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Agenda for This Talk

Transfer in Time-Series Data Streams

Learning from data streams.
Modern data streams often arise in the context of time series data,
including reinforcement learning. Learning methodologies, concept
drift, continual learning, transfer learning: we1 aim to provide a
more holistic view.
We2 will take a look at model-agnostic transfer in stream-based
learning paradigms: supervised, unsupervised, reinforcement
learning.

1Read and Žliobaitė, Learning from Data Streams: An Overview and
Update, 2023; Žliobaitė and Read, A Historical Context for Data Streams, 2023

2Read, “From Multi-label Learning to Cross-Domain Transfer: A
Model-Agnostic Approach”, 2023; Chehboune, Kaddah, and Read,
“Transferable Deep Metric Learning for Clustering”, 2023



3

Outline

1 Learning from Data Streams: Revisiting Assumptions

2 Model Agnostic Cross-Domain Transfer

3 Metric-based Transfer

4 Reward-based Transfer in Reinforcement Learning

5 Summary and Conclusions



4

Learning from Data Streams: Revisiting
Assumptions

1 Learning from Data Streams: Revisiting Assumptions

2 Model Agnostic Cross-Domain Transfer

3 Metric-based Transfer

4 Reward-based Transfer in Reinforcement Learning

5 Summary and Conclusions



5

Data Streams are Everywhere

yt = 0

yt = 1

Image Source: [1]

Applications: IoT, energy and traffic systems, and demand
prediction, monitoring and tracking, event and fraud detection,
click/web logs, finance, health, news, social networks, forecasting,
reinforcement learning, . . . .

https://www.howtogeek.com/68886/how-to-configure-your-router-for-network-wide-url-logging/
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Data Streams
A data stream,

x1, x2, . . . , xt , . . . , x∞

where, at real time t we observe xt , generated from concept
(generating distribution)

xt ∼ P(X )

Or, (xt , yt) ∼ P(X , Y ) (supervised case); e.g., (iid assumption):

xtyt

ŷt

Ltxt+1 y1 y2 y3 y4

x1 x2 x3 x4

But sometimes we don’t get xt at time t; and data is not iid!
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Data Streams: an Implementation Issue
data source

IDP

Predict Learn

data

xt xt−1, yt−1

θt

ŷt

IDP = Instance Delivery Process; a software/hardware issue
(requires buffer, or – what to if data doesn’t arrive on time? –
delay, missing values, concept shift, etc.)
Typical models (θt): k-nearest neighbours, incremental decision
trees, neural networks, . . . , model agnostic.
Multiple streams: xt , yt , stream θt , stream ŷt , etc (ϵt , . . . ).
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Time Series Data Streams
Nearly all realistic applications of online learning applied to data
streams involve time series forecasting.

yt = 0

yt = 1

But online learning is only one option (batch-learning is allowed!).
For example (non-iid data),

xtyt

ŷt

Ltxt+1 y1 y2 y3 y4

x1 x2 x3 x4
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Example: Temperature
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Concept Drift
Everyone who talks about ‘data stream learning ’ usually must talk
about concept drift. This means:

Pt−1(X , Y ) ̸= Pt(X , Y )

for at least some t (note time indices on P!).

y1 y2 y3 y4

x1 x2 x3 x4

Also known as domain shift, co-variate shift (if specific to X ),
change point, etc.
What is the difference between concept drift in data streams and
regular (stationary) time series?
All plots in previous slide refer to the same data!
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Detecting Concept Drift
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Concept drift is typically be detected in the error signal (stream),
in the case of fully-supervised stream learning.
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Reinforcement Learning = Learning from Time Series
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In reinforcement learning, we observe
stream of actions – outputs which may affect the future!
stream of state-observations
stream of rewards

Output of learning: function, π : at 7→ st
just like classifier or regressor (but called a policy).
Almost no mention of ‘data stream learning’, ‘concept drift’, etc3

in the literature.
3Chaouki, Read, and Bifet, “Online Decision Tree Construction with Deep Reinforcement Learning”, 2023
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Adaptation to Concept Drift = Transfer Learning
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Transfer Learning
Quick guide to transfer learning:

1 Find related source task
2 Use it to improve the model you deploy on target task

For example, deep transfer learning (forward transfer, from Source
task to Target):

yS yT

zS zT

xS xT

In data stream learning:
source task = prior concept
target task = current concept.
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Model-Agnostic Model-based Transfer
Traditional assumption: target task similar to source task.

Task similarity = 1 implies optimal results (no transfer required).
What is similarity = 0?
But also, ‘variance (dissimilarity) in training domains is good’ (for
generalisation/transfer) – in contradiction with previous point!

ŷS yT

xTx̃S

f

hS

hT

hT

Main idea: use predictions from old models as features,
No fine-tuning required (old model = ‘frozen’ layer)
Model agnostic (neural network not required)
Can be cascaded across time (in the context of streams)
Works ‘without any relatedness’!
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Insomniac Fungi

Model (random forest) for classifying (human) insomniac patients
according to their answers to a psychological questionnaire (x):

xS

xS

Features from a yeast genome (x′; different problem) is cast into x
instead, and given an insomnia profile ŷ′; result: +2% accuracy
when used as a feature for predicting genome function.
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XOR Example
A target task xor (data shown, some noise added) is solved via
predictions from and-function (decision boundary shown) as an
additional feature:
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In Application to Concept-Drift Adaptation (In Streams)
In data streams, it means we can continue using the old model,
prior to drift, even if drift was drastic.

y1 y2 y′
3

x1 x2 x′
3

Data is generated (we don’t see this) as

x , y ∼ P(X , Y )
x ′, y ′ ∼ P ′(X , Y )

Prediction as
ŷ ′ = h′(x ′, h(x ′))
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Model-based Transfer; Discussion Points

All models are related (somehow)
New take on old recipe: predictive power + regularization;
intersection with ideas such as pretrained-, frozen layers
(‘parameter isolation’), random basis functions, ‘extreme
learning machines’, . . .
The more multi-label the better (richer ŷ)
Transfer learning vs reduction/reuse/recycling of models?
Model-driven learning vs data-driven learning
Implication: The old ‘irrelevant’ models are not!

Main limitations:
It doesn’t always work; savings (by using old models)
eventually outweighed by cost (of using old models).
Reliance on the richness and utility of the predictions/features
(ŷ).
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Metric-based Transfer (for Clustering)
A good reward rϕ (metric; equivalently loss) can facilitate rapid
learning. Clustering:

ŷ = argmax
y

rϕ(y; X)

where rϕ ∈ R is big when clustering is good. But clustering is
unsupervised – what is ‘good’?
Answer: we have many examples of X, y∗ to learn from (existing
labeled datasets)!
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Inside the framework of a GAN (generate and critique a
‘clustering’),

we learn ϕ. Aim: walk away with rϕ suited to any data X; with an
off-the-shelf optimizer:

ŷ = argmax
y

rϕ(X, y)

Chehboune, Kaddah, and Read, “Transferable Deep Metric Learning for Clustering”, 2023
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Reward-based Transfer in Reinforcement Learning
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Transfer in Reinforcement Learning
Model-driven (frozen/chain-based) transfer even less likely to work
in reinforcement learning: causality, highly-dynamic environment,
more significant and more frequent concept drift/shift (including
action and state dimensionality/observability), etc. And
exploration is important – but optimal policy may be deterministic.

RewardState

Action

AGENT

ENVIRONMENT
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Reward-based Transfer in Reinforcement Learning

Typical suggestions for storage of knowledge in RL:
Policy π

Q-function
Environment model p(s ′ | a, s)
Features/latent layers

We choose:
rϕ

Meta-learning (learning to learn); a kind of transfer learning, very
close to multi-task learning.

Our vector of transfer is ϕ!

Indeed, we want a metric (reward) for multiple tasks! In
reinforcement learning, the reward function is really a big deal!
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Inverse Reinforcement Learning; or: From where to get rϕ

Imitation learning may (if lucky) provide π ≈ π∗, i.e., the expert’s
behaviour ; but we need inverse reinforcement learning for the
discovery of r (what the expert is maximizing).

Usual purpose: learning about human preferences in complex
systems (energy networks, games, autonomous vehicles, . . . );
Our primary purpose: Transfer to new environments.

In reinforcement learning: (p, r)⇝ π∗
(from [unknown] environment to policy, via interaction)

In inverse reinforcement learning (IRL): (p, π∗)⇝ r
(from policy and environment to reward via observation).

rϕ(st , at)

Ongoing work; Simo Alami Chehbourne thesis – under review!
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Summary

Some general views (and specific approaches), providing:
Revision of some problematic assumptions in data stream
learning – and stronger links to time series
Reinforcement learning as time-series data-stream learning
Connection between adaptation to concept drift and transfer
learning (including, in unsupervised, supervised, and
reinforcement learning)
A model-driven cross-domain transfer; implications for
adaptation to drift: transfer via prediction vector from old
models.
And metric-based transfer (for clustering, reinforcement
learning – when there’s no label vector), via inverse
reinforcement learning; connection between GANs and critics.
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