
1

Multi-output Chain Models
and their Application in Data Streams

Jesse Read and Luca Martino



2

Outline

1 Multi-Output Prediction

2 Sequential Monte Carlo Regressor Chains

3 Applications and Related Methods



3

Multi-Output Learning (Multi-label Classification)
X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 0.1 3 A NO 0 1 1 0
0 0.9 1 C YES 1 0 0 0
0 0.0 1 A NO 0 1 0 0
1 0.8 2 B YES 1 0 0 1
1 0.0 2 B YES 0 0 0 1
0 0.0 3 A YES ? ? ? ?

Given: D = {xi , yi}n
i=1

We want: model h such that ŷ = h(x) ≈ y.

x[1]

h

x[2] x[3] x[4] x[5]

y[1] y[2] y[3] y[4]

e.g., x is a text document; we want relevant labels (⇔ y1 = 1)
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Use Independent Models?

y3y2y1

x

ŷ = [h1(x), h2(x), h3(x)]

Why not?
Short answer: it works better modeling relationships among labels
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Classifier Chains
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Predictions cascade along a chain (as additional features)
Use any suitable base classifier
May suffer error propagation; probabilistic model can help:
ŷ = argmaxy∈{0,1}L

∏L
j=1 P(yj |x, y1, . . . , yj−1)

i.e., inference becomes a search e.g., Monte Carlo search1

State of the art performance/benchmark method

And when outputs are continuous?

1Read, Martino, and Luengo, Pat. Rec. 2014



5

Classifier Chains
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Multi-Output Regression

X1 X2 X3 X4 X5 Y1 Y2 Y3
1 0.1 3 A NO 37.00 25 0.88
0 0.9 1 C YES -22.88 22 0.22
0 0.0 1 A NO 19.21 12 0.25
1 0.8 2 B YES 88.23 11 0.77
1 0.0 2 B YES 0 0 0.08
1 0.0 2 B YES ? ? ?

e.g., x is an image, ŷ = time, temperature, date, . . . of image
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Individual regressors vs
“Regressor Chains”?

y3y2y1

x

y3y2y1

x

greedy inference (single propagation),
but may be pointless, or worse (divergence along the chain)
probabilistic inference – not tractable, no tree to search
and what are we optimizing?
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It’s all about Label Dependence?

Not really. If we unravel the chain, we get a “deep” neural network:

x

y1z1

y2z2 z3

y3

(z1 = z2 = x, and z3 = y1)

it’s deep in the label space! Classification has a natural
non-linearity, regression not necessarily!



9

What are we Optimizing?
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Figure: Left: A bimodal joint distribution over two labels (ground truth,
given some x). Red = MMSE estimator; yellow = MMAE estimator;
black = MAP estimate (mode).
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Regressor Chains

Motivation: A Regressor Chains models, where:

Able to optimize different metrics (other than MSE)
Outputs should serve as a non-linear representation for other
outputs
“Error propagation” (path degeneration) should be limited
Able to offer interpretation/explainability
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Sequential Monte Carlo Regressor Chains (SMCRC)
Given a test instance x:

For j = 1, . . . , L: ▷ Across the outputs
For m = 1, . . . ,M: ▷ For each particle

y (m)
j ∼ f (yj |ỹ (m)

1 , . . . , ỹ (m)
j−1 ) ▷ Draw samples

w (m)
j = w (m)

j−1
ℓ(y (m)

j | x, ỹ (m)
1 , . . . , ỹ (m)

j−1 )

f (y (m)
j | ỹ (m)

1 , . . . , ỹ (m)
j−1 )

▷ Transition weights

If ÊSS(w̄ (1:M)
j ) ≤ ηM:

{ỹ (1)
j , . . . , ỹ (M)

j } ∼ {y (1)
j , . . . , y (M)

j } ▷ Resample ∝ w̄ (m)
j

and (Optional) Apply K steps of MCMC or AIS.

We need to learn f (e.g., kernel density estimate), and ℓ (e.g.,
Bayesian regression) from training data
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Output:

ŷMAP = ŷ(m∗) where m∗ = argmax
m

w (m)

ŷMSE =
M∑

m=1
y(m)w̄ (m)

0.4

0.6

0.3 0.5

0.9 0.90.1

0.7

y
(1,2)
2 y

(3)
2

y
(3)
1y

(1)
1 y

(2)
1

y
(1)
3 y

(2)
3 y

(3)
3

w (m) := w (m)
1 · w (m)

2 · · · · · w (m)
L



14

2 1 0 1 2
x

1.5

1.0

0.5

0.0

0.5

1.0
y 1

{x(i), y(i)
2 }N

i = 1

{x, y(m)
1 }M

m = 1

y (m)
1 ∼ f1(·|x) ▷ for some test instance x
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Route Forecasting

Personal nodes of a traveller and a predicted trajectory

Read, Martino, and Hollmén, Pat. Rec. 2017
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Missing-Value Imputation

Treat missing values as [unknown] labels to impute (i.e.,
predict).

A set/stream of data transformed into a multi-output prediction problem.

Montiel et al., PAKDD 2018, and manuscript under review
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Anomaly Detection and Interpretation
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Create chains across feature space and through time
Can generate likely paths over the ‘gap’
(expand the number of samples if necessary)

Song et al., ICDM demo 2018, and Elvira et al., manuscript in preparation
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Conclusions

Application of ‘chain models’ to the multi-output regression
case is not straightforward;

Off-the-shelf application can be useless, or worse on account of
Error propagation

Sequential Monte Carlo Regressor Chains
Weighted samples through the output space
Resampling avoids error propagation
Able to obtain a MAP estimate
Competitive, especially on multi-modal data
Useful for real applications requiring interpretation

Related to many other methods (such as state space models,
GPs, ResNets, . . . )
Many other details (e.g., chain order, . . . ) to deal with



21

Multi-output Chain Models
and their Application in Data Streams

Jesse Read and Luca Martino

http://www.lix.polytechnique.fr/~jread/

http://www.lix.polytechnique.fr/~jread/

	Multi-Output Prediction
	Sequential Monte Carlo Regressor Chains
	Applications and Related Methods

