ∆ with (⌈P ⌉)+ and every negative
N ∈ ∆ with (⌈N ⌉)−. If ⊢∆ in , then⊢ ⌈∆ ⌉ in -s.

Proof. By theorem.14, ⊢ ⌊∆⌋ is provable in-s. Cut (theorem.12) every(⌊P⌋)+ and
(⌊N⌋)− in ⊢ ⌊∆⌋ with a proof of⊢ (⌊P⌋)−, (⌈P ⌉)+ or ⊢ (⌊N⌋)+, (⌈N ⌉)− (lem.17). ⊓⊔

Proofs of the focalisation result using cut-elimination have also been attempted
in [7,14], but their proofs tend to be considerably more complex thanthe one presented
here, partly because they are based on a more traditional formulation of focusing, but
also because their proofs attempt to simulate the unfocusedrules directly with cut. Our
approach of simulating the unfocused rules with a different polarisation and then cutting
them outex post factois a more perspicuous decomposition of the focalisation result.

3 Synthetic permutations

In this section, we investigate the matter of permutations of the synthetic inference
rules P and N. If the synthetic sequent calculus is to be seen as a generalisation of the
ordinary calculus, then it is essential to define the corresponding generalisations of the
binary permutations [11]. We writer1/r2 as a type of permutation where the rule(s)r1 is
(are) used immediately abover2 and the result of the permutation moves (possibly with
replication)r2 above a single instance ofr1 without affecting the rest of the derivation.
Such permutations are familiar from the ordinary (unfocused) logic; for instance the
permutation⊗/& in  is the following reordering:

⊢ξ Γ,A ⊢ζ ∆, B,C

⊢Γ, ∆,A⊗ B,C

⊢ξ Γ,A ⊢ϕ ∆, B,D

⊢Γ, ∆,A⊗ B,D
⊢Γ, ∆,A⊗ B,C & D

−→
⊢ξ Γ,A

⊢ζ ∆, B,C ⊢ϕ ∆, B,D

⊢∆, B,C & D

⊢Γ, ∆,A⊗ B,C & D

Unsurprisingly, the N/N and P/P permutations are freely allowed in-.

Definition 19 (equipollent permutation)
Suppose

∑

i∈I
∏

j∈Ji
Êi j  E and

∑

k∈K
∏

l∈Lk
F̂kl  F

10



1. A P/P permutation (for any u∈ I, v ∈ Ju, w ∈ K and x∈ Lw) is as follows:

〈

⊢ξ( j) ∆ j ,⇓
(

Êu j

)+
〉

j∈Ju\v

〈

⊢ζ(l) Γl ,⇓
(

F̂wl

)+
〉

l∈Lw\x
⊢ϕ Ω,⇓

(

Êuv

)+

,⇓
(

F̂wx

)+

⊢Ω, {Γl}l∈Lw\x, (F)+,⇓
(

Êuv

)+ P

⊢Ω, {∆ j} j∈Ju\v, {Γl}l∈Lw\x, (E)+, (F)+
P

−→

〈

⊢ζ(l) Γl ,⇓
(

F̂wl

)+
〉

l∈Lw\x

〈

⊢ξ( j) ∆ j , ⇓
(

Êu j

)+
〉

j∈Ju\v
⊢ϕ Ω,⇓

(

Êuv

)+

,⇓
(

F̂wx

)+

⊢Ω, {∆ j} j∈Ju\v,⇓
(

F̂wx

)+

, (E)+
P

⊢Ω, {∆ j} j∈Ju\v, {Γl}l∈Lw\x, (E)+, (F)+
P

2. An N/N permutation is as follows:

∀i ∈ I .

∀k ∈ K. ⊢ξ(i,k) ∆,

{

⇓
(

F̂kl

)−
}

l∈Lk

,

{

⇓
(

Êi j

)−
}

j∈Ji

⊢∆, (F)−,
{

⇓
(

Êi j

)−
}

j∈Ji

N

⊢∆, (E)−, (F)−
N

−→

∀k ∈ K.

∀i ∈ I . ⊢ξ(i,k) ∆,

{

⇓
(

F̂kl

)−
}

l∈Lk

,

{

⇓
(

Êi j

)−
}

j∈Ji

⊢ ∆, (E)−,
{

⇓
(

F̂kl

)−
}

l∈Lk

N

⊢ ∆, (E)−, (F)−
N

Equipollent permutations have no restrictions on the form of the left of−→, so these
permutations are always allowed. Of the two remaining permutation forms, the N/P
permutation is also always valid and readily defined.

Definition 20 (N/P permutation)
Suppose

∑

i∈I
∏

j∈Ji
Êi j  E and

∑

k∈K
∏

l∈Lk
F̂kl  F. An N/P permutation is of the fol-

lowing form (for any u∈ I and v∈ Ju)

〈

⊢ξ( j) ∆ j ,⇓
(

Êu j

)+
〉

j∈Ju\v

∀k ∈ K. ⊢ζ(k) Γ,⇓
(

Êuv

)+

,

{

⇓
(

F̂kl

)−
}

l∈Lk

⊢Γ, (F)−,⇓
(

Êuv

)+ N

⊢ {∆} j∈Ju , Γ, (E)+, (F)−
P

−→

∀k ∈ K.

〈

⊢ξ( j) ∆ j ,⇓
(

Êu j

)+
〉

j∈Ju\v
⊢ζ(k) Γ,⇓

(

Êuv

)+

,

{

⇓
(

F̂kl

)−
}

l∈Lk

⊢Γ, {∆} j∈Ju , (E)+,
{

⇓
(

F̂kl

)−
}

l∈Lk

P

⊢ {∆} j∈Ju, Γ, (E)+, (F)−
N

The final permutations are the P/N permutations, which are not generally permissi-
ble. In fact, writing this permutation type as P/N is somewhat misleading because actu-
ally severalcoherentinstances of P in the premises of the bottom N rule will be merged.
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Two P instances are coherent if, essentially, they make the same disjunctive and multi-
plicative choices. However, they cannot be exactly identical because they have different
conclusions.

Definition 21 (P/N permutation)
Suppose

∑

i∈I
∏

j∈Ji
Êi j  E and

∑

k∈K
∏

l∈Lk
F̂kl  F. A P/N permutation is of the follow-

ing form (for any u∈ K and v∈ Lu)

∀i ∈ I .

〈

⊢ξ(l) ∆l ,⇓
(

F̂ul

)+
〉

l∈Lu\v
⊢ζ(i) Γ,⇓

(

F̂uv

)+

,

{

⇓
(

Êi j

)−
}

j∈Ji

⊢Γ, {∆l}l∈Lu,

{

⇓
(

Êi j

)−
}

j∈Ji

, (F)+
P

⊢Γ, {∆l}l∈Lu, (E)−, (F)+
N

−→

〈

⊢ξ(l) ∆l ,⇓
(

F̂ul

)+
〉

l∈Lu\v

∀i ∈ I . ⊢ζ(i) Γ,⇓
(

F̂uv

)+

,

{

⇓
(

Êi j

)−
}

j∈Ji

⊢Γ,⇓
(

F̂uv

)+

, (E)−
N

⊢Γ, {∆l}l∈Lu, (E)−, (F)+
P

Observe how this permutation is restricted: all instances of P above the N must pick the
same term in the sum pattern of(F)+, must have all premises but one (theξ(l)) exactly
identical and independent ofE, and the remaining premise (theζ(i)) in each case must
contain all the subexpressions ofE in that position in its sum pattern.

All the permutations defined are quite obviously sound (eachapplication of P and
N is correct), so we state the following lemma without proof.

Lemma 22 The equipollent, P/N and N/P permutations are sound, i.e., if the left then
the right hand side of−→. ⊓⊔

We end this section with a sketched proof that the N rule is invertible, using only
synthetic permutations, instead of proving it in the usual way using cuts.

Theorem 23 The N rule is invertible.

Proof (Sketch).Since both N/N and N/P permutations are always allowed, every N rule
can be permuted repeatedly towards the goal. Hence, for any derivation of⊢Γ, (E)− that
contains an instance of N for(E)−, there is an equivalent derivation that begins with that
N rule. If there are no instances of N in the proof of⊢Γ, (E)−, then there must be a sub-
derivation that proves⊢Γ′, (E)−, (0)− with N (becauseE is non-atomic). An instance of
N for (E)− can be inserted here; each of its premises will contain(0)− and will therefore
be provable. This instance of N can now be permuted to the goal. ⊓⊔

4 Strategies

In this section we shall assume that all polarisations are maximal (defn.15).
As already seen, the- calculus, despite being a calculus of synthetic connec-

tives, is more permissive in the order of synthetic rules than other focusing calculi such
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as. However, is recoverable in- as astrategyof applying inference rules
to refine the goal sequent. By theorem.23, the N rule is invertible, so it can always
be applied to remove negatively polarised expressions fromthe context. Such proposi-
tions are only introduced to the context by the P rule. Therefore, ordinary focusing is a
strategy of eagerly applying the N rules.

Definition 24 (ordinary focusing strategy) Thefocusedproofs of⊢∆ are those that:

1. end in I; or
2. end with N if there are any negatively polarised propositions in∆ with the premises

of the rule also focused; or
3. end with P if there are no negatively polarised propositions in∆ and all the premises

of that rule are also focused.

It is easy to see that this strategy degenerates to the familiar phase alternation af-
ter the pre-existing negatively polarised propositions inthe goal sequent are removed,
for each P step produces at-most one negatively polarised proposition in each premise,
which upon decomposition produces only positively polarised premises. The complete-
ness of this strategy is immediate from the invertibility ofN (theorem.23) and focalisa-
tion (cor.18). We also state the following rather obvious instance of thecut-elimination
algorithm (which is a synthetic restatement of the T-permutation [8]); we omit the proof.

Theorem 25 (focused cut-elimination)The cut-elimination rewrite−→ of theorem.12
preserves focused proofs if the [NCC] case is given a higher precedence than the [PCC]
case. That is, given focused proofs of⊢Γ, (A)+ and⊢∆, (A)−, the cut on A is eliminated
to give a focused proof of⊢Γ, ∆. ⊓⊔

As expected, this is not the sole interesting strategy for- proofs. In [5], a
notion ofmaximally multi-focusedproofs is introduced, which aims to equate all per-
mutatively isomorphic MALL proofs in a unique syntax; such aproof exhibits the “true
concurrency” inherent in the selection of foci. Maximalitywas defined there as a termi-
nating permutative rewrite enlarging the principal formulas in a focusing calculus with
multiple foci. The recipe in [5] for generating maximally multi-focused proofs from
complete proofs can easily be repeated for-, but we do not pursue that direction
here; instead, we characterise them here in terms of a strategy. In these maximal proofs
the P rule rather than the N rule is eagerly applied, giving a tantalisingly dual picture
from the strategy that generates ordinary proofs.

Definition 26 (maximal multi-focusing strategy) Themaximally multi-focused(ab-
breviated asmaximal) proofs of⊢∆ are those proofs that:

1. end in I; or
2. end in P if there are any positively polarised propositions in∆ such that applying

P (reading backwards) leads to a proof, and all the premises of this rule are also
maximal; or

3. end in N if the situation for (2) does not apply, and the premises of this rule are also
maximal.

13



We state without the rather technical proof that the maximally multi-focused proofs
in the sense of [5] are exactly those proofs in the above class up to equipollent per-
mutations. Instead, we consider the question that was left open in [5] with regard to
cut-elimination on maximal proofs.

Theorem 27 (maximal cut-elimination) The cut-elimination rewrite−→ in theorem.12
preserves maximality if the [PCC] case is given a higher precedence than the [NCC]
case. That is, given maximal proofs of⊢Γ, (A)+ and⊢∆, (A)−, the cut on A is eliminated
to give a maximal proof of⊢Γ, ∆.

Proof (Sketch).We reason by induction on the structure of the two input derivations for
the cut being eliminated. The initial and principal cases are a straightforward application
of the induction hypothesis. For the commutative cases, theresult of the cut-elimination
can only be maximal if the instances of P are kept closer to theroot of the derivation,
which requires prioritising a [PCC] rewrite over an [NCC] rewrite. ⊓⊔

The duality of theorems25 and27 is surprisingly clean, which gives further cre-
dence to the notion of maximally multi-focused proof. Of course, the above strategy
is not implementable in a purely backwards reasoning (goal upwards) algorithm as it
quantifies over proofs of the conclusion, which will not be available until the search
completes. However, proofs in this class can be generated bysaturation-based forward
reasoning (axioms downwards) algorithms, such as in the inverse method [6]. Such
search algorithms incrementally build a database of provedfacts, so whenever a rule is
applied resulting in a new fact, the N rules are permuted upwards in the proof as much
as possible.

5 Conclusions and future work

We have presented a reconstruction of the calculus of synthetic connectives by means of
polarisations of neutral proof patterns. Among the key technical merits of this presenta-
tion are simple and obviously correct proofs of cut, identity, focalisation, and synthetic
permutations. We have shown how, among the proofs using synthetic inferences, the
ordinary and maximally multi-focused proofs can be seen as diametrically opposite
strategies, and demonstrated that the generic synthetic cut-elimination with a priority
assignment preserves maximality.

The obvious next step is to extend the development to interesting fragments larger
than MALL. We have already extended it to the exponentials and first-order quantifiers,
but have left them out of this paper for presentational clarity and lack of space. Ex-
tending to infinite proof patterns (both sums and products) would also be interesting,
requiring finite presentations of infinite operations; of particular interest is the ques-
tion of proof patterns corresponding to the (co-)inductiveconnectives ofµ [4].
Yet another important extension would be to a proof of synthetic cut-elimination for
second-order MALL. Precise comparisons of synthetic derivations to game semantics
would also be instructive.
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