Multi-output Chain Models and their Application in Data Streams

Jesse Read and Luca Martino

Outline

2 Sequential Monte Carlo Regressor Chains

Multi-Output Learning (Multi-label Classification)

X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4
1	0.1	3	Α	NO	0	1	1	0
0	0.9	1	С	YES	1	0	0	0
0	0.0	1	А	NO	0	1	0	0
1	0.8	2	В	YES	1	0	0	1
1	0.0	2	В	YES	0	0	0	1
0	0.0	3	А	YES	?	?	?	?

• Given:
$$\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$$

• We want: model h such that $\widehat{\mathbf{y}} = h(\mathbf{x}) \approx \mathbf{y}$.

e.g., **x** is a text document; we want relevant labels (\Leftrightarrow $y_1 = 1$)

Use Independent Models?

$$\widehat{\mathbf{y}} = [h_1(\mathbf{x}), h_2(\mathbf{x}), h_3(\mathbf{x})]$$

Why not?

Short answer: it works better modeling relationships among labels

- Predictions cascade along a chain (as additional features)
- Use any suitable base classifier
- May suffer error propagation; probabilistic model can help: $\widehat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y} \in \{0,1\}^L} \prod_{j=1}^L P(y_j | \mathbf{x}, y_1, \dots, y_{j-1})$
- i.e., inference becomes a search e.g., Monte Carlo search¹
- State of the art performance/benchmark method

¹Read, Martino, and Luengo, Pat. Rec. 2014

- Predictions cascade along a chain (as additional features)
- Use any suitable base classifier
- May suffer error propagation; probabilistic model can help: $\widehat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y} \in \{0,1\}^L} \prod_{j=1}^L P(y_j | \mathbf{x}, y_1, \dots, y_{j-1})$
- i.e., inference becomes a search e.g., Monte Carlo search¹
- State of the art performance/benchmark method

And when outputs are continuous?

¹Read, Martino, and Luengo, Pat. Rec. 2014

Multi-Output Regression

X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3
1	0.1	3	А	NO	37.00	25	0.88
0	0.9	1	С	YES	-22.88	22	0.22
0	0.0	1	Α	NO	19.21	12	0.25
1	0.8	2	В	YES	88.23	11	0.77
1	0.0	2	В	YES	0	0	0.08
1	0.0	2	В	YES	?	?	?

e.g., \boldsymbol{x} is an image, $\widehat{\boldsymbol{y}}=$ time, temperature, date, \ldots of image

- Individual regressors vs
- "Regressor Chains"?

- greedy inference (single propagation), but may be pointless, or worse (divergence along the chain)
- probabilistic inference not tractable, no tree to search and what are we optimizing?

It's all about Label Dependence?

Not really. If we unravel the chain, we get a "deep" neural network:

 $(z_1 = z_2 = x, and z_3 = y_1)$

it's deep in the label space! Classification has a natural non-linearity, regression not necessarily!

What are we Optimizing?

Figure: Left: A bimodal joint distribution over two labels (ground truth, given some x). Red = MMSE estimator; yellow = MMAE estimator; black = MAP estimate (mode).

Outline

2 Sequential Monte Carlo Regressor Chains

Motivation: A Regressor Chains models, where:

- Able to optimize different metrics (other than MSE)
- Outputs should serve as a non-linear representation for other outputs
- "Error propagation" (path degeneration) should be limited
- Able to offer interpretation/explainability

Sequential Monte Carlo Regressor Chains (SMCRC)

Given a test instance x:

For
$$j = 1, ..., L$$
: \triangleright Across the outputs
For $m = 1, ..., M$: \triangleright For each particle

$$\begin{split} y_j^{(m)} &\sim f(y_j | \tilde{y}_1^{(m)}, \dots, \tilde{y}_{j-1}^{(m)}) \quad \triangleright \text{ Draw samples} \\ w_j^{(m)} &= w_{j-1}^{(m)} \frac{\ell(y_j^{(m)} \mid \mathbf{x}, \tilde{y}_1^{(m)}, \dots, \tilde{y}_{j-1}^{(m)})}{f(y_j^{(m)} \mid \tilde{y}_1^{(m)}, \dots, \tilde{y}_{j-1}^{(m)})} \quad \triangleright \text{ Transition weights} \end{split}$$

If
$$\widehat{ESS}(\bar{w}_j^{(1:M)}) \le \eta M$$
:
 $\{\tilde{y}_j^{(1)}, \dots, \tilde{y}_j^{(M)}\} \sim \{y_j^{(1)}, \dots, y_j^{(M)}\} \triangleright \text{Resample} \propto \bar{w}_j^{(m)}$

and (Optional) Apply K steps of MCMC or AIS.

We need to learn f (e.g., kernel density estimate), and ℓ (e.g., Bayesian regression) from training data

Output:

$$\widehat{\mathbf{y}}^{MAP} = \widehat{\mathbf{y}}^{(m^*)} \text{ where } m^* = \underset{m}{\operatorname{argmax}} w^{(m)}$$

$$\widehat{\mathbf{y}}^{MSE} = \sum_{m=1}^{M} \mathbf{y}^{(m)} \overline{w}^{(m)}$$

$$\underbrace{\begin{array}{c} & & \\ &$$

 $y_1^{(m)} \sim f_1(\cdot|x) \hspace{0.2cm} \triangleright \hspace{0.2cm}$ for some test instance x

Greedy chains vs SMCRC (MAP estimate)

Outline

2 Sequential Monte Carlo Regressor Chains

3 Applications and Related Methods

Route Forecasting

Personal nodes of a traveller and a predicted trajectory

Missing-Value Imputation

• Treat missing values as [unknown] labels to *impute* (i.e., predict).

A set/stream of data transformed into a multi-output prediction problem.

Montiel et al., PAKDD 2018, and manuscript under review

Anomaly Detection and Interpretation

- Create chains across feature space and through time
- Can generate likely paths over the 'gap' (expand the number of samples if necessary)

Song et al., ICDM demo 2018, and Elvira et al., manuscript in preparation

2 Sequential Monte Carlo Regressor Chains

3 Applications and Related Methods

Conclusions

- Application of 'chain models' to the multi-output regression case is not straightforward;
 - Off-the-shelf application can be useless, or worse on account of
 - Error propagation
- Sequential Monte Carlo Regressor Chains
 - Weighted samples through the output space
 - Resampling avoids error propagation
 - Able to obtain a MAP estimate
 - Competitive, especially on multi-modal data
 - Useful for real applications requiring interpretation
- Related to many other methods (such as state space models, GPs, ResNets, ...)
- Many other details (e.g., chain order, ...) to deal with

Multi-output Chain Models and their Application in Data Streams

Jesse Read and Luca Martino

http://www.lix.polytechnique.fr/~jread/