
A Focusing Inverse Method Theorem Prover for
First-Order Linear Logic

Kaustuv Chaudhuri and Frank Pfenning?

Department of Computer Science
Carnegie Mellon University

kaustuv@cs.cmu.edu andfp@cs.cmu.edu

Abstract. We present the theory and implementation of a theorem prover for
first-order intuitionistic linear logic based on the inverse method. The central
proof-theoretic insights underlying the prover concern resource management and
focused derivations, both of which are traditionally understood in the domain of
backward reasoning systems such as logic programming. We illustrate how re-
source management, focusing, and other intrinsic properties of linear connectives
affect the basic forward operations of rule application, contraction, and forward
subsumption. We also present some preliminary experimental results obtained
with our implementation.

1 Introduction

Linear logic [1] extends classical logic by internalizingstate. This is achieved by forc-
ing linear assumptionsto be used exactly once during a proof. Introducing or using a
linear assumption then corresponds to a change in state. This alters the fundamental
character of the logic so that, for example, even the propositional fragment is unde-
cidable. The expressive power of linear logic has been exploited to provide a logical
foundation for phenomena in a number of diverse domains, such as planning, concur-
rency, functional programming, type systems, and logic programming.

Despite this wide range of potential applications, there has been relatively little
effort devoted to theorem proving for linear logic. One class of prior work consists
of fundamental proof-theoretic studies of the properties of linear logic [2–4]. Most of
these are concerned with backward reasoning, that is, with analyzing the structure of
proof search starting from a given goal sequent. The most important results, such as
the discovery of focusing [2] and solutions to the problem of resource management [5,
6] have made their way into logic programming languages [7, 8], but not implemented
theorem provers. The termresource managementin this context refers to the problem
of efficiently ensuring that the single-use semantics of linear assumptions is respected
during proof search.

Another class of prior work is directly concerned with theorem proving for linear
logic in the forward direction. Here, we are only familiar with Mints’s theoretical study

? This work has been supported by the Office of Naval Research (ONR) under grant MURI
N00014-04-1-0724 and by the National Science Foundation (NSF) under grant CCR-0306313.



of resolution for linear logic [9] and Tammet’s implementation of a resolution prover
for classical propositional linear logic [10].

In this paper we describe a theorem prover for first-order intuitionistic linear logic
based on the inverse method. This prover can be seen as synthesizing the forward-
reasoning techniques developed by Mints and Tammet with the proof-theoretic analysis
of backward-reasoning by Andreoli and others by incorporating focusing into the in-
verse method. This allows the inverse method to proceed in much bigger steps than
single inferences, generating many fewer sequents to be kept and tested for subsump-
tion. In addition, we develop a new approach to resource management for reasoning in
the forward direction and show how it extends to the first-order case. We further treat
the delicate interactions of resource management with contraction and subsumption,
two critical operations in a forward inference engine. Finally, we present some experi-
mental results which demonstrate a significant speedup over Tammet’s prover and help
us quantify the effects of several internal optimizations.

Most closely related to the results reported in this paper is a recent submission by
the first author [11] which presents focusing for the inverse method in intuitionistic
propositionallinear logic, but does not discuss many of the necessary implementation
choices. We therefore concentrate here on the first-order and implementation aspects of
the prover and only briefly sketch focusing. The propositional prover from [11] and the
first-order prover here are separate implementations, since the propositional case (even
though also undecidable) affords a number of optimizations that do not directly apply
in the first-order case.

Another related development are recent implementations of theorem provers for the
logic of bunched implications [12, 13]. The logic of bunched implications and linear
logic have a common core, so some techniques may be transferable, something we
plan to consider in future work. Ḿery’s prover [12] uses labeled tableaux in a goal-
directed manner and is therefore quite different from ours. Donnelly et al. [13] use the
inverse method, but the essential difficulty in its design concerns a particular interaction
between weakening and contraction that is germane to bunched implication, but foreign
to linear logic. Moreover, both provers are quite preliminary at this stage and do not
incorporate techniques such as subsumption or indexing.

The remainder of the paper is organized as follows. In sect. 2 we give the briefest
sketch of a cut-free sequent calculus for intuitionistic linear logic and its critical subfor-
mula property. In sect. 3 we present the ground inverse method underlying our prover
and show how we solve the resource management problem. In sect. 4 we show how
to lift the results and operations to the case of sequents with free variables which are
necessary for a first-order prover. In sections 5 and 6 we present the main points in
the design of an efficient implementation and some experimental results. In sect. 7 we
conclude with remarks regarding the scope of our methods and future work.

2 Backward Sequent Calculus and the Subformula Property

We use a backward cut-free sequent calculus for propositions constructed out of the
linear connectives{⊗,1,(,& ,>, !,∀,∃}. To simplify the presentation slightly we leave
out ⊕ and0, though the implementation supports them and some of the experiments

2



in Sec. 6 use them. Propositions are written using uppercase lettersA, B, C, with P
standing for atomic propositions. Atomic propositions contain termst, which can be
term variablesx, parametersa, b, or function applicationsf (t1, . . . , tn). As usual, term
constants are treated as nullary functions. The sequent calculus is a standard fragment
of JILL [14], containing dyadic two-sided sequents of the formΓ ; ∆ =⇒ C: the zoneΓ
contains the unrestricted hypotheses, and∆ contains the linear hypotheses. BothΓ and
∆ are unordered. For the rules of this calculus we refer the reader to [14, page 14]; the
missing quantifier rules are below:

Γ ; ∆ =⇒ [a/x]A
Γ ; ∆ =⇒ ∀x. A

∀Ra
Γ ; ∆, [t/x]A =⇒ C
Γ ; ∆,∀x. A =⇒ C

∀L
Γ ; ∆ =⇒ [t/x]A
Γ ; ∆ =⇒ ∃x. A

∃R
Γ ; ∆, [a/x]A =⇒ C
Γ ; ∆,∃x. A =⇒ C

∃La

where the superscript indicates the proviso thata may not occur in the conclusion.
Also in [14] are the standard structural properties for the unrestricted hypotheses and
admissibility of cut, which extend naturally to the first-order setting.

Definition 1 (subformulas). A decorated formulais a tuple 〈A, s,w〉 where A is a
proposition, s is asign (+ or −) and w is aweight (h or l). Thesubformula relation
≤ is the smallest reflexive and transitive relation between decorated subformulas to sat-
isfy the following conditions.

〈A, s,h〉 ≤ 〈! A, s,w〉 〈A, s, l〉 ≤ 〈A( B, s,w〉 〈B, s, l〉 ≤ 〈A( B, s,w〉

〈[a/x]A,+, l〉 ≤ 〈∀x. A,+,w〉 〈[a/x]A,−, l〉 ≤ 〈∃x. A,−,w〉

〈[t/x]A,+, l〉 ≤ 〈∃x. A,+,w〉 〈[t/x]A,−, l〉 ≤ 〈∀x. A,−,w〉

 . . .
a any parameter
t any term

〈Ai , s, l〉 ≤ 〈A1 ? A2, s,w〉 . . . ? ∈ {⊗,& }, i ∈ {1,2}

wheres is the opposite of s. The notation∗ can stand for either h or l, as necessary.
Decorations and the subformula relation are lifted to (multi)sets in the obvious way.

We also need the notion offree subformulawhich is precisely as above, except
that we use A instead of[t/x]A for subformulas of positive existentials and negative
universals.

Property 2 (strong subformula property). In any sequentΓ′ ; ∆′ =⇒ C′ used in a
proof ofΓ ; ∆ =⇒ C:

〈Γ′,−,h〉 ∪ 〈∆′,−, ∗〉 ∪ {〈C′,+, ∗〉} ≤ 〈Γ,−,h〉 ∪ 〈∆,−, l〉 ∪ {〈C,+, l〉}

For the rest of the paper, all rules are to be understood as being restricted to dec-
orated subformulas of the goal sequent. A right rule is only applicable if the principal
formulaA is a positive decorated subformula of the goal sequent (i.e.,〈A,+, ∗〉 ≤ goal);
similarly, a left rule only applies toA if 〈A,−, ∗〉 ≤ goal. Of the judgmental rules, init is
restricted to atomic subformulas that areboth positive and negative decorated subfor-
mulas, and the copy rule is restricted to cases where the copied formulaA is a heavy
negative decorated subformula, i.e.,〈A,−,h〉 ≤ goal.

3 Forward Sequent Calculus and Resource Management

Following the “recipe” for the inverse method outlined in [15], we first present a forward
sequent calculus in a ground form (containing no term variables), and then lift it to free
subformulas containing term and parameter variables and explicit unification.

3



Γ ; ∆1 =⇒ A Γ ; ∆2 =⇒ B
Γ ; ∆1, ∆2 =⇒ A⊗ B

⊗R
As mentioned before, backward proof-search

in linear logic suffers from certain kinds of non-
determinism peculiar to the nature of linear hy-
potheses. A binary multiplicative rule like⊗R as indicated is actually deceptive as it
hides the fact that the split∆1, ∆2 of the linear zone is not structurally obvious. Linear-
ity forces the division to be exact, but there are an exponential number of such divisions,
which is an unreasonable branching factor for proof-search. This form of resource non-
determinism is typical in backward search, but is of course entirely absent in a for-
ward reading of multiplicative rules where the parts∆1 and∆2 are inputs. The nature
of resource non-determinism in forward and backward search is therefore significantly
different.

Γ ; P =⇒ P init

Γ ; ∆ =⇒ > >R

To distinguish forward from backward sequents, we shall
use a single arrow (−→), but keep the names of the rules the
same. In the forward direction, the primary context management
issue concerns rules where the conclusion cannot be simply as-
sembled from the premisses. The backward>R rule has an ar-
bitrary linear context∆, and the unrestricted contextΓ is also unknown in several rules
such as init and>R. For the unrestricted zone, this problem is solved in the usual (non-
linear) inverse method by collecting only the needed unrestricted assumptions and re-
membering that they can be weakened if needed [15]. We adapt the solution to the linear
zone, which may either be precisely determined (as in the case for initial sequents) or
subject to weakening (as in the case for>R). We therefore differentiate sequents whose
linear context can be weakened and those who can not.

Definition 3 (forward sequents).A forward sequentis of the formΓ ; ∆ −→w C, with
w a Boolean (0 or 1) called theweak-flag. The correspondence between forward and
backward sequents is governed by the following conditions:

Γ ; ∆ −→0 C corresponds to Γ′ ; ∆ =⇒ C if Γ ⊆ Γ′

Γ ; ∆ −→1 C corresponds to Γ′ ; ∆′ =⇒ C if Γ ⊆ Γ′ and∆ ⊆ ∆′

Sequents with w= 1 are calledweakly linearor simplyweak, and those with w= 0 are
strongly linearor strong.

It is easy to see that weak sequents model affine logic, which is familiar from embed-
dings into linear logic that translate affine implicationsA→ B asA( (B⊗ >). Initial
sequents are always strong, since their linear context cannot be weakened. On the other
hand,>R always produces a weak sequent. The collection of inference rules for the
forward calculus is in Fig. 1.

Γ ; ∆ =⇒ A Γ ; ∆ =⇒ B
Γ ; ∆ =⇒ A & B &R

For binary rules, the unrestricted zones are sim-
ply juxtaposed. We can achieve the effect of taking
their union by applying the explicit contraction rule
(which is absent, but admissible in the backward calculus). The situation is not as sim-
ple for the linear zone. As shown above, in the backward direction the same linear zone
is copied into both premisses of the &R rule: This rule is easily adapted to the forward
direction when both premisses are strong:

Γ ; ∆ −→0 A Γ′ ; ∆′ −→0 B (∆ = ∆′)

Γ, Γ′ ; ∆ −→0 A & B

4



judgmental rules

· ; P −→0 P
init

Γ ; ∆,A −→w C
Γ,A ; ∆ −→w C

copy Γ,A,A ; ∆ −→w C
Γ,A ; ∆ −→w C

contr

multiplicative connectives

Γ ; ∆ −→w A Γ′ ; ∆′ −→w′ B

Γ, Γ′ ; ∆, ∆′ −→w∨w′ A⊗ B
⊗R Γ ; ∆,A, B −→w C

Γ ; ∆,A⊗ B −→w C
⊗L

Γ ; ∆,Ai −→
1 C (Aj < ∆)

Γ ; ∆,A1 ⊗ A2 −→
1 C

⊗Li

(i, j) ∈ {(1,2), (2,1)}

· ; · −→0 1
1R

Γ ; ∆ −→0 C

Γ ; ∆,1 −→0 C
1L

Γ ; ∆,A −→w B
Γ ; ∆ −→w A( B

(R
Γ ; ∆ −→1 B (A < ∆)

Γ ; ∆ −→1 A( B
(R′

Γ ; ∆, B −→w C Γ′ ; ∆′ −→w′ A (w = 0∨ B < ∆′)

Γ, Γ′ ; ∆, ∆′,A( B −→w∨w′ C
(L

additive connectives

Γ ; ∆1 −→
w1 A

Γ′ ; ∆2 −→
w2 B

(∆1/w1 + ∆2/w2 ∆)

Γ, Γ′ ; ∆ −→w1∧w2 A & B
&R

· ; · −→1 >
>R

Γ ; ∆,Ai −→
w C

Γ ; ∆,A1 & A2 −→
w C

&Li i ∈ {1,2}

exponentials

Γ ; · −→w A

Γ ; · −→0 ! A
! R

Γ,A ; ∆ −→w C
Γ ; ∆, ! A −→w C

! L
Γ ; ∆ −→0 C (A < Γ)

Γ ; ∆, ! A −→0 C
! L′

quantifiers

Γ ; ∆ −→w [a/x]A
Γ ; ∆ −→w ∀x. A

∀Ra
Γ ; ∆, [t/x]A −→w C
Γ ; ∆,∀x. A −→w C

∀L

Γ ; ∆ −→w [t/x]A
Γ ; ∆ −→w ∃x. A

∃R
Γ ; ∆, [a/x]A −→w C
Γ ; ∆,∃x. A −→w C

∃La

Fig. 1. forward linear sequent calculus

If one premiss is weak and the other strong, the weak zone must be a subset of the
strong zone:

Γ ; ∆ −→0 A Γ′ ; ∆′ −→1 B (∆′ ⊆ ∆)

Γ, Γ′ ; ∆ −→0 A & B

If both premisses are weak, then the conclusion is also weak, but what resources are
present in the conclusion? In the ground case, we can simply take the maximal multi-
plicity for each proposition on the two premises. To see that this is sound, simply apply
weakening to add the missing copies, equalizing the linear contexts in the premisses.
It is also complete because the maximum represents the least upper bound. In the free
variable calculus this analysis breaks down, because the two propositions in the linear
contexts in weak premisses may also be equalized by substitution. In preparation, we

5



therefore introduce a non-deterministicadditive contractionjudgment which is used in
the &R rule to generate multiple valid merges of the linear contexts of the premises.

Definition 4. A additive contraction judgementis of the form∆/w+ ∆′/w′ ∆′′ where
∆, ∆′ and∆′′ are linear contexts, and w and w′ are weak-flags.∆, ∆′, w, and w′ are
inputs, and∆′′ is the output. The rules are as follows:

·/0+ ·/0 · ·/1+ ∆/0 ∆ ∆/0+ ·/1 ∆ ∆/1+ ∆′/1 ∆, ∆′

∆/w+ ∆′/w′ ∆′′

∆,A/w+ ∆′,A/w′ ∆′′,A

Note that is non-deterministic because the fourth and fifth rule overlap. Note further
that∆/1+ ∆′/0 ∆′ iff ∆ ⊆ ∆′, and for any∆′′ with∆ ∪ ∆′ ⊆ ∆′′ ⊆ ∆, ∆′, the judgment
∆/1+ ∆′/1 ∆′′ is derivable.

The conclusion of a binary multiplicative rule is weak if either of the premisses is
weak; thus, the weak-flag of the conclusion is a Boolean-or of those of the premisses.
Most unary rules are oblivious to the weakening decoration, which simply survives
from the premiss to the conclusion. The exception is !R, for which it is unsound to have
a weak conclusion; there is no derivation of· ; > =⇒ ! >, for example.

Left rules with weak premisses require some attention. It is tempting to write the
“weak” ⊗L rules as:

Γ ; ∆,A −→1 C

Γ ; ∆,A⊗ B −→1 C
⊗L1

Γ ; ∆, B −→1 C

Γ ; ∆,A⊗ B −→1 C
⊗L2.

However, these rules would admit redundant inferences such as the following:

Γ ; ∆,A, B −→1 C

Γ ; ∆,A,A⊗ B −→1 C
⊗L2.

We might as well have consumed bothA andB to form the conclusion, and obtained a
stronger result. The sensible strategy is: whenA andB are both present, they mustboth
be consumed. Otherwise, only apply the rule when one operand is present in a weak
sequent. A similar observation can be made about all such rules: there is one weakness-
agnostic form, and some possible refined forms to account for weak sequents.

Theorem 5 (soundness).
1. If Γ ; ∆ −→0 C, thenΓ ; ∆ =⇒ C.
2. If Γ ; ∆ −→1 C, thenΓ ; ∆′ =⇒ C for any∆′ ⊇ ∆.

Proof (sketch).Structural induction on the forward derivationF :: Γ ; ∆ −→w C. The
induction hypothesis is applicable for smaller derivations moduloα-renamings of pa-
rameters. ut

For the completeness theorem we note that the forward calculus infers a possibly stronger
form of the goal sequent.

Theorem 6 (completeness).If Γ ; ∆ =⇒ C, then for someΓ′ ⊆ Γ:
1. eitherΓ′ ; ∆ −→0 C;
2. or Γ′ ; ∆′ −→1 C for some∆′ ⊆ ∆

Proof (sketch).Structural induction on the backward derivationD :: Γ ; ∆ =⇒ C. ut

6



4 Lifting to Free Variable Sequents

The calculus of the previous section uses only ground initial sequents, which is im-
possible for an implementation of the forward calculus. Continuing with the “recipe”
from [15], in this section we present a lifted version of the calculus with explicit uni-
fication. We begin, as usual, by fixing a goal sequentΓg ; ∆g −→

w Cg and considering
only the free subformulas of this goal. In the presentation, the quantified propositions
are silentlyα-renamed as necessary. In this calculus, every proposition on the left and
right is accompanied by a substitution for some of its parameters or free term variables.
These substitutions are built according the following grammar:

(substitutions) σ F ε (identity)
| σ, a1/a2 (param-subst)
| σ, t/x (term-subst)

A minor novel aspect of our formulation is that we distinguish parameters (which can
be substituted only for each other) and variables (for which we can substitute arbi-
trary terms, including parameters). The distinction arises from the notion of subformula,
since positive universal and negative existential formulas can only ever be instantiated
with parameters in a cut-free backward sequent derivation. This sharpening sometimes
removes unreachable initial sequents from consideration. Fortunately, the standard no-
tion of most general unifier (written mgu(σ,σ′)) carries over in a straightforward way
to this slightly more general setting. We make the customary assumption that substitu-
tions are idempotent. We writeA[σ] (resp.t[σ]) for the application of the substitution
σ to the free subformulaA (resp. termt). Sequents in the free calculus contain for-
mula/substitution pairs, writtenA · σ. The composition ofσ andξ, writtenσξ, has the
propertyA[σξ] = (A[σ])[ξ]. The composition ofθ with every substitution in a zoneΓ
or ∆ (now containing formula/substitution pairs) is writtenΓθ or ∆θ.

The rules for this calculus are in Fig. 2; we use a double-headed arrow (−→−→) to
distinguish it from the ground forward calculus. The definition of additive contraction
needs to be lifted to free subformulas also.

Definition 7 (lifted additive contraction). The lifted additive contraction judgment,
written∆1/w1 + ∆2/w2 = 〈∆ ; ξ〉, takes as input the zones∆1 and∆2, together with their
weak flags w1 and w2, and produces a contracted zone∆ and its corresponding substi-
tution ξ. The rules for this judgment are as follows.

·/0+ ·/0 〈· ; ε〉 ·/1+ ∆/0 〈∆ ; ε〉 ∆/0+ ·/1 〈∆ ; ε〉 ∆/1+ ∆′/1 〈∆, ∆′ ; ε〉

θ = mgu(σ,σ′) ∆θ/w+ ∆′θ/w′ 〈∆′′ ; ξ〉
∆,A · σ/w+ ∆′,A · σ′/w′ 〈∆′′,A · σθξ ; θξ〉

Lemma 8 (lifted additive contraction).
1. If ∆/0+ ∆′/0 〈∆′′ ; ξ〉, then∆ξ = ∆′ξ = ∆′′.
2. If ∆/0+ ∆′/1 〈∆′′ ; ξ〉, then∆′ξ ⊆ ∆ξ = ∆′′.
3. If ∆/1+ ∆′/0 〈∆′′ ; ξ〉, then∆ξ ⊆ ∆′ξ = ∆′′.
4. If ∆/1+ ∆′/1 〈∆′′ ; ξ〉, then∆ξ ⊆ ∆′′ and∆′ξ ⊆ ∆′′. ut

7



judgmental rules

θ = mgu(P[ρ],P′)

· ; P · ρθ −→−→0 P′ · θ
init

Γ ; ∆,A · σ −→−→w C · ξ
Γ,A · σ ; ∆ −→−→w C · ξ

copy

Γ,A · σ,A · σ′ ; ∆ −→−→w C · ξ
Γθ,A · σθ ; ∆θ −→−→w C · ξθ

contr
Γ ; ∆ −→w C · ξ
Γρ ; ∆ρ −→w C · ξρ

ren

multiplicative connectives

Γ ; ∆ −→−→w A · σ Γ′ ; ∆′ −→−→w′ B · σ′

Γθ, Γ′θ ; ∆θ, ∆′θ −→−→w∨w′ (A⊗ B) · σθ
⊗R

Γ ; ∆,A · σ, B · σ′ −→−→w C · ξ
Γθ ; ∆θ, (A⊗ B) · σθ −→−→w C · ξθ

⊗L
Γ ; ∆,Ai · σ −→−→

1 C · ξ (∀ρ. Aj · σρ < ∆)

Γ ; ∆, (A1 ⊗ A2) · σ −→−→1 C · ξ
⊗Li

(i, j) ∈ {(1,2), (2,1)}

· ; · −→−→0 1 · ε
1R

Γ ; ∆ −→−→0 C · ξ

Γ ; ∆,1 · ε −→−→0 C · ξ
1L

Γ ; ∆,A · σ −→−→w B · σ′

Γθ ; ∆θ −→−→w (A( B) · σθ
(R

Γ ; ∆ −→−→1 B · σ (∀ρ. A · σρ < ∆)

Γ ; ∆ −→−→1 (A( B) · σ
(R′

Γ ; ∆, B · σ −→−→w C · ξ
Γ′ ; ∆′ −→−→w′ A · σ′ (w = 0∨ ∀ρ. B · σθρ < ∆′)

Γθ, Γ′θ ; ∆θ, ∆′θ, (A( B) · σθ −→−→w∨w′ C · ξθ
(L

additive connectives

Γ ; ∆1 −→−→
w1 A · σ

Γ ; ∆2 −→−→
w2 B · σ′ (∆1θ/w1 + ∆2θ/w2 〈∆ ; ξ〉)

Γξ, Γ′ξ ; ∆ −→−→w1∧w2 (A & B) · σξ
&R

· ; · −→−→1 > · ε
>R

Γ ; ∆,A · σ −→−→w C · ξ
Γ ; ∆, (A1 & A2) · σ −→−→w C · ξ

&Li i ∈ {1,2}

exponentials

Γ ; · −→−→w A · σ

Γ ; · −→−→0 ! A · σ
! R

Γ,A · σ ; ∆ −→−→w C · ξ
Γ ; ∆, ! A · σ −→−→w C · ξ

! L
Γ ; ∆ −→−→0 C · ξ (∀ρ. A · ρ < Γ)

Γ ; ∆, ! A · ε −→−→0 C · ξ
! L′

quantifiers

Γ ; ∆ −→−→w [a/x]A · (σ, b/a)
Γ ; ∆ −→−→w ∀x. A · σ ∀Rb

Γ ; ∆,A · (σ, t/x) −→−→w C · ξ
Γ ; ∆,∀x. A · σ −→−→w C · ξ

∀L

Γ ; ∆ −→−→w A · (σ, t/x)
Γ ; ∆ −→−→w ∃x. A · σ

∃R
Γ ; ∆, [a/x]A · (σ, b/a) −→−→w C · ξ
Γ ; ∆,∃x. A · σ −→−→w C · ξ ∃Lb

Note:θ = mgu(σ,σ′); ρ is a (fresh) renaming substitution; and premisses are variable-disjoint.

Fig. 2.Forward sequent calculus with free subformulas.

8



Definition 9. A substitutionσ is a grounding substitutionif for every term-variable
x ∈ dom(σ), the term x[σ] contains no term variables.

Theorem 10 (soundness).If Γ ; ∆ −→−→w C · ξ andλ is a grounding substitution forΓ,
∆ and C[ξ], thenΓ[λ] ; ∆[λ] −→w C[ξλ].

Proof (sketch).Straightforward induction on the structure ofF :: Γ ; ∆ −→−→w C · ξ, us-
ing lem. 8 and noting that any grounding unifier must be less general than the mgu.ut

Theorem 11 (completeness).
Suppose A1[σ1],A2[σ2], . . . ; B1[τ1], B2[τ2] . . . −→w C[ξ] where the Ai , Bj and C are
free subformulas of the goal. Then there exist substitutionsσ′1, σ

′
2, . . . , τ

′
1, τ
′
2, . . . , ξ

′ and
λ such that:

1. A1 · σ
′
1,A2 · σ

′
2, . . . ; B1 · τ

′
1, B2 · τ

′
2, . . . −→−→

w C · ξ′; and

2. σ′iλ = σi ; τ′jλ = τ j ; and ξ′λ = ξ.

Proof (sketch).Structural induction on the given ground derivation. ut

5 Design of the Implementation

5.1 Representation of Sequents and Contraction

Linear hypotheses can occur more than once in the linear zone, so for each substitution
we also store themultiplicity of that substitution; we write this asA · σn wheren is
the multiplicity of A · σ. In the common case of a variable-free proposition, this not
only makes the representation of sequents more efficient, but also greatly reduces the
non-determinism involved in matching a hypothesis in a premiss. Contraction in the
presence of multiplicities is not much different from before; the only change is that we
can perform a number of contractions together as a unit.

k = min(m,n) θ = mgu(σ, τ) ∆1θ,A · σθm−k/w1 + ∆2θ,A · τθn−k/w2 〈∆ ; ξ〉

∆1,A · σm/w1 + ∆2,A · τn/w2 〈∆,A · σθξk ; θξ〉

(Note that∆,A · σ0 is understood as∆.)
In the implementation we perform contractions eagerly, that is, after every rule ap-

plication we calculate the possible contractions in the conclusion of the rule. This allows
us to limit contractions to binary rules, and furthermore, consider only the contractions
between propositions that originate in different premisses. This is complete because if
two hypotheses were to be contractible in the same premiss, then we would already
have generated the sequent corresponding to that contraction earlier.

The special case of contracting two weak zones, i.e.,∆1/1+ ∆2/1, can be greatly
improved byfirst eagerly contracting propositions that have an invertible unifier. This
is complete because a weak∆,A · σ,A · σρ is subsumed by a weak∆,A · σ.

9



5.2 Rule Generation

The subformula property gives us the core of the inverse method procedure. We start
with all initial sequents of the form· ; P · ρθ −→0 P′ · θ, whereP is a negative, andP′

a positive free atomic subformula of the goal sequent,ρ renames them apart, and and
θ = mgu(P[ρ],P′). Next, we name all free subformulas of the goal sequent with unique
propositional labels. Then, we specialize all inference rules to these labels as principal
formulas before starting the main search procedure.

5.3 Subsumption and Indexing

Our prover performes forward, but currently not backward subsumption. Subsumption
has to account for linearity and the notion of weak sequent.

Definition 12 (free subsumption).Thefree subsumption relation� between free for-
ward sequents is the smallest relation satisfying:(
Γ ; ∆ −→−→0 C · ξ

)
�
(
Γ′ ; ∆ −→−→0 C · ξ′

)
(
Γ ; ∆ −→−→1 C · ξ

)
�
(
Γ′ ; ∆′ −→−→w C · ξ′

)
 for someθ such thatΓθ ⊆ Γ′, ∆θ ⊆ ∆′, andξθ = ξ′

The full subsumption check is far too expensive to perform always. Subsumption is
usually implemented as a sequence of phases of increasing complexity; Tammet called
them hierarchical tests[16]. These hierarchical tests are designed to fail as early as
possible, as the overwhelming majority of subsumption queries are negative.

Definition 13 (hierarchical tests).
To check if s= Γ ; ∆ −→−→w C · ξ subsumes s′ = Γ′ ; ∆′ −→−→w′ C′ · ξ′, the following tests
are performed in order:
1. if w = 0 and w′ = 1 then FAIL;
2. if #∆ > #∆′ or #Γ > #Γ′ then FAIL (where# count the number of elements);
3. respecting multiplicities, if a free subformula L occurs n times in∆ and m times in
∆′ and n> m then FAIL; similarly forΓ andΓ′;

4. if there is noθ for which C[ξθ] = C′[ξ′], then FAIL;
5. if for some A· σ ∈ Γ there is no A· σ′ ∈ Γ′ for which A[σθ] = A[σ′] (for someθ),

then FAIL; similarly for∆ and∆′;
6. otherwise attempt the full subsumption test s� s′.

Tammet gives examples of other possible tests in [16], particularly tests that consider
the depth of terms and statistics such as the number of constants, but we have not so far
considered them in the linear setting.

For the index we use a global forest of substitution trees [17]. Each inserted sequent
is indexed into the substitution tree corresponding to the label of the principal literal,
indexed by its corresponding substitution. The leaves of the substitution tree contain
the sequents where the indexed formula was the principal formula. To check if a given
sequent is subsumed, we look up every formula in the sequent in the index to obtain a
collection of subsumption candidates, which are then tested for subsumption using the
hierarchical tests above.

10



5.4 Focusing and Lazy Rule Application

Efficient indexing and subsumption algorithms, though important, are not as critical to
the design of the prover as the use of derived big-step rules. The inference rules of Fig.2
take tiny steps and thereby produce too many sequents. In our implementation we use a
version of focusing [18, 2] tailored for forward reasoning to construct derived inference
rules with many premisses. The essential insight of focusing is that every proof can be
converted to one that alternates between two phases–activeand focused. Thinking in
the backward direction, during the active phase we break down all connectives whose
left or right rules are invertible. This phase has no essential non-determinism. This
leads to a so-calledneutral sequentwhere we have to choose a formula to focus on,
which is then successively decomposed by chaining together non-invertible rules on
this particular focus formula. It turns out that in the forward direction we only need to
keep neutral sequents if we construct big-step forward rules by analyzing thosefrontier
propositionswhich can occur in neutral sequents and which are also subformulas of the
goal. Essentially we simulate a backward focusing phase followed by a backward active
phase by inferences in the forward direction. This construction is detailed in [11] for
the propositional fragment and can easily be extended to the first-order setting.

We implement a derived rule as a curried function from sequents (premisses) to the
conclusion of the rule. Each application of a rule to a sequent first tests if the sequent
can match the corresponding premiss of the rule; if the match is successful, then the
application produces a new partially instantiated rule, or if there are no remaining pre-
misses then it produces a new sequent. The order of arguments of this curried function
fixes a particular ordering of the premisses of the rule; the search procedure is set up so
that any ordering guarantee completeness.

We use a lazy variant of the OTTER loop [19] as the main loop of the search proce-
dure. We maintain two global sets of derived sequents:

– theactiveset containing sequents to be considered as premisses of rules; and
– the inactiveset (sometimes referred to as theset of support) that contains all facts

that have not yet been transferred to the active set.
This inner loop of the search procedure repeats the following lazy activation step

until either the goal sequent is subsumed (in which case the search is successful), or
no further rules are applicable to the sequents in the active set and the inactive set is
exhausted (in which case the search saturates).

Definition 14 (lazy activation). To activate the sequent s, i.e., to transfer it from the
inactive to the active set, the following steps are performed:
1. After renaming, s is inserted into the active set.
2. All available rules are applied to s. If these applications produce new rules, R, then

the following two steps are performed in a loop until there are no additions to R.
(a) For every sequent s′ in the active set, every rule in R is applied to s′, and
(b) any new rules generated are added to R.

3. The collection of rules R is added to the set of rules.
4. All sequents generated during the above applications are tested for subsumption,

and the un-subsumed sequents and all their associated contractions are added to
the inactive set.

11



A sequent is added to the inactive set if it is not globally subsumed by some other
sequent derived earlier. In fact, if it is subsumed, then none of its contracts need to
be computed. We use the following heuristic for the order of insertion of the contracts
of a given sequent: ifs is the result of a sequence of contractions froms′, then s is
considered for insertion in the inactive set befores′.

The initial inactive set and rules are produced uniformly by focusing on the frontier
literals of the goal sequent. The collection of (partially applied) rules grows at run-time;
this is different from usual implementations of the OTTER loop where the rules are
fixed before-hand. On the other hand, rule application is much simpler when each rule
is treated as a single-premiss rule (producing sequents or other rules, possibly nothing).
Furthermore, the same rule is never applied more than once to any sequent, because
a previously derived rule is applied only to newly activated sequents (which were not
in the active set before). Thus, the lazy activation strategy implicitly memoizes earlier
matches.

5.5 Globalization

The final unrestricted zoneΓg is shared in all branches in a proof ofΓg ; ∆g =⇒ Cg. One
thus thinks ofΓg as part of the ambient state of the prover, instead of representing it ex-
plicitly as part of the current goal. Hence, there is never any need to explicitly record
Γg or portions of it in the sequents themselves. This gives us the following global and
local versions of the copy rule:

Γ ; ∆,A · σ −→−→w C · ξ (∃ρ. A · σρ ∈ Γg)

Γ ; ∆ −→−→w C · ξ
delete

Γ ; ∆,A · σ −→−→w C · ξ (∀ρ. A · σρ < Γg)

Γ,A · σ ; ∆ −→−→w C · ξ
copy

6 Some Experimental Results

For our experiments we compared a few internal versions of the prover and two provers
in the Gandalf family. For comparison purposes, we implemented a purely propositional
version of our prover, which performs some additional optimizations that are not possi-
ble in the first-order case. The main differences are: contraction in the propositional case
always produces exactly one sequent, as opposed to (potentially) exponentially many
sequents in the first-order case; furthermore, subsumption is simply a matter of com-
paring the multiplicities, which is linear instead of quadratic. These properties greatly
simplifies rule generation and application.

The internal versions of the prover are namedL followed by a selection ofP (propo-
sitional),F (big-step rules using focusing) andG (globalization) as suffixes. The default
prover is namedL (first-order, small-step rules, no globalization);LPF, for example, is
the purely propositional prover with focused big-step rules, but no globalization. In to-
tal there are six internal versions. (We do not currently have a propositional prover that
incorporates globalization.) These provers are written in Standard ML and are available
from the first author’s website1

1 http://www.cs.cmu.edu/˜kaustuv/

12



For our experiments the provers were compiled using MLTon version 20041119
with the default optimization flags. All time measurements are wall-clock times mea-
sured on an unloaded computer with a 2.80GHz Pentium 4 processor with a 512KB L1
cache and 1GB of main memory. Time measurements of less than 0.01 seconds should
be taken as unreliable.

6.1 Purely Propositional Problems

For external provers we are aware of only Tammet’s Gandalf “nonclassical” distribu-
tion (version 0.2), compiled using a packaged version of the Hobbit Scheme compiler.
This prover is limited to the propositional fragment of classical linear logic, but comes
in two flavors: resolution (Gr ) and tableaux (Gt). Neither version incorporates focus-
ing or globalization, and we did not attempt to bound the search for either prover. Our
examples are, therefore, restricted to the propositional fragment. They include: sim-
ple theorems in linear logic (basic), blocks-world problems for a fixed set of blocks
(bw-prop), a change machine encoding (coins), several affine logic problems encoded
in linear logic (affine1 andaffine2), and a few hard examples of quantified Boolean
formulas compiled to linear logic (qbf1, qbf2 andqbf3, in order of increasing com-
plexity) that implement the algorithm of [20].

Gr Gt LP LPF L LF
basic 0.06 s 0.08 s 0.024 s 0.018 s 0.058 s 0.037 s

bw-prop ] ] ] 0.001 s ] 0.007 s
coins 0.63 s ] 3.196 s 0.001 s 8.452 s 0.001 s

affine1 ]2 0.01 s 0.003 s 0.001 s 1.645 s 3.934 s
affine2 ]2 ] ≈ 12 m 1.205 s ≈ 34 m 4.992 s
qbf1 2.40 s ] 0.013 s 0.001 s 0.038 s 0.002 s
qbf2 ] ] 0.037 s 0.001 s 0.512 s 0.060 s
qbf3 ] ] 0.147 s 0.003 s 2.121 s 0.820 s

] means no proof found within time limit

It is evident that focusing greatly speeds up both the propositional and first-order
cases. For the propositional case, the speedup from the focusing prover to the non-
focusing one is between 1.33 (basic) and 597.5 (affine2); for the first-order case, the
speedups range from 1.57 (basic) to 408.7 (affine2). Except forbw-prop, these ex-
amples were all within the realm of possibility for the small-step provers, though some
of them likeaffine2 severely strain the provers. In theaffine1 case the focusing
proverLF appears to take longer than the small-step proverL ; this is because this ex-
ample contains an unprovable proposition for which the inverse method procedure fails
to saturate. The test is run for 1000 iterations of the lazy OTTER loop. The focusing
prover gets much further than the small-step prover in 1000 iterations, and the delay is
due entirely to the fact that the sequents it works with, after even a few dozen iterations,
are far more complex than the small-step prover generates in 1000 iterations.

2 Gr appears to saturate incorrectly in these cases (fails to prove a true proposition), so we have
left out the running time.

13



Comparing to Gandalf, the small-step proverL is generally competitive withGr : it
is slower on some examples (coins), but succeeds on a wider range of problems.Gt
was uniformly the slowest of the lot, taking a long time on even simple problems.

6.2 First-Order Problems

Our first-order problems include the following: a first-order blocks world planning
example (bw-fo), Dijkstra’s urn game (urn), simple intuitionistic first-order propo-
sitions encoded as linear propositions, using either Girard’s translation (int-gir), or a
focusing-aware translation (int-foc) outlined in [11].

L LG LF LFG
bw-fo ] ] 0.460 s 0.036 s
urn ] ] 0.413 s 0.261 s

int-gir ] ] 1.414 s 1.410 s
int-foc ≈11m ≈10 m 0.051 s 0.058 s

] means no proof found within time limit (20 minutes)

Again, it is fairly obvious that focusing is the dramatic winner, making some prob-
lems tractable, and being several orders of magnitude faster for the rest. Adding glob-
alization also seems to have a significant effect here for the examples that are not con-
structed in an ad-hoc fashion (bw-fo andurn).

7 Conclusion

We have presented a theorem prover for first-order intuitionistic linear logic based on
the inverse method which is already practical for a range of examples and significantly
improves on prior, more restricted provers. The design is based on general principles
that apply to both classical linear logic (which is simpler because it admits a one-sided
sequent formulation with more symmetries) and affine logic (via weak sequents). Both
of these can also be treated by uniform translations to intuitionistic linear logic [14],
as can (ordinary) intuitionistic logic [11]. A generalization from a first-order logic to a
type theory such as CLF [21, 22] would seem to require mostly a proper treatment of
linear higher-order unification constraints, but otherwise be relatively straightforward.

Our prover also leaves room for further high-level and low-level optimizations. In
particular, we plan to investigate how to limit the multiplicities of linear hypotheses,
either a priori or as a complete heuristic. Some manual experiments seem to indicate that
this could have a significant impact on a certain class of problems. We also plan to make
our prover certifying; currently only the propositional version generates independently
verifiable proof objects in a type theory.

References

1. Girard, J.Y.: Linear logic. Theoretical Computer Science50 (1987) 1–102

14



2. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation2 (1992) 297–347

3. Galmiche, D., Perrier, G.: Foundations of proof search strategies design in linear logic. In:
Symposium on Logical Foundations of Computer Science, St. Petersburg, Russia, Springer-
Verlag LNCS 813 (1994) 101–113

4. Galmiche, D.: Connection methods in linear logic and proof nets constructions. Theoretical
Computer Science232(2000) 213–272

5. Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. In McCune, W., ed.:
Proceedings of CADE-14, Springer-Verlag LNAI 1249 (1997) 222–236

6. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof
search. Theoretical Computer Science232(2000) 133–163

7. Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic program-
ming. Journal of Logic and Computation4 (1994) 175–207

8. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. In-
formation and Computation110(1994) 327–365

9. Mints, G.: Resolution calculus for the first order linear logic. Journal of Logic, Language
and Information2 (1993) 59–83

10. Tammet, T.: Proof strategies in linear logic. Journal of Automated Reasoning12 (1994)
273–304

11. Chaudhuri, K.: Focusing the inverse method for linear logic. Technical Report CMU-CS-
05-106, Carnegie Mellon University (2005) submitted for publication.

12. Méry, D.: Preuves et Śemantiques dans des Logiques de Ressources. PhD thesis, Université
Henri Poincaŕe, Nancy, France (2004)

13. Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.: The inverse method for
the logic of bunched implications. In F.Baader, A.Voronkov, eds.: Proceedings of the 11th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
Montevideo, Uruguay, Springer LNCS 3452 (2005) 466–480

14. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical
Report CMU-CS-03-131R, Carnegie Mellon University (2003)

15. Degtyarev, A., Voronkov, A.: The inverse method. In Robinson, J.A., Voronkov, A., eds.:
Handbook of Automated Reasoning. MIT Press (2001) 179–272

16. Tammet, T.: Towards efficient subsumption. In: Proceedings of CADE-15. (1998) 427–441
17. Graf, P.: Term Indexing. Springer LNAI 1053 (1996)
18. Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic107

(2001) 131–163
19. Tammet, T.: A resolution theorem prover for intuitionistic logic. In McRobbie, M., Slaney, J.,

eds.: Proceedings of CADE-13, New Brunswick, New Jersey, Springer-Verlag LNCS 1104
(1996) 2–16

20. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional
linear logic. Annals of Pure and Applied Logic56 (1992) 239–311

21. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework I:
Judgments and properties. Technical Report CMU-CS-02-101, Department of Computer
Science, Carnegie Mellon University (2002) Revised May 2003.

22. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework II:
Examples and applications. Technical Report CMU-CS-02-102, Department of Computer
Science, Carnegie Mellon University (2002) Revised May 2003.

15


