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Introduction

Electrocardiogram (ECG): time series, observation of electrical functioning of the
heart, useful in the detection of cardiac diseases.
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Image source: Wikipedia

This talk: A look at where are we with Al "understanding’/making use of ECG?

...and perspectives for it being more accurate, interpretable, reliable (useful), . ..
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Human Expert: Direct and holistic study; expensive and time-consuming
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Signal Processing: Fourier/wavelet transformations; useful tools
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Machine Learning: Feature engineering and preprocessing; difficult to generalise

Al =
A i % Label(s)
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Deep Learning: Learn from raw signal; need much data and computation,

Label(s)



https://blog.octo.com/time-series-features-extraction-using-fourier-and-wavelet-transforms-on-ecg-data

Automatic Classification of ECG Signals (Signal — Diagnoses)

Label(s)

Deep neural architectures® for multi-labelling of 12-lead ECG are competitive, but
o Effective only on data from the same source (same hospital, equipment, ...)
vulnerable to noise (sensor issues, clinical/technical errors, .. .)
o Limited interpretability/explainability (requires medical + ML training)
i.e., still needs to be validated by expert — lack of general applicability.
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Post-hoc explainability (SHAP [left] and LIME [right]) of atrial fibrillation. Credits: Nhat Vo Duy, Ecole Polytechinque;
Philippe Chevalier, Univ. Claude Bernard Lyon.

1
e.g.. Anténio H Ribeiro et al. “Automatic diagnosis of the 12-lead ECG using a deep neural network”.



Automatic Synthetic Generation of ECG Signals (Diagnosis — Signal)

Label(s)

Generative models are much harder!

Why generation?
o Data augmentation (generate more data to train deep models)
o Verification of the internal model for ECG

o Interpretation (including for non-cardiologists);
Example: If patient x's ECG demonstrates diagnosis y — generate ECG x’ as similar as
possible but that not suffering from diagnosis y (counterfactual generation).

Al

NP
|

| — normal




Some examples of issues with image generation:

Images from: Borji, Qualitative Failures of Image Generation Models and Their Application in Detecting Deepfakes

(strong resemblance to real images, but lacking a complete underlying world-model).

For ECG: need an underlying model of the heart, and anything relating to it.



Early results on ECG, our VAEGANE model:
Inferior Myocard|a| Infarction — generated (VAEGANE):
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Duy Nhat Vo et al. VAEGANE: Enhancing VAE with Feature-wise Loss for ECG Generation.



Other results from the literature:
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Note: single beat!

Yong Xia, Wenyi Wang, and Kuanquan Wang.

“ECG signal generation based on conditional generative models”.
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Success of Deep Learning for ECG?

Limited success of deep learning for ECG — especially, wrt needs of computation and
data (remark: ECG data is often not public/easy to gather)

Foundation models for time series data is hard!
ECG signals are periodic — challenging for deep learning

Alternative: Use vision/language models instead?
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Also promising: Diffusion Models, hybrid approaches, ...

(Our work: Eran Zvuloni et al. “On Merging Feature Engineering and Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based
on the 12-Lead ECG”. ;
Other references: Shereen Elsayed et al. “Do we really need deep learning models for time series forecasting?”

; Akhil Vaid et al. "A foundational vision transformer improves diagnostic performance for electrocardiograms”.



https://ieeexplore.ieee.org/document/10025679

Al for ECG: Summary

o Classification performs well (for certain label concepts), but limited
generalisation /transferrability and explainability

Generation very rudimentary — indicating major limitations
... because of particularities for ECG (and time series data),

...or due to lack of data/attention (from Al community),
?
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Are we at where language processing & computer vision was prior to 2010s?
(success on particular datasets, via expert features, not very generalisable)
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New promising architectures constantly emerging
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Limitations: ECG analysis alone is insufficient — towards more holistic models?
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