Multi-label and Multi-target Learning Applications, Challenges, and Models

Jesse Read

January 5, 2021 Zoom

Outline

- 2 Algorithm Adaptations
- Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

Multi-Label and Multi-Target Learning

1 Multi-Label and Multi-Target Learning

- 2 Algorithm Adaptations
- 3 Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

6 Summary

Classification Multi-label

X_1	X_2	<i>X</i> ₃	X_4	X_5	Y_1	Y_2	Y_3	Y_4	
1	0.1	3	1	0	0	1	1	0	
0	0.9	1	0	1	1	0	0	0	
0	0.0	1	1	0	0	1	0	0	
1	0.8	2	0	1	1	0	0	1	
1	0.0	2	0	1	0	0	0	1	
0	0.0	3	1	1	?	?	?	?	
For in	For input x we get a vector output								

$$\widehat{oldsymbol{y}} = oldsymbol{\mathsf{h}}(x) = oldsymbol{\mathsf{h}}(\underbrace{[x_1,\ldots,x_d]}_{ ext{inputs}}) = \underbrace{[y_1,\ldots,y_L}_{ ext{outputs}}]$$

N.B. Not multi-class, but multi-class multi-label!

 $m{y} = [0,1,1,0] \Leftrightarrow \mathsf{labels} \ \{2,3\}$ are relevant to corresponding $m{x}.$

Reduction #1 (to binary): Binary Relevance Method

The binary relevance method (BR transformation) = one binary classifier trained for each label, i.e., independent models.

Reduction #1 (to binary): Binary Relevance Method

The binary relevance method (BR transformation) = one binary classifier trained for each label, i.e., independent models.

Reduction #2 (to multi-class): Label Powerset Method

The label powerset method (LP transformation) = a single target multi-class classifier. Labels are modeled together, mais ...

Overfitting

•
$$y \in \{0,1\}^L$$
.

A Brief Timeline of Multi-label Learning in Academia

- \bullet < 2000s : Use (baseline) reduction #1 (BR), or #2 (LP)
- ...2010 :
 - We beat BR (using label dependence)!
 - Many applications!
- ...2015 :
 - We beat the methods that beat BR (using label dependence in a more sophisticated way)!
 - Wait what are we doing? And why?
- ... 2020 :
 - Models get deep, deeper, \dots ; (CNNs, LSTM, \dots)
 - Problems get big, bigger, ...
 - Do we actually need label dependence models? (BR seems to work well!)
- Recently/Currently:
 - New tasks and applications: partial labels, weak labels, label ambiguity, imprecise prediction/with abstention, ...
 - $\bullet\,$ Models: neural, graph embeddings, adversarial, attention, \ldots

Example Application: Multi-Label Classification

Input	Beach	Sunset	Foliage	Urban
	1	0	1	0
	0	1	0	0
Let	0	1	0	1
	0	1	1	0
	0	0	1	1
	?	?	?	?

Missing-data Imputation / Recommender Systems

	Film 2	Film 3	Book 1	Book 2	Song 5
	X_2	X_4	X_1	X_3	X_5
ŧ	0	0	1	1	0
•	1	1	?	0	?
•	0	0	1	0	0
•	1	1	?	0	1
	0	0	0	?	?
ŧ	1	0	?	1	?

Time Series Forecasting / Trajectory Prediction

(including multi-dimensional time series).

Algorithm Adaptations

Multi-Label and Multi-Target Learning

- 2 Algorithm Adaptations
- 3 Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

Support for multilabel / multioutput in $\ensuremath{\mathrm{SCIKITLEARN}}$. Adapted methods:

- sklearn.tree.DecisionTreeClassifier
- sklearn.tree.ExtraTreeClassifier
- sklearn.ensemble.ExtraTreesClassifier
- sklearn.neighbors.KNeighborsClassifier
- sklearn.neural_network.MLPClassifier
- sklearn.neighbors.RadiusNeighborsClassifier
- sklearn.ensemble.RandomForestClassifier
- sklearn.linear_model.RidgeClassifierCV
- i.e., Decision Trees, Nearest-Neighbours, Neural Networks.

Classifier-agnostic (transformation/reduction methods):

- sklearn.multioutput.ClassifierChain \leftarrow Coming to this soon

Neural Networks

(we're coming back to this later ...)

Nam et al., ECML-PKDD 2014 (application to multi-label) and dozens more!

k-Nearest Neighbours (kNN)

Zhang and Zhou, Pat. Reg. 2007 (MLkNN)

Decision Tree Classifiers

Using multi-label entropy,

$$H_{ML}(S) = -\sum_{j=1}^{L} \sum_{k \in \{0,1\}} P(y_j = k) \log_2 P(y_j = k)$$

Typical advantages/disadvantages of decision trees apply.

See, e.g., Borchani et al., "A Survey on Multi-output Regression", 2015; more recently: Stepišnik and Kocev, "Oblique Predictive Clustering Trees", 2020

Decision Tree Regression

Using redefined impurity measure:

$$\sum_{i=1}^{N} \sum_{j=1}^{L} (y_{ij} - \bar{y}_j)^2$$

where \bar{y}_i is the mean of Y_j in the node.

Classifier Chains

- 1 Multi-Label and Multi-Target Learning
- 2 Algorithm Adaptations
- **3** Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

A chain (structure) over the output variables;

- Cascaded prediction across a chain/graph
- Motivation: Model label dependence with structure

X	Y_1	Y_2	Y_3	Y_4
$x^{(1)}$	0	1	1	1
$x^{(2)}$	1	0	0	0
$x^{(3)}$	0	1	0	1
$x^{(4)}$	1	0	0	0
$x^{(5)}$	0	0	0	0
$ ilde{x}$	ŷ1	<i>ŷ</i> 2	ŷ3	ŷ4

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]

A chain (structure) over the output variables;

- Cascaded prediction across a chain/graph
- Motivation: Model label dependence with structure

X	Y_1	Y_2	Y_3	Y_4
$x^{(1)}$	0	1	1	1
$x^{(2)}$	1	0	0	0
$x^{(3)}$	0	1	0	1
$x^{(4)}$	1	0	0	0
$x^{(5)}$	0	0	0	0
$ ilde{x}$	<i>ŷ</i> 1			

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]

A chain (structure) over the output variables;

- Cascaded prediction across a chain/graph
- Motivation: Model label dependence with structure

X	Y_1	Y_2	Y_3	Y_4
$x^{(1)}$	0	1	1	1
$x^{(2)}$	1	0	0	0
$x^{(3)}$	0	1	0	1
$x^{(4)}$	1	0	0	0
$x^{(5)}$	0	0	0	0
\tilde{x}	\widehat{y}_1	ŷ2		

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]

A chain (structure) over the output variables;

- Cascaded prediction across a chain/graph
- Motivation: Model label dependence with structure

х	Y_1	Y_2	Y_3	Y_4
$x^{(1)}$	0	1	1	1
$x^{(2)}$	1	0	0	0
$x^{(3)}$	0	1	0	1
$x^{(4)}$	1	0	0	0
$x^{(5)}$	0	0	0	0
$ ilde{m{x}}$	\hat{y}_1	ŷ ₂	<i>ŷ</i> 3	

For example,

$$\widehat{y}_3 = h_3(x, \widehat{y}_1, \widehat{y}_2)$$

Use training data to fit base classifier (or regressor) h_3 (e.g., decision tree, logistic regression, ...).

Inference: $\hat{y}_1, \hat{y}_2, \ldots$ are greedy predictions from h_1, h_2, \ldots

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]

A chain (structure) over the output variables;

- Cascaded prediction across a chain/graph
- Motivation: Model label dependence with structure

X	Y_1	Y_2	Y ₃	Y_4
$x^{(1)}$	0	1	1	1
$x^{(2)}$	1	0	0	0
$x^{(3)}$	0	1	0	1
$oldsymbol{x}^{(4)}$	1	0	0	0
$x^{(5)}$	0	0	0	0
$ ilde{m{x}}$	\widehat{y}_1	ŷ2	<i>ŷ</i> 3	ŷ4

For example,

$$\widehat{y}_3 = h_3(x, \widehat{y}_1, \widehat{y}_2)$$

Use training data to fit base classifier (or regressor) h_3 (e.g., decision tree, logistic regression, ...).

Inference: $\hat{y}_1, \hat{y}_2, \ldots$ are greedy predictions from h_1, h_2, \ldots

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]

Multi-label Inference: What are we doing?; Why?

• Hamming loss (decomposable):

 $\ell_{H}([1,0,0],[1,0,1]) = 1/3$

• 0/1 loss (non-decomposable):

 $\ell_{0/1}([1,0,0],[1,0,1]) = 1$

The minimizer is not (necessarily) the same!

Under total uncertainty, left is optimal for Hamming loss, right for 0/1-loss

Probabilistic Classifier Chains

We can plug in predictions \hat{y} (greedy); or any $y_1, \ldots, y_j = y \in \{0, 1\}^j$; to minimise 0/1-loss :

i.e., a path through the probability tree; e.g., p([010]|x) = 0.288

Motivation for Structure in Multi-Target Learning ?

Common argument: Because label dependence!

Motivation for Structure in Multi-Target Learning ?

Common argument: Because label dependence!

Yes for 0/1 loss.

Hamming loss & other decomposable metrics \Rightarrow classifier chains are useless? (and other structure/dependence-based models).

Risk minimization says that **yes** (chains are useless) under Hamming loss,

but empirical results show classifier chains performing well under most metrics (incl. Hamming loss)!

```
i.e., structure is generally effective? - then why?
```

Other reasons for modelling targets together (other than excuse 'because label dependence [to minimise 0/1-loss]', etc.):

- Connectivity = efficiency (sometimes)
- Connectivity = interpretation (sometimes)
- Connectivity = power (it's why deep nets or stacking works¹)
- In same cases the minimizer *is* the same (e.g., low-noise scenarios / prediction is easy) = surrogates work well.
- Multiple tasks = regularization (regularization is good)

¹Different reason if you *train* on $y_j^{(i)}$ or $\hat{y}_j^{(i)}$ as inputs

Waegeman, Dembczyński, and Hüllermeier, "Multi-target prediction: a unifying view on problems and methods", 2019; Read et al., "Classifier Chains: A Review and Perspectives", 2021

Other reasons for modelling targets together (other than excuse 'because label dependence [to minimise 0/1-loss]', etc.):

- Connectivity = efficiency (sometimes)
- Connectivity = interpretation (sometimes)
- Connectivity = power (it's why deep nets or stacking works¹)
- In same cases the minimizer *is* the same (e.g., low-noise scenarios / prediction is easy) = surrogates work well.
- Multiple tasks = regularization (regularization is good)

James-Stein Estimator

Joint-target regularization is beneficial *even if targets are intrinsically independent*.

¹Different reason if you *train* on $y_i^{(i)}$ or $\hat{y}_i^{(i)}$ as inputs

Waegeman, Dembczyński, and Hüllermeier, "Multi-target prediction: a unifying view on problems and methods", 2019; Read et al., "Classifier Chains: A Review and Perspectives", 2021

Advantages quickly fade as $n \gg 0$.

Explains reemergence of independent models vs structure debate. . .

Chains vs Other Approaches

	X_1	X_2	<i>X</i> ₃	<i>Y</i> ₂	X_1	X_2	X_3	Y_2
Basis expansion	х	ϕ_1	ϕ_2	<i>y</i> ₂	ĩ	ϕ_1	ϕ_2	\widehat{y}_2
Classifier chain	x	y_1		<i>y</i> ₂	x	\widehat{y}_1		\widehat{y}_2
Stacking	x	\widehat{y}_1	\widehat{y}_2	<i>y</i> ₂	ĩ	$\widehat{y}_{1}^{[1]}$	$\widehat{y}_{2}^{[1]}$	$\widehat{y}_{2}^{[2]}$
Neural network	x			<i>y</i> 2	ĩ	\hat{z}_1	\hat{z}_2	\hat{y}_2

Training (left) vs Testing (right) – wrt $\hat{y}_2|\tilde{x}$

Lessons on Finding a Good Structure

- Different chain orders are equivalent in theory if you have P
- Dependence is not the only component to consider (and your hierarchy is probably not better than a random one)
- Weaker base learner/smaller training set ⇒ more connectivity
- Weaker (greedy) inference = choose more carefully
- Best structure for loss ℓ_a , may not be the best for loss ℓ_b
- Best structure for x not the best for \tilde{x} (you can use a population; do dynamic selection)
- Search: Space is huge, but local optimum can be good

Read et al., "Classifier Chains: A Review and Perspectives", 2021 (under review)

Where $x \in \{0, 1\}^2$; Base-model = Logistic regression; [†]But not greedy inference!

Chains vs Deep Learning?

Can chains compete against deep architectures?

Some years ago: Yes! Now:

- Maybe wrt accuracy, but only on relatively smaller datasets
- Maybe wrt explainability:
 - decision trees (etc.) as base model
 - connection among outputs
- Classifier chains are deep architectures; can be combined:

A combination of chaining and deep-neural architectures

Read and Hollmén, *Multi-label Classification using Labels as Hidden Nodes*, 2017, Cisse, Al-Shedivat, and Bengio, "ADIOS: Architectures Deep In Output Space", 2016,, "Learning Deep Latent Spaces for Multi-Label Classification", 2017

Regressor Chains

- Multi-Label and Multi-Target Learning
- 2 Algorithm Adaptations
- 3 Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

Regression Multi-Cibles

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	X_5	Y_1	Y_2	Y_3
2.12	1.217	-0.675	-0.451	0.342	37.00	25	0.88
-0.717	-0.826	0.064	-0.259	-0.717	-22.88	22	0.22
1.374	0.95	0.175	-0.006	-0.522	19.21	12	0.25
1.392	-0.496	-2.441	-1.012	0.268	88.23	11	0.77
1.591	0.208	0.17	-0.207	1.686	?	?	?

As in classification: We can use independent models

As in classification: We can put variables into a chain (regressor chains);

But it's probably useless to do that, because

- Our loss metric has changed (probably MSE, MAE, ...)
- We probably chose linear regression; lost our non-linearity

Regressor Chains

We can ...

- Work very hard on structure
- Look at other loss functions (other than MSE, MAE, ...); such as modal estimates.

Two equally un/likely trajectories (given x) over $y_1\in\mathbb{R},\,y_2\in\mathbb{R}:$ MSE vs MAE vs MAP approx.

Waegeman, Dembczyński, and Hüllermeier, "Multi-target prediction: a unifying view on problems and methods", 2019; Read and Martino, "Probabilistic Regressor Chains with Monte-Carlo Methods", 2020

Sequential Monte Carlo Methods for tracking modal predictions (i.e., trajectories)²:

Related approach : Multi-target regression via output space $\mathsf{quantization}^3$

Other options: Multi-target decision trees $\!\!\!^4$ and ensembles; and deep learning.

²Read and Martino, Neurocomputing 2020

 $^{^3\}mathsf{Spyromitros}\text{-}\mathsf{Xioufis},$ Sechidis, and Vlahavas, ArXiv preprint 2020

⁴Stepišnik and Kocev, ArXiv preprint 2020

Modern Multi-Output Topics

- 1 Multi-Label and Multi-Target Learning
- 2 Algorithm Adaptations
- 3 Classifier Chains
- 4 Regressor Chains

Open Questions

Loss metrics: which loss is more appropriate, and given some loss, how to minimize it in a principled way.

Interpretation/Explainability: What does label dependence mean wrt the data?

Trends

Bigger / deeper.

Larger target spaces (4,000—3,000,000 labels), i.e., 'extreme multi-label classification'

Wider range of applications

- tagging
- video recommendation
- . . .

Intersection with existing areas (deep learning, multi-task, transfer learning, etc.).

e.g., Jasinska-Kobus et al., "Probabilistic Label Trees for Extreme Multi-label Classification", 2020 and references therein

Trends

- Import extra problems (already known in wider machine learning) : streams, semi-supervised learning, time series classification, etc.
- Learning with partial labels (noisy annotators), weak labels (lazy annotators), label ambiguity and imprecise classification (messy ground truth/partial abstention).

Summary

Multi-Label and Multi-Target Learning

- 2 Algorithm Adaptations
- **3** Classifier Chains
- 4 Regressor Chains
- 5 Modern Multi-Output Topics

Summary: Multi-target Learning and Prediction

- Special cases: Multi-label classification; multi-target regression
- A look at methods through the lens of classifier chains and regressor chains (decision trees and neural networks as alternative/overlap)
- Main question: If, and why, and how to use structure
- Not answered (in detail): how to *find* that structure. There is no single optimal structure, and there is more to multi-target learning than 'modelling label dependencies': consider metrics, efficiency, base models, interpretation,
- Multi-target problems getting bigger and more diverse; intersecting with other areas
- Many applications; More theoretical research needed

Multi-label and Multi-target Learning Applications, Challenges, and Models

Jesse Read

Thank you ! http://www.lix.polytechnique.fr/~jread/