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Abstract The inverse method is a generalization of resolution that can be applied
to non-classical logics. We have recently shown how Andreoli’s focusing strategy
can be adapted for the inverse method in linear logic. In this paper we introduce
the notion of focusing bias for atoms and show that it gives rise to forward and
backward chaining, generalizing both hyperresolution (forward) and SLD resolution
(backward) on the Horn fragment. A key feature of our characterization is the
structural, rather than purely operational, explanation for forward and backward
chaining. A search procedure like the inverse method is thus able to perform both
operations as appropriate, even simultaneously. We also present experimental results
and an evaluation of the practical benefits of biased atoms for a number of examples
from different problem domains.

Keywords Inverse method · Focusing · SLD resolution · Hyperresolution ·
Intuitionistic linear logic

This work has been partially supported by the Office of Naval Research (ONR) under grant
MURI N00014-04-1-0724 and by the National Science Foundation (NSF) under grant
CCR-0306313. The first author was partially supported by a post-doctoral fellowship from
INRIA-Futurs/École Polytechnique.

K. Chaudhuri
Laboratoire d’Informatique (LIX) École Polytechnique,
Palaiseau, France
e-mail: kaustuv@lix.polytechnique.fr

F. Pfenning (B) · G. Price
Department of Computer Science, Carnegie Mellon University,
Pittsburg PA, USA
e-mail: fp@cs.cmu.edu

G. Price
e-mail: gprice@andrew.cmu.edu



134 K. Chaudhuri et al.

1 Introduction

Designing and implementing an efficient theorem prover for a non-classical logic
requires deep knowledge about the structure and properties of proofs in this logic.
Fortunately, proof theory provides a useful guide, since it has isolated a number
of important concepts that are shared between many logics of interest. The most
fundamental is Gentzen’s cut-elimination property [13] which allows us to consider
only subformulas of a goal during proof search. Cut elimination gives rise to the
inverse method [12] for theorem proving which applies to many non-classical logics.
A more recent development is Andreoli’s focusing property [1, 2] which allows us to
translate formulas into derived rules of inference and then consider only the resulting
big-step derived rules without losing completeness. Even though Andreoli’s system
was designed for classical linear logic, similar focusing systems for many other logics
have been discovered [14, 16].

In prior work we have constructed a focusing system for intuitionistic linear logic
which is consonant with Andreoli’s classical version [8], and shown that restricting
the inverse method to work only with big-step rules derived from focusing dramat-
ically improves its efficiency [7]. The key feature of focusing is that each logical
connective carries an intrinsic attribute called polarity that determines its behavior
under focusing. In the case of linear logic, polarities are uniquely determined for
each connective. However, as Andreoli noted, polarities may be chosen freely for
atomic propositions as long as duality is consistently maintained. In this paper we
prove that, despite the asymmetric nature of intuitionistic logic, a similar observation
can be made here. Furthermore, we show that proof search on Horn propositions
with the inverse method behaves either like hyperresolution or SLD resolution,
depending on the chosen polarity for atoms. If different atoms are ascribed different
polarities we can obtain combinations of these strategies that remain complete.
The focused inverse method therefore directly generalizes these two classical proof
search strategies. We also demonstrate through an implementation and experimental
results that this choice can be important in practical proof search situations and that
the standard polarity assumed for atoms in intuitionistic [15] or classical [22] logic
programming is often the less efficient one.

The concept of viewing focused derivations as a means of constructing derived
inference rules is not new. Andreoli himself has made similar observations for
backward reasoning: see [2], for instance. Girard’s Ludics [14] uses focusing as a
foundational concept and takes it as an explanation for logic; in Ludics, “bipoles” or
derived inference rules are the only rules that are syntactically allowed. Focusing for
intuitionistic (including linear) logics was first investigated by Howe [16]; however,
Howe did not allow atoms of different polarities.

The interaction of focusing and cut-elimination has been studied by Danos, Joinet
and Schellinx [10, 11], though not in these precise terms. Although none of their
translations explicitly use focusing, their calculi, particularly the constraints in the
LKη

p system bear unmistakable similarities to focusing. A more recent work by
Jagadesan et al. [17] is the system λRCC, a logic programming language without
focusing, but with atoms of different polarities. In λRCC the observation that
switching polarity gives rise to forward- or backward-chaining is visible, though
this observation is limited to the Horn-fragment of intuitionistic logic. Finally, a
more recent work by Liang and Miller [19] uses biased focusing to give uniform
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interpretations of a number of linear and non-linear calculi such as the well-known
LJQ and LJT sequent calculi.

Since focusing appears to be an almost universal phenomenon among non-
classical logics, we believe these observations have wide applicability in constructing
theorem provers. The fact that we obtain well-known standard strategies on the
Horn fragment, where classical, intuitionistic, and even linear logic coincide, provides
further evidence. We are particularly interested in intuitionistic linear logic and its
extension by a monad, since it provides the foundation for the logical framework
CLF [4] which we can use to specify stateful and concurrent systems. Theorem
proving in CLF thereby provides a means for analyzing properties of such systems.

The remainder of the paper is organized as follows. In Section 2 we present the
backward focusing calculus that incorporates a choice of polarity for atoms and
describe the derived rules that are generated with atoms of different polarity. We
then sketch the focused inverse method in Section 3, noting the key differences
between sequents and rules in the forward direction from their analogues in the
backward direction. In Section 4 we concentrate on the Horn fragment, where we
show that the derived rules generalize hyperresolution (for negative atoms) and
SLD resolution (for positive atoms). Finally, Section 5 summarizes our experimental
results on an implementation of the inverse method presented in Section 3.

2 Biased Focusing

We consider intuitionistic linear logic including the following connectives: linear
implication (�), multiplicative conjunction (⊗, 1), additive conjunction (&,�),
additive disjunction (⊕, 0), the exponential (!), and the first-order quantifiers (∀, ∃).
Quantification is over a simple term language consisting of variables and unin-
terpreted function symbols applied to a number of term arguments. Propositions
are written using capital letters (A, B, . . .), and atomic propositions with lowercase
letters (a, b, n, m, p, q, . . .).

We start with a standard dyadic sequent calculus for this logic consisting of
sequents of the form Γ ; Δ =⇒ C, where Γ and Δ are contexts of hypotheses and
C is the single intuitionistic conclusion. The hypotheses in Δ are linear, i.e., each
hypothesis must be consumed exactly once in the proof; those in Γ are unrestricted,
i.e., each may be consumed as many times as necessary. The rules for this calculus
are in Fig. 1. This calculus is known to have the usual nice properties: admissibility of
cut, the identity principle, and admissible weakening and contraction for unrestricted
hypotheses [5, 6].

In classical linear logic the synchronous or asynchronous nature of a given
connective is identical to its polarity; the negative connectives (&,�,

&

,⊥, ∀)
are asynchronous, and the positive connectives (⊗, 1,⊕, 0, ∃) are synchronous. In
intuitionistic logic, where the left- and right-hand side of a sequent are asymmetric
and no involutive negation exists, we derive the properties of the connectives
via the rules and phases of search: an asynchronous connective is one for which
decomposition is complete in the active phase; a synchronous connective is one for
which decomposition is complete in the focused phase. This definition happens to
coincide with polarities for classical linear logic, although we know of no intrinsic
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Fig. 1 The backward sequent calculus for first-order linear logic

reason why this should be so. To maintain unity with the literature we use the
terms positive and negative and call the positive or negative nature of a proposition
its polarity. Note that because our backward linear sequent calculus is two-sided,
positive (negative) propositions will be synchronous on the right (left) of the sequent
arrow, and asynchronous on the left (right).

For an atomic proposition, we have a choice of polarities to assign to it; this choice
we call a bias. A positive-biased atom behaves like a positive proposition in the sense
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its principal rule, an initial rule, must treat it as synchronous on the right, i.e., as
a right focus. Dually, a negative-biased atom requires a left focus for its initial rule.
Note that every atomic proposition is either positive-biased or negative-biased for the
entire derivation. However, any arbitrary assignment of polarities to the atoms will
guarantee completeness. This observation was already well made by Andreoli [1]
for classical linear logic, but that it works just as well in the intuitionistic case is
established in this work.1

To aid in clarity, we denote propositions of positive and negative polarities with
the suggestive meta-variables P, Q, . . . and N, M, . . . respectively (lower-case used
for the atoms):

(positive) P, Q, . . . ::= p | A ⊗ B | 1 | A ⊕ B | 0 | !A | ∃x.A
(negative) N, M . . . ::= n | A & B | � | A � B | ∀x.A

We will also write P− for a positive proposition or a negative-biased atom, and
N+ for a negative proposition or a positive-biased atom.

The contexts in the sequents of the focusing calculus will be of three different
kinds. We shall have the unrestricted contexts (Γ ) as before. The linear context Δ

will be restricted to contain only positive-biased atoms or negative propositions, i.e.,
of the form N+. A third active context, written Ω , will be added for active sequents;
this context will be ordered, indicated by a centered dot (·) instead of a comma. Each
hypothesis in the active context will also have to be consumed exactly once in the
proof. The right-hand side of active sequents will be split into two kinds: a passive
kind, written ·; Q−, containing a positive propositions or negative-biased atom Q−;
and an active kind, written A; ·, where active rules may be applicable to A. If the
precise form of the right-hand side does not matter, we shall write it as γ . The specific
sequents in the focusing calculus are as follows:

Γ ; Δ 	 A right-focal sequent with A under focus

Γ ; Δ; A 
 Q− left-focal sequent with A under focus

Γ ; Δ; Ω =⇒
{ ·; Q−

C; ·︸ ︷︷ ︸
γ

active sequents

The full set of rules is in Fig. 2.

Active phase Leaving aside the exponential operator and unrestricted assumptions
in Γ for the moment, right active propositions are decomposed until they become
atomic or positive, i.e., a sequent of the form Γ ; Δ; Ω =⇒ Q−; ·. The right hand side
is then changed into the form ·; Q−. Similarly, the propositions in Ω are decomposed
except when the proposition is atomic or negative, in which case it is transferred to

1For recent developments along these lines since the conference version of this paper was published
in [9], see [19, 30].
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Fig. 2 Backward linear focusing calculus

Δ. The two key judgmental rules that transfer atoms and synchronous propositions
out of the active zones of the sequents are as follows:

Γ ; Δ;Ω =⇒ ·; Q−

Γ ; Δ;Ω =⇒ Q−; · act R
Γ ;Δ; N+; Ω · Ω

′ =⇒ γ

Γ ; Δ;Ω · N + ·Ω ′ =⇒ γ
act L

In the remaining active rules, a principal connective in an active proposition is
decomposed using the corresponding rule in the backward sequent calculus. That is,
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modulo the distinction between Δ and Ω and the forms of the right-hand side, these
rules are isomorphic to those of the non-focusing calculus. The following are two
characteristic examples.

Γ ;Δ; Ω =⇒ A; · Γ ; Δ; Ω =⇒ B; ·
Γ ;Δ; Ω =⇒ A&B

&R
Γ ; Δ; Ω · A · B · Ω

′ =⇒ γ

Γ ; Δ;Ω · A ⊗ B · Ω
′
γ

⊗ L

Focal phase Eventually the active sequent is reduced to the form Γ ; Δ; · =⇒ ·; Q−,
which we call a neutral sequent. A focal phase is launched from such a neutral sequent
by selecting a suitable proposition and giving it the corresponding left- or right-focus.
This gives us the two focus rules

Γ ;Δ 	 Q
Γ ; Δ; · =⇒ · focus+ Γ ;Δ; N 
 Q−

Γ ; Δ, N; · =⇒ ·; Q− focus−

Note the use of the syntactic classes in these rules: we never grant right focus to a
negative atom, or left focus to a positive atom.

Once a proposition obtains focus, it is decomposed under focus until it becomes
asynchronous or ends in an initial sequent. There are two forms of the initial sequent,
corresponding to the two focusing biases.

Γ ; ·; n 
 n
init−

Γ ; p 	 p
init+

A negative-biased atom thus has the interpretation from top-down (goal-directed)
logic programming. Here, initial sequents have a left focus, and the right hand
side is treated like an atomic goal to be matched with the head of a clause. On
the other hand, a positive-biased atom has the interpretation from bottom-up logic
programming. Here, the right-hand side is a passive goal and the linear hypotheses,
which exactly represent a database, must evolve until they can match the right. This
observation will be revisited in more detail in Section 4.

If the focal proposition has the opposite polarity, then we blur the focus and return
to one of the active sequent forms.

Γ ;Δ; · =⇒ N; ·
Γ ;Δ 	 N

blur− Γ ; Δ; P =⇒ ·; Q−

Γ ; Δ; P 
 Q− blur+

This returns us to an active phase. We shall use the term blur to refer to the
phenomenon of losing focus and transitioning to an active sequent.

We also have to account for the propositions in the unrestricted context Γ , which
may be both synchronous and asynchronous. When we are in a neutral sequent, we
may copy a proposition out of the unrestricted context and immediately focus on it.

Γ, A; Δ; A 
 Q−

Γ, A; Δ; · =⇒ ·; Q− focus!

If this proposition is actually positive, then we immediately remove focus on it (using
blur+) and transition to an active phase.
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Synchronous connectives are decomposed using non-invertible rules for that
proposition, and focus is maintained where possible on the operands of the connec-
tive. For example, consider the &Li rules:

Γ ; Δ; A 
 Q−

Γ ; Δ; A&B 
 Q− &L1
Γ ; Δ; B 
 Q−

Γ ; Δ; A&B 
 Q− &L2

Here we select (non-deterministically) an operand of the negative connective &,
and then maintain focus on that selected operand. The next applicable rule must
be applied to the selected operand, in this case A.

Focus can be propagated to multiple branches of the proof. For example:

Γ ; Δ1 	 A Γ ; Δ2 	 B
Γ ;Δ1,Δ2 	 A ⊗ B

⊗ R

Here, both operands of ⊗ retain focus in their separate branches of the proof. In each
branch, the rules are constrained to be applicable only to the respective operand.

There is only one subtlety in these focal rules regarding the exponential !.
Although it is positive, the !R rule cannot maintain focus on the operand using the
following (incorrect!) rule:

Γ ; · 	 A
Γ ; · 	!A !R

This calculus with this !R rule is incomplete as there is no focused proof of the
proposition !(a ⊕ b) �!(b ⊕ a), for example. To see why, consider the resulting
neutral sequent a ⊕ b ; ·; · =⇒ ·; !(b ⊕ a). Now we have two choices. If we focus on
a ⊕ b on the left, then we eventually obtain the neutral sequents a ⊕ b ; a; · =⇒
·; !(b ⊕ a) and a ⊕ b ; b ; · =⇒ ·; !(b ⊕ a).

In either case, focusing on the left yields nothing, and the !R rule cannot be applied
after a right focus because the linear context is not empty. The only remaining
possibility is to start with a right focus instead of the left, i.e., with a ⊕ b ; · 	!(b ⊕ a).
If we decompose this with !R, we get a ⊕ b ; · 	 b ⊕ a. Because b ⊕ a has focus, we
are forced to use a ⊕R rule to choose either b or a to prove; however, neither b nor
a is provable from a ⊕ b .

The fix is to blur the right focus on b ⊕ a in the !R rule, i.e., to use the following
version of the rule:

Γ ; ·; · =⇒ A; ·
Γ ; · 	!A !R

We can then focus on the left and get two provable sequents in the premisses of ⊕L.
One explanation for this focus-removing nature of ! in a judgmental framework [5]
is that there is a hidden transition from “(!A) true” to the categorical judgment
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“A valid” which in turn reduces to “A true”. We may think of them as two rules,
one decomposing the proposition and one changing the judgment:

Γ =⇒ A valid
Γ ; · =⇒ (!A) true

Γ ; · =⇒ A true
Γ =⇒ A valid

The first of these two rules is the internalisation of the categorical judgment and
is synchronous; the second is the definition of the categorical judgment and is
asynchronous. The exponential therefore has aspects of both synchronicity and
asynchronicity: the overall composition is synchronous, but there is a phase change
when applying the rule. Girard has made a similar observation that exponentials are
composed of one micro-connective to change polarity, and another to model a given
behavior [14, page 114]; this observation extends to other modal operators, such as
why-not (?) of JILL [5] or the lax modality of CLF [29].

Soundness of this calculus with respect to the non-focusing calculus in Fig. 1 is a
rather obvious property – forget the distinction between Δ and Ω , elide the phase
transition rules, and the original backward calculus appears.

Theorem 1 (Soundness)

1. If Γ ; 	 A then Γ ; Δ =⇒ A.
2. If Γ ; Δ; A 
 Q− then Γ ;Δ, A =⇒ Q−.
3. If Γ ; Δ; Ω =⇒ C; · then Γ ; Δ,Ω =⇒ C.
4. If Γ ; Δ; Ω =⇒ ·; Q− then Γ ; Δ,Ω =⇒ Q−.

Proof By structural induction on the given focused derivation. Note that all the
logical rules neatly fall into one of the above cases. To illustrate, consider the rule
⊗R, i.e, the derivation that ends with the following rule:

Γ ; Δ1 	 A Γ ; Δ2 	 B
Γ ;Δ1,Δ2 	 A ⊗ B

Γ ;Δ1 =⇒ A and Γ ; Δ2 =⇒ B i.h.

Γ ;Δ1, Δ2 =⇒ A ⊗ B ⊗R.

For phase transition rules (i.e., blur+, blur−, act L, act R, focus−, and focus+), the
premiss and the conclusion of the rule both denote the same sequent in the non-
focusing calculus. �


To prove completeness, we take a more circuitous path, using admissibility of cut
in the focusing calculus to show the rules of the non-focusing calculus are admissible.
First let us look admissibility of cut. A principal cut is one where the cut proposition
is immediately decomposed in the two given derivations. All principal cuts will be
between a focal sequent and an active sequent, because polarities are dualised on the
two sides of the sequent arrow. For example, for the principal cut for ⊗, we have to
consider the following pair of derivations.

D1 D2 E
Γ ;Δ1 	 A1 Γ ; Δ2 	 A2

Γ ;Δ1, Δ2 	 A1 ⊗ A2

Γ ; Δ′; Ω · A1 · A2 · Ω ′ =⇒ γ

Γ ;Δ′; Ω · A1 ⊗ A2 · Ω ′ =⇒ γ
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The cut is distributed to the component derivations D1,D2 and E , which also
maintain this form of cut for subformulas; for example, a cut between D1 and E uses
the smaller cut proposition A1. The result of these cuts will be active because the
proposition under focus is cut.

We also have to include a few more general cuts for the commutative cases in the
cut theorem. Primarily, we require cuts between two active sequents, the result of
which will be another active sequent. In the proof we also need to consider special
cases where the cut proposition is in a focal sequent but not itself under focus. For
the induction in the cut theorem to work, these specific cases will have to redo the
focusing steps for the proposition under focus. We call these kinds of preservative
cuts as they preserve the focus of one of the component derivations.

The proof of cut-elimination requires one key lemma: that permuting the ordered
context does not affect provability. This lemma thus allows cutting propositions from
anywhere inside the ordered context, and also to re-order the context when needed.

Lemma 2 (Permutation) If Γ ; Δ;Ω =⇒ γ , then Γ ; Δ; Ω ′ =⇒ γ for any permutation
Ω ′ of Ω .

Proof By structural induction on the derivation of Γ ;Δ; Ω =⇒ γ We give a rep-
resentative case for ⊗L, where Ω = Ω1 · A ⊗ B · Ω2 and the last rule in the der-
ivation was:

Γ ; Δ; Ω1 · A · B · Ω2 =⇒ γ

Γ ;Δ; Ω1 · A ⊗ B · Ω2 =⇒ γ
⊗L

Let a permutation Ω ′ of Ω1 · A ⊗ B · Ω2 be given. It must have the form Ω ′
1 · A ⊗

B · Ω ′
2 where Ω ′

1 · Ω ′
2 is a permutation of Ω1 · Ω2. Therefore Ω ′

1 · A · B · Ω ′
2 is a

permutation of Ω1 · A · B · Ω2. Therefore, by the induction hypothesis, hypothesis,
Γ ;Δ; Ω ′

1 · A · B · Ω ′
2 =⇒ γ . Then use ⊗L. �


We also note (omitting its proof) a trivial corollary of this lemma; it will be useful
during some cases in the proof of cut admissibility.

Corollary 3 (Inversion) All the active rules in Fig. 2 are invertible.

One consequence of Lemma 2 is that the order of the propositions in the
active contexts does not matter. Therefore, we can always find a proof where the
decompositions in the active phase fix a canonical order of decomposition. The ⊗L
rule, for example, could be restricted in an implementation to:

Γ ; Δ; Ω · A · B =⇒o ·; Q−

Γ ; Δ;Ω.A ⊗ B =⇒o ·; Q− ⊗L

The ordered calculus operates on the right side of the sequent unless the right hand
side is a positive proposition. Only then is the proposition on the right hand side
moved into the passive zone and can propositions in Ω be decomposed. Any other
fixed ordering would also work. Note that because the order of rules in the active
context can be fixed based on the order of the active context, and the active context
may be permuted arbitrarily by Lemma 2, it follows that the order of the active rules
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may also be permuted arbitrarily. For the purposes of the cut-admissibility theorem,
such permutative variations are identified.

Definition 4 (Similar derivations) We define two derivations D1 and D2 of the same
sequent to be similar, written D1 ≈ D2, if they differ only in the order in which active
rules are applied in the active phases.

Essentially, two derivations are similar if the only differences are in the inessential
non-deterministic choices in the active phase. For the cut theorem, similar deriva-
tions are considered to be equal for the purposes of the lexicographic order. Note
that no matter what order the active rules are done, the derivation will have the
same neutral sequents, Furthermore, no copying of subformulas happens in the
active rules, so the height of any active phase is bounded. Therefore, equating similar
derivations for the purposes of the induction keeps the ordering well-founded.2

Theorem 5 (Cut) If

1. Γ ; Δ 	 A and:

(a) Γ ;Δ′; Ω · A · Ω ′ =⇒ γ then Γ ; Δ,Δ′; Ω · Ω ′ =⇒ γ .
(b) Γ ;Δ′, A; Ω =⇒ γ then Γ ; Δ,Δ′; Ω =⇒ γ .

2. Γ ; Δ;Ω =⇒ A; · or Γ ; Δ; Ω =⇒ ·; A and:

(a) Γ ; Δ′; A 
 Q− then Γ ;Δ,Δ′; Ω =⇒ ·; Q−.
(b) Γ ; Δ′; Ω ′ · A · Ω ′′ =⇒ γ then Γ ; Δ,Δ′; Ω ′ · Ω · Ω ′′ =⇒ γ .
(c) Γ ; Δ′, A; Ω ′ =⇒ γ then Γ ;Δ,Δ′; Ω · Ω ′ =⇒ γ .

3. Γ ; · 	 A and Γ, A; Δ;Ω =⇒ γ then Γ ;Δ; Ω =⇒ γ .
4. Γ ; ·; · =⇒ A; · or Γ ; ·; · =⇒ ·; A and Γ, A; Δ;Ω =⇒ γ then Γ ; Δ;Ω =⇒ γ .

Proof By a nested induction as detailed below, after generalising the statement to
include a number of additional preservative cuts. We name the three derivations in
each case D, E and F , respectively, where D and E are given and F is constructed.
We shall assume that the inductive hypothesis can be used whenever:

(a) The cut proposition is strictly smaller; or
(b) The cut proposition remains the same, but the inductive hypothesis is used for

higher numbered cuts to justify a lower numbered cut (that is, a type 3 for a
type 2b cut, etc.); or

(c) A preservative cut (see Appendix 6) is used to justify any of the above cuts; or
(d) The cut proposition and E remain the same, and D is similar to a strictly smaller

first derivation; or
(e) The cut proposition and D remain the same, and E is similar to a strictly smaller

second derivation.

The details of the proof are in Appendix. �


2In fact, if one were to construct an alternative formulation of this calculus where the details of the
active rules were fully elided, then similar derivations would be syntactically equal.
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We shall use the cut theorem to show that all rules of the non-focusing calculus
are admissible in the focusing calculus by interpreting the non-focusing sequents as
active sequents. To achieve this, we first need the equivalent of the identity principle
for the focusing calculus: Γ ; ·; A =⇒ A; ·. In the focusing calculus this is not a
straightforward induction because of the occurrence restrictions on focal sequents.
To illustrate, Δ in Γ ; Δ 	 A cannot contain any positive propositions, so the proof of
Γ ; ·; A ⊗ B =⇒ A ⊗ B; . is not simply a proof of Γ ; A ⊗ B 	 A ⊗ B. We generalise
the induction by furnishing a proof in terms of an expansion of these asynchronous
propositions.

Definition 6 (Expansion)

1. The left-expansion of a proposition A, written lexp(A), is a set of two-zoned
contexts defined inductively by the following equations.

lexp(N+)={(·; N+)}
lexp(A⊗B)={(ΓA, ΓB;ΔA, ΔB) : (ΓA; ΔA)∈ lexp(A) and (ΓB; ΔB)∈ lexp(B)}

lexp(1)={(·; ·)}
lexp(A ⊕ B)= lexp(A) ∪ lexp(B)

lexp(0)=∅
lexp(!A)={A; ·}

lexp(∃x.A)= lexp([u/x]A) for a fresh u

2. The right-expansion of a proposition A, written rexp(A), is a set of elements of
the form Γ ; Δ =⇒ Q defined inductively by the following equations.

rexp(Q−) = {(·; · =⇒ Q−)}
rexp(A&B) = rexp(A) ∪ rexp(B)

rexp(�) = ∅

rexp(A � B) =
{
(ΓA, ΓB; ΔA, ΔB =⇒ Q) : (ΓA;ΔA) ∈ lexp(A) and

(ΓB; ΔB =⇒ Q) ∈ rexp(B)

}

rexp(∀x.A) = rexp([u/x]A) for a fresh u

This definition is associated with a key expansion lemma.

Lemma 7 (Expansion lemma) For any proposition A:

1. For any Γ , Δ, Ω and γ ,
if for every (Γ ′;Δ′) ∈ lexp(A), Γ, Γ ′;Δ,Δ′; Ω =⇒ γ is derivable,
then Γ ;Δ; Ω · A =⇒ γ .

2. For any Γ , Δ and Ω ,
if for every (Γ ′;Δ′ =⇒ Q′−) ∈ rexp(A), Γ, Γ ′; Δ,Δ′; Ω =⇒ ·; Q′− is derivable,
then Γ ;Δ; Ω =⇒ A; ·.
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Proof By induction on the structure of A. We present here some of the key cases.

Case of A is positive, say B ⊗ C, and arguing for lexp(A). Let Γ , Δ, Ω and
γ be given, and assume that for every (Γ ′; Δ′) ∈ lexp(B ⊗ C)

it is the case that the sequent Γ, Γ ′; Δ,Δ′;Ω =⇒ γ is deriv-
able. Choose such a (Γ ′;Δ′) ∈ lexp(A ⊗ B). By Definition 6,
(Γ ′;Δ′) has the form (Γ ′

B, Γ ′
C; Δ′

B,Δ′
C) for which we know that

(Γ ′
B; Δ′

B) ∈ lexp(B) and (Γ ′
C; Δ′

C) ∈ lexp(C).

Γ, Γ ′
C; Δ;Ω · B =⇒ γ i.h. for B, (Γ, Γ ′

C),Δ, and Ω

Γ ; Δ; Ω · B · C =⇒ γ i.h. for C, Γ,Δ and (Ω · B)

Γ ; Δ; Ω · B ⊗ C =⇒ γ ⊗L

Then we note that this conclusion is independent of the choice
of (Γ ′; Δ′). Other cases of lexp(A) with A being positive have
similar arguments.

Case of A = N+ and arguing for lexp(N+). In this case, any (Γ ′; Δ′) ∈ lexp(A)

has the form (·; N+).

Γ ; Δ, N+; Ω =⇒ γ assumption
Γ ; Δ; Ω · N+ =⇒ γ lact

This completes the inventory of cases for lexp.
Case of A = B&C and arguing for rexp(A). Let Γ , Δ and Ω be given and as-

sume that for every (Γ ′; Δ′ =⇒ Q′) ∈ lexp(B&C), Γ, Γ ′;Δ,Δ′;
Ω =⇒·;Q′−. By Definition 6, lexp(B⊗C)= lexp(B)∪lexp(C)

the outer quantification also holds for each component of the
union; i.e., for every (Γ ′;Δ′ =⇒ Q′) ∈ lexp(B), Γ, Γ ′;Δ,Δ′;
Ω =⇒ ·; Q′−, and similarly for lexp(C).

Γ ; Δ; Ω =⇒ B; · i.h. on B, Γ , Δ and Ω

Γ ; Δ; Ω =⇒ C; · i.h. on C, Γ , Δ and Ω

Γ ; Δ; Ω =⇒ B&C; · &R

Other cases for rexp(A) with A being negative have similar
arguments.

Case of A = Q− and arguing for rexp(A). In this case, all (Γ ′; Δ′ =⇒ Q′′) ∈
rexp(A) have the form (·; · =⇒ Q′−).

Γ ; Δ; Ω =⇒ ·; Q− assumption
Γ ; Δ; Ω =⇒ Q−; · ract

This completes the inventory of all cases for rexp(A). �


We use the expansion lemma to establish the key theorem that will give us the
identity principle as a corollary.

Theorem 8 For any proposition A,

1. For every (Γ ; Δ) ∈ lexp(A), we can show Γ ; Δ 	 A; and
2. For every (Γ ; Δ =⇒ Q−) ∈ rexp(A), we can show Γ ;Δ; A 
 Q−.
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Proof By structural induction on A and the definition of lexp and rexp (Definition 6).
In the inductive argument, the case for rexp(Q) where Q is non-atomic can be used
in the argument for lexp(A) (and lexp(P) for rexp(A) similarly). This order is well-
founded because there are only finitely many phase changes between synchronous
and asynchronous subformulas in a given proposition. We show below some of the
key cases of the induction.

Case of lexp(A ⊗ B): every (Γ ; Δ) ∈ lexp(A ⊗ B) is of the form (ΓA, ΓB;ΔA,ΔB)

for which (ΓA; ΔA) ∈ lexp(A) and (ΓB; ΔB) ∈ lexp(B).

ΓA; ΔA 	 A i.h.
ΓA, ΓB;ΔA 	 A weakening
ΓA, ΓB;ΔB 	 B similarly
ΓA, ΓB;ΔA, ΔB 	 A ⊗ B ⊗R.

All inductive cases of lexp are similar.
Case of rexp(A&B): let (Γ ;Δ =⇒ Q) ∈ rexp(A&B) be given. By Definition 6,

we have (without loss of generality), (Γ ; Δ=⇒ Q)∈rexp(A).

Γ ; Δ; A 
 Q− i.h.
Γ ; Δ; A&B 
 Q− &L1.

The other inductive cases of rexp are similar.
Case of lexp(N+): There are three sub-cases here.

SubcaseN+ is a positive-biased atom p. By init−, ·; p 	 p.
SubcaseN+ is a negative-biased atom n.

·; ·; n 
 n init−

·; n; · =⇒ ·; n focus−

·; n 	 n blur−

SubcaseN+ is non-atomic. Then, by the induction hypothe-
sis (type 2), for every (Γ ; Δ =⇒ Q−) ∈ rexp(N+),
the sequent Γ ; Δ; Q 
 Q− is derivable, and so is
Γ ; Δ, Q; · =⇒ ·; Q− by focus−.

·; Q−; · =⇒ ·; Q− expansion Lemma 7
·; Q−; · =⇒ N+; · act R
·; Q− 	 N+ blur−

The case of rexp(P−) is similar. �


Corollary 9 (Identity principle) For any proposition A, the sequent ·; ·; A =⇒ A; · is
derivable.

Proof Suppose A of the form Q−. There are three cases here.

Case A is a negative-biased atom n.

·; ·; n 
 n init−

·; n; · =⇒ ·; n focus−

·; ·; n =⇒ n; · act L and act R
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Case A is a positive-biased atom p.

·; p 	 p init+

·; p; · =⇒ ·; p focus+

·; ·; p =⇒ p; · act L and act R

Case A is a non-atomic.

For every (Γ ; Δ) ∈ lexp(A), Γ ; Δ 	 A Theorem 8
For every (Γ ; Δ) ∈ lexp(A), Γ ; Δ; · =⇒ ·; A focus+

Note that A is positive, so the above focus+ is valid.

·; ·; A =⇒ ·; A the expansion Lemma (7)
·; ·; A =⇒ A; · actR

The case of A being negative has a similar argument. �


This specific statement of the identity principle will not be used in the complete-
ness proof below; instead, we shall use a slightly variant formulation.

Lemma 10 The following are derivable ( for arbitrary A and B and a):

1. ·; ·; A · B =⇒ A ⊗ B; ·
2. ·; ·; · =⇒ 1; .

3. ·; ·; A =⇒ A ⊕ B; · and ·; ·; B =⇒ A ⊕ B; ·
4. A; ·; · =⇒ !A; ·
5. ·; ·; [u/x]A =⇒ ∃x. A; · where u is not free in ∃x. A
6. ·; ·; A&B =⇒ A; · and ·; ·; A&B =⇒ B; ·
7. ·; ·; A · A � B =⇒ B; ·
8. ·; ·; ∀x. A =⇒ [u/x]A; · where u is not free in ∀x. A

Proof Each case is a simple consequence of the identity principle (Corollary 9). The
following is a representative case for A ⊗ B.

·; ·; A ⊗ B =⇒ A ⊗ B; · Corollary 9.

There are two rules that can conclude this sequent: ract or ⊗L. In the former case

·; ·; A ⊗ B =⇒ ·; A ⊗ B assumption
·; ·; A · B =⇒ ·; A ⊗ B premiss of ⊗L (only possible rule)
·; ·; A · B =⇒ A ⊗ B; · ract

In the latter case, the premiss is already of the required form ·; ·; A · B =⇒ A ⊗
B; · The remaining cases use similar arguments. �


Theorem 11 (Completeness) If Γ ;Δ =⇒ C and Ω is any serialisation of Δ, then
Γ ; ·; Ω =⇒ C; ·.

Proof First we show that all ordinary rules are admissible in the focusing system
using cut. We then proceed by induction on derivation D :: Γ ; Δ =⇒ C, splitting
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cases on the last applied rule, using cut and Lemmas 2 and 10 as required. The
following is a representative case for ⊗R:

D = D1 :: Γ ; Δ =⇒ A D2 :: Γ ; Δ′ =⇒ B
Γ ; Δ,Δ′ =⇒ A ⊗ B

⊗R

Let Ω and Ω ′ be serialisations of Δ and Δ′ respectively.

Γ ; ·; Ω =⇒ A; · i.h. on D1

Γ ; ·; Ω ′ =⇒ B; · i.h. on D2

Γ ; ·; A · B =⇒ A ⊗ B; · Lemma 10 and weakening
Γ ; ·; Ω · Ω ′ =⇒ A ⊗ B; · cut twice

Any serialisation of Δ,Δ′ is a permutation of Ω · Ω ′. �


As a remark, once we have the cut and the identity principle, the proof of
completeness is extremely straightforward. There are other proofs of completeness
of focusing calculi in the literature that do not use cut-elimination as a basis.
Andreoli’s original proof of completeness for a classical focusing calculus in [1]
used a number of permutation arguments for rules. Howe’s extension of focusing to
intuitionistic and linear logics divided each case of Andreoli’s permutation argument
into a number of lemmas [16]. Each of Howe’s lemma actually bears a strong
resemblance to one of the commutative cases of cut, though a precise correspondence
is hard to state given the dissimilarities of the two calculi. We believe that cut
and identity – independent of their use in proving completeness – are sufficiently
interesting in and of themselves as they substantiate the logical basis of focusing.
Similar notions of cut and cut-admissibility also exist in Ludics [14], though our
calculus and Ludics are philosophically dissimilar enough that we cannot simply
import the cut-admissibility argument from Ludics. Rather, we view our proof of
cut-admissibility as belonging to a different tradition which sometimes goes by the
name “structural cut-elimination” [23].

Example The primary benefit of focusing is the ability to generate derived “big
step” inference rules: the intermediate results of a focusing or active phase are not
important. Andreoli called these rules “bipoles” because they combine two phases
with principal propositions of opposite polarities. Each derived rule starts (at the
bottom) with a neutral sequent from which a synchronous proposition is selected for
focus. This is followed by a sequence of focusing steps until the proposition under
focus becomes asynchronous. Then, the active rules are applied, and we eventually
obtain a collection of neutral sequents as the leaves of this fragment of the focused
derivation. These neutral sequents are then treated as the premisses of the derived
rule that produces the neutral sequent with which we started.

We omit a formal presentation of the derived rule calculus; instead, we motivate it
with an example. Consider the implication q⊗ n � d⊗ d⊗ d3 in the unrestricted
context Γ . Assuming that this implication is required for the proof, there are
essentially two ways to use it. The first usage corresponds to a forward reading of

3Standing roughly for “quarter and nickel goes to three dimes”.
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the implication, would allow one to conclude d⊗ d⊗ d, assuming one were able to
produce q⊗ n. This amounts to the following derivation tree:

We assume here that all atoms are negative-biased, so none of the branches of the
derivation can be closed off with an init+. Thus, we obtain the following derived rule
(eliding the empty active zones):

Γ ; Δ1 =⇒ q Γ ;Δ2 =⇒ n Γ ;Δ3,d,d,d =⇒ Q−

Γ ;Δ1,Δ2, Δ3 =⇒ Q− (1)

In particular, if Q− is precisely d⊗ d⊗ d, then (1) specializes to:

Γ ; Δ1 =⇒ q Γ ; Δ2 =⇒ n

Γ ;Δ1,Δ2 =⇒ d⊗ d⊗ d

which is precisely the forward reading of the implication q⊗ n � d⊗ d⊗ d.
The opposite reading of the implication would be a proof that uses d⊗ d⊗ d

to produce a proof that uses q⊗ n. Somewhat unsurprisingly, this situation results
from assuming that all atoms are positive-biased. In this case, we get the following
derivation:

In this positive-biased case, we can terminate the left branch of the derivation with a
pair of “init” rules. This rule forces the linear context in this branch of the proof to
contain just the atoms q and n. The derived rule we obtain is, therefore,

Γ ; Δ,d,d,d =⇒ Q
Γ ; Δ,q,n =⇒ Q

(2)

There are two key differences to observe between the derived rules (1) and (2).
The first is that simply altering the bias of the atoms has a big impact on the kinds of
rules that are generated; even if we completely ignore the semantic aspect, the rule
(2) is preferable to (1) because it is much easier to use single premiss rules.

The second – and more important – observation is that the rule that was generated
for the positive-biased atoms has a stronger and more obvious similarity to the
proposition q⊗ n � d⊗ d⊗ d that was under focus. If we view the linear zone as
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the “state” of a system, then the rule (2) corresponds to transforming a portion of the
state by replacing q and n by three ds (reading the rule from bottom to top). If, as is
common for linear logic, the unrestricted context Γ contains state transition rules for
some encoding of a stateful system, then the derived rules generated by left-biasing
allows us to directly observe the evolution of the state of the system by looking at the
composition of the linear context.

3 The Focused Inverse Method

In this section we briefly sketch the inverse method using the focusing calculus
of the previous section. The construction of the inverse method for linear logic is
described in more detail in [7]. To distinguish forward from backward sequents, we
shall use a single arrow (−→), but keep the names of the rules the same. In the
forward direction, the primary context management issue concerns rules where the
conclusion cannot be simply assembled from the premisses. The backward �R rule
has an arbitrary linear context Δ, and the unrestricted context Γ is also unknown in
several rules such as init and �R. For the unrestricted zone, this problem is solved
in the usual (non-linear) inverse method by collecting only the needed unrestricted
assumptions and remembering that they can be weakened if needed [12]. We adapt
the solution to the linear zone, which may either be precisely determined (as in
the case for initial sequents) or subject to weakening (as in the case for �R). We
therefore differentiate sequents whose linear context can be weakened and those
whose can not.

Definition 12 (forward sequents) A forward sequent is of the form Γ ; [Δ]w −→ γ ,
with w a Boolean (0 or 1) called the weak-flag, and γ being either empty (·) or
a singleton. The sequent Γ ; [Δ]w −→ γ corresponds to the backward sequent
Γ ′; Δ′ =⇒ C if Γ ⊆ Γ ′, γ ⊆ C; and Δ = Δ′ if w = 0 and Δ ⊆ Δ′ if w = 1. Sequents
with w = 1 are called weakly linear or simply weak, and those with w = 0 are strongly
linear or strong.

Initial sequents are always strong, since their linear context cannot be weakened.
On the other hand, �R always produces a weak sequent. For binary rules, the
unrestricted zones are simply juxtaposed. We can achieve the effect of taking their
union by applying the explicit contraction rule (which is absent, but admissible in
the backward calculus). For the linear zone we have to distinguish cases based on
whether the sequent is weak or not. We write the rules using two operators on the
linear context – multiplicative composition (×) and additive composition (+).

Γ ; [Δ]w −→ A Γ ′; [Δ′]w′ −→ B
Γ, Γ ′; [Δ]w × [Δ′]w′ −→ A ⊗ B

⊗R
Γ ; [Δ]w −→w A Γ ′; [Δ′]w′ −→ B

Γ, Γ ′; [Δ]w + [Δ′]w′ −→ A&B
&R

These compositions are defined as follows: For multiplicative rules, it is enough
for one premiss to be weak for the conclusion to be weak; the weak flags are there-
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fore joined with a disjunction (∨). Dually, for additive rules, both premisses must
be weak for the conclusion to be weak; in this case the weak flags are joined with a
conjunction (∧).

Definition 13 (context composition) The partial operators × and + on forward
linear contexts are defined as follows: [Δ]w × [Δ′]w′ =def [Δ, Δ′]w∨w′ , and

[Δ]w + [Δ′]w′ =def

⎧⎪⎪⎨
⎪⎪⎩

[Δ]0 if w = 0 and either w′ = 0 and Δ = Δ′,
or w′ = 1 and Δ′ ⊆ Δ[

Δ′]
0 if w′ = 0, w = 1 and Δ ⊆ Δ′[

Δ 
 Δ′]
1 if w = w′ = 1

Here Δ 
 Δ′ is the multiset union of Δ and Δ′.

In the lifted version of this calculus with free variables, there is no longer a
single context represented by Δ 
 Δ′ because two propositions might be equalized
by substitution. The approach taken in [7] was to define an additional “context
simplification” procedure that iteratively calculates a set of candidates that includes
every possible context represented by Δ 
 Δ′ by means of contraction. Many of these
candidates are then immediately rejected by subsumption arguments. We refer to [7]
for the full set of rules, the completeness theorem, and the lifted version of this
forward calculus.

3.1 Focused Forward Search

The sketched calculus in the previous section mentioned only single-step rules. We
are interested in doing forward search with derived inference rules generated by
means of focusing. We therefore have to slightly generalize the context composition
operators into a language of context expressions. In the simplest case, we merely
have to add a given proposition to the linear context, irrespective of the weak flag.
This happens, for instance, in the “ f ocus−” rule where the focused proposition is
transferred to the linear context. We write this adjunction as usual using a comma.
In the more general case, however, we have to combine two context expressions
additively or multiplicatively depending on the kind of rule they were involved in; for
these uses, we appropriate the same syntax we used for the single step compositions
in the previous section.

(context expressions) D ::= [Δ]w | D, A | D1 + D2 | D1 × D2

Context expressions can be simplified into forward contexts in a bottom-up proce-
dure. We write D ↪→ [Δ]w to denote that D simplifies into [Δ]w; it has the following
rules.

[Δ]w ↪→ [Δ]w
D ↪→ [Δ]w

D, A ↪→ [Δ, A]w
D1 ↪→ [Δ1]w1 D2 ↪→ [Δ2]w2

D1 + D2 ↪→ [Δ1]w1 + [Δ2]w2

D1 ↪→ [Δ1]w1 D2 ↪→ [Δ2]w2

D1 × D2 ↪→ [Δ1]w1 × [Δ2]w2



152 K. Chaudhuri et al.

The forward version of backward derived rules can be written with these context
expressions in a natural way by allowing unsimplified context expressions in the place
of linear contexts in forward sequents. As an example, the negative unrestricted
proposition q⊗ n � d⊗ d⊗ d has the following derived rule with negative-biased
atoms

Γ1; [Δ1]w1 −→ q Γ2; [Δ2]w2 −→ n Γ3; [Δ3]w3 ,d,d,d −→ Q
Γ1, Γ2, Γ3; [Δ1]w1 × [Δ2]w2 × [Δ3]w3 −→ Q

After constructing the neutral sequent with a context expression we then simplify
it. Note that context simplification is a partial operation, so we may not obtain any
conclusions, for example, if the premisses to an additive rule are strong sequents but
the linear contexts do not match.

3.2 Focusing in the Inverse Method

The details of the focused inverse method are given in [8]; here we briefly summarize
the major differences that arise as a result of focusing bias, that is, allowing both
positive and negative atoms. The key calculation as laid out in [8] is of the frontier
literals of the goal sequent, i.e., those subformulas that are available in neutral
sequents to be focused on. For all but the atoms the calculation is the same as before,
and for the atoms we make the following modifications.

1. A positive-biased atom is in the frontier if it lies in the boundary of a phase
transition from active to focus.

2. A negative-biased atom is in the frontier if it lies in the boundary of a phase
transition from active to focus.

We then specialize the inference rules to these frontier literals by computing the
derived rules that correspond to giving focus to these literals.

Although the addition of bias gives us different rules for focusing, the use of
the rules in the search engine is no different from before. The details of the
implementation of the main loop can be found in [7]. The main innovation in our
formulation of the inverse method in comparison with other descriptions in the
literature is the use of a lazy variant of the OTTER loop that both simplifies the
design of the rules and performs well in practice.

3.3 Globalization

When proposing a sequent Γg;Δg =⇒ γg as the overall goal to prove, the final
unrestricted zone Γg is shared in all branches of a proof if it were constructed by
backward search. One thus can think of Γg as part of the ambient state of the prover,
instead of representing it explicitly as part of the current goal. Hence, there is never
any need to explicitly record Γg or portions of it in the sequents themselves. This gives
us the following global and local versions of the focus! rule in the forward direction.

Γ ; [Δ]w; A 
 Q− A ∈ Γg

Γ ; [Δ]w −→ Q− delete
Γ ; [Δ]w; A 
 Q− A /∈ Γg

Γ, A; [Δ]w −→ Q− focus!



A logical characterization of forward and backward chaining in the inverse method 153

Globalization thus corresponds to a choice of whether to add the constructed
principal proposition of a derived rule into the unrestricted zone or not, depending
on whether or not it is part of the unrestricted zone in the goal sequent.

4 The Horn Fragment

In complex specifications that employ linearity, there are often significant sub-
specifications that lie in the Horn fragment. Unfortunately, the straightforward
inverse method is quite inefficient on Horn propositions, something already noticed
by Tammet [27]. His prover switches between hyperresolution for Horn and near-
Horn propositions and the inverse method for other propositions.

With focusing, this ad hoc strategy selection becomes entirely unnecessary. The
focused inverse method for intuitionistic linear logic, when applied to a classical,
non-linear Horn proposition, will exactly behave as classical hyperresolution or
SLD resolution depending on the focusing bias of the atomic propositions. This
remarkable property provides further evidence for the power of focusing as a
technique for forward reasoning. In the next two sections we shall describe this
correspondence in more detail.

A Horn clause has the form ¬a1, . . . , ¬an, a where the ai and a are atomic predi-
cates over their free variables. This can easily be generalized to include conjunction
and truth, but we restrict our attention to this simple clausal form, as theories with
conjunction and truth can be simplified into this form. A Horn theory 	 is just a set
of Horn clauses, and a Horn query is of the form 	 � g where g is a ground atomic
“goal” proposition.4 In the following section we use a simple translation (−)o of these
Horn clauses into linear logic where ¬a1, . . . ,¬an, a containing the free variables−→x is translated into ∀−→x .a1 � · · · � an � a, and the query 	 � g is translated as
(	)o; [·]0 −→ g.

4.1 Hyperresolution

The hyperresolution strategy for the Horn query 	 � g is just forward reasoning with
the following rule (for n ≥ 1):

a′
1 · · · a′

n

θa

{
where ¬a1, . . . ,¬an, a ∈ 	; ρ1, . . . , ρn are renaming substitutions;
and θ = mgu(〈ρ1a′

1, . . . , ρna′
n〉, 〈a1, . . . , an〉)

The procedure begins with the collection of unit clauses in 	 and ¬g as the initial set
of facts, and succeeds if the empty fact (contradiction) is generated. Because every
clause in the theory has a positive literal, the only way an empty fact can be generated
is if it proves the fact g itself (note that g is ground). Because this proof starts from
the unit clauses and derives newer facts by interpreting the Horn clauses forwards, it
is a “bottom-up” variant of the usual Prolog-style logic programming.

4Queries with more general goals can be compiled to this form by adding an extra clause to the
theory.
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Consider the goal sequent in the translation (	)o; [·]0 −→ g where the atoms are
all negative-biased. The frontier is every clause ∀−→x .p1 � · · · � pn � p ∈ (	)o.
Focusing on one such clause gives the following abstract derivation in the forward
direction:

If we use the shorthand Γ ; [Δ]w −→ Q− for the neutral sequent Γ ; [Δ]w; · −→
·; Q−, the above derived rule is, therefore:

Γ1;Δ1 −→ a1 · · · Γn; [Δn]wn −→ an

Γ1, . . . , Γn; [Δ1]w1 × · · · × [Δn]wn −→ a

In the case where n = 0, i.e., the clause in the Horn theory was a unit clause a,
we obtain an initial sequent of the form ·; [·]0 −→ a. As this clause has an empty
left hand side, and none of the derived rules add elements to the left, we can
make an immediate observation (Lemma 14) that gives us an isomorphism of rules
(Theorem 15).

Lemma 14 Every sequent generated in the proof of the goal (	)o; [·]0 −→ g has an
empty left hand side.

Theorem 15 (Isomorphism of rules) For every clause ¬a1, ..., ¬an, a ∈ 	 there is a
derived rule

Γ1; [Δ1]w1 −→ a1 · · · Γn; [Δn]wn −→ an

Γ1, . . . , Γn; [Δ1]w1 × · · · × [Δn]wn −→ a

generated for the proof of the goal sequent (	)0; [·]0 −→ g for a fresh goal literal g
and only negative-biased atoms.

Proof (sketch) Note that only the translations of the Horn clauses are on the frontier.
The result follows by a straightforward induction over the structure of a Horn clause
and the rules of the forward focusing calculus. We omit the details of this rather easy
proof that has already been illustrated above. �


These facts let us establish an isomorphism between hyperresolution and negative-
biased focused derivations.

Theorem 16 Every hyperresolution derivation for the Horn query 	 � g has an
isomorphic focused derivation for the goal sequent (	)o; [·]0 −→ g with negative-
biased atoms.
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Proof (sketch) For every fact a′ generated by the hyperresolution strategy, we have
a corresponding fact ·; [·]0 −→ a′ in the focused derivation (up to a renaming of
the free variables). When matching these sequents for consideration as input for
a derived rule corresponding to the Horn clause ¬a1, . . . , ¬an, a, we calculate the
simultaneous mgu of all the ai and a′

i for a Horn clause, which is precisely the
operation also performed in the hyperresolution rule. The required isomorphism
then follows from Theorem 15. �


4.2 SLD Resolution

SLD Resolution [18] is a variant of linear resolution that is complete for Horn
theories and is the basic reasoning mechanism in Prolog-like logic programming
languages. It is sometimes called “top-down” or “goal-directed” logic programming
because it starts from the goal literal and reasons backwards to the unit clauses. The
procedure is as follows: for the Horn query 	 � g, we start with just the initial clause
g, and then perform forward search using the following rule (using � to stand for
clauses).

�, b
θ(�, ρa1, ρa2, . . . , ρan)

{
where ¬a1, . . . , ¬an, a ∈ 	; ρ is a renaming subst.;

and θ = mgu(ρa, b)

When n = 0, i.e., for unit clauses in the Horn theory, this rule corresponds to simply
deleting the member of the input clause that was unifiable with the unit clause (and
applying the resulting substitution to the rest of the clauses). The search procedure
succeeds when it is able to derive the empty clause.

To show how SLD resolution is modeled by our focusing system, we reuse
the translation from before, but this time all atoms are given a positive polarity.
The derivation that corresponds to focusing on the translation of the Horn clause
¬a1, . . . , ¬an, a is:

w

w

w

w

w

In other words, the derived rule is:

Γ ; [Δ, a]w −→ Q
Γ ; [Δ, a1, . . . , an]w −→ Q

The frontier of the goal (	)0; [·]0 −→ g in the positive-biased setting contains every
member of (	)0, so we obtain one such derived rule for each clause in the Horn
theory. The frontier contains, in addition, the positive atom g; assuming there is a
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negative instance of g somewhere in the theory, we thus generate a single initial
sequent, ·; [g]0 −→ g. We immediately observe that:

Lemma 17 Every sequent generated in the focused derivation of (	)0; [·]0 −→ g is of
the form ·; [Δ]0 −→ g.

Theorem 18 (Isomorphism of rules) For every clause ¬a1, ..., ¬an, a ∈ 	, there is a
derived rule

Γ ; [Δ, a]w −→ Q
Γ ; [Δ, a1, . . . , an]w −→ Q

created for the goal sequent (	)0; [·]0 −→ g for some goal literal g and only positive-
biased atoms.

Proof (sketch) Note that only the translations of the clauses and the goal literal g
itself are in the frontier. For g, we get just a single initial sequent ·; [g]0 −→ g. For
the translation of the clauses, we use a simple induction on the structure of the clauses
and the rules of the forward focusing calculus. Again, we omit the rather easy proof
that has been illustrated above. �


Theorem 19 Every SLD resolution derivation for the Horn query 	 � g has an
isomorphic focused derivation for the goal sequent (	)o; [·]0 −→ g with positive-
biased atoms.

Proof (sketch) Very similar argument as in Theorem 16, except we note that in the
matching conditions in the derived rules we rename the input sequents, whereas in
the SLD resolution case we rename the Horn clause itself. However, this renaming
is merely an artifact of the procedure and does not itself alter the derivation. �


Although the derivations are isomorphic, the focused derivations may not be as
efficient as the SLD resolution in practice because of the need to rename (i.e., copy)
the premisses as part of the matching conditions of a derived rule – premisses might
contain many more components than the Horn clause itself.

To summarize, given set biases on the atomic propositions, we are able to model
either hyperresolution (forward-chaining) or a SLD-resolution (backward-chaining)
in forward search in the inverse method. If we look at backward search – starting
from the goal sequent and using the rules of Fig. 2 – then again it is clear that using
negative-biased atoms gives us SLD-resolution.5 One interesting case is backward
search with positive-biased atoms. For the purely propositional case, it is very easy
to see that the resulting search strategy would be hyperresolution. In the first-
order case, we conjecture we can recover hyperresolution by introducing parametric
assumptions, but an analysis of this beyond the scope of this paper. With this small

5In fact, negative-biased backward focusing can be taken as a definition of top-down logic
programming.
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caveat, one obtains the following diagram, where forward search refers to the focused
inverse method and backward search to focused goal-directed search.

forward search backward search
negative-biased hyperresolution SLD-resolution
positive-biased SLD-resolution hyperresolution

4.3 Example: Fibonacci Numbers

Here we give a very brief example of the use of biases in a simple Horn problem that
nevertheless has important computational features: computing Fibonacci numbers.6

Depending on whether certain rules are used forwards or backwards, the running
time can be linear or exponential. The Horn clauses are as follows, containing two
predicates fib and sum and unary natural numbers encoded with z (zero) and s
(successor).

fib(z,sz).
fib(sz,sz).
∀x, y, z, n. ¬fib(n, x), ¬fib(sn, y),¬sum(x, y, z),fib(s(sn), z).

∀x. sum(z, x, x).
∀x, y, z. ¬sum(x, y, z),sum(s x, y,s z).

If fib is positive biased, we get the following derived rule for the third clause:

Γ1; [Δ,fib(s(s n), z)]w1 −→ Q Γ2; [Δ2]w2 ,−→ sum(x, y, z)

Γ ; [Δ1]w1 × [Δ2]w2 ,fib(n, s),fib(sn, y) −→ Q

When this rule is applied again to the conclusion, the fib(sn, y) will produce
another instance of fib(n, x′) (for some x′), which is a variant of a resource already
present in the context. Thus, each case of the Fibonacci function will be reproven,
giving a proof of exponential length. This is the backward reading (also known
as top-down logic programming) of the Horn clauses (with no detection of shared
derivations).

If both sum and fib are negative biased, then the derived rule for the third clause
is as follows:

Γ1; [Δ1]w1 −→ fib(n, x) Γ2; [Δ2]w2 −→ fib(sn, y) Γ3; [Δ3]w3 −→ sum(x, y, z)

Γ1, Γ2, Γ3; [Δ1]w1 × [Δ2]w2 × [Δ3]w3 −→ fib(s(sn), z)

Here, we observe that for every n, a conclusion with fib(n,−) is constructed
exactly once. This is, therefore, the forward reading (also known as bottom-up logic
programming) of the Horn clauses.

An interesting feature to consider is the assignment of biases to the sum predicate.
If it is negative biased, the fifth clause above has the following rule:

Γ1; [Δ]w −→ sum(x, y, z)

Γ1; [Δ]w −→ sum(s x, y,s z)

6This example was suggested to the first author by Dale Miller.
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This has very poor performance because the rule can be iterated to generate a fresh
sequent (the fourth Horn clause above will seed the initial database with the sequent
·; [sum(z, n, n)]0 −→ sum(z, n, n) to start the iteration). However, if it is given a
positive bias, then we obtain the rule:

Γ1; [Δ,sum(s x, y,s z)]w −→ Q
Γ1; [Δ]w,sum(x, y, z) −→ Q

This rule can only be applied a finite number of times because the terms in the
conclusion get smaller in each step. We thus observe that the best assignment of
biases for this problem is to give a negative bias to fib to promote sharing of
sub-derivations, and a positive bias to sum to make the search space finite, thus
performing a hybrid search overall in the theory. Precisely, the derived rule for fib
then is:

Γ1; [Δ1]w1 −→ fib(n, x) Γ2; [Δ2]w2 −→ fib(sn, y)

Γ1, Γ2; [Δ1]w1 × [Δ2]w2 ,sum(x, y, z) −→ fib(s(sn), z)

5 Experiments

5.1 Propositional Linear Logic

The first class of experiments we performed were on propositional linear logic. We
implemented several minor variants of an inverse method prover for propositional
linear logic.7 The propositional fragment is the only fragment where we can
compare with external provers, as we are not aware of any first order linear logic
provers besides our own. The external prover we compared against is Tammet’s
Gandalf “nonclassical” distribution (version 0.2), compiled using a packaged version
of the Hobbit Scheme compiler. This classical linear logic prover comes in two
flavors: resolution (Gr) and tableau (Gt). Neither version incorporates focusing or
globalization, and we did not attempt to bound the search for either prover. Other
provers such as LinTAP [21] and llprover [28] fail to prove all but the simplest
problems, so we did not do any serious comparisons against them. Our experiments
were all run on a 3.4GHz Pentium 4 machine with 1MB L1 cache and 1GB main
memory; our provers were compiled using MLTon version 20060213 using the
default optimization flags; all times indicated are wall-clock times in seconds and
includes the GC time; × denotes unprovability within a time limit of 1 hour. In the
following tables, iters refers to number of iterations of the lazy OTTER loop, gen
the number of generated sequents, and subs the number of subsumed sequents.

Stateful system encodings In these examples, we encoded the state transition rules
for stateful systems such as a change machine, a Blocks World problem with a fixed
number of blocks, a few sample Petri nets. For the Blocks World example, we also
compared a version that uses the CLF monad [4] and one without.

7Available from http://www.cs.cmu.edu/~kaustuv/research.html.

http://www.cs.cmu.edu/~kaustuv/research.html
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name negative-biased positive-biased Gt Gr

iters gen subs time iters gen subs time time time

blocks 20 43 18 0.001 12 84 61 0.001 × ×
blocks- 27 65 26 0.002 5 24 7 <0.001 N/A N/A
clf
change 16 22 7 0.001 11 20 6 0.001 0.63 0.31
petri-1 23 38 23 0.001 284 1099 921 0.062 × 7.08
petri-2 57 133 105 0.003 393 1654 1433 0.068 × 7.13

Graph exploration algorithms In these examples we encode algorithms for calculating
Euler or Hamiltonian tours on graphs as linear theorem proving problems. The
problems have an equal balance of proofs (i.e., a tour exists) and refutations (i.e.,
no tour exists).

name negative-biased positive-biased

iters gen subs time iters gen subs time

euler-1 6291 11853 5565 9.010 6291 11853 5565 8.570
euler-2 15640 34329 18689 152.12 15640 34329 18689 145.9
euler-3 64360 159194 94834 3043.35 64360 159194 94834 2938.55
hamilton 708 911 185 0.11 165 178 0 <0.001

The Euler tour computation uses a symmetric algorithm, so both backward and
forward chaining generate the same facts, though, interestingly, a positive-biased
search performs slightly better than the negative-biased system. For the Hamiltonian
tour examples, the positive-biased search is vastly superior.

Affine logic encoding Linearity is often too stringent a requirement for situations
where we simply need affine logic, i.e., where every hypothesis is consumed at most
once. Affine logic can be embedded into linear logic by translating every affine
arrow A → B as either A � B ⊗ � or A & 1 � B. Of course, one might select
complex encodings; for example choosing A & !(0 � X) � B (for some arbitrary
fresh proposition X) instead of A & 1 � B. Even though the two translations are
equivalent, the prover performs poorly on the former. The Gandalf provers Gt and
Gr fail on these examples.

encoding negative-biased positive-biased

iters gen subs time iters gen subs time

A � B ⊗ � 38 108 73 0.003 34 107 73 0.002
A & 1 � B 252 1103 828 0.098 62 229 126 0.019
A & 1(0 � X) � B 264 7099 6793 2.028 235 841 578 0.042



160 K. Chaudhuri et al.

Quantified Boolean formulas In these examples we used two variants of the algorithm
from [20] for encoding QBFs in linear logic. The first variant uses exponentials to
encode reusable “copy” rules; this variant performs very well in practice, so the table
below collates the results of all the example QBFs in one entry. The second variant
maps to the multiplicative-additive fragment of linear logic without exponentials.
This variant produces problems that are considerably harder, so we have divided the
problems in three sets in increasing order of complexity.

encodings negative-biased positive-biased

iters gen subs time iters gen subs time

qbf-exp 1508 1722 140 0.13 7948 17610 9590 2.69
qbf-nonexp-1 1457 5590 4067 0.54 1581 4352 2612 0.58
qbf-nonexp-2 15267 517551 502174 368.92 9469 49777 37716 29.55
qbf-nonexp-3 28556 990196 961494 2807.64 21233 89542 115917 308.24

For these examples, when the number of iterations is low (i.e., the problems are
simple), the negative-biased search appears to perform better than the positive-
biased system. However, as the problems get harder, the positive-biased system
becomes dominant.

5.2 First-Order Linear Logic

We have also implemented a first prover for linear logic. Experiments with an
early version of the first were documented in [7]. Since then we have made several
improvements to the prover, including a complete re-implementation of the focused
rule generation engine, and also increased our collection of sample problems.

First stateful systems The first experiments were with first encodings of various state-
ful systems. We selected a first Blocks World encoding (both with and without the
CLF monad), Dijkstra’s Urn Game, and an AI planning problem for a certain board
game. The positive-biased system performs consistently better than the negative-
biased system for these problems.

problem negative-biased positive-biased

iters gen subs time iters gen subs time

blocks 45 424 317 0.12 26 387 337 0.04
blocks-clf 64 697 412 0.264 15 81 69 0.006
urn 29 72 27 0.24 13 58 55 0.11
board 349 7021 3138 3.26 166 5296 1752 0.88

Purely intuitionistic problems Unfortunately, we are unable to compare our imple-
mentation with any other linear provers; to the best of our knowledge, our prover
is the only first linear prover in existence. We therefore ran our prover on some
problems drawn from the SICS benchmark [26]. These intuitionistic problems were
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translated into linear logic in two different ways– the first uses Girard’s original
encoding of classical logic in classical linear logic where every subformula is affixed
with the exponential, and the second is a focus-preserving encoding as described
in [8]. We also compared our prover with Sandstorm, a focusing inverse method
theorem prover for intuitionistic logic implemented by students at CMU. The focus-
preserving translation is always better than the Girard-translation; however, the com-
plexity of linear logic, particularly the significant complexity of linear contraction,
makes it uncompetitive with the intuitionistic prover.

problem negative-biased positive-biased SS

iters gen subs time iters gen subs time time

SICS1-gir 360 1948 1394 1.312 368 2897 2181 0.6
0.04

SICS1-foc 56 365 313 0.056 64 496 415 0.04
SICS2-gir 3035 16391 11732 11.04 3460 27192 20389 5.856

0.06
SICS2-foc 489 3133 2688 0.472 616 4672 3902 0.376
SICS3-gir 20958 1131823 810085 762.312 12924 1015552 761517 218.712

1.12
SICS3-foc 3377 21659 18646 33.096 2300 17464 14969 23.296
SICS4-gir × × × × × × × ×

3.89
SICS4-foc 8896 57056 49047 87.184 6144 46818 39993 62.24

Horn examples from TPTP For our last example, we selected 20 non-trivial Horn
problems from the TPTP version 3.1.1. The selection of problems was not systematic,
but we did not constrain our selection to any particular section of the TPTP. We used
the translation described in Section 4. We omit the list of selected problems.

negative-biased positive-biased

iters gen subs time iters gen subs time

4911 314640 287004 462.859 6289 704482 526207 638.818

For Horn problems, the negative-biased system, which models hyperresolution,
performs better than the positive-biased system, which models SLD resolution. This
observation is not unprecedented – the Gandalf system switches to a Hyperresolution
strategy for Horn theories [27]. The likely reason is that in the positive-biased system,
unlike in SLD resolution system, the derived rule renames the input sequent rather
than the rule itself.

6 Conclusion

We have presented an improvement of the focusing inverse method that exploits the
flexibility in assigning polarity to atoms, which we call bias. This strictly generalizes
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both hyperresolution and SLD resolution on (classical) Horn clauses to all of
intuitionistic linear logic. This strategy shows significant improvement on a number
of example problems.

One important avenue of future work pertains to the nature of polarity assign-
ments to the atomic propositions. Andreoli’s initial observation in [1] was that the
synchronous or asynchronous nature of the atoms may be assessed differently in
disjoint multiplicative branches of a proof. This is more general than the fixed global
assignment of polarities in our system, so it is worthwhile to consider an extension
with variable assignment in our calculus.

The main open question raised by Section 4 is whether the observation that
focusing generalises hyperresolution and SLD resolution on the Horn fragment can
be extended to a fuller logic. This question is naturally meaningless for intuitionistic
logic because hyperresolution is a classical strategy. Focusing for purely classical
proof search is interesting, but because all propositional connectives can be treated
both synchronously and asynchronously, the interest comes from dual interpretations
of classical proofs. In essence, classical logic is too permissive, and it is only when
interpreted in more refined logics that interesting properties emerge. For classical
linear logic, which does not have this unbridled permissiveness, the connection
between biased focusing and resolution is currently open. We conjecture that a
suitable adaptation of the focusing calculus for classical linear logic will turn out to
give an explanation for hyperresolution for the full classical linear logic.

Another important item of future work would be a detailed analysis of con-
nections with a bottom-up logic programming interpreter for the LO fragment of
classical linear logic [3]. This fragment, which is in fact affine, has the property that
the unrestricted context remains constant throughout a derivation, and incorporates
focusing at least partially via a back-chaining rule. It seems plausible that our prover
might simulate their interpreter when LO specifications are appropriately translated
into intuitionistic linear logic, similar to the translation of classical Horn clauses.

From a user’s perspective, a better characterization of bias assignment is nec-
essary. As shown in Section 4.3, a non-uniform assignment of biases to atoms
can significantly improve the search performance over uniform assignments. It is
possible that the correct assignment of biases for a given theory can be derived by
a magic set analysis [24, 25]; Pientka has conjectured further that this bias assignment
amounts to using the mode information in the theory to narrow the derived inference
rules (Pientka, personal communication, June 2007).

Appendix: Cut-Admissibility Proof

We now present the details of the proof of the cut-admissibility theorem
(Theorem 5). Recall that we have two input derivations D and E that we perform
an induction over, and the inductive hypothesis can be used whenever

(a) The cut proposition is strictly smaller; or
(b) The cut proposition remains the same, but the inductive hypothesis is used for

higher numbered cuts to justify a lower numbered cut (that is, a type 5 for a
type 5 cut, etc.); or

(c) A preservative cut (see Appendix 6) is used to justify any of the above cuts; or
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(d) The cut proposition and E remain the same, and D is similar to a strictly smaller
first derivation; or

(e) The cut proposition and D remain the same, and E is similar to a strictly smaller
second derivation.

We now distinguish various kinds of situations which arise in the course of the
proof. For each type, proof cases turn out to be very similar so we usually show only
a representative case or two.

Appendix 1: Principal Cuts

The same proposition is introduced in the final rule of both D and E .

Case ⊗:

D = D1 :: Γ ;Δ1, 	 A D2 :: Γ ; Δ2 	 B
Γ ;Δ1Δ2 	 A ⊗ B

⊗ R

E = E ′ :: Γ ; Δ′ ; Ω · A · B · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · A ⊗ B · Ω ′ =⇒ γ
⊗ L

Γ ; Δ2, Δ′ ; Ω · A · Ω ′ =⇒ γ cut on D2 and E ′
Γ ; Δ1, Δ2, Δ′ ; Ω · Ω ′ =⇒ γ cut on D1 and above

Case 1:

D =
Γ ; · ; · 	 1

1R E = E ′ :: Γ ; Δ′ ; Ω · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · 1 · Ω ′ =⇒ γ
1L

Here F = E ′.
Case ⊕:

D = D′ :: Γ ; Δ 	 A
Γ ; Δ 	 A ⊕ B

⊕ R1

E = E1 :: Γ ; Δ′ ; Ω · A · Ω ′ =⇒ γ E2 :: Γ ; Δ′ ; Ω · B · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · A ⊕ B · Ω ′ =⇒ γ
⊕ L

Γ ; Δ,Δ′ ; Ω =⇒ γ cut on D′ and E1

The case of plusR2 is similar.
Case 0: there are no principal cuts for 0.
Case !:

D = D′ :: Γ ; · ; · =⇒ A; ·
Γ ; · ; 	!A !R E = E ′ :: Γ, A ; Δ′ ; Ω · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · ! A · Ω ′ =⇒ γ
!L

Γ ; Δ′ ; Ω . Ω ′ =⇒ γ cut on D′ and E ′
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Case ∃:

D= D′ :: Γ ; Δ 	 [t/x]A
Γ ; Δ 	 ∃ x.A

∃R E= E ′ :: Γ ; Δ′ ; Ω · [u/x]A · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · ∃x.A · Ω ′ =⇒ γ
∃ Lu

Γ ; Δ,Δ′ ; Ω · Ω ′ =⇒ γ cut on D′ and [t/u]E ′

Case �:

D= D′ ::Γ ; Δ ; Ω · A=⇒ B; ·
Γ ; Δ ; Ω =⇒ A� B;

� R E= E1 ::Γ ; Δ′
1 ; B
Q− E2 ::Γ ; Δ′

2 	 A
Γ ; Δ′

1,Δ
′
2 ; A� B
Q− � L

Γ ; Δ′
2 ,Δ ; Ω =⇒ B; · cut on E2 and D′

Γ ; Δ′
1, Δ

′
2,Δ ; Ω =⇒ · ; Q− cut on above and E1

Case &:

D = D1 :: Γ ; Δ ; Ω =⇒ A ; · D2 :: Γ ; Δ ; Ω =⇒ B ; ·
Γ ; Δ ; Ω =⇒ A&B;

&R

E = E ′ :: Γ ; Δ′ ; A 
 Q−

Γ ; Δ′ ; A & B 
 Q− &L1

Γ ;Δ,Δ′;Ω =⇒ · ; Q− cut on D1 and E ′

The case for &L2 is similar.
Case �: there are no principal cuts for �.
Case ∀:

D= D′ :: Γ ; Δ ; Ω =⇒[u/x]A ; ·
Γ ; Δ ;Ω =⇒∀x.A ; · ∀Ru E= E ′ :: Γ ; Δ′ ; [t/x]A
 Q−

Γ ; Δ′ ; ∀x.A
 Q− ∀L

Γ ; Δ,Δ′ ; Ω =⇒ · ;Q− cut on [t/u]D′ and E ′.

Appendix 2: Focus Cuts

Here, the last rule in D or E gives focus to the cut proposition.

Case E ends in focus−. Therefore, the cut proposition is negative, N.

Subcase The cut proposition is active in D.

D :: Γ ; Δ ; Ω =⇒ N ; · E = E ′ :: Γ ; Δ′ ; N 
 Q−

Γ ; Δ′, N′ ; · =⇒ · ; Q− focus−

Γ ; Δ,Δ′ ; Ω =⇒ · ; Q− cut on D and E ′

Subcase The cut proposition is passive in D. By the occurrence restriction,
it has to be a negative-biased atom.

D :: Γ ; Δ ; Ω =⇒ · ; n E = E ′ :: Γ ; · ; n 
 n
Γ ; n ;· =⇒ · ; n

focus−

Here F = E .
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Case D ends in focus+. Therefore, the cut proposition is positive, P.

Subcase The cut proposition is active in E .

D = D′ :: Γ ; Δ 	 P
Γ ; Δ ; · =⇒ · ; P

focus+ E :: Γ ; Δ′ ; Ω · P · Ω ′ =⇒ γ

Γ ; Δ, Δ′ ; Ω · Ω ′ =⇒ γ cut on D′ and E

Subcase The cut proposition is passive in E . By the occurrence restriction, it
has to be a positive-biased atom.

D = D′ :: Γ ; p 	 p
Γ ; p ; · =⇒ · ; p

focus+ E :: Γ ; Δ′, p;Ω =⇒ γ

Here F = E .

Subcase The cut proposition cannot be in the unrestricted context in E
because the linear context in D is not empty.

Case E ends in focus!.

D :: Γ ; · ;· =⇒
{ · ;A

A ; · E = E ′ :: Γ, A; Δ ; A 
 Q−

Γ ; A ; Δ ; =⇒ · ; Q− focus!

Γ, A; · ; · =⇒
{ · ;A

A;· weakening

That is, all sequents in D are weakened, but the structure of D itself is
unchanged.

Γ , A ; Δ,Δ′; · =⇒ · ;Q− cut on above and E ′
Γ ; Δ,Δ′; · =⇒ · ;Q− cut on D and above.

Appendix 3: Blur Cuts

Here the last rule in D or E blurs focus from the cut proposition.

Case E ends in blur+. Therefore, the cut proposition is positive, P.

D :: Γ ; Δ ; Ω =⇒
{ · ;P

P; · E = E ′ :: Γ ; Δ′ ; P =⇒ · ; Q−

Γ ; Δ′ ; P 
 Q− blur+

Γ ; Δ,Δ′ ; Ω =⇒ ·;Q− cut on D and E ′

Case D ends in blur−, so the cut proposition is negative, N. For example:

D = D′ :: Γ ; Δ ; · =⇒ N ; ·
Γ ; Δ 	 N

blur− E :: Γ ; Δ′ ; Ω · N · Ω ′ =⇒ γ

Γ ; Δ,Δ′ ; Ω · Ω ′ =⇒ γ cut on D′ and E

Similar arguments hold for other forms of E such as E :: Γ ; Δ′, N ; Ω =⇒ γ ,
and also for E :: Γ, N ; Δ′ ; Ω =⇒ γ (in which case Δ = ·).
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Appendix 4: Critical Pairs

These cuts of the specific form

D :: Γ ; Δ ; · =⇒ · ; A and E :: Γ ; Δ′, A ; · =⇒ · ; Q−

Clearly, by the occurrence restrictions on active sequents, A has to be atomic. These
cuts are important because the induction switches sides depending on the bias of
the atom.

1. A is a negative-biased atom n. Here we proceed by induction on E .

(1) E = Γ ; · ; n 
 n
init−

Γ ; n ; · =⇒ · ; n
focus−

In this case, F = D :: Γ ; Δ ; · =⇒ · ; n.

(2) E = E ′ :: Γ ; Δ′, n 	 Q
Γ ; Δ′, n ; · =⇒ · ;Q

focus+

Γ ; Δ,Δ′ 	 Q preservative cut 1 on D and E ′

Γ ; Δ,Δ′ ; · =⇒ · ; Q focus+

(3) E = E ′ :: Γ ;Δ′, n ; N 	 Q−

Γ ; Δ′, N, n ; · =⇒ · ;Q− focus−

Γ ; Δ,Δ′, n ; N 
 Q− preservative cut 1 on D and E ′

Γ ; Δ,Δ′, n, N ; · =⇒ · ;Q− focus−

(4) E ends in focus!. This is similar to the previous case.

2. p is a positive-biased atom. Here we proceed by induction on D.

(1) D = Γ ; p 	 p ;
init+

Γ ; p ; · =⇒ · ; p
focus+

Here F = E :: Γ ; Δ′, p ; · =⇒ · ; Q−.

(2) D = D′ :: Γ ; Δ ; N 
 p
Γ ; Δ, N ; · =⇒ · ; p

focus−

Γ ; Δ,Δ′ ; N 
 Q− preservative cut 2 on D′ and E
Γ ; Δ,Δ′, N ; · =⇒ · ; Q− focus−

(3) D ends in focus!. This is similar to the previous case.

Appendix 5: Commutative Cuts

The next kind of cuts are cuts that do not have any focused proposition in the
conclusion, and the induction proceeds by commuting the cut in the derivation D
or E . In these cuts, therefore, the cut-proposition has to be a side-proposition in one
of the derivations D or E . We shall lay out the cases by enumerating the possibilities
for D before those of E .

1. D :: Γ ; Δ 	 A

(a) E :: Γ ; Δ′ ; Ω · A · Ω ′ =⇒ γ .
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(1) E ends in a right-active rule, such as

E = E ′ :: Γ ; Δ′ ; Ω · A · Ω ′ · D =⇒ E ; ·
Γ ; Δ′;Ω · A · Ω ′ =⇒ D � E ; · �R

Γ ; Δ,Δ′ ; Ω · Ω ′ · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω · Ω ′ =⇒ D � E ; · �R

(2) E ends in a left-active rule where A is not principal, such as:

E = E ′ :: Γ ; Δ′ ; Ω1 · D · E · Ω2 · A · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω1 · D ⊗ E · Ω2 · A · Ω ′ =⇒ γ
⊗ L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 · Ω ′ =⇒ γ cut on D and E ′
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 · Ω ′ =⇒ γ ⊗L

For the remainder of the cases, E ends in a left-active rule where A is
principal.

(3) A = N+ and E = E ′ :: Γ ; Δ′, N+ ; Ω · Ω ′ =⇒ γ

Γ ; Δ′ ; Ω · N+ · Ω ′ =⇒ γ
actL

Γ ; Δ,Δ′ ; Ω · Ω ′ · D =⇒ γ cut on D and E ′

(4) A = P is the principal in the last rule of E :: Γ ; Δ′ ; Ω · P · Ω ′ =⇒ γ .
In this case we have a principal cut P is also principal in D.

(b) E :: Γ ; Δ′, A ; Ω =⇒ γ .

(1) E ends in a right-active rule, such as:

E = E ′ :: Γ ; Δ′, A ; Ω · D =⇒ E ; ·
Γ ; Δ′, A ; Ω =⇒ D � E ; · � R

Γ ; Δ,Δ′ ; Ω · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω =⇒ D � E ; · � R

(2) E ends in a left-active rule, such as:

E = E ′ :: Γ ; Δ′, A ; Ω · D · E · Ω ′ =⇒ γ

Γ ; Δ′, A ; Ω · D ⊗ E · Ω ′ =⇒ γ
⊗ L

Γ ; Δ,Δ′ ; Ω · D · E · Ω ′ =⇒ γ cut on D and E ′
Γ ; Δ,Δ′ ; Ω · D ⊗ E · Ω ′ =⇒ γ ⊗L

(3) The previous two cases take care of the active rules. We now have to
account for the neutral case E :: Γ ; Δ′, A ; · =⇒ · ; Q−.

Case E = E ′ :: Γ ; Δ′, A 	 Q
Γ ; Δ′, A ; · =⇒ · ; Q

focus+

Γ ; Δ,Δ′ 	 Q preservative cut 1 on D and E ′
Γ ; Δ,Δ′ ; · =⇒ · ; Q focus+

Case E ends with left-focus on A. By the occurrence restriction, A
is either negative or a positive-biased atom. The latter case
(A = p) is ruled out because focus− only grants focus to
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negative propositions. In the former case, i.e., for A = N, we
have:

E = E ′ :: Γ ; Δ′, N 
 Q−

Γ ; Δ′, N ; · =⇒ · ; Q− focus−

Γ ; Δ ; · =⇒ N ; · only possible premiss of D (using
blur+)
Γ ;Δ,Δ′ ; · =⇒ · ; Q− cut on above and E ′ (principal cut)

Case E = E ′ :: Γ ; Δ′, A ; N 
 Q−

Γ ; Δ′, N, A ; · =⇒ · ; Q− focus−

Γ ; Δ,Δ′ ; N 
 Q− preservative cut 1 on D and E ′
Γ ; Δ,Δ′, N ; · =⇒ · ; Q− focus−

Case E = E ′ :: Γ, C ; Δ′, A ; C 
 Q−

Γ, C ; Δ′, A ; · =⇒ · ; Q− focus!

Γ, C ; Δ 	 A weakening D
Γ, C ; Δ,Δ′ ; C 
 Q− preservative cut 1 on above and E ′
Γ, C ;vΔ,Δ′ ; · =⇒ · ; Q− focus!

(c) E :: Γ, A ; Δ′ ; Ω =⇒ γ . In this case Δ = ·, i.e., D :: Γ ; · 	 A.

(1) E ends in a right-active rule, such as:

E = E ′ :: Γ, A ; Δ′ ; Ω · D =⇒ E ; ·
Γ, A ; Δ′ ; Ω =⇒ D � E ; · � R

Γ ; Δ′ ; Ω · D =⇒ E ; · cut on D and E ′
Γ ; Δ′ ; Ω =⇒ D � E ; · ⊗L

(2) E ends in a left-active rule, such as:

E = E ′ :: Γ, A ; Δ′ ; Ω · D · E · Ω ′ =⇒ γ

Γ, A ; Δ′ ; Ω · D ⊗ E · Ω ′ =⇒ γ
⊗ L

Γ ; Δ′ ; Ω · D · E · Ω ′ =⇒ γ cut on D and E ′
Γ ; Δ′ ; Ω · D ⊗ E · Ω ′ =⇒ γ ⊗L

(3) This leaves just the neutral cases E :: Γ, A ; Δ′ ; · =⇒ · ; Q−.

Case E = E ′ :: Γ, A ; Δ′,	 Q
Γ, A ; Δ′ ; · =⇒ ·;Q focus+

Γ ; Δ′ 	 Q preservative cut 2 on D and E ′
Γ ; Δ′ ; · =⇒ · ; Q focus+

Case E = E ′ :: Γ, A ; Δ′ ; N 
 Q−

Γ, A ; Δ′, N ; · =⇒ · ; Q− focus−

Γ ; Δ′ ; N 
 Q− preservative cut 2 on D and E ′
Γ ; Δ′, N ; · =⇒ · ; Q− focus−



A logical characterization of forward and backward chaining in the inverse method 169

Case E = E ′ :: Γ, C, A ; Δ′ ; C 
 Q−

Γ, C, A ; Δ′ ; · =⇒ · ; Q− focus!

Γ, C ; Δ 	 A weakening D
Γ, C ; Δ′ ; C 
 Q− preservative cut 2 on above and E ′
Γ, C ; Δ′ ; · =⇒ · ; Q− focus!

Case E = E ′ :: Γ, A ; Δ′ ; A 
 Q−

Γ, A ; Δ′ ; · =⇒ · ; Q− focus!

Because A is focused on the left tin E ′ and the right in D, one
of the two must break focus. First consider the latter case, i.e.,
for A = N

D = D′ :: Γ ; · ; · =⇒ N ; ·
Γ ; · 	 N

blur+

In this case we are in a smaller cut of type 5 (see case 2 below)
after weakening D′ :: Γ, N ; · ; · =⇒ N ; ·. In the other case,
i.e., for A = P,

D′ = E ′′ :: Γ, P ; Δ ; P =⇒ · ; Q−

Γ, P ; Δ ; P 
 Q− blur−

P is principal in both E ′′ and D, so we treat it as a principal cut.

2. D :: Γ ; Δ ; Ω =⇒ A ; ·.
(a) E :: Γ ; Δ′ ; A 
 Q−

(1) A = P and E = E ′ :: Γ ; Δ′ ; P =⇒ · ; Q−

Γ ; Δ′ ; P 
 Q− blur+

Γ ; Δ,Δ′ ; Ω =⇒ · ; Q− cut on D and E ′

(2) A = n and E =
Γ ; · ; n 
 n

init−

Γ ; Δ ; Ω =⇒ · ; n inversion on D

(3) A is non-atomic and negative. Then, there is a similar derivation D′ ≈
D for which the last rule in D′ has A as a principal proposition. Then
A is principal in both D′ and E , so we have a principal cut.

(b) E :: Γ ; Δ′ ; Ω ′ · A · Ω ′′ =⇒ γ .

(1) E ends in a right-active rule such as:

E = E ′ :: Γ ; Δ′ ; Ω ′ · A · Ω ′′ · D =⇒ E ; ·
Γ ; Δ′ ; Ω ′ · A · Ω ′′ =⇒ D � E ; · � R

Γ ; Δ,Δ′ ; Ω ′ · Ω · Ω ′′ · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω ′ · Ω · Ω ′′ =⇒ D � E ; · � R
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(2) E ends in a left-active rule such as:

E = E ′ :: Γ ; Δ′ ; Ω ′
1 · D · E · Ω ′

2 · A · Ω ′′ =⇒ γ

Γ ; Δ′ ; Ω ′
1 · D ⊗ E · Ω ′

2 · A · Ω ′′ =⇒ γ
⊗ L

Γ ; Δ,Δ′ ; Ω ′
1 · D · E · Ω ′

2 · Ω · Ω ′′ =⇒ γ cut on D and E ′
Γ ; Δ, Δ′; Ω ′

1 · D ⊗ E · Ω ′
2 · Ω · Ω ′′ =⇒ γ ⊗L

We are left with the cases for which the last rule in E was on A.

(3) A = N+ and E = E ′ :: Γ ; Δ′, N+ ; Ω ′ · Ω ′′ =⇒ γ

Γ ; Δ′ ; Ω ′ · N+ · Ω ′′ =⇒ γ
act L

Γ ; Δ,Δ′ ; Ω ′ · Ω ′′ · Ω =⇒ γ cut on D and E ′

(4) A is a non-atomic positive proposition P, and principal in the last rule
of E :: Γ ; Δ′ ; Ω · P · Ω ′ =⇒ γ . In this case we find a similar E ′ ≈ E
where the rule for P is delayed as long as possible, then proceed by
induction on E ′. All cases will be inductive steps of the forms 2(b)i or
2(b)ii above except for the case of the form E ′ :: Γ ; Δ′ ; P =⇒ · ; Q−.
Now we induct on D.

Case D ends in a left-active rule such as

D = D′ :: Γ ; Δ ; Ω · D · E · Ω ′ =⇒ P ; ·
Γ ; Δ ; Ω · D ⊗ E · Ω ′ =⇒ P ; · ⊗L

Γ ; Δ,Δ′ ; Ω · D · E · Ω ′ =⇒ · ; Q− cut on D′ and E ′
Γ ; Δ,Δ′ ; Ω · D ⊗ E · Ω ′ =⇒ · ; Q− ⊗L

Case D = D′ :: Γ ; Δ ; Ω =⇒ · ; P
Γ ; Δ ; Ω =⇒ P ; · act R

Here we have several possibilities:

Subcase D′ ends in a left-active rule, such as:

D′ = D′′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ · ; P
Γ ; Δ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; P

⊗L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut on D′′ and E ′
Γ ; Δ,Δ′ ; Ω1.D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

This takes care of all left-active rules in D′, so we just have to
account for the focus rules.

Subcase D′ = D′′ :: Γ ; Δ 	 P
Γ ; Δ ; · =⇒ · ; P

focus+

P is principal in both D′′ and E ′, which is a principal cut.

Subcase D′ = D′′ :: Γ ; Δ ; N 
 P
Γ ; Δ, N ; · =⇒ · ; P

focus−

Γ ; Δ,Δ′ ; Ns 
 Q− preservative cut 6 on D′′ and E ′
Γ ; Δ,Δ′, Ns ; · =⇒ · ; Q− focus−
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Subcase D′ = D′′ :: Γ, C ; Δ ; C 
 P
Γ, C ; Δ ; · =⇒ · ; P

focus!

Γ, C ; Δ′ ; P =⇒ · ; Q− weakening E ′
Γ, C ; Δ,Δ′ ; C
 Q− preservative cut 2 on D′′ and above
Γ, C ; Δ,Δ′ ; · =⇒ · ; Q− focus!

(c) E :: Γ ; Δ′, A ; Ω ′ =⇒ γ .

(1) E ends in a right-active rule such as:

E = E ′ :: Γ ; Δ′, A ; Ω ′ · D =⇒ E ; ·
Γ ; Δ′, A ; Ω ′ =⇒ D � E ; · � R

Γ ; Δ,Δ′ ; Ω · Ω ′ · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω · Ω ′ =⇒ D � E ; · � R

(2) E ends in a left-active rule such as:

E = E ′ :: Γ ; Δ′, A ; Ω ′
1 · D · E · Ω ′

2 =⇒ γ

Γ ; Δ′, A ; Ω ′
1 · D ⊗ E · Ω ′

2 =⇒ γ
⊗L

Γ ; Δ,Δ′ ; Ω · Ω ′
1 · D · E · Ω ′

2 =⇒ γ cut on D and E ′
Γ ; Δ,Δ′ ; Ω · Ω ′

1 · D ⊗ E · Ω ′
2 =⇒ γ ⊗L

(3) The above two cases take care of all the active rules that E ends
with. This leaves the neutral case E :: Γ ; Δ′, A ; · =⇒ · ; Q−.

Case A = N and E = E ′ :: Γ ; Δ′ ; N 
 Q
Γ ; Δ′, N ; · =⇒ · ; Q

focus−

Here we commute into D. If D ends with a left-active
rule:

D = D′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ N ; ·
Γ ; Δ ; Ω1 · D ⊗ E · Ω ′ =⇒ N ; · ⊗L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut on D′ and E
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

Otherwise, D ends with a right-active rule on N. Then, N
is principal in both D and E ′, so we have a principal cut.

Case E = E ′ :: Γ ; Δ′, A ; N 
 Q−

Γ ; Δ′, N, A ; · =⇒ · ; Q− focus−

We find a similar D′ ≈ D where the rules on A are
delayed as far as possible, then proceed by induction on
the structure of D′.

If D′ ends in a left-active rule, such as:

D′ = D′′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ A ; ·
Γ ; Δ ; Ω1 · D ⊗ E.Ω2 =⇒ A ; · ⊗L

Γ ; Δ,Δ′ ; Ω1 ·D ·E · Ω2 =⇒· ; Q− cut on D′′ and E
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 =⇒· ; Q− ⊗L.
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This only leaves D′ :: Γ ; Δ ; · =⇒ A ; ·. If A is positive,
then the only possible premiss of D′ is Γ ; Δ ; · =⇒ · ; A,
so together with E we have a critical pair.
Otherwise, we may assume that A is a negative proposi-
tion M, thereby gaining access to preservative cut 1.

Γ ; Δ,Δ′ ; N 
 Q− preservative cut on D′ and E ′
Γ ; Δ,Δ′, N ; · =⇒ · ; Q− focus−

Case E = E ′ :: Γ, C ; Δ′, A ; C 
 Q−

Γ, C ; Δ′, A ; · =⇒ · ; Q− focus!

This is similar to the previous case, except we have to
weaken the derivation D first.

Case E = E ′ :: Γ ; Δ′, A 	 Q
Γ ; Δ′, A ; · =⇒ · ; Q

focus+

We find a similar D′ ≈ D where the rules on A are
delayed as far as possible, then proceed by induction on
the structure of D′.

If D′ ends in a left-active rule such as

D′ = D′′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ A ; ·
Γ ; Δ ; Ω1 · D ⊗ E · Ω2 =⇒ A ; · ⊗L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut on D′′ and
E
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L.

This leaves D′ :: Γ ; Δ ; · =⇒ A ; ·. If A is positive, then
the only possible premiss of D′ is Γ ; Δ′ ; · =⇒ · ; A,
which together with E is a critical pair.

Otherwise, when A is negative, we can use a preservative cut 1.

Γ ; Δ,Δ′ 	 Q preservative cut on D and E ′
Γ ; Δ,Δ′ ; · =⇒ · ; Q− focus+ or focus+′

3. A = P− and D :: Γ ; Δ ; Ω =⇒ · ; P−.

(a) E :: Γ ; Δ′ ; P− 
 Q−

(1) P− = n and E =
Γ ; · ; n 
 n

init−

Here F = D.

(2) P− is non-atomic, i.e., E = E ′ :: Γ ; Δ′ ; P =⇒ · ; Q−

Γ ; Δ′ ; P 
 Q− blur+

Γ ; Δ,Δ′ ; Ω =⇒ · ; Q− cut on D and E ′
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(b) E :: Γ ; Δ′ ; Ω ′ · P− · Ω ′′ =⇒ γ .

(1) E ends in a right-active rule such as:

E = E ′ :: Γ ; Δ′ ; Ω ′ · P− · Ω ′′ · D =⇒ E ; ·
Γ ; Δ′ ; Ω ′ · P− · Ω ′′ =⇒ D � E ; · � R

Γ ; Δ,Δ′ ; Ω ′ · Ω · Ω ′′ · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω ′ · Ω · Ω ′′ =⇒ D � E ; · � R

(2) E ends in a left-active rule such as:

E = E ′ :: Γ ; Δ′ ; Ω ′
1 · D · E · Ω ′

2 · P− · Ω ′′ =⇒ γ

Γ ; Δ′ ; Ω ′
1 · D ⊗ E · Ω ′

2 · P− · Ω ′′ =⇒ γ
⊗L

Γ ; Δ,Δ′ ; Ω ′
1 · D · E · Ω ′

2 · Ω · Ω ′′ =⇒ γ cut on D and E ′
Γ ; Δ,Δ′ ; Ω ′

1 · D ⊗ E · Ω ′
2 · Ω · Ω ′′ =⇒ γ ⊗L

(3) P− = n and E = E ′ :: Γ ; Δ′, n ; Ω ′ · Ω ′′ =⇒ γ

Γ ; Δ′ ; Ω ′ · n · Ω ′′ =⇒ γ
act L

Γ ; Δ,Δ′ ; Ω ′ · Ω ′′ · Ω =⇒ γ cut on D and E ′

(4) P is non-atomic and principal in E :: Γ ; Δ′ ; Ω · P · Ω ′ =⇒ γ . In this
case we find a similar E ′ ≈ E where the rule for P is delayed as long as
possible, then proceed by induction on E ′. All cases will be inductive
steps of the forms 3(b)i or 3(b)ii above except for the case of the form
E ′ :: Γ ; Δ′ ; P =⇒ · ; Q−. Now we induct on D.

Case D ends in a left-active rule, such as:

D = D′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ · ; P
Γ ; Δ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; P

⊗L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut on D′ and E ′
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

This takes care of everything in Ω , so we just need to consider
the cases where D :: Γ ; Δ ; · =⇒ · ; P.

Case D ends in focus+. Then, P is principal in both D and E ′, so we
have a principal cut.

Case D = D′ :: Γ ; Δ ; N 
 P
Γ ; Δ, N ; · =⇒ · ; P

focus−

Γ ; Δ,Δ′ ; N 
 Q− preservative cut 2 on D′ and E ′
Γ ; Δ,Δ′, N ; · =⇒ · ; Q− focus−

Case D = D′ :: Γ, C ; Δ ; C 
 P
Γ, C ; Δ ; · =⇒ · ; P

focus!

Γ, C ; Δ′ ; P =⇒ · ; Q− weakening E ′
Γ, C ; Δ,Δ′ ; C 
 Q− preservative cut 2 on D′ and above
Γ, C ; Δ,Δ′ ; · =⇒ · ; Q− focus!
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(c) E ::Γ ; Δ′, P− ; Ω ′ =⇒γ . By the occurrence restriction, P− is of the form n.

(1) E ends in a right-active rule such as:

E = E ′ :: Γ ; Δ′, n ; Ω ′ · D =⇒ E ; ·
Γ ; Δ′, n ; Ω ′ =⇒ D � E ; · � R

Γ ; Δ,Δ′ ; Ω ′ · D =⇒ E ; · cut on D and E ′
Γ ; Δ,Δ′ ; Ω ′ =⇒ D � E ; · � R

(2) E ends in a left-active rule such as:

E = E ′ :: Γ ; Δ′, n ; Ω ′
1 · D · E · Ω ′

2 =⇒ γ

Γ ; Δ′, n ; Ω ′
1 · D ⊗ E · Ω ′

2 =⇒ γ
⊗ L

Γ ; Δ,Δ′ ; Ω ′
1 · D · E · Ω ′

2 · Ω =⇒ γ cut on D and E ′
Γ ; Δ,Δ′ ; Ω ′

1 · D ⊗ E · Ω ′
2 · Ω =⇒ γ ⊗L

(3) E :: Γ ; Δ′, n ; · =⇒ · ; Q−. Here we induct on D.

(1) D ends in a left-active rule such as:

D = D′ :: Γ ; Δ ; Ω1 · D · E · Ω2 =⇒ · ; n
Γ ; Δ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; n

⊗ L

Γ ; Δ,Δ′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut on D′ and E
Γ ; Δ,Δ′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

(2) The above case takes care of all the active rules at the end of D.
We are left with just the neutral D :: Γ ; Δ ; · =⇒ · ; n. This is a
critical pair.

Appendix 6: Preservative Cuts

The only remaining kinds of cuts are those that preserve focus. Each kind of
preservative cut will be shown to reduce to other strictly smaller cuts.

1. If D :: Γ ; Δ 	 A and

(a) E :: Γ ; Δ′, A ; C 
 Q−, then Γ ; Δ,Δ′ ; C 
 Q−.
(b) E :: Γ ; Δ′, A 	 C, then Γ ; Δ,Δ′ 	 C.

2. If D :: Γ ; · 	 A and

(a) E :: Γ, A ; Δ ; C 
 Q−, then Γ ; Δ ; C 
 Q−.
(b) E :: Γ, A ; Δ 	 C, then Γ ; Δ 	 C.

3. If D :: Γ ; Δ ; · =⇒
{ · ; N

N ; · and

(a) E :: Γ ; Δ′, N ; C 
 Q−, then Γ ; Δ,Δ′ ; C 
 Q−.
(b) E :: Γ ; Δ′, N 	 C, then Γ ; Δ,Δ′ 	 C.

4. If D :: Γ ; · ; · =⇒
{ · ; A

A ; · and

(a) E :: Γ, A ; Δ ; C 
 Q−, then Γ ; Δ ; C 
 Q−.
(b) E :: Γ, A ; Δ 	 C, then Γ ; Δ 	 C.
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For these four types of preservative cuts, we proceed by induction on E .

(1) Focus is blurred in the last rule in E . The following is a representative case.

D :: Γ ; Δ 	 A E = E ′ :: Γ ; Δ′, A ; · =⇒ N ; ·
Γ ; Δ′, A 	 N

blur−

Γ ; Δ,Δ′ ; · =⇒ N ; · cut on D and E ′
Γ ; Δ,Δ′ 	 N blur−

(2) Focus is maintained in the last rule in E . The following is a representative
case.

D :: Γ ; Δ 	 A E = E ′ :: Γ ; Δ′, A 	 D
Γ ; Δ′, A 	 D ⊕ E

⊕R1

Γ ; Δ,Δ′ 	 D preservative cut 1 on D and E ′
Γ ; Δ,Δ′ 	 D ⊕ E ⊕R1

This leaves just the init+ and init− rules.

(3) The cut proposition A = p and E =
Γ ; p	p init+. The latter two cases 3

and 4 do not apply. Case 2 also does not apply because we need p in the
linear zone. The only case is 1, for which Δ = p. The required conclusion is
thus Γ ;p 	 p, which is obvious from init+.

(4) E =
Γ,A ; p	p init+. In this case Δ must be ·, which limits us to cases 2 and

4. In either case, the conclusion Γ ; p 	 p is true by init+.
(5) E =

Γ,A ; n
n init−. The argument is nearly identical to the previous case.

This is the only possible case in which E can end in init−, as the cut
proposition cannot be in focus in E .

We also have a few symmetric cases for the preservative cuts.

5. If D :: Γ ; Δ ; C 
 A and E :: Γ ; Δ′ ; A 
 Q− then Γ ; Δ,Δ′ ; C 
 Q−.

6. If D :: Γ ; Δ ; C 
 P and E :: Γ ; Δ′ ; P
Γ ; Δ′, P ; ·

}
=⇒ · ; Q− then Γ ; Δ,Δ′ ; C 
 Q−.

Here, we proceed by induction on D.

(1) Focus is blurred in the last rule in D. The following is a representative case.

D = D′ :: Γ ; Δ ; P =⇒ · ; A
Γ ; Δ ; P 
 A

blur+ E = Γ ; Δ′ ; A 
 Q−

Γ ; Δ,Δ′ ; P =⇒ ·Q cut on D′ and E
Γ ; Δ,Δ′ ; P 
 Q− blur+

(2) Focus is maintained in the last rule in D. The following is a representative case.

D = D′ :: Γ ; Δ ; D 
 A
Γ ; Δ ; D&E 
 A

&Li E = Γ ; Δ′ ; A 
 Q−

Γ ; Δ,Δ′ ; D 
 Q− preservative cut 5 on D′ and E
Γ ; Δ,Δ′ ; D&E 
 Q− &L1

(3) D =
Γ ; n
n init−. Then, case 6 is not applicable, and in case 5, Δ = Δ′ = · and

A = C = Q = n. The required conclusion, Γ ; · ; n 
 n thus follows from init−.
�
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