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Abstract. The inverse method is a generalization of resolution that can be ap-
plied to non-classical logics. We have recently shown how Andreoli’s focusing
strategy can be adapted for the inverse method in linear logic. In this paper we
introduce the notion of focusing bias for atoms and show that it gives rise to
forward and backward chaining, generalizing both hyperresolution (forward) and
SLD resolution (backward) on the Horn fragment. A key feature of our charac-
terization is the structural, rather than purely operational, explanation for forward
and backward chaining. A search procedure like the inverse method is thus able
to perform both operations as appropriate, even simultaneously. We also present
experimental results and an evaluation of the practical benefits of biased atoms
for a number of examples from different problem domains.

1 Introduction

Designing and implementing an efficient theorem prover for a non-classical logic re-
quires deep knowledge about the structure and properties of proofs in this logic. For-
tunately, proof theory provides a useful guide, since it has isolated a number of impor-
tant concepts that are shared between many logics of interest. The most fundamental is
Gentzen’s cut-elimination property [7] which allows us to consider only subformulas of
a goal during proof search. Cut elimination gives rise to the inverse method [6] for the-
orem proving which applies to many non-classical logics. A more recent development
is Andreoli’s focusing property [1, 2] which allows us to translate formulas into derived
rules of inference and then consider only the resulting big-step derived rules without
losing completeness. Even though Andreoli’s system was designed for classical linear
logic, similar focusing systems for many other logics have been discovered [10, 8].

In prior work we have constructed a focusing system forintuitionistic linear logic
which is consonant with Andreoli’s classical version [5], and that restricting the inverse
method to work only with big-step rules derived from focusing dramatically improves
its efficiency [4]. The key feature of focusing is that each logical connective carries an
intrinsic attribute called polarity that determines its behavior under focusing. In the case
of linear logic, polarities are uniquely determined for each connective. However, as An-
dreoli noted, polarities may be chosen freely for atomic formulas as long as duality is
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consistently maintained. In this paper we prove that, despite the asymmetric nature of
intuitionistic logic, a similar observation can be made here. Furthermore, we show that
proof search on Horn formulas with the inverse method behaves either like hyperreso-
lution or SLD resolution, depending on the chosen polarity for atoms. If different atoms
are ascribed different polarities we can obtain combinations of these strategies that re-
main complete. The focused inverse method therefore directly generalizes these two
classical proof search strategies. We also demonstrate through an implementation and
experimental results that this choice can be important in practical proof search situations
and that the standard polarity assumed for atoms in intuitionistic [9] or classical [14]
logic programming is often the less efficient one.

Since focusing appears to be an almost universal phenomenon among non-classical
logics, we believe these observations have wide applicability in constructing theorem
provers. The fact that we obtain well-known standard strategies on the Horn fragment,
where classical, intuitionistic, and even linear logic coincide, provides further evidence.
We are particularly interested in intuitionistic linear logic and its extension by a monad,
since it provides the foundation for the logical framework CLF [3] which we can use
to specify stateful and concurrent systems. Theorem proving in CLF thereby provides
a means for analyzing properties of such systems.

The remainder of the paper is organized as follows. In Section 2 we present the
backward focusing calculus that incorporates focusing bias on atoms. In Section 2.1
we describe the derived rules that are generated with differently biased atoms. We then
sketch the focused inverse method in Section 3, noting the key differences between se-
quents and rules in the forward direction from their analogues in the backward direction.
In Section 4 we concentrate on the Horn fragment, where we show that the derived rules
generalize hyperresolution (for right-biased atoms) and SLD resolution (for left-biased
atoms). Finally, section 5 summarizes our experimental results on an implementation
of the inverse method presented in Section 3.

2 Biased focusing

We consider intuitionistic linear logic including the following connectives: linear im-
plication ((), multiplicative conjunction (⊗, 1), additive conjunction (&,>), additive
disjunction (⊕, 0), the exponential (!), and the first-order quantifiers (∀, ∃). Quantifica-
tion is over a simple term language consisting of variables and uninterpreted function
symbols applied to a number of term arguments. Propositions are written using capital
letters (A, B, . . .), and atomic propositions with lowercase letters (p,q, . . .). We use a
standard dyadic sequent calculus for this logic, having the usual nice properties: iden-
tity principle, cut-admissibility, structural weakening and contraction for unrestricted
hypotheses. The rules of this calculus are standard and can be found in [4]. In this
section we shall describe the focused version of this calculus.

In classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&,>, M, ⊥, ∀) are asyn-
chronous, and the positive connectives (⊗, 1, ⊕, 0, ∃) are synchronous. In intuitionistic
logic, where the left- and right-hand side of a sequent are asymmetric and no convolu-
tive negation exists, we derive the properties of the connectives via the rules and phases
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of search: an asynchronous connective is one for which decomposition is complete in
theactive phase; a synchronous connective is one for which decomposition is complete
in thefocused phase.

symbol connectives
P left-synchronous (&,>,()
Q right-synchronous (⊗, 1, !)

L left-asynchronous (⊗, 1, !)
R right-asynchronous (&,>,()

As our backward linear sequent calcu-
lus is two-sided, we have left- and right-
synchronous and asynchronous connectives.
For non-atomic propositions a left-synchro-
nous connective is right-asynchronous, and
a left-asynchronous connective right-syn-
chronous; this appears to be universal in well-behaved logics. We define the notations in
the adjacent table fornon-atomicpropositions. The contexts in sequents contain linear
and unrestricted zones as is usual in dyadic formulations of the sequent calculus. The
unrestrictedzone, writtenΓ, contains propositions that may be consumed arbitrarily
often. Thepassive linearzone, written∆, contains propositions that must be consumed
exactly once. We further restrict this zone to contain only the left-synchronous proposi-
tions. We also require a third kind of zone in active rules. This zone, writtenΩ, contains
propositions that must be consumed exactly once, but unlike the passive linear zone,
can contain arbitrary propositions. We treat thisactive linearzone as an ordered con-
text and use a centered dot (·) instead of commas to join active zones together. As we
are in the intuitionistic setting, the right hand side must contain exactly one proposition.
If the right propositionC is asynchronous, then we write the right hand side asC ; ·. If
it is synchronous and not participating in any active rule, then we write it as· ; C. If
the shape of the right hand side does not matter, we write it asγ. We have the follow-
ing kinds of sequents:right-focal sequentsΓ ; ∆�A, left-focalsequentsΓ ; ∆ ; A�Q
(focus onA in both cases), andactive sequentsΓ ; ∆ ; Ω =⇒ γ.

Active ruleswork on active sequents. In each case, a rule either decomposes an
asynchronous connective (e.g.⊗L) or transfers a synchronous proposition into one of
the passive zones. The order in which propositions are examined is immaterial.

Γ ; ∆ ; Ω · A · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊗ B · Ω′ =⇒ γ

⊗L
Γ ; ∆,P ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · P · Ω′ =⇒ γ

lact
Γ ; ∆ ; Ω =⇒ · ; Q
Γ ; ∆ ; Ω =⇒ Q ; ·

ract

Because the ordering of propositions inΩ is immaterial, it is then sufficent to designate
a particular ordering in which these rules will are applied. We omit the standard details
here. Eventually the active sequent is reduced to the formΓ ; ∆ ; · =⇒ · ; Q, which we
call a neutral sequent. We will often write neutral sequents simply asΓ ; ∆ =⇒ Q.

A focusing phaseis launched from a neutral sequent by selecting a proposition from
Γ, ∆, or the right hand side:

Γ ; ∆ ; P�Q
Γ ; ∆,P =⇒ Q

lf
Γ,A ; ∆ ; A�Q
Γ,A ; ∆ =⇒ Q

copy
Γ ; ∆′�Q∗

Γ ; ∆ =⇒ Q∗
rf

This focused formula is decomposed under focus until the proposition becomes asyn-
chronous. For example:

Γ ; ∆�A Γ ; ∆′� B
Γ ; ∆, ∆′�A⊗ B

⊗R
Γ ; ∆ ; A�Q
Γ ; ∆ ; A & B�Q

&L1
Γ ; ∆ ; B�Q
Γ ; ∆ ; A & B�Q

&L2
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As mentioned before, atomic propositions are somewhat special. Andreoli observed
in [1] that it is sufficient to assign arbitrarily a synchronous or asynchronous nature to
the atoms as long as duality is preserved; here, the asymmetric nature of the intuition-
istic sequents suggests that they should be synchronous. However, we are still left with
two possibilities for the initial sequents.

Γ ; · ; p� p and Γ ; q�q

In previous work [4, 5], we always selected the first of these two possibilities for the ini-
tial sequent. In this paper, we allow both kinds of initial sequents depending on the kind
of focusing biaswith regard to specific atoms. Aright-biasedatom has the Horn-like
interpretation; here initial sequents have aleft focus, and the right hand side is treated
like the neutral “goal” in logic programming. Aleft-biasedatom has the state-like in-
terpretation; here initial sequents have a right focus, and the constitution of the linear
context corresponds more directly to the evolution of the state.

The full set of rules is omitted; they can be reconstructed from [5, 4].1 We will
briefly mention below the completeness theorem which proceeds via cut-elimination
for the focusing calculus. This kind of theorem is not a contribution of this paper; we
provided a similar proof for the right-focused system in [5]. The basic idea is to inter-
pret every non-focusing sequent as an active sequent in the focusing calculus, then to
show that the backward rules are admissible in the focusing calculus using cut. Because
propositions have dual synchronicities based on which side of the sequent arrow they
appear in, a left-focal sequent matches only an active sequent in a cut; similarly for
right-synchronous propositions. Cuts destroy focus as they generally require commuta-
tions spanning phase boundaries; this is not significant for our purposes as we interpret
non-focusing sequents as active sequents.

Theorem 1 (cut).If
1. Γ ; ∆�A and:

(a) Γ ; ∆′ ; Ω · A =⇒ γ thenΓ ; ∆, ∆′ ; Ω =⇒ γ.
(b) Γ ; ∆′,A ; Ω =⇒ γ thenΓ ; ∆, ∆′ ; Ω =⇒ γ.

2. Γ ; ·�A andΓ,A ; ∆ ; Ω =⇒ γ thenΓ ; ∆ ; Ω =⇒ γ.
3. Γ ; ∆ ; Ω =⇒ A and:

(a) Γ ; ∆′ ; A�Q thenΓ ; ∆, ∆′ ; Ω =⇒ Q.
(b) Γ ; ∆′ ; Ω′ · A =⇒ γ thenΓ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ.
(c) Γ ; ∆′,A ; Ω′ =⇒ γ thenΓ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ.

4. Γ ; · ; · =⇒ A and:

(a) Γ,A ; ∆ ; Ω =⇒ γ thenΓ ; ∆ ; Ω =⇒ γ.
(b) Γ,A ; ∆� B thenΓ ; ∆� B.

The proof is by lexicographic induction over the structure of the two input deriva-
tions. It has one important difference from similar structural cut-admissibility proofs:
when permuting a cut into an active derivation, we sometimes need to reorder the input
derivation in order to allow permuting the cut to the point where it becomes a principal
cut. Thus, we have to generalize the induction hypothesis to be applicable not only to
structurally smaller derivations, but also permutations of the smaller derivations that
differ in the order of the active rules. For lack of space, we omit the details of this proof.

1 Note to reviewers: the rules can be found in Appendix A.
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Theorem 2 (completeness).If Γ ; ∆ =⇒ C, thenΓ ; · ; ∆ =⇒ C ; ·.

The proof uses cut to show that the non-focusing rules are admissible in the focusing
system.

2.1 Derived inference rules

The primary benefit of focusing is the ability to generate derived “big step” inference
rules: the intermediate results of a focusing or active phase are not important. Andreoli
called these rules “bipoles” because they combine two phases with principal formulas of
opposite polarities. Each derived rule starts (at the bottom) with a neutral sequent from
which a synchronous proposition is selected for focus. This is followed by a sequence
of focusing steps until the proposition under focus becomes asynchronous. Then, the
active rules are applied, and we eventually obtain a collection of neutral sequents as
the leaves of this fragment of the focused derivation. These neutral sequents are then
treated as the premisses of the derived rule that produces the neutral sequent with which
we started.

For lack of space, we omit a formal presentation of the derived rule calculus; instead,
we will motivate it with an example. Consider the negative propositionq⊗ n( d ⊗ d ⊗ d2

in the unrestricted contextΓ. We start with focus on this proposition, and construct the
following derivation tree.

Γ ; ∆1 =⇒ q
Γ ; ∆1 ; · =⇒ q ; ·
Γ ; ∆1�q

rb

Γ ; ∆2 =⇒ n
Γ ; ∆2 ; · =⇒ n ; ·
Γ ; ∆2�n

rb

Γ ; ∆1, ∆2�q⊗ n
⊗R

Γ ; ∆3,d,d,d =⇒ · ; Q
Γ ; ∆3 ; d ⊗ d ⊗ d =⇒ · ; Q

⊗L;⊗L; lact× 3

Γ ; ∆3 ; d ⊗ d ⊗ d�Q
lb

Γ ; ∆1, ∆2, ∆3 ; q⊗ n( d ⊗ d ⊗ d�Q
(L

Γ ; ∆1, ∆2, ∆3 =⇒ Q
copy

Here we assume that all atoms are right-biased, so none of the branches of the deriva-
tion can be closed off with an “init” rule. Thus, we obtain the derived rule:

Γ ; ∆1 =⇒ q Γ ; ∆2 =⇒ n Γ ; ∆3,d,d,d =⇒ Q
Γ ; ∆1, ∆2, ∆3 =⇒ Q

(D1)

The situation is considerably different if we assume that all atoms are left-biased. In
this case, we get the following derivation:

Γ ; q�q
linit

Γ ; n�n
linit

Γ ; q,n�q⊗ n
⊗R

Γ ; ∆,d,d,d =⇒ · ; Q
Γ ; ∆ ; d ⊗ d ⊗ d =⇒ · ; Q

⊗L;⊗L; lact× 3

Γ ; ∆ ; d ⊗ d ⊗ d�Q
lb

Γ ; q,n, ∆ ; q⊗ n( d ⊗ d ⊗ d�Q
(L

Γ ; q,n, ∆ =⇒ Q
copy

In this left-biased case, we can terminate the left branch of the derivation with a pair of
“init” rules. This rule forces the linear context in this branch of the proof to contain just
the atomsq andn. The derived rule we obtain is, therefore,

Γ ; ∆,d,d,d =⇒ Q
Γ ; ∆,q,n =⇒ Q

(D2)

2 Standing roughly for “quarter and nickel goes to three dimes”.
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There are two key differences to observe between the derived rules (D1) and (D2).
The first is that simply altering the bias of the atoms has a huge impact on the kinds of
rules that are generated; even if we completely ignore the semantic aspect, the rule (D2)
is vastly preferable to (D1) because it is much easier to use single premiss rules.

The second — and more important — observation is that the rule that was generated
for the left-biased atoms has a stronger and more obvious similarity to the proposition
q⊗ n( d ⊗ d ⊗ d that was under focus. If we view the linear zone as the “state” of a
system, then the rule (D2) corresponds to transforming a portion of the state by replac-
ing q andn by threeds (reading the rule from bottom to top). If, as is common for linear
logic, the unrestricted contextΓ contains state transition rules for some encoding of a
stateful system, then the derived rules generated by left-biasing allows us to directly
observe the evolution of the state of the system by looking at the composition of the
linear zone.

3 The focused inverse method

In this section we will briefly sketch the inverse method using the focusing calculus of
the previous section. The construction of the inverse method for linear logic is described
in more detail in [4]. To distinguish forward from backward sequents, we shall use a
single arrow (−→), but keep the names of the rules the same. In the forward direction,
the primary context management issue concerns rules where the conclusion cannot be
simply assembled from the premisses. The backward>R rule has an arbitrary linear
context∆, and the unrestricted contextΓ is also unknown in several rules such as init and
>R. For the unrestricted zone, this problem is solved in the usual (non-linear) inverse
method by collecting only the needed unrestricted assumptions and remembering that
they can be weakened if needed [6]. We adapt the solution to the linear zone, which
may either be precisely determined (as in the case for initial sequents) or subject to
weakening (as in the case for>R). We therefore differentiate sequents whose linear
context can be weakened and those whose can not.

Definition 3 (forward sequents).A forward sequentis of the formΓ ; [∆]w −→ γ, with
w a Boolean (0 or 1) called theweak-flag, andγ being either empty (·) or a single-
ton. The sequentΓ ; [∆]w −→ γ corresponds to the backward sequentΓ′ ; ∆′ =⇒ C if
Γ ⊆ Γ′, γ ⊆ C; and∆ = ∆′ if w = 0 and∆ ⊆ ∆′ if w = 1. Sequents with w= 1 are called
weakly linearor simplyweak, and those with w= 0 arestrongly linearor strong.

Initial sequents are always strong, since their linear context cannot be weakened. On
the other hand,>R always produces a weak sequent. For binary rules, the unrestricted
zones are simply juxtaposed. We can achieve the effect of taking their union by applying
the explicit contraction rule (which is absent, but admissible in the backward calculus).
For the linear zone we have to distinguish cases based on whether the sequent is weak
or not. We write the rules using two operators on the linear context – multiplicative
composition (×) and additive composition (+).

Γ ; [∆]w −→ A Γ′ ; [∆′]w′ −→ B
Γ, Γ′ ; [∆]w × [∆′]w′ −→ A⊗ B

⊗R
Γ ; [∆]w −→

w A Γ′ ; [∆′]w′ −→ B
Γ, Γ′ ; [∆]w + [∆′]w′ −→ A & B

&R
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These compositions are defined as follows: For multiplicative rules, it is enough for one
premiss to be weak for the conclusion to be weak; the weak flags are therefore joined
with a disjunction (∨). Dually, for additive rules, both premisses must be weak for the
conclusion to be weak; in this case the weak flags are joined with a conjunction (∧).

Definition 4 (context composition).The partial operators× and+ on forward linear
contexts are defined as follows:[∆]w × [∆′]w′ =def [∆, ∆′]w∨w′ , and

[∆]w + [∆′]w′ =def


[∆]0 if w = 0 and either w′ = 0 and∆ = ∆′, or w′ = 1 and∆′ ⊆ ∆

[∆′]0 if w′ = 0, w = 1 and∆ ⊆ ∆′

[∆ t ∆′]1 if w = w′ = 1

Note that∆ t ∆′ is the multiset union of∆ and∆′.

In the lifted version of this calculus with free variables, there is no longer a single
context represented by∆ t ∆′ because two propositions might be equalized by substi-
tution. The approach taken in [4] was to define an additional “context simplification”
procedure that iteratively calculates a set of candidates that includes every possible con-
text represented by∆ t ∆′ by means of contraction. Many of these candidates are then
immediately rejected by subsumption arguments. We refer to [4] for the full set of rules,
the completeness theorem, and the lifted version of this forward calculus.

3.1 Focused forward search

The sketched calculus in the previous section mentioned only single-step rules. We are
interested in doing forward search with derived inference rules generated by means of
focusing. We therefore have to slightly generalize the context composition operators
into a language of context expressions. In the simplest case, we merely have to add
a given proposition to the linear context, irrespective of the weak flag. This happens,
for instance, in the “lf” rule where the focused proposition is transferred to the linear
context. We write this adjunction as usual using a comma. In the more general case,
however, we have to combine two context expressions additively or multiplicatively
depending on the kind of rule they were involved in; for these uses, we appropriate the
same syntax we used for the single step compositions in the previous section.

(context expressions) D F [∆]w | D,A | D1 +D2 | D1 ×D2

Context expressions can besimplifiedinto forward contexts in a bottom-up procedure.
We writeD ↪→ [∆]w to denote thatD simplifies into [∆]w; it has the following rules.

[∆]w ↪→ [∆]w

D ↪→ [∆]w

D,A ↪→ [∆,A]w

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 +D2 ↪→ [∆1]w1 + [∆2]w2

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 ×D2 ↪→ [∆1]w1 × [∆2]w2

The forward version of backward derived rules can be written with these context
expressions in a natural way by allowing unsimplified context expressions in the place
of linear contexts in forward sequents. As an example, the negative unrestricted propo-
sitionq⊗ n( d ⊗ d ⊗ d has the following derived rules with right-biased atoms

Γ1 ; [∆1]w1 −→ q Γ2 ; [∆2]w2 −→ n Γ3 ; [∆3]w3 ,d,d,d −→ Q

Γ1, Γ2, Γ3 ; [∆1]w1 × [∆2]w2 × [∆3]w3 −→ Q
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After constructing the neutral sequent with a context expression we then simplify it.
Note that context simplification is a partial operation, so we may not obtain any conclu-
sions, for example, if the premisses to an additive rule are strong sequents but the linear
contexts do not match.

3.2 Focusing in the inverse method

First, we calculate thefrontier literals of the goal sequent, i.e., those subformulas that
are available in neutral sequents to be focused on. The calculation of the frontier literals
is outlined in [5] for the right-biased system. We modify this outline only slightly to
account for the left-biased atoms in the present system.

1. A positive atom is in the frontier if it lies in the boundary of a phase transition from
active to focus, and it is left-biased.

2. A negative atom is in the frontier if it lies in the boundary of a phase transition from
active to focus, and it is right-biased.

We then specialize the inference rules to these frontier literals by computing the derived
rules that correspond to giving focus to these literals.

We implement a derived rule as a curried function from sequents (premisses) to the
conclusion of the rule. Each application of a rule to a sequent first tests if the sequent can
match the corresponding premiss of the rule; if the match is successful, then the appli-
cation produces a new partially instantiated rule, or if there are no remaining premisses
then it produces a new sequent with an unsimplified linear context expression. The or-
der of arguments of this curried function fixes a particular ordering of the premisses of
the rule; the search procedure is set up so that any ordering guarantees completeness.

We use a lazy variant of the OTTER loop as the main loop of the prover, as described
in detail in [4]. In this variant, the collection of (partially applied) rules grows at run-
time; this is different from usual implementations of forward reasoning systems where
the collection of rules is fixed beforehand. However, we have observed that as a result
of the simplicity in constructing these partially instantiable rules, and the memoization
that is one direct consequence, that this lazy variant of the loop performs very well in
practice.

3.3 Globalization

The final unrestricted zoneΓg is shared in all branches in a proof ofΓg ; ∆g =⇒ γg. One
thus thinks ofΓg as part of the ambient state of the prover, instead of representing it
explicitly as part of the current goal. Hence, there is never any need to explicitly record
Γg or portions of it in the sequents themselves. This gives us the following global and
local versions of the copy rule in the forward direction.

Γ ; [∆]w ; A� γ A ∈ Γg

Γ ; [∆]w −→ γ
delete

Γ ; [∆]w ; A� γ A < Γg

Γ,A ; [∆]w −→ γ
copy

Globalization thus corresponds to a choice of whether to add the constructed principal
formula of a derived rule into the unrestricted zone or not, depending on whether or not
it is part of the unrestricted zone in the goal sequent.
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4 The Horn fragment

In complex specifications that employ linearity, there are often significant sub-specifi-
cations that lie in the Horn fragment. Unfortunately, the straightforward inverse method
is quite inefficient on Horn formulas, something already noticed by Tammet [16]. His
prover switches between hyperresolution for Horn and near-Horn formulas and the in-
verse method for other propositions.

With focusing, thisad hocstrategy selection becomes entirely unnecessary. The
focused inverse method for intuitionistic linear logic, when applied to a classical, non-
linear Horn formula, will exactly behave as classical hyperresolution or SLD resolution
depending on the focusing bias of the atomic propositions. This remarkable property
gives further credence to the power of focusing as a technique for forward reasoning.
In the next two sections we will describe this correspondence in slightly more detail.

A Horn clause has the form¬p1, . . . ,¬pn, p where thepi and p are atomic predi-
cates over their free variables. This can easily be generalized to include conjunction and
truth, but we restrict our attention to this simple clausal form, as theories with conjunc-
tion and truth can be simplified into this form. A Horn theoryΨ is just a set of Horn
clauses, and a Horn query is of the formΨ ` g whereg is a ground atomic “goal” for-
mula3. In the following section we use a simple translation (−)o of these Horn clauses
into linear logic where¬p1, . . . ,¬pn, p containing the free variables~x is translated into
∀~x. p1( · · ·( pn( p, and the queryΨ ` g is translated as (Ψ )o ; [·]0 −→ g. This is
a special case of a general, focusing-preserving translation from intuitionistic to intu-
itionistic linear logic [5].

4.1 Hyperresolution

The hyperresolution strategy for the Horn queryΨ ` g is just forward reasoning with
the following rule (forn > 1):

p′1 · · · p′n
θp

{
where¬p1, . . . ,¬pn, p ∈ Ψ ; ρ1, . . . , ρn are renaming substs; and
θ = mgu(〈ρ1p′1, . . . , ρnp′n〉, 〈p1, . . . , pn〉)

The hyperresolution procedure begins with the collection of unit clauses inΨ and¬g as
the initial set of facts. The proof succeeds if the empty fact (contradiction) is generated.
Because every clause in the theory has a positive literal, the only way an empty fact can
be generated is if it proves the factg itself (note thatg is ground).

Consider the goal sequent in the translation (Ψ )o ; [·]0 −→ g where the atoms are all
right-biased. The frontier is every clause∀~x. p1( · · ·( pn( p ∈ (Ψ )o. Focusing on
one such clause gives the following abstract derivation in the forward direction (using
lifted sequents):

3 Queries with more general goals can be compiled to this form by adding an extra clause to the
theory from the desired goal to a fresh ground goal literal
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Γ1 ; [∆1]w1 −→ p1

Γ1 ; [∆1]w1 ; · −→ p1 ; ·

Γ1 ; [∆1]w1� p1 · · ·

Γn ; [∆n]wn −→ pn

Γn ; [∆n]wn ; · −→ pn ; ·

Γn ; [∆n]wn� pn Γ ; [·]0 ; p� p
rinit

Γ1, . . . , Γn ; ∆ ; p1( · · ·( pn( p� p
(L

Γ1, . . . , Γn ; [∆1]w1 , . . . , [∆n]wn ; ∀~x. p1( · · ·( pn( p� p
∀L

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn −→ p
delete

In other words, the derived rule is
Γ1 ; ∆1 −→ p1 · · · Γn ; [∆n]wn −→ pn

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn −→ p

In the case wheren = 0, i.e., the clause in the Horn theory was a unit clausep, we
obtain an initial sequent of the form· ; [·]0 −→ p. As this clause has an empty left hand
side, and none of the derived rules add elements to the left, we can make an immediate
observation (lem.5) that gives us an isomorphism of rules (thm.6).

Lemma 5. Every sequent generated in the proof of the goal(Ψ )o ; [·]0 −→ g has an
empty left hand side. ut

Theorem 6 (isomorphism of rules).Every hyperresolution rule for the queryΨ ` g is
isomorphic to an instance of a derived rule for the overall goal sequent(Ψ )0 ; [·]0 −→ g
with empty left-hand sides. ut

These facts let us establish an isomorphism between hyperresolution and right-biased
focused derivations.

Theorem 7. Every hyperresolution derivation for the Horn queryΨ ` g has an isomor-
phic focused derivation for the goal sequent(Ψ )o ; [·]0 −→ g with right-biased atoms.

Proof (Sketch).For every factp′ generated by the hyperresolution strategy, we have a
corresponding fact· ; [·]0 −→ p′ in the focused derivation (up to a renaming of the free
variables). When matching these sequents for consideration as input for a derived rule
corresponding to the Horn clause¬p1, . . . ,¬pn, p, we calculate the simultaneous mgu
of all the pi and p′i for a Horn clause, which is precisely the operation also performed
in the hyperresolution rule. The required isomorphism then follows from thm. 6.ut

4.2 SLD Resolution

SLD Resolution [11] is a variant of linear resolution that is complete for Horn theories.
For the Horn queryΨ ` g, we start with just the initial clauseg, and then perform
forward search using the following rule (usingΞ to stand for clauses).

Ξ,q
θ(Ξ, p1, p2, . . . , pn)

{
where¬p1, . . . ,¬pn, p ∈ Ψ ; ρ is a renaming subst; and
θ = mgu(ρp,q)

Whenn = 0, i.e., for unit clauses in the Horn theory, this rule corresponds to simply
deleting the member of the input clause that was unifiable with the unit clause. The
search procedure succeeds when it is able to derive the empty clause.
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To show how SLD resolution is modeled by our focusing system, we reuse the
translation from before, but this time all atoms are given a left bias. The derivation that
corresponds to focusing on the translation of the Horn clause¬p1, . . . ,¬pn, p is:

· ; p1� p1
linit

· · · · ; pn� pn
linit

Γ ; [∆]w, p −→ Q
Γ ; [∆]w ; p −→ · ; Q
Γ ; [∆]w ; p�· ; Q

Γ ; [∆]w, p1, . . . , pn ; p1( · · · pn( p�· ; Q
(L

Γ ; [∆]w, p1, . . . , pn =⇒ Q
delete

In other words, the derived rule is:
Γ ; [∆, p]w −→ Q

Γ ; [∆, p1, . . . , pn]w −→ Q

The frontier of the goal (Ψ )0 ; [·]0 −→ g in the left-biased setting contains every mem-
ber of (Ψ )0, so we obtain one such derived rule for each clause in the Horn theory.
The frontier contains, in addition, the positive atomg; assuming there is a negative
instance ofg somewhere in the theory, we will thus generate a single initial sequent,
· ; [g]0 −→ g. We immediately observe that:

Lemma 8. Every sequent generated in the focused derivation of(Ψ )0 ; [·]0 −→ g is of
the form· ; [∆]0 −→ g. ut

Theorem 9 (isomorphism of rules).Every SLD resolution rule for the Horn query
Ψ ` g is isomorphic to an instance of a derived inference rule for the overall goal
sequent(Ψ )0 ; [·]0 −→ g with empty unrestricted zones and g on the right. ut

Theorem 10. Every SLD resolution derivation for the Horn queryΨ ` g has an iso-
morphic focused derivation for the goal sequent(Ψ )o ; [·]0 −→ g with left-biased atoms.

Proof (Sketch).Very similar argument as thm. 7, except we note that in the matching
conditions in the derived rules we rename the input sequents, whereas in the SLD res-
olution case we rename the Horn clause itself. However, this renaming is merely an
artifact of the procedure and doesn’t itself alter the derivation. ut

Although the derivations are isomorphic, the focused derivations may not be as
efficient as the SLD resolution in practice because of the need to rename (i.e., copy) the
premisses as part of the matching conditions of a derived rule– premisses might contain
many more components than the Horn clause itself.

5 Experiments

5.1 Propositional linear logic

The first class of experiments we performed were on propositional linear logic. We im-
plemented several minor variants of an inverse method prover for propositional linear
logic. The propositional fragment is the only fragment where we can compare with
external provers, as we are not aware of any first order linear logic provers besides
our own. The external prover we compared against is Tammet’s Gandalf “nonclassical”
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distribution (version 0.2), compiled using a packaged version of the Hobbit Scheme
compiler. This classical linear logic prover comes in two flavors: resolution (Gr ) and
tableau (Gt). Neither version incorporates focusing or globalization, and we did not
attempt to bound the search for either prover. Other provers such as LinTAP [13] and
llprover [17] fail to prove all but the simplest problems, so we did not do any serious
comparisons against them. Our experiments were all run on a 3.4GHz Pentium 4 ma-
chine with 1MB L1 cache and 1GB main memory; our provers were compiled using
MLTon version 20060213 using the default optimization flags; all times indicated are
wall-clock times in seconds and includes the GC time;] denotes unprovability within
a time limit of 1 hour.

Stateful system encodingsIn these examples, we encoded the state transition rules for
stateful systems such as a change machine, a Blocks World problem with a fixed number
of blocks, a few sample Petri nets. For the Blocks World example, we also compared a
version that uses the CLF monad [3] and one without.

right-biased left-biased Gt Gr
name iters gensubs time iters gen subs time time time
blocks 20 43 18 0.001 12 84 61 0.001 ] ]
blocks-clf 27 65 26 0.002 5 24 7 <0.001 N/A N/A
change 16 22 7 0.001 11 20 6 0.001 0.63 0.31
petri-1 23 38 23 0.001 284 1099 921 0.062 ] 7.08
petri-2 57 133 105 0.003 393 16541433 0.068 ] 7.13

Graph exploration algorithmsIn these examples we encode the algorithm for exploring
graph for calculating Euler or Hamiltonian tours. The problems have an equal balance
of proofs (i.e., a tour exists) and refutations (i.e., no tour exists).4

right-biased left-biased
name iters gen subs time iters gen subs time
euler-1 6291 11853 5565 9.010 6291 11853 5565 8.570
euler-2 15640 34329 18689 152.12 15640 34329 18689 145.9
euler-3 64360159194948343043.35 64360159194948342938.55
hamilton 708 911 185 0.11 165 178 0 <0.001

The Euler tour computation uses a symmetric algorithm, so both backward and for-
ward chaining generate the same facts, though, interestingly, a left-biased search per-
forms slightly better than the right-biased system. For the Hamiltonian tour examples,
the left-biased search is vastly superior.

Affine logic encodingLinearity is often too stringent a requirement for situations where
we simply needaffine logic, i.e., where every hypothesis is consumedat mostonce.
Affine logic can be embedded into linear logic by translating every affine arrowA→ B
as eitherA( B⊗ > or A & 1( >. Of course, one might select complex encodings; for
example choosingA & !( 0( X)( B (for some arbitrary fresh propositionX) instead
of A & 1( B. Even though the two translations are equivalent, the prover performs
dismally on the former. The Gandalf proversGt andGr fail on these examples.

4 For lack of time, we have not run the Gandalf provers on these examples, though this can be
rectified by publication time.
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right-biased left-biased
encoding iters gen subs time iters gensubs time
A( B⊗ > 38 108 73 0.003 34 107 73 0.002
A & 1( B 252 1103 828 0.098 62 229 126 0.019
A & !( 0( X)( B 264 709967932.028 235 841 578 0.042

Quantified Boolean formulasIn these examples we used two variants of the algorithm
from [12] for encoding QBFs in linear logic. The first variant uses exponentials to en-
code reusable “copy” rules for the input branching in the computed circuit; this variant
performs very well in practice, so the table below collates the results of all the exam-
ple QBFs in one entry. The second variant is completely non-exponential and explicitly
copies the signals in the circuit as needed. This variant produces problems that are con-
siderably harder, so we have divided the problems in three sets in increasing order of
complexity.

right-biased left-biased
encodings iters gen subs time iters gen subs time
qbf-exp 1508 1722 140 0.13 7948 17610 9590 2.69
qbf-nonexp-1 1457 5590 4067 0.54 1581 4352 2612 0.58
qbf-nonexp-2 15267517551502174 368.92 9469 49777 37716 29.55
qbf-nonexp-3 285569901969614942807.64 2123389542115917308.24

For these examples, when the number of iterations is low (i.e., the problems are
simple), the right-biased search appears to perform better than the left-biased system.
However, as the problems get harder, the left-biased system becomes dominant.

5.2 First-order linear logic

We have also implemented a first-order prover for linear logic. Experiments with an
early version of the first-order were documented in [4]. Since then we have made several
improvements to the prover, including a complete reimplmentation of the focused rule
generation engine, and also increased our collection of sample problems.

First-order stateful systemsThe first experiments were with first-order encodings of
various stateful systems. We selected a first-order Blocks World encoding (both with
and without the CLF monad), Dijkstra’s Urn Game, and an AI planning problem for a
certain board game. The left-biased system performs consistently better than the right-
biased system for these problems.

right-biased left-biased
problem iters gen substime iters gen subs time
blocks 58 530 396 0.15 32 484 421 0.04
blocks-clf 81 872 515 0.33 19 102 87 0.007
urn 37 91 34 0.30 17 73 69 0.14
board 437 877739234.08 208 66212191 1.10
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Purely intuitionistic problemsUnfortunately, we are unable to compare our implemen-
tation with any other linear provers; to the best of our knowledge, our prover is the
only first-order linear prover in existence. We have, therefore, ran our prover on some
problems drawn from the SICS benchmark [15]. These intuitionistic problems were
translated into linear logic in two different ways– the first uses Girard’s original encod-
ing of classical logic in classical linear logic where every subformula is affixed with the
exponential, and the second is a focus-preserving encoding as described in [5]. We also
compared our prover withSandstorm, a focusing inverse method theorem proved for in-
tuitionistic logic implemented by students at CMU. The focus-preserving translation is
always better than the Girard-translation; however, the complexity of linear logic, par-
ticularly the significant complexity of linear contraction, makes it uncompetitive with
the intuitionistic prover.

right-biased left-biased SS
problem iters gen subs time iters gen subs time time
SICS1-gir 451 2435 1743 1.64 461 3622 2727 0.78

0.04
SICS1-foc 70 457 392 0.07 81 620 519 0.05
SICS2-gir 3794 20489 14666 13.8 4326 33990 25487 7.32

0.06
SICS2-foc 612 3917 3361 0.59 770 5841 4878 0.47
SICS3-gir 2619814147791012607952.89 161561269440951897273.39

1.12
SICS3-foc 4222 27074 23308 41.37 2875 21831 18712 29.12
SICS4-gir ] ] ] ] ] ] ] ]

3.89
SICS4-foc 11121 71320 61309 108.98 7680 58523 49992 77.80

Horn examples from TPTPFor our last example, we selected 20 non-trivial Horn prob-
lems from the TPTP version 3.1.1. The selection of problems was not systematic, but
we did not constrain our selection to any particular section of the TPTP. We used the
translation described in sec. 4. For lack of space we omit the list of selected problems,
which can be found from the first author’s web-page.5

right-biased left-biased
iters gen subs time iters gen subs time
5170331201302110487.22 6620741560553903672.44

For Horn problems, the right-biased system, which models hyperresolution, per-
forms better than the left-biased system, which models SLD resolution. This observa-
tion is not unprecedented— the Gandalf system switches to a Hyperresolution strategy
for Horn theories [16]. The likely reason is that in the left-biased system, unlike in SLD
resolution system, the derived rule renames the input sequent rather than the rule itself.

6 Conclusion

We have presented an improvement of the focusing inverse method that exploits the
flexibility in assigning polarity to atoms which we call bias. This strictly generalizes

5 http://www.cs.cmu.edu/˜kaustuv/papers/ijcar06
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both hyperresolution and SLD resolution on (classical) Horn clauses to all of intuition-
istic linear logic. This strategy shows significant improvement on a number of example
problems. Among the future work will be to explore strategies for determining appro-
priate bias for atoms from the problem statement to optimize overall search behavior.
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A Focusing calculus rules

Γ ; ∆�A right-focal

q left-biased
Γ ; q�q

linit
Γ ; ·�1 1R

Γ ; ∆1�A Γ ; ∆2� B
Γ ; ∆1, ∆2�A⊗ B

⊗R

Γ ; ∆�Ai

Γ ; ∆�A1 ⊕ A2
⊕Ri

Γ ; ∆� [t/x]A
Γ ; ∆�∃x. A

∃R
Γ ; · ; · =⇒ A
Γ ; ·� ! A

! R

Γ ; ∆ ; A�Q left-focal

p right-biased
Γ ; · ; p� p

rinit
Γ ; ∆ ; Ai�Q

Γ ; ∆ ; A1 & A2�Q
&Li

Γ ; ∆1 ; B�Q Γ ; ∆2�A
Γ ; ∆1, ∆2 ; A( B�Q

(L
Γ ; ∆ ; [t/x]A�Q
Γ ; ∆ ; ∀x. A�Q

∀L

focus

Γ ; ∆ ; P�Q
Γ ; ∆,P =⇒ Q

lf
Γ ; ∆ ; p�Q p right-biased

Γ ; ∆, p =⇒ Q
lf ∗

Γ ; ∆�Q
Γ ; ∆ =⇒ Q

rf
Γ ; ∆�q q left-biased

Γ ; ∆ =⇒ q
rf∗

Γ,A ; ∆ ; A�Q
Γ,A ; ∆ =⇒ Q

copy

Γ ; ∆ ; Ω =⇒ R ; · right-active

Γ ; ∆ ; Ω =⇒ A ; · Γ ; ∆ ; Ω =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A & B ; ·

&R
Γ ; ∆ ; Ω =⇒ > ; ·

>R

Γ ; ∆ ; Ω · A =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A( B ; ·

(R
Γ ; ∆ ; Ω =⇒ [a/x]A ; ·
Γ ; ∆ ; Ω =⇒ ∀x. A ; ·

∀Ra

Γ ; ∆ ; Ω =⇒ · ; Q
Γ ; ∆ ; Ω =⇒ Q ; ·

ract
Γ ; ∆ ; Ω =⇒ · ; p p right biased

Γ ; ∆ ; Ω =⇒ p ; ·
ract∗

Γ ; ∆ ; Ω · L · Ω′ =⇒ γ left-active

Γ ; ∆ ; Ω · A · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊗ B · Ω′ =⇒ γ

⊗L
Γ ; ∆ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · 1 · Ω′ =⇒ γ 1L

Γ ; ∆ ; Ω · A · Ω′ =⇒ Q Γ ; ∆ ; Ω · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊕ B · Ω′ =⇒ γ

⊕L
Γ ; ∆ ; Ω · 0 · Ω′ =⇒ γ 0L

Γ ; ∆ ; Ω · [a/x]A · Ω′ =⇒ γ
Γ ; ∆ ; Ω · ∃x. A · Ω′ =⇒ γ

∃La
Γ,A ; ∆ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · ! A · Ω′ =⇒ γ

! L

Γ ; ∆,P ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · P · Ω′ =⇒ γ

lact
Γ ; ∆,q ; Ω · Ω′ =⇒ γ q left-biased

Γ ; ∆ ; Ω · q · Ω′ =⇒ γ
lact∗

blur

Γ ; ∆ ; L =⇒ · ; Q
Γ ; ∆ ; L�Q

lb
Γ ; ∆,q ; · =⇒ · ; Q q left-biased

Γ ; ∆ ; q�Q
lb∗

Γ ; ∆ ; · =⇒ R ; ·
Γ ; ∆�R

rb
Γ ; ∆ ; · =⇒ p ; · p right-biased

Γ ; ∆� p
rb∗
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