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Classification Multi-label
X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 0.1 3 1 0 0 1 1 0
0 0.9 1 0 1 1 0 0 0
0 0.0 1 1 0 0 1 0 0
1 0.8 2 0 1 1 0 0 1
1 0.0 2 0 1 0 0 0 1
0 0.0 3 1 1 ? ? ? ?

For input x we get a vector output

ŷ = h(x) = h([x1, . . . , xd ]︸ ︷︷ ︸
inputs

) = [y1, . . . , yL︸ ︷︷ ︸
outputs

]

N.B. Not multi-class, but multi-class multi-label!

y = [0, 1, 1, 0] ⇔ labels {2, 3} are relevant to corresponding x.
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Reduction #1 (to binary): Binary Relevance Method

X Y1 Y2 Y3 Y4
x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
x̃ ? ? ? ?

y4y3y2y1

x

The binary relevance method (BR transformation) = one binary
classifier trained for each label, i.e., independent models.
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Reduction #1 (to binary): Binary Relevance Method

X Y1
x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0
x̃ ?

X Y2
x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0
x̃ ?

X Y3
x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0
x̃ ?

X Y4
x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0
x̃ ?

y4y3y2y1

x

The binary relevance method (BR transformation) = one binary
classifier trained for each label, i.e., independent models.
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Reduction #2 (to multi-class): Label Powerset Method

X Y
x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
x̃ ?

y

x

The label powerset method (LP transformation) = a single target
multi-class classifier. Labels are modeled together, mais . . .

Overfitting
y ∈ {0, 1}L.
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A Brief Timeline of Multi-label Learning in Academia
< 2000s : Use (baseline) reduction #1 (BR), or #2 (LP)
. . . 2010 :

We beat BR (using label dependence)!
Many applications!

. . . 2015 :
We beat the methods that beat BR (using label dependence in
a more sophisticated way)!
Wait – what are we doing? And why?

. . . 2020 :
Models get deep, deeper, . . . ; (CNNs, LSTM, . . . )
Problems get big, bigger, . . .
Do we actually need label dependence models? (BR seems to
work well!)

Recently/Currently:
New tasks and applications: partial labels, weak labels, label
ambiguity, imprecise prediction/with abstention, . . .
Models: neural, graph embeddings, adversarial, attention, . . .
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Example Application: Multi-Label Classification

Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?
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Missing-data Imputation / Recommender Systems

Film 2 Film 3 Book 1 Book 2 Song 5
X2 X4 X1 X3 X5

x 0 0 1 1 0
x 1 1 ? 0 ?
x 0 0 1 0 0
x 1 1 ? 0 1
x 0 0 0 ? ?
x 1 0 ? 1 ?
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Time Series Forecasting / Trajectory Prediction

0 10 20 30 40 50 60
t

1.5

1.0

0.5

0.0

0.5

1.0
x1 : T

x′1
y′1

(including multi-dimensional time series).
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Support for multilabel / multioutput in ScikitLearn.

Adapted methods:

sklearn.tree.DecisionTreeClassifier

sklearn.tree.ExtraTreeClassifier

sklearn.ensemble.ExtraTreesClassifier

sklearn.neighbors.KNeighborsClassifier

sklearn.neural_network.MLPClassifier

sklearn.neighbors.RadiusNeighborsClassifier

sklearn.ensemble.RandomForestClassifier

sklearn.linear_model.RidgeClassifierCV

i.e., Decision Trees, Nearest-Neighbours, Neural Networks.

Classifier-agnostic (transformation/reduction methods):
sklearn.multiclass.OneVsRestClassifier ← Baseline BR
sklearn.multioutput.ClassifierChain ← Coming to this soon



13

Neural Networks

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

(we’re coming back to this later . . . )

Nam et al., ECML-PKDD 2014 (application to multi-label) and dozens more!
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k-Nearest Neighbours (kNN)

4 3 2 1 0 1 2 3 4
x1

5

4

3

2

1

0

1

2

3
x

2
000
001
010
011
101
?

Zhang and Zhou, Pat. Reg. 2007 (MLkNN)
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Decision Tree Classifiers

x1 = 1

x2 = 1 x2 = 1

y = [0, 1, 1] y = [1, 1, 0]y = [0, 0, 0] y = [0, 1, 1]

no
yes

no yesno yes

Using multi-label entropy,

HML(S) = −
L∑

j=1

∑
k∈{0,1}

P(yj = k) log2 P(yj = k)

Typical advantages/disadvantages of decision trees apply.
See, e.g., Borchani et al., “A Survey on Multi-output Regression”, 2015; more recently: Stepišnik and Kocev,

“Oblique Predictive Clustering Trees”, 2020
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Decision Tree Regression

X[0] <= 16.494
mse = 4.9

samples = 100
value = [[0.021]

[0.091]]

X[0] <= -44.963
mse = 4.71

samples = 59
value = [[0.282]

[-0.417]]

True

X[0] <= 28.711
mse = 4.599
samples = 41

value = [[-0.355]
[0.823]]

False

mse = 4.646
samples = 29

value = [[-0.416]
[-0.631]]

mse = 4.265
samples = 30

value = [[0.957]
[-0.211]]

mse = 1.062
samples = 5

value = [[-2.539]
[1.295]]

mse = 4.695
samples = 36

value = [[-0.052]
[0.758]]

Using redefined impurity measure:
N∑

i=1

L∑
j=1

(yi j − ȳj)
2

where ȳi is the mean of Yj in the node.

TODO
cite some paper from file:///tmp/mozilla_
jesse0/Borchani-2015-WDMKD.pdf

file:///tmp/mozilla_jesse0/Borchani-2015-WDMKD.pdf
file:///tmp/mozilla_jesse0/Borchani-2015-WDMKD.pdf
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(Greedy) Classifier Chains

A chain (structure) over the output variables;

Cascaded prediction across a chain/graph
Motivation: Model label dependence with structure

y4y3y2y1

x
X Y1 Y2 Y3 Y4

x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Read et al., ECML-PKDD 2009 [Test of Time Award 2019]
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(Greedy) Classifier Chains

A chain (structure) over the output variables;

Cascaded prediction across a chain/graph
Motivation: Model label dependence with structure
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x
X Y1 Y2 Y3 Y4

x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3

For example,
ŷ3 = h3( x, ŷ1, ŷ2 )

Use training data to fit base classifier (or regressor) h3 (e.g.,
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ŷ3 = h3( x, ŷ1, ŷ2 )
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Multi-label Inference: What are we doing?; Why?
Hamming loss (decomposable):

ℓH([1, 0, 0], [1, 0, 1]) = 1/3

0/1 loss (non-decomposable):

ℓ0/1([1, 0, 0], [1, 0, 1]) = 1

The minimizer is not (necessarily) the same!

Class Labels
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Under total uncertainty, left is optimal for Hamming loss, right for 0/1-loss
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Probabilistic Classifier Chains
We can plug in predictions ŷ (greedy); or any
y1, . . . , yj = y ∈ {0, 1}j ; to minimise 0/1-loss :

ŷ = argmax
y∈{0,1}3

P(y|x) where P(y|x) =
3∏

j=1
P(yj |y1, . . . , yj−1,x)

y3y2y1

x

x

0

0

0

0.5

10.5
0.2

1

0 P ([0 1 0]|x) = 0.288

0.9

10.1

0.8

0.4

1

0

0

0.4

1 P ([1 0 1]|x) = 0.2680.6
0.7

1

0

0.5

10.5

0.3

0.6

i.e., a path through the probability tree; e.g., p([0 1 0]|x) = 0.288
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Motivation for Structure in Multi-Target Learning ?
Common argument: Because label dependence!

Yes for 0/1 loss.
Hamming loss & other decomposable metrics ⇒ classifier chains
are useless? (and other structure/dependence-based models).

y4y3y2y1

x

vs
y4y3y2y1

x

Risk minimization says that yes (chains are useless) under
Hamming loss,

but empirical results show classifier chains performing well under
most metrics (incl. Hamming loss)!

i.e., structure is generally effective? – then why?
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Other reasons for modelling targets together (other than excuse
‘because label dependence [to minimise 0/1-loss]’, etc.):

Connectivity = efficiency (sometimes)
Connectivity = interpretation (sometimes)
Connectivity = power (it’s why deep nets or stacking works1)
In same cases the minimizer is the same (e.g., low-noise
scenarios / prediction is easy) = surrogates work well.
Multiple tasks = regularization (regularization is good)

James-Stein Estimator
Joint-target regularization is beneficial even if targets are
intrinsically independent.

1Different reason if you train on y (i)
j or ŷ (i)

j as inputs
Waegeman, Dembczyński, and Hüllermeier, “Multi-target prediction: a

unifying view on problems and methods”, 2019; Read et al., “Classifier Chains:
A Review and Perspectives”, 2021
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0 1000 2000 3000 4000
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E j
s
<
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Advantages quickly fade as n ≫ 0.

Explains reemergence of independent models vs structure
debate. . .
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Chains vs Other Approaches

X1 X2 X3 Y2
Basis expansion x ϕ1 ϕ2 y2
Classifier chain x y1 y2

Stacking x ŷ1 ŷ2 y2
Neural network x y2

X1 X2 X3 Y2
x̃ ϕ1 ϕ2 ŷ2
x̃ ŷ1 ŷ2

x̃ ŷ [1]
1 ŷ [1]

2 ŷ [2]
2

x̃ ẑ1 ẑ2 ŷ2
Training (left) vs Testing (right) – wrt ŷ2|x̃
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Lessons on Finding a Good Structure

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

Different chain orders are equivalent in theory if you have P
Dependence is not the only component to consider (and your
hierarchy is probably not better than a random one)
Weaker base learner/smaller training set ⇒ more connectivity
Weaker (greedy) inference = choose more carefully
Best structure for loss ℓa, may not be the best for loss ℓb

Best structure for x not the best for x̃ (you can use a
population; do dynamic selection)
Search: Space is huge, but local optimum can be good

Read et al., “Classifier Chains: A Review and Perspectives”, 2021 (under review)
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or and xor

x

xorandor

x

orandxor

x

Metric BR (left) CC1 (mid) CC†2 (right)
Hamming loss 0.17 0 0

0/1 loss 0.50 0 0
Where x ∈ {0, 1}2; Base-model = Logistic regression; †But not greedy inference!
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0.62

Jaccard score from 45 chain permutations; 'emotions' data. 
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How to Traverse a Given Structure (Inference)

Greedy vs Brute-force inference
AI Tree-search methods ; see fig →
Dynamic / Population
Generic agents / RL
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Chains vs Deep Learning?
Can chains compete against deep architectures?
Some years ago: Yes! Now:

Maybe wrt accuracy, but only on relatively smaller datasets
Maybe wrt explainability:

decision trees (etc.) as base model
connection among outputs

Classifier chains are deep architectures; can be combined:

y1

y2

z

x

y1 y2

y′
1 y′

2

z

x

A combination of chaining and deep-neural architectures

Read and Hollmén, Multi-label Classification using Labels as Hidden Nodes, 2017,Cisse, Al-Shedivat, and
Bengio, “ADIOS: Architectures Deep In Output Space”, 2016,, “Learning Deep Latent Spaces for Multi-Label
Classification”, 2017



29

Regressor Chains

1 Multi-Label and Multi-Target Learning

2 Algorithm Adaptations

3 Classifier Chains

4 Regressor Chains

5 Modern Multi-Output Topics

6 Summary



30

Regression Multi-Cibles

X1 X2 X3 X4 X5 Y1 Y2 Y3
2.12 1.217 -0.675 -0.451 0.342 37.00 25 0.88

-0.717 -0.826 0.064 -0.259 -0.717 -22.88 22 0.22
1.374 0.95 0.175 -0.006 -0.522 19.21 12 0.25
1.392 -0.496 -2.441 -1.012 0.268 88.23 11 0.77
1.591 0.208 0.17 -0.207 1.686 ? ? ?

As in classification: We can use independent models . . .

As in classification: We can put variables into a chain (regressor
chains);
But it’s probably useless to do that, because

Our loss metric has changed (probably MSE, MAE, . . . )
We probably chose linear regression; lost our non-linearity
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Regressor Chains

We can . . .
Work very hard on structure
Look at other loss functions (other than MSE, MAE, . . . );
such as modal estimates.

1 2
j

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y j

MAP
MAE
MSE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
y1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 2

Two equally un/likely trajectories (given x) over y1 ∈ R, y2 ∈ R : MSE vs MAE vs MAP
approx.

Waegeman, Dembczyński, and Hüllermeier, “Multi-target prediction: a unifying view on problems and
methods”, 2019; Read and Martino, “Probabilistic Regressor Chains with Monte-Carlo Methods”, 2020
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Sequential Monte Carlo Methods for tracking modal predictions
(i.e., trajectories)2:

x

1.0

0.5

0.0

0.5

1.0

y 1

{x, y(m)
1 }M

m = 1

{x(i), y(i)
1 }N

i = 1

0 1

p(y)
p(y|x)

y1

1.0

0.5

0.0

0.5

1.0

y 2

{y(m)
1 , y(m)

2 }M
m = 1

yMSE

yMAP

{y(i)
1 , y(i)

2 }N
i = 1

0 1

p(y)
p(y|x)

j = 1 j = 2
1.5

1.0

0.5

0.0

0.5

1.0

y j

{yi}N
i = 1

{y(m)
i }M

m = 1
y|x
yMSE

yMAP

p(yj|x)

Related approach : Multi-target regression via output space
quantization3

Other options: Multi-target decision trees4 and ensembles; and
deep learning.

2Read and Martino, Neurocomputing 2020
3Spyromitros-Xioufis, Sechidis, and Vlahavas, ArXiv preprint 2020
4Stepišnik and Kocev, ArXiv preprint 2020
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Modern Multi-Output Topics
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6 Summary
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Open Questions
Loss metrics: which loss is more appropriate, and given some loss,
how to minimize it in a principled way.

Interpretation/Explainability: What does label dependence mean
wrt the data?

D

Ma2K
Pt1K

Hy

Sc1K

Mfm

Si

Pd4K

Pa Hs5K

IP
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Trends
Bigger / deeper.

Larger target spaces (4,000—3,000,000 labels), i.e., ‘extreme
multi-label classification’

Wider range of applications
tagging
video recommendation
. . .

Intersection with existing areas (deep learning, multi-task, transfer
learning, etc.).

e.g., Jasinska-Kobus et al., “Probabilistic Label Trees for Extreme Multi-label Classification”, 2020 and
references therein
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Trends
Import extra problems (already known in wider machine
learning) : streams, semi-supervised learning, time series
classification, etc.
Learning with partial labels (noisy annotators), weak labels
(lazy annotators), label ambiguity and imprecise classification
(messy ground truth/partial abstention).

Class Labels
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Summary: Multi-target Learning and Prediction

Special cases: Multi-label classification; multi-target regression
A look at methods through the lens of classifier chains and
regressor chains (decision trees and neural networks as
alternative/overlap)
Main question: If, and why, and how to use structure
Not answered (in detail): how to find that structure. There is
no single optimal structure, and there is more to multi-target
learning than ‘modelling label dependencies’: consider metrics,
efficiency, base models, interpretation, . . . .
Multi-target problems getting bigger and more diverse;
intersecting with other areas
Many applications; More theoretical research needed
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Multi-label and Multi-target Learning
Applications, Challenges, and Models

Jesse Read

Thank you !
http://www.lix.polytechnique.fr/~jread/

http://www.lix.polytechnique.fr/~jread/
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