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Abstract

Focusing is traditionally seen as a means of reducing
inessential non-determinism in backward-reasoning strate-
gies such as uniform proof-search or tableaux systems. In this
paper we construct a form of focused derivations for propo-
sitional linear logic that is appropriate for forward reason-
ing in the inverse method. We show that the focused inverse
method conservatively generalises the classical hyperresolu-
tion strategy for Horn-theories, and demonstrate through a
practical implementation that the focused inverse method is
considerably faster than the non-focused version.

1. Introduction

Linear logic [7] turns eighteen this year. As it has matured
and discovered its talents, it has become important to auto-
mate linear reasoning; yet despite some early work on reso-
lution for (classical) linear logic [15], the field has remained
surprisingly dormant. In his influential paper on focusing
in linear logic [1], Andreoli distinguished two kinds of non-
deterministic choices for proof-search: anessentialkind that
reveals the basic choices in a proof, and aninessentialkind
that is a by-product of the narrow scope of logical connectives
and inference rules. To proveA⊕ (B⊕C), for instance, is to
prove eitherA or B or C; the fact thatB andC were grouped
together is irrelevant as (A⊕ B) ⊕C is of identical nature.
The usual focusing prescription is given in terms of backward
search by dividing it into two phases. Asynchronous connec-
tives, which have invertible rules, are eagerly decomposed in
the active phaseof search. Synchronous connectives with
non-invertible rules are eagerly decomposed under focus in
thefocal phase. In each phase, a sequence of decompositions
of the same nature are taken together as an atomic step. It is
therefore a fairly natural fit for backward reasoning [2].

Focusing is not as obviously applicable in the forward di-
rection where propositions are constructed rather than de-
composed. Forward search starts with initial facts that are

likely to contribute to a proof of the goal, and forward rules
are applied to already derived facts to generate new facts.
(These rules are naturally limited to subformulas of the goal
sequent, as forward search without a goal direction is non-
sensical.) Every derived fact contains an associated proof
that can be locally and independently manipulated. Back-
ward search, in contrast, cannot construct any proofs until the
search is complete, and disjoint branches might interfere with
each other because of global (logic) variables or consump-
tion of resources. This global interference is often a source
of complexity in backward reasoning: resource-management,
in particular, is arguably the critical factor in backward search
in linear logic. In the forward direction, it turns out that the
defining resource-management problem in the backward di-
rection simply does not exist! Forward reasoning is therefore
of more than casual interest in the linear setting. (Initial ex-
periments have shown that, without focusing, forward search
in linear logic is often quicker than a Tableaux-based strat-
egy; see sec. 6.2.) How to adapt focusing to forward search?
Backward focusing corresponds to atomic decomposition of
a connective; analogously, forward focusing must correspond
to atomic composition of a collection of forward steps. We
formalise this intuition in this paper.

We begin by sketching the non-focusing forward sequent
calculus for linear logic, which is a contribution of this paper.
The design of the calculus is guided by a “newness” princi-
ple: the conclusion of a forward rule is never subsumed by
any of its premisses, for such a rule is entirely wasted work.
This condition turns out to be surprisingly subtle. We then
reconstruct backward focusing from first-principles with an
eye towards its eventual adaptation in the forward direction,
and give a novel completeness proof using structural cut-
elimination. We then construct a forward version of the fo-
cusing calculus around the concept of derived inference rules.
These derived rules are based on a relational interpretation the
principal propositions themselves. We end with a discussion
of the inverse method that uses these derived rules, show that
it is a generalisation of the well-known hyperresolution strat-
egy for Horn-theories, and give a few experimental results.
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judgemental rules

Γ ; p =⇒ p
init

Γ,A ; ∆,A =⇒ C
Γ,A ; ∆ =⇒ C

copy

multiplicative

Γ ; ∆1 =⇒ A Γ ; ∆2 =⇒ B
Γ ; ∆1,∆2 =⇒ A⊗ B

⊗R
Γ ; · =⇒ 1 1R

Γ ; ∆,A, B =⇒ C
Γ ; ∆,A⊗ B =⇒ C

⊗L
Γ ; ∆ =⇒ C
Γ ; ∆,1 =⇒ C

1L

Γ ; ∆,A =⇒ B
Γ ; ∆ =⇒ A( B

(R
Γ ; ∆1, B =⇒ C Γ ; ∆2 =⇒ A
Γ ; ∆1,∆2,A( B =⇒ C

(L

additive

Γ ; ∆ =⇒ A Γ ; ∆ =⇒ B
Γ ; ∆ =⇒ A & B

&R
Γ ; ∆ =⇒ >

>R
Γ ; ∆,Ai =⇒ C

Γ ; ∆,A1 & A2 =⇒ C
&Li

exponential

Γ ; · =⇒ A
Γ ; · =⇒ ! A

! R
Γ,A ; ∆ =⇒ C
Γ ; ∆, ! A =⇒ C

! L

Figure 1. Backward linear sequent calculus

2. Backward linear sequent calculus

We concentrate on a propositional fragment of intuition-
istic linear logic containing{⊗,1,(,& ,>, !}, leaving out⊕
and0 to simplify the presentation. This fragment is undecid-
able [13] and complex enough to exhibit interesting resource
management problems in both directions. Our sequent cal-
culus is a fragment of JILL [3]. It has dyadic two-sided se-
quents of the formΓ ; ∆ =⇒ C, where the∆ holds the lin-
ear resources, andΓ the unrestricted resources. Capital let-
ters stand for propositions and lowercase letters for atomic
propositions; a superscripted asterisk indicates a non-atomic
proposition. The sequent calculus has the following desir-
able properties: it lacks weakening and contraction rules for
the unrestricted context (they are admissible), has a simple
structural cut-admissibility proof, and is based on a well-
understood judgemental foundation. The calculus has exactly
two judgemental rules: one to infer initial sequents, which are
axiomatic, and another to copy an unrestricted resource into
the linear context. The full list of rules is in fig. 1.

Lemma 2.1 (structural properties).
1. If Γ ; ∆ =⇒ C thenΓ′ ; ∆ =⇒ C for anyΓ′ ⊇ Γ.
2. If Γ ; ∆ =⇒ C thenΓ′ ; ∆′ =⇒ C for any permutationΓ′ of
Γ and∆′ of ∆.

Lemma 2.2 (cut).
1. If Γ ; ∆ =⇒ A andΓ ; ∆′,A =⇒ C, thenΓ ; ∆,∆′ =⇒ C.
2. If Γ ; · =⇒ A andΓ,A ; ∆ =⇒ C, thenΓ ; ∆ =⇒ C.

For the fairly standard proofs, see [3]. The most important
consequence of cut being admissible is that all rules are an-
alytic, i.e., the calculus has asubformula property. The sub-
formula property can in fact be established in a strong form.

Definition 2.3 (subformulas). A decorated formulais a tu-
ple 〈A, s,w〉 where A is a proposition, s is asign (+ or −)
and w is aweight (! or ·). Thesubformula relation≤ is the
smallest reflexive and transitive relation between decorated
subformulas satisfying the following equations.

〈A, s, !〉 ≤ 〈! A, s,w〉

〈A, s′, ·〉 ≤ 〈A( B, s,w〉 〈B, s, ·〉 ≤ 〈A( B, s,w〉

〈Ai , s, ·〉 ≤ 〈A1 ∗ A2, s,w〉 ∗ ∈ {⊗,& }, i ∈ {1,2}

where s′ is the opposite of s. Decorations and the subfor-
mula relation are lifted to (multi)sets in the obvious way. If
the weight is not relevant, it is left out.

Theorem 2.4 (strong subformula property). In any sequent
Γ′ ; ∆′ =⇒ C′ used in a proof ofΓ ; ∆ =⇒ C:

〈Γ′,−, !〉 ∪ 〈∆′,−〉 ∪ {〈C′,+〉} ≤ 〈Γ,−, !〉 ∪ 〈∆,−, ·〉 ∪ {〈C,+, ·〉}

The copy rule can be restricted to the !-weighted orheavy
subformulas of the goal without affecting completeness.

3. Forward linear sequent calculus

Two kinds of non-determinism in backward search are
well-known and independent of linearity: conjunctive (which
subgoal is active) and disjunctive (which rule to apply) [9].
The resource-nature of linear hypotheses gives rise to addi-
tional non-determinism during search. Simplest of resource
non-determinism kinds is multiplicative non-determinism,
caused by binary multiplicative rules (⊗R and(L), where
the linear zone of the conclusion has to be distributed ex-
actly into the premisses. There are an exponential num-
ber of possible splits of the linear zone, which is clearly
an undesirable branching factor for backward search. Back-
ward search strategies postpone this split in one of two ways:
the Lolli-method which gives an input-output interpretation
of the search procedure [11], and the Lygon-method which
accumulates global consumption constraints for an external
Boolean constraint-solver [10]. Interestingly, multiplicative
non-determinism is entirely absent in a forward reading of
multiplicative rules: the linear context in the conclusion is
formed simply by adjoining those of the premisses. On the
multiplicative-exponential fragment, for example, forward
search has no resource-management issues at all.
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judgemental rules

· ; p −→0 p
init

Γ ; ∆,A −→w C
Γ ∪ {A} ; ∆ −→w C

copy

multiplicative connectives

Γ ; ∆ −→w A Γ′ ; ∆′ −→w′ B

Γ ∪ Γ′ ; ∆,∆′ −→w∨w′ A⊗ B
⊗R Γ ; ∆,A, B −→w C

Γ ; ∆,A⊗ B −→w C
⊗L

Γ ; ∆,Ai −→
1 C (Aj < ∆)

Γ ; ∆,A1 ⊗ A2 −→
1 C

⊗Li (i, j) ∈ {(1,2), (2,1)}

· ; · −→0 1
1R

Γ ; ∆ −→0 C

Γ ; ∆,1 −→0 C
1L

Γ ; ∆,A −→w B
Γ ; ∆ −→w A( B

(R
Γ ; ∆ −→1 B (A < ∆)

Γ ; ∆ −→1 A( B
(R′

Γ ; ∆, B −→w C Γ′ ; ∆′ −→w′ A

Γ ∪ Γ′ ; ∆,∆′,A( B −→w∨w′ C
(L

additive connectives

Γ ; ∆ −→w A Γ′ ; ∆′ −→w′ B (∆/w≈ ∆′/w′)

Γ ∪ Γ′ ; ∆ t ∆′ −→w∧w′ A & B
&R

· ; · −→1 >
>R

Γ ; ∆,Ai −→
w C

Γ ; ∆,A1 & A2 −→
w C

&Li i ∈ {1,2}

exponentials

Γ ; · −→w A

Γ ; · −→0 ! A
! R

Γ,A ; ∆ −→w C
Γ ; ∆, ! A −→w C

! L

Γ ; ∆ −→0 C (A < Γ)

Γ ; ∆, ! A −→0 C
! L′

Figure 2. Forward linear sequent calculus

To distinguish forward from backward sequents, we use
a single arrow (−→). The primary context-management is-
sue concerns rules where the conclusion cannot be simply
assembled from the premisses. The backward>R rule, for
instance, has an arbitrary linear zone; the unrestricted zones
in axiomatic rules are arbitrary. For the unrestricted zone, this
problem is solved in the usual (non-linear) inverse method by
assembling the contents lazily [5]. We adapt the solution to
the linear zones also. Sequents with lazily constructed linear
zones must, conceptually at least, admit a form of weaken-
ing, but not every sequent can allow this weakening. The
initial sequent· ; p −→ p, for instance, has no sound weak-
ened form. We differentiate the two kinds of sequents with a
Boolean weak-flag.

Definition 3.1 (forward sequents).

1. A forward sequentis of the formΓ ; ∆ −→w C. Γ contains
the unrestricted resources,∆ holds the linear resources,
and w is a Boolean flag.

2. The correspondenceE between forward and backward se-
quents is governed by the following conditions:

Γ ; ∆ −→0 C E Γ′ ; ∆ =⇒ C if Γ ⊆ Γ′

Γ ; ∆ −→1 C E Γ′ ; ∆′ =⇒ C if Γ ⊆ Γ′ and∆ ⊆ ∆′

Sequents with w= 0 are calledweakly linearor simplyweak,
and those with w= 1 arestrongly linearor strong.

Any backward sequent that corresponds to a strong for-
ward sequent also corresponds to a (possibly smaller) weak
sequent. Thus, whenever a strong sequent is needed in a for-
ward rule, a weak sequent can be used instead. Similarly, any
weak sequent we derive should subsume all larger sequents
(strong or weak).

Definition 3.2 (subsumption). Thesubsumption relation�
between forward sequents is the smallest reflexive and tran-
sitive relation satisfying:(
Γ ; ∆ −→0 C

)
�
(
Γ′ ; ∆ −→0 C

)
(
Γ ; ∆ −→1 C

)
�
(
Γ′ ; ∆′ −→1 C

)
 whereΓ ⊆ Γ′ & ∆ ⊆ ∆′.

Note that strong sequents never subsume weak sequents.

The contexts in axiomatic sequents are left blank. Initial
sequents cannot be weak, but>R produces a weak sequent.
Weak sequents model affine logic: this is familiar from em-
beddings into linear logic that translate affine implications
A→ B asA( (B⊗ >). The collection of inference rules for
the forward calculus is in fig. 2. The following property can
be established by inspection.

Property 3.3 (newness).In any forward rule with conclusion
s and premisses{si}i∈1...n, si � s for every i∈ {1 . . . n}. �

For binary rules, the unrestricted zones in the two pre-
misses cannot be known to be equal; however, as the pre-
misses stand for arbitrary weakened forms of the unrestricted
zone, it is enough for the conclusion to contain the least upper
bound (union) of the input contexts. For binary multiplicative
rules like⊗R, the conclusion is weak if either of the premisses
is weak; thus, the weak-flag of the conclusion is a Boolean-or
of those of the premisses. This composition fails for additive
rules where the linear zones in the premisses are not guaran-
teed to be identical. For this rule to apply, the linear zone
of a weak premiss must be included in the linear zone of the
other strong premiss. If both premisses are strong, their lin-
ear zones must be equal, and if both are weak, then the linear
zone of the premiss is the least upper bound of the two input
zones. For multisets this upper bound (t) must respect mul-
tiplicity: if A occursn times in∆ andm times in∆′, then it
occurs max(n,m) times in∆ t ∆′.
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Definition 3.4 (additive compatibility). Given two for-
ward sequentsΓ ; ∆ −→w C and Γ′ ; ∆′ −→w′ C′, their ad-
ditive zones∆ and ∆′ are additively compatible, written
∆/w≈ ∆′/w′, if the following hold:

∆/0 ≈ ∆′/0 if ∆ = ∆′

∆/1 ≈ ∆′/1 always

∆/0 ≈ ∆′/1 if ∆′ ⊆ ∆

∆/1 ≈ ∆′/0 if ∆ ⊆ ∆′

Most unary rules are oblivious to the weakening decora-
tion, which simply survives from the premiss to the conclu-
sion. The exception is !R, for which it is unsound to have a
weak conclusion; there is no derivation of· ; > =⇒ ! >, for
example.

The situation for left rules is more complex. Consider the
usual⊗L rule, without any decorations.

Γ ; ∆,A, B −→ C
Γ ; ∆,A⊗ B −→ C

If the premiss is strong, then the rule makes perfect sense with
the conclusion also being strong. If the premiss is weak, then
neither operand should be required to be present in the linear
zone; however, the following rule would violate lem. 3.3:

Γ ; ∆ −→1 C

Γ ; ∆,A⊗ B −→1 C
.

We should only apply a⊗L rule when at least one operand is
present in the premiss; this suggests the pair:

Γ ; ∆,A −→1 C

Γ ; ∆,A⊗ B −→1 C
⊗L1

Γ ; ∆, B −→1 C

Γ ; ∆,A⊗ B −→1 C
⊗L2.

Now we have erred too far in the other direction, as the fol-
lowing inference is foolish:

Γ ; ∆,A, B −→1 C

Γ ; ∆,A,A⊗ B −→1 C
⊗L2.

We might as well have consumed bothA andB to form the
conclusion, and obtained a stronger result. The sensible strat-
egy is: whenA and B are both present, they mustboth be
consumed. Otherwise, only apply the rule when one operand
is present in a weak sequent. A similar observation can be
made about all such rules: there is one weakness-agnostic
form, and some possible refined forms to account for weak-
ness.

Theorem 3.5 (soundness).
1. If Γ ; ∆ −→0 C, thenΓ ; ∆ =⇒ C.
2. If Γ ; ∆ −→1 C, thenΓ ; ∆′ =⇒ C for any∆′ ⊇ ∆.

Proof (sketch).By induction on the structure of the forward
derivations. Case 2 is needed because a weak sequent may be
used as a premiss of a rule such as &R that can have a strong
conclusion. �

For the completeness theorem we note that the forward
calculus infers a possibly stronger form of the goal sequent.

Theorem 3.6 (completeness).If Γ ; ∆ =⇒ C, then:

1. eitherΓ′ ; ∆ −→0 C;
2. or Γ′ ; ∆′ −→1 C for some∆′ ⊆ ∆

for someΓ′ ⊆ Γ.

Proof (sketch).By induction on the structure of the back-
ward derivation. Weak sequents (case 2) require simple case-
analyses of the presence of the copied proposition. �

4. Focused derivations

Search using the backward calculus can always apply in-
vertible rules eagerly in any order as there always exists a
proof that goes through the premisses of the invertible rule.
Andreoli pointed out in [1] that a similar and dual feature
exists for non-invertible rules also: it is enough for complete-
ness to apply a sequence of non-invertible rules eagerly in an
atomic operation, as long as the corresponding connectives
are of the samesynchronousnature. For instance, to infer
a negativep1 & ( p2 & p3), there are three different possible
proofs, one for eachpi ; these three choices present an es-
sential non-determinism in search. There is never a need to
pause withp2 & p3 and consider applying a rule on a differ-
ent proposition; such a loss of “focus” onp2 & p3 represents
an inessentialnon-determinism during proof search. A back-
ward focused proof thus has two phases. In theactive phase
all possible rules are applied in an arbitrary order to asyn-
chronous propositions. When only synchronous propositions
remain, one proposition is selected and afocused phasefor
that proposition begun; non-invertible rules are then eagerly
(and non-deterministically) applied to decompose that propo-
sition into asynchronous propositions. The proof then again
enters the active phase.

In classical linear logic the synchronous or asynchronous
nature of a given connective is identical to its polarity; the
negative connectives (&,>, M, ⊥, ∀) are asynchronous, and
the positive connectives (⊗, 1, ⊕, 0, ∃) are synchronous. The
nature of intuitionistic connectives, though, must be derived
without an appeal to polarity, which is alien to the construc-
tive and judgemental philosophy underlying the logic. We de-
rive this nature by examining the rules and phases of search:
an asynchronous connective is one for which decomposition
is complete in the active phase; a synchronous connective
is one for decomposition is complete in the focused phase.
This definition happens to coincide with polarities for clas-
sical linear logic, but is decidedly external. The conjunction
from intuitionistic (non-linear) logic, for instance, is nomi-
nally of negative polarity but can be seen as both synchronous
and asynchronous by our definition. In classical (non-linear)
logic,everypropositional connective is both synchronous and
asynchronous (see sec. 4.2). It is certainly possible to con-
struct connectives that are neutral, i.e., of neither nature; a
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simple example is the connective+, with A+ B defined as
A⊕ B⊕ (A & B). Atomic propositions too require careful
thought: Andreoli observed in [1] that it is sufficient to as-
sign arbitrarily a synchronous or asynchronous nature to the
atoms as long as duality is preserved; we instead view all
atoms as synchronous, as explained below.

As our backward linear sequent calculus is two-sided, we
have left- and right- synchronous and asynchronous connec-
tives. For non-atomic propositions a left-synchronous con-
nective is right-asynchronous, and a left-asynchronous con-
nective right-synchronous; this appears to be universal in
well-behaved logics. We define the following notations:

meta-variable meaning
P left-synchronous (&,>,(, p)
Q right-synchronous (⊗, 1, !, p)

L left-asynchronous (⊗, 1, !)
R right-asynchronous (&,>,()

(In this separation of classes ! is counted as right-
synchronous, but it is more correct to view it as a com-
position of a pair of synchronous and asynchronous micro-
connectives, as discussed below.)

The backward focusing calculus consists of three kinds of
sequents;right-focal sequentsof the formΓ ; ∆�A (A un-
der focus),left-focal sequentsof the formΓ ; ∆ ; A�Q, and
active sequentsof the formΓ ; ∆ ;Ω =⇒ C. Γ indicates the
unrestricted zone as usual,∆ containsonly left-synchronous
propositions, andΩ is an ordered sequence of propositions
(of arbitrary nature). The active phase is entirely determin-
istic: it starts on the right side of the active sequent, decom-
posing it until it becomes right-synchronous, i.e., of the form
Γ ; ∆ ;Ω =⇒ Q. Then the propositions inΩ are decomposed
in order from right to left. The order ofΩ is used solely to
identify the operating end of the active zone in proof search,
and is not of any deep logical consequence. Eventually the
sequent is reduced to the formΓ ; ∆ ; · =⇒ Q, which we call
neutral sequents.

A focusing phase is launched from a neutral sequent by
selecting a proposition fromΓ, ∆ or the right hand side. The
focused formula is decomposed if it is synchronous; other-
wise, if it happens to be asynchronous, the focus is blurred
in order to enter the active phase. Two focusing rules require
special mention. If the left-focal formula is an atom, then the
sequent is initial iff the linear zone∆ is emptyand the right
hand side matches the focused formula; this gives the focused
version of the “init” rule. If an atom has right-focus, how-
ever, it is not enough to simply check that the left matches
the right, as there might be some pending decompositions;
consider eg.· ; p & q�q. Focus is therefore blurred in this
case, and we correspondingly disallow a right atom in a neu-
tral sequent from gaining focus. The other important rule is
!R, for which the focus is immediately blurred; to illustrate
the reason, consider the following diagram:

A⊗ B ; ·�A A⊗ B ; ·� B
A⊗ B ; ·�A⊗ B

⊗R

A⊗ B ; ·� !(A⊗ B)
! R∗

A⊗ B ; · ; · =⇒ !(A⊗ B) rf

Neither premiss is derivable because it was incorrect to main-
tain focus in !R∗; instead, we should have first decomposed
A⊗ B on the left. The !R rule therefore blurs focus; we can
think of this as a composition of two micro-rules:

Γ ; ∆ ; · =⇒ A
Γ =⇒ A valid

! Ru

Γ ; ·� ! A
! Rl

The lower half !Rl changes the judgement from linear truth
to validity (categorical truth); it therefore blurs focus, as only
the truth judgement can have focus. The upper half !Ru is
asynchronous: it is just the categorical definition of validity.
Girard has made a similar observation about exponentials:
they are composed of one micro-connective to change polar-
ity, and another to model a given behaviour [8, Page 114]. A
similar observation can be made about other modal operators
like ? of JILL [3] or the concurrency monad of CLF [16]: all
of them cause a phase change.

The full set of rules is in fig. 3. Soundness of this calculus
is rather an obvious property— forget the distinction between
∆ andΩ, elide the focus and blur rules, and the original back-
ward calculus appears. Completeness is not as trivial.

4.1. Completeness via cut-admissibility

We show the completeness of the focusing calculus by
interpreting every backward sequent as an active sequent in
the focusing calculus, then showing that the backward rules
are admissible in the focusing calculus. This proof relies on
cut-admissibility in the focusing calculus. Because a non-
atomic left-synchronous proposition is right-asynchronous, a
left-focal sequent needs to match only an active sequent in
a cut; similarly for right-synchronous propositions. Active
sequents should match other active sequents, however. Cuts
are focus-destroying, as they generally require commutations
spanning phase boundaries; the products of a cut are there-
fore active. This is sufficient for our purposes as we intend to
interpret non-focusing sequents as active sequents.

The proof requires two key lemmas: the first notes
that permuting the ordered context doesn’t affect provabil-
ity, as the ordered context does not mirror any deep non-
commutativity in the logic. This lemma thus allows cutting
formulas from anywhere inside the ordered context, and also
to re-order the context when needed.

Lemma 4.1. If Γ ; ∆ ;Ω =⇒ C, thenΓ ; ∆ ;Ω′ =⇒ C for any
permutationΩ′ ofΩ. �
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Γ ; ∆�A right-focal

Γ ; ∆1�A Γ ; ∆2� B
Γ ; ∆1,∆2�A⊗ B

⊗R
Γ ; ·�1 1R

Γ ; · ; · =⇒ A
Γ ; ·� ! A

! R

Γ ; ∆ ; A�Q left-focal

Γ ; · ; p� p
init

Γ ; ∆ ; Ai�C
Γ ; ∆ ; A1 & A2�C

&Li i ∈ {1,2}

Γ ; ∆1 ; B�C Γ ; ∆2�A
Γ ; ∆1,∆2 ; A( B�C

(R

focus

Γ ; ∆ ; P�Q
Γ ; ∆,P ; · =⇒ Q

lf
Γ,A ; ∆ ; A�Q
Γ,A ; ∆ ; · =⇒ Q

copy
Γ ; ∆�Q∗

Γ ; ∆ ; · =⇒ Q∗
rf

Γ ; ∆ ;Ω =⇒ R right-active

Γ ; ∆ ;Ω =⇒ A Γ ; ∆ ;Ω =⇒ B
Γ ; ∆ ;Ω =⇒ A & B

&R
Γ ; ∆ ;Ω =⇒ >

>R

Γ ; ∆ ;Ω · A =⇒ B
Γ ; ∆ ;Ω =⇒ A( B

(R

Γ ; ∆ ;Ω =⇒ Q left-active

Γ ; ∆ ;Ω · A · B =⇒ Q
Γ ; ∆ ;Ω · A⊗ B =⇒ Q

⊗L
Γ ; ∆ ;Ω =⇒ Q
Γ ; ∆ ;Ω · 1 =⇒ Q

1L

Γ,A ; ∆ ;Ω =⇒ Q
Γ ; ∆ ;Ω · ! A =⇒ Q

! L
Γ ; ∆,P ;Ω =⇒ Q
Γ ; ∆ ;Ω · P =⇒ Q

act

blur

Γ ; ∆ ; L =⇒ Q
Γ ; ∆ ; L�Q

lb
Γ ; ∆ ; · =⇒ R
Γ ; ∆�R

rb
Γ ; ∆ ; · =⇒ p

Γ ; ∆� p
rb′

Figure 3. Backward linear focusing calculus

The other lemma shows that left-focus rules are admissible in
the active phase, and is vital in showing that focused cuts can
be left- or right-commuted.

Lemma 4.2. The following active rules are admissible.

Γ ; ∆1 ;Ω1 =⇒ Q1 Γ ; ∆2 ;Ω2 =⇒ Q2

Γ ; ∆1,∆2 ;Ω1 ·Ω2 =⇒ Q1 ⊗ Q2 Γ ; · ; · =⇒ 1
Γ ; · ; · =⇒ Q
Γ ; · ; · =⇒ ! Q Γ ; p ; · =⇒ p

Γ ; ∆,Pi ;Ω =⇒ C
Γ ; ∆,P1 & P2 ;Ω =⇒ C

Γ ; ∆,P ;Ω =⇒ C Γ ; ∆′�A
Γ ; ∆,∆′,A( P ;Ω =⇒ C

Γ ; ∆, B�C Γ ; ∆′ ;Ω =⇒ P
Γ ; ∆,∆′,P( B ;Ω =⇒ C

Note that they correspond exactly to the focal rules. �

Theorem 4.3 (cut). If
1. Γ ; ∆�A andΓ ; ∆′ ;Ω · A =⇒ C thenΓ ; ∆,∆′ ;Ω =⇒ C.
2. Γ ; ·�A andΓ,A ; ∆ ;Ω =⇒ C thenΓ ; ∆ ;Ω =⇒ C.
3. Γ ; ∆ ; A�Q andΓ ; ∆′ ;Ω =⇒ A thenΓ ; ∆,∆′ ;Ω =⇒ Q.
4. Γ ; ∆ ;Ω =⇒ A and:

(a) Γ ; ∆ ;Ω′ · A =⇒ C thenΓ ; ∆,∆′ ;Ω′ ·Ω =⇒ C.
(b) Γ ; ∆′,A ;Ω′ =⇒ C thenΓ ; ∆,∆′ ;Ω′ ·Ω =⇒ C.

5. If Γ ; · ; · =⇒ A andΓ,A ; ∆′ ;Ω′ =⇒ C thenΓ ; ∆′ ;Ω′ =⇒ C.

The proof is by lexicographic induction on the given
derivations. The argument is lengthy rather than complex,
and is an adaptation of similar structural cut-admissibility
proofs in eg. [3].

Lemma 4.4. Γ ; · ; A =⇒ A for any A andΓ. �

Theorem 4.5 (completeness).If Γ ; ∆ =⇒ C andΩ is any
serialisation of∆, thenΓ ; · ;Ω =⇒ C.

Proof (sketch).First show that all ordinary rules are admissi-
ble in the focusing system using cut. Proceed by induction on
derivationD :: Γ ; ∆ =⇒ C, splitting cases on the last applied
rule, using cut and lemmas 4.1 and 4.4 as required. �

4.2. Comparison with non-linear focusing

There have been many proposed embeddings of ordinary
(non-linear) logics into linear logic using the exponential op-
erator [7, 3] that translate sub-formulas uniformly. These
translations do not preserve the focusing properties of the
source logic, as the exponentials can blur the focus too early.
It is possible though to give a focusing-aware translation that
is faithful to the focusing system of the source logic. As an
example, consider the basic (disjunction-free) intuitionistic
propositional logic with connectives{∧, t,⊃}. The focusing
system for this logic treats∧ as both synchronous and asyn-
chronous, but⊃ is left-synchronous. The rules are as follows:

Γ ; p�I p
Γ ; Ai�I Q

Γ ; A1 ∧ A2�I Q
Γ ; B�I Q Γ�I A
Γ ; A ⊃ B�I Q

Γ�I A Γ�I B
Γ�I A∧ B

Γ ;Ω =⇒I A Γ ;Ω =⇒I B
Γ ;Ω =⇒I A∧ B

Γ�I t Γ ;Ω =⇒I t

Γ,A ;Ω =⇒I Q
Γ ;Ω · A =⇒I Q

Γ ;Ω · A =⇒I B
Γ ;Ω =⇒I A ⊃ B

Γ ;Ω · A · B =⇒I Q
Γ ;Ω · A∧ B =⇒I Q

Γ�I Q∗

Γ ; · =⇒I Q∗
Γ ; A�I Q
Γ,A ; · =⇒I Q

Γ ; · =⇒I R
Γ�I R

Γ ; L =⇒I Q
Γ ; L�I Q

We intend to translate signed intuitionistic formulas to signed
linear formulas in a way that preserves the focusing structure
of proofs. The translation is modal with two phases:A (ac-
tive) andF (focal). A positive focal (and negative active)∧
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is translated as⊗, and the duals as &. For every use of the
act rule, the corresponding translation phase affixes an expo-
nential; the phase-transitions in the image of the translation
exactly mirror those in the source.

F(p)− = p F(p)+ = p

A(p)− = ! p A(p)+ = p

F(A∧ B)− = F(A)− & F(B)− F(A∧ B)+ = F(A)+ ⊗ F(B)+

A(A∧ B)− = A(A)− ⊗ A(B)− A(A∧ B)+ = A(A)+ & A(B)+

F(>)− = > F(>)+ = 1

A(>)− = 1 A(>)+ = >

F(A ⊃ B)− = F(A)+( F(B)− F(A ⊃ B)+ = A(A ⊃ B)+

A(A ⊃ B)− = ! F(A ⊃ B)− A(A ⊃ B)+ = A(A)−( A(B)+

The reverse translation, written−o, is trivial: simply erase all
!s and rewrite & and⊗ as∧. The faithfulness of the transla-
tions can be established as a pair of soundness and complete-
ness theorems, provable by simple structural induction.

Theorem 4.6. Soundness:
1. If Γ ; ·�A thenΓo�I Ao.
2. If Γ ; · ; A�Q thenΓo ; Ao�I Qo.
3. If Γ ; · ;Ω =⇒ C thenΓo ;Ωo =⇒I Co.

Completeness:
1. If Γ�I A then F(Γ)− ; ·� F(A)+.
2. If Γ ; A�I Q then F(Γ)− ; F(A)−� F(Q)+.
3. If Γ ;Ω =⇒I Q then F(Γ)− ; · ; A(Ω)− =⇒ F(Q)+.
4. If Γ ;Ω =⇒I R then F(Γ)− ; · ; A(Ω)− =⇒ A(R)+. �

An important feature of this translation is that only nega-
tive atoms and implications are !-affixed; this mirrors a sim-
ilar observation by Dyckhoff that the ordinary intuitionistic
logic has a contraction-free sequent calculus that only needs
to duplicate negative atoms and implications [6].

5. Forward focusing calculus

We now construct the forward version of the focusing cal-
culus. Intermediate sequents in the eager active and focus-
ing phases must not be stored in the database of facts, which
should contain just the neutral sequents at the phase bound-
aries. The focusing construction is not entirely analogous
to that of sec. 3, as the optional presence of resources are
manifestations of a global property (weakness) rather than a
local feature of the principal formula (synchronous or asyn-
chronous connectives). We proceed by constructing derived
rules for neutral sequents that make the intermediate focal
and active sequents irrelevant. To illustrate, the negative
propositionp & q( r & ( s⊗ t) (written P) has the following
pair of derived rules:

Γ ; ∆, r =⇒ C
Γ ; ∆′ =⇒ p Γ ; ∆′ =⇒ q

Γ ; ∆,∆′,P =⇒ C

Γ ; ∆, s, t =⇒ C
Γ ; ∆′ =⇒ p Γ ; ∆′ =⇒ q

Γ ; ∆,∆′,P =⇒ C

In the rest of the paper we assume that goal sequents are neu-
tral; any given sequent can be neutralised by running the ac-
tive phase.

5.1. A calculus of derived inferences

For any given proposition, we are interested in construct-
ing a derived inference for the proposition corresponding to
a single pair of focusing and inverse phases. We proceed by
interpreting the proposition itself as the rules that it embod-
ies. Every proposition is viewed as a relation from sequences
of forward sequents (corresponding to the premisses) and
forward sequents (corresponding to conclusions of the de-
rived rules). We write these relations in an applicative style–
R[x] = y for (x, y) ∈ R–and use a double-headed arrow (−→−→)
for sequents in this derived rule calculus.

The derived rule for positive subformulas is:

s1 s2 · · · sn

foc+(A)[s1 · s2 · · · sn]
〈A,+, ·〉

Each si is a forward sequent in the derived-rules calculus,
andfoc+(A) is a relation between sequences of sequents and
sequents. Similarly, for negative propositions, we have two
rules corresponding to whether the principal proposition is a
heavy subformula or not.

s1 · · · sn (foc−(A)[s1 · · · sn] = Γ ; ∆ −→−→w C)
Γ ∪ {A} ; ∆ −→−→w C

〈A,−, !〉

s1 · · · sn (foc−(A)[s1 · · · sn] = Γ ; ∆ −→−→w C)
Γ ; ∆,A −→−→w C

〈A,−, ·〉

We writeΣ for a sequence of forward sequents. The equations
governing the relationsfoc+ andfoc− and the auxiliary rela-
tion act, are shown in fig. 4. They make use of the following
(partial) combinators on sequents:

Definition 5.1 (sequent combinators).

(Γ ; ∆ −→−→w A) ⊗ (Γ′ ; ∆′ −→−→w′ B) = Γ ∪ Γ′ ; ∆,∆′ −→−→w∨w′ A⊗ B

!(Γ ; · −→−→w A) = Γ ; · −→−→0 ! A

(Γ ; ∆ −→−→w A)( (Γ′ ; ∆′ −→−→w C) = Γ ∪ Γ′ ; ∆,∆′ −→−→w∨w′ C

(Γ ; ∆ −→−→w A) & (Γ′ ; ∆′ −→−→w′ B) =

Γ ∪ Γ′ ; ∆ t ∆′ −→−→w∧w′ A & B if ∆/w≈ ∆′/w′

In the definitions in fig. 4, multiple possibilities on the
right indicate a non-deterministic choice in the following
sense: if either of the right hand sides computes a sequent,
then the left hand side computes the same sequent. As a sim-
ple illustration, the following is one possible derived rule for
〈p & q( r & ( s⊗ t),−, ·〉, written out in the usual style:
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right focus

foc+(A⊗ B)[Σ · Σ′] = foc+(A)[Σ] ⊗ foc+(B)[Σ′]

foc+(1)[·] = · ; · −→−→0 1

foc+(! A)[Σ] = ! foc+(A)[Σ]

foc+(R)[Σ] = act(· ; · ; · =⇒ R)[Σ]

foc+(p)[Σ] = act(· ; · ; · =⇒ p)[Σ]

left focus

foc−(A & B)[Σ]

= foc−(A)[Σ]

= foc−(B)[Σ]

foc−(A( B)[Σ · Σ′] = foc+(A)[Σ]( foc−(B)[Σ′]

foc−(p)[·] = · ; p −→−→0 p if 〈p,+, ·〉 is a subformula

foc−(L)[Σ] = act(· ; · ; L =⇒ ·)[Σ]

active (ξ is of the form· or Q)

act(Γ ; ∆ ;Ω =⇒ A & B)[Σ · Σ′] = act(Γ ; ∆ ;Ω =⇒ A)[Σ] & act(Γ ; ∆ ;Ω =⇒ B)[Σ′]

act(Γ ; ∆ ;Ω =⇒ >)[·] = Γ ; ∆ −→−→1 >

act(Γ ; ∆ ;Ω =⇒ A( B)[Σ]

= act(Γ ; ∆ ;Ω · A =⇒ B)[Σ]

= act(Γ ; ∆ ;Ω =⇒ B)[Σ] if result is weak

act(Γ ; ∆ ;Ω · A⊗ B =⇒ ξ)[Σ]


= act(Γ ; ∆ ;Ω · A · B =⇒ ξ)[Σ]

= act(Γ ; ∆ ;Ω · A =⇒ ξ)[Σ] if result is weak

= act(Γ ; ∆ ;Ω · B =⇒ ξ)[Σ] if result is weak

act(Γ ; ∆ ;Ω · 1 =⇒ ξ)[Σ] = act(Γ ; ∆ ;Ω =⇒ ξ)[Σ] if result is strong

act(Γ ; ∆ ;Ω · ! A =⇒ ξ)[Σ]

= act(Γ,A ; ∆ ;Ω =⇒ ξ)[Σ]

= act(Γ ; ∆ ;Ω =⇒ ξ)[Σ] if result is strong

act(Γ ; ∆ ;Ω · P =⇒ ξ)[Σ] = act(Γ ; ∆,P ;Ω =⇒ ξ)[Σ]

act(Γ ; ∆ ; · =⇒ ξ)[Γ,Γ′ ; ∆,∆′ −→−→w Q] = Γ′ ; ∆′ −→−→w Q if ξ = · or Q

Figure 4. interpreting propositions as rules

Γ1 ; ∆1 −→
w1 p Γ2 ; ∆2 −→

w2 q (∆1/w2 ≈ ∆2/w2)
Γ3 ; ∆3, s−→1 C (t < ∆3)

Γ1 ∪ Γ2 ∪ Γ3 ; (∆1 t ∆2),∆3, p & q( r & ( s⊗ t) −→−→(w1∧w2)∨w3 C

DefineΓ ; ∆ −→w C asΓ ; ∆ −→−→w C.

Lemma 5.2. If Σ are derivable and:
1. foc+(A)[Σ] = Γ ; ∆ −→−→w A, thenΓ ; ∆ −→w A.
2. foc−(A)[Σ] = Γ ; ∆ −→−→w C, thenΓ ; ∆,A −→w C.
3. act(Γ ; ∆ ;Ω =⇒ ξ)[Σ] = Γ′ ; ∆′ −→−→w C, thenΓ,Γ′ ; ∆,∆′ −→w C.

Proof. Structural induction on the given derivations, using
the definitions offoc+, foc− andact. �

Corollary 5.3 (soundness).If Γ ; ∆ −→−→w C thenΓ ; ∆ −→w C.

For the completeness theorem, we cannot simply show
that any sequent in the backward focusing calculus has a
stronger form in the forward direction, as thefoc and act
relations “discard” intermediate values. Indeed, the only se-
quents that are explicitly written down in the derived rules
calculus are neutral sequents. We generalise the induction
hypotheses to account for these intermediate results.

Lemma 5.4.
If act(Γ1,Γ2 ; ∆1,∆2 ;Ω =⇒ ξ)[Σ] = Γ ; ∆ −→−→w C,
thenact(Γ1 ; ∆1 ;Ω =⇒ ξ)[Σ] = Γ,Γ2 ; ∆,∆2 −→−→

w C. �

Lemma 5.5. Using the convention thatΓ′ is some subset of
Γ, ∆′ some subset of∆ andΩ′ some subset ofΩ, if

1. Γ ; ∆�A then for some derivableΣ

(a) eitherfoc+(A)[Σ] = Γ′ ; ∆ −→−→0 A;
(b) or foc+(A)[Σ] = Γ′ ; ∆′ −→−→1 A.

2. Γ ; ∆ ; A�Q, then for some derivableΣ

(a) eitherfoc−(A)[Σ] = Γ′ ; ∆ −→0 Q;
(b) or foc−(A)[Σ] = Γ′ ; ∆′ −→1 Q.

3. Γ ; ∆ ;Ω =⇒ C, then for some derivableΣ andξ = · or C:

(a) eitheract(Γ′ ; ∆ ;Ω =⇒ ξ)[Σ] = · ; · −→−→0 C;
(b) or act(Γ′ ; ∆′ ;Ω′ =⇒ ξ)[Σ] = · ; · −→−→1 C

Proof. Adaptation of the proof of thm. 3.6, using lem. 5.4 for
the active and blur rules. �

Corollary 5.6 (completeness).If Γ ; ∆ ; · =⇒ Q, then:

(a) eitherΓ′ ; ∆ −→0 Q;
(b) or Γ′ ; ∆′ −→1 Q

for someΓ′ ⊆ Γ and∆′ ⊆ ∆. �

Property 5.7 (newness).In any derived rule with conclusion
s and premisses{si}i∈1...n, si � s for every i∈ {1 . . . n}.

Proof. By the definitions offoc andact, and inspection. �

8[
UNPUBLISHED DRAFT – compiled January 21, 2005 at 1:19 p.m.– submitted to LICS’05

]



6. The focusing inverse method

What remains is to implement a search strategy that uses
the forward calculus. The primary issue in the forward di-
rection is what propositions to generate rules for. As the cal-
culus of derived rules has only neutral sequents as premisses
and conclusions, we need only generate rules for propositions
that occur in neutral sequents; we call themfrontier propo-
sitions. To find the frontier propositions in a goal sequent,
we simply abstractly replay the focusing and active phases to
identify the phase transitions. Each transition from an active
to a focal phase produces a frontier proposition. Formally,
we define two generating functions,f (focal) anda (active),
from signed propositions to multisets of frontier propositions.
None of the logical constants are in the frontier as we never
need to construct explicit rules for them, as the conclusions
of rules such as>R and1R are easy to predict. Similarly we
do not count a negative focused atom in the frontier as we
know that the conclusion of the init rule needs to have the
form Γ ; · ; p� p.

f (p)− = ∅ f (p)+ = a(p)± = {p}

f (A⊗ B)− = a(A⊗ B)− f (A⊗ B)+ = f (A)+, f (B)+

a(A⊗ B)− = a(A)−,a(B)− a(A⊗ B)+ = f (A⊗ B)+,A⊗ B

f (A & B)− = f (A)−, f (B)− f (A & B)+ = a(A & B)+

a(A & B)− = f (A & B)−,A & B a(A & B)+ = a(A)+,a(B)+

f (A( B)− = f (A)+, f (B)− f (A( B)+ = a(A( B)+

a(A( B)− = f (A( B)−,A( B a(A( B)+ = a(A)−,a(B)+

f (! A)− = a(! A)− f (! A)+ = a(A)+

a(! A)− = a(A)− a(! A)+ = f (A)+, ! A

f (1)± = a(1)± = ∅ f (>)± = a(>)± = ∅

For example,f (p & q( r & ( s⊗ t))− = p,q, s, t.

Definition 6.1 (frontier). Given a goalΓ ; ∆ =⇒ Q, its fron-
tier contains:

i. all (top-level) propositions inΓ,∆,Q;
ii. for any A∈ Γ,∆, the collection f(A)−; and

iii. the collection f(Q)+.

Lemma 6.2 (neutral subformula property). In any back-
ward focused proof, all neutral sequents consist only of fron-
tier propositions of the goal sequent. �

In the preparatory phase for the inverse method, we calcu-
late the frontier propositions of the goal sequent. There is no
need to generate initial sequents separately, as the executions
of negative atoms in the frontier directly give us the necessary
initial sequents.

During the search procedure, each rule is applied to se-
quents selected from the current database, and if the rule ap-
plies successfully then we get a new sequent, which is then

considered for insertion in the database. It is possible (and
common) that a generated sequent is actually subsumed by
some sequent already in the database (forward subsumption).
It is also possible (though less common) for a new sequent
to be stronger than some sequents already in the database. In
this case, the old weaker sequents are no longer considered
for new derivations (backward subsumption). The general
design of the main loop of the prover and the argument for its
completeness are fairly standard [5, 15]; many optimisations
are possible, but they are outside the scope of this paper.

6.1. Generalising hyperresolution

Hyperresolution is a complete strategy for classical
logic [4, 14] that in practice gives an efficient search proce-
dure for Horn and near-Horn fragments [15]. We concentrate
on the following intuitionistic (non-linear) Horn-fragment:

(goals) G ::= p |G1 ∧G2 | t

(clauses) D ::= p |G ⊃ D | D1 ∧ D2 | t

(theories) Ψ ::= · | Ψ,D

Definition 6.3 (hyperresolution strategy). Let D̂ represent
the (curried) clausal form of D. Thehyperresolution strategy
for the Horn-sequentΨ =⇒h G is a proof of G starting from
assumptions of the form̂D for every D∈ Ψ, and rules:

G1 G2 · · · Gn

G
hyperD̂

where G1 ⊃ · · · ⊃ Gm ⊃ G is a clausal form of some D∈ Ψ.

Definition 6.4 (translation). The translation(−)h of formu-
las in the Horn fragment to linear logic is as follows:

(p)h = p (t)h = 1 (G1 ∧G2)
h = (G1)

h ⊗ (G2)
h

(D1 ∧ D2)
h = (D1)

h ⊗ (D2)
h (G ⊃ D)h = (G)h( (D)h.

It is easy to see that the frontier propositions of
(Ψ)h ; · =⇒ (G)h are the positive atoms, every (D)h ∈ (Ψ)h

and (G)h.

Theorem 6.5. If Ψ =⇒h G, then(Ψ′)h ; · −→−→0 (G)h for some
Ψ′ ⊆ Ψ.

Proof (sketch).Consequence of thm. 5.6. It is clear by a sim-
ple examination thefoc andact relations that for everyD ∈ Ψ
such thatD̂ = G1 ⊃ · · · ⊃ Gn, the

〈
(D)h,−, !

〉
rule is of the

form:

Γ1 ; ∆1 −→−→
0 (G1)h · · · Γn ; ∆n −→−→

0 (Gn)h

Γ ; ∆ −→−→0 (G)h

where eachΓi and Γ ⊆ (Ψ)h. As the initial sequents have
empty linear zones (all negative frontier propositions are in
(Ψ)h), they are empty in all derived sequents, the similarity to
hyperD̂ is obvious. �
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Test NF F Gt Gr
blocks-world 0.43 s ≤ 0.01 s 13.51 s 0.03 s

change 13.56 s ≤ 0.01 s — 2.14 s
affine 46.81 m 4.63 s — —
qbf1 0.03 s 0.01 s 0.03 s 0.02 s
qbf2 1.60 s 0.03 s — 42.34 s
qbf4 ≈ 35 m 0.53 s — —

NF = Non-focusing, F= focusing, Gt= Gandalf-tableaux, Gr= Gandalf-resolution
All measurements are wall-clock times; “—” denotes unsuccessful proof within≈ ten hours.

Table 1. some test problems.

6.2. Some experimental results

We have implemented an expanded version of the forward
focusing calculus as a certifying inverse method prover for
intuitionistic linear logic, including the missing linear con-
nectives. Table 1 contains a running-time comparison of the
focusing prover against a non-focusing version of the prover
(directly implementing the calculus of sec. 3), and Tammet’s
Gandalf “nonclassical” distribution that includes a pair of
(non-certifying) provers for classical linear logic, one using
a refinement of Mints’ resolution system for classical linear
logic [14, 15], and the other using a Tableaux-based strategy.
Neither of these provers incorporates focusing. The test prob-
lems ranged from simple stateful encodings such as blocks-
world or change-machines, to more complex problems such
as encoding of affine logic problems, and translations of vari-
ous quantified Boolean formulas using the algorithm in [13].
Focusing was faster in every case, with an average speedup
of about three orders of magnitude over the non-focusing ver-
sion.

7. Conclusion

We have presented a design for a focused forward rea-
soning calculus that is essentially bi-directional: it uses the
(backward) focusing calculus to derive inference rules, which
it then applies in the forward direction by keeping track of
weakness. There are two interesting questions to ask about
this calculus: first, does it give a decision procedure for
propositional affine logic? It is known to be decidable, but
the proof is fairly non-trivial [12]. Second, does it wring
the maximum possible juice out of the focusing and active
phases? For instance, (!A) ⊗ (!B) ≡ !(A & B), but they have
very different behaviour: the former continues the focusing
phase (on the right), while the latter blurs focus immediately.
A principled use of such equivalences might allow enlarging
the focus and active phases.

Acknowledgement: We thank Frank Pfenning and Kevin
Watkins for many illuminating discussions.
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