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Multi-label Learning, Part I (Lecture, 90 min)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)



3

Introduction and Motivation (10 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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Multi-label Classification

Multi-label classification: a subset/vector of labels is be assigned
to each input instance.

x =

Beach
Sunset
Foliage
Urban

y = [1, 0, 1, 0] ⇔ {Beach, Foliage}

And Multi-label Learning: Learn the model h : x 7→ y for any x.
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Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?

The task (of the model) is to make predictions:

ŷ = [?, ?, ?, ?] = h(x) ŷ ∈ {0, 1}m
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Multi-Label Text (and Media) Classification

Image Source: [1]

The set of all possible labels (genres, in this case) is usually
predefined.

https://imdb.com
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Labels as Keywords

Image Source: [2]

https://www.pyimagesearch.com/2018/05/07/multi-label-classification-with-keras/
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Another Image-Classification Example
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Missing-Value Imputation and Recommender Systems

[ Å � [ [
x 0 0 1 1 0
x 1 1 ? 0 ?
x 0 0 1 0 0
x 1 1 ? 0 1
x 0 0 0 ? ?

x 1 0 ? 1 ?

i.e., assign item-labels to users (or user-labels to items).
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Time Series Classification

Input Forecast 1 Forecast 2 Prescribe A Prescribe B
-1.01 -0.03 1 0

0.47 -0.15 0 0

-0.33 -0.70 1 0

-1.39 1.57 0 1

-0.96 1.82 0 1

? ? ? ?

For example, ECG, EEG, signals. How will a patient’s state evolve?
Which diagnoses? Which treatments?
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Time Series Forecasting
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Trajectory Prediction

Trajectory prediction in urban environment using mobile phone data
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Structured Output Prediction

Object prediction [3]

https://arxiv.org/pdf/2006.04700.pdf
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Drug Design

Molecule design prediction (binding affinities (Y ) of molecules (X) to new proteins): [4]

https://link.springer.com/article/10.1007/s10618-018-0595-5
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Formalization: Loss Metrics and Label
Dependence (10 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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A Standard Machine Learning Setup

We are given data set X, Y . We want to build model h in order to
obtain predictions

ŷ = h(x)

That minimize expected loss where the loss metric

L(y, ŷ)

i.e., our model h should produce

min
ŷ∈{0,1}m

Ey∼p(y|x)[L(y, ŷ)]

We might also be interested in estimating distribution p(y | x).
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Multi-label Specificities

min
ŷ∈{0,1}m

Ey∼p(y|x)[L(y, ŷ)]

Exponential complexity, wrt m labels!
Label dependence (joint distribution)
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Important Background: Label Dependence
Often one considers marginal dependence:

P(y1, y2) ̸= P(y1)P(y2)

Actually, we should be interested in conditional dependence:

P(y1, y2 | x) ̸= P(y1 | x)P(y2 | x)

which is more difficult to measure (requires building models). It’s
not the same, e.g.,

e.g.,
y1 y2 and

x

y1 y2

may be equivalent!

Dembczyński et al., “On Label Dependence and Loss Minimization in Multi-label Classification”, 2012
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Example Representation of Label Dependence

Graph of correlation among the labels of the Music-Emotions data
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Loss Metrics (L): How Bad is a Prediction ŷ

Example (Music/Emotions Dataset): We predict sad-lonely and
angry-aggressive, but true label set is only sad-lonely. How
bad is this prediction? In other words: what is the loss?

Hamming loss (decomposable; average):

LH([1, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0]) = 1/6

(not too bad)
0/1 loss (non-decomposable; exact match):

L0/1([1, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0]) = 1

(worst case)
The minimizer is not (necessarily) the same! If 0/1 loss, then we
need to consider the joint (predictive posterior) distribution
p(y | x).
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Examples of p(y | x) (Predictive Posterior)

where y ∈ {0, 1}2 (m = 2), given input instance x:

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)
P(y1, y2 | x) y1 = 0 y1 = 1
y2 = 0 0.00 0.50
y2 = 1 0.50 0.00

P(y1, y2 | x) y1 = 0 y1 = 1
y2 = 0 0.25 0.25
y2 = 1 0.25 0.25

The marginal probabilities p(yj | x) are the same.
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A Closer Look: Hamming Loss
Hamming loss is the averaged sum of errors,

LHL = 1
m

m∑

j=1
L(yj , ŷj)

where, for a given label, e.g., y2,

L(y2, ŷ2) =
{

1 y2 ̸= ŷ2,

0 y2 = ŷ2

i.e., it is decomposable across labels;

P(y2|x) =
∑

y1∈{0,1}
P(y1|x)P(y2|x, y1)

To minimize this loss1: P(y | x) is not required! P(yj | x) is
sufficient;

ŷj = hj(x) = argmax
y∈{0,1}

p(yj | x)

1And others based upon in, like ranking loss
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A Closer Look: 0/1 Loss
Subset 0/1 loss, is an exact match,

L0/1(y, ŷ) =
{

1 y ̸= ŷ,

0 y = ŷ (exactly, i.e., LHL(y, ŷ) = 0)

We need to model label dependence! We need to know p(y | x).
To minimize this loss:

ŷ = h(x) = argmax
y∈{0,1}m

p(y | x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

P(y1, y2|x) y1 = 0 y1 = 1
y2 = 0 0.00 0.50
y2 = 1 0.50 0.00

P(y2 = 1 | x) = 0.5, but P(y2 = 1, y1 = 0 | x) = 0! Best case
(without joint model): E[L0/1] = 0.75 loss. Best case (with joint
model): E[L0/1] = 0.5 loss.
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Adaptation of Classic ML Methods (5 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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A Typical Offering

For example, algorithm adapted methods in ScikitLearn:
sklearn.tree.DecisionTreeClassifier

sklearn.tree.ExtraTreeClassifier

sklearn.ensemble.ExtraTreesClassifier

sklearn.neighbors.KNeighborsClassifier

sklearn.neural_network.MLPClassifier

sklearn.ensemble.RandomForestClassifier

sklearn.linear_model.RidgeClassifierCV

sklearn.multiclass.OneVsRestClassifier

sklearn.multioutput.ClassifierChain

i.e., Decision Trees, Nearest-Neighbours, Neural Networks.

. . . and some task adaptation / problem transformation / model
agnostic methods – we come back to these soon!

Refs. in Bogatinovski et al., “Comprehensive comparative study of multi-label classification methods”, 2022
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k-Nearest Neighbours
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?
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Decision Tree Methods

x1 = 1

y =
[0, 0, 0]
[0, 1, 1]

x2 = 1

y = [0, 1, 1] y = [1, 1, 0]

False
True

False True

Multi-labelled examples at the leaves; summation over (labels) wrt
impurity criteria when inducing the tree.
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Neural Networks (Multi-Layer Perceptrons)

y3y2y1

z4z3z2z1

x5x4x3x2x1
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Limitations of Algorithm-Adaptations

Much of the multi-label literature (and industry application) is
dominated by these methods. However,

you get stuck with a particular class of model (inflexibile)
in many cases, a reliable probabilistic interpretation is missing
a bit ‘old fashioned’; not well adapted to image or text input
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Model-Agnostic Methods and Graphical Models
(20 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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Transformation to Independent Binary Classification

X Y1 Y2 Y3 Y4
x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
x̃ ? ? ? ?

y4y3y2y1

x

The binary relevance method (BR transformation) = one binary
classifier trained for each label, i.e., independent models.
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Transformation to Independent Binary Classification

X Y1
x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0
x̃ ?

X Y2
x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0
x̃ ?

X Y3
x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0
x̃ ?

X Y4
x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0
x̃ ?

y4y3y2y1

x

The binary relevance method (BR transformation) = one binary
classifier trained for each label, i.e., independent models.
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Transformation to Multi-Class (Meta-Labels)

e.g., beach+sunset considered a single label.

X Y
x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
x̃ ?

y

x

The label powerset method (or meta-label classifier) = a single
target multi-class classifier. Labels are modeled together, but
(y ∈ {0, 1}m) . . .

Overfitting
Complexity.
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Probabilistic Graphical Models

y4y3y2y1

x

Binary Relevance

y

x

Label Powerset

x

y1y3 y2y4

Random k-Label Sets and
Meta Labels

y4y3y2y1

x

Prob. Classifier Chains and
Bayesian Networks

y4

y3y2

y1

x

Conditional Dependency
Networks

Arrows represent P(child | parents) and more generally (bending
the rules a bit) a prediction ôutput = h(input) where h is any base
classifier.

References herein: Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure, graph) over the output variables;
Cascaded prediction across the chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0
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For example, ŷ3 = h3( x, ŷ1, ŷ2 ) with base classifier (or regressor)
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure, graph) over the output variables;
Cascaded prediction across the chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

For example, ŷ3 = h3( x, ŷ1, ŷ2 ) with base classifier (or regressor)
h3 (e.g., decision tree, logistic regression, . . . ).

This is a greedy approximation of argmax p(y | x).

FAQ. “Why this order in particular, could another one work
better?"

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Structure Search: Some Options

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y3y1y2y4

x

1 Random structure (often in an ensemble).
2 Use an existing hierarchy (expert knowledge)
3 Impose a full/complete structure
4 Search for a structure, based on (heuristic)

marginal label dependence;
conditional label dependence,
accuracy of individual models
accuracy of overall structure
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Structure Search is Difficult
These models perform well:

y4y3y2y1

x

y4y3y2y1

x

These ones perform not so well:

y3y1y2y4

x

y4y3y2y1

x

Difficult to associate accuracy to a particular structure
Considerations of measurements of dependence, time order, or
‘inherent’ hierarchy, are at best a rough guide
A super-exponential number of possible structures
Can never know (without uncertainty) which is the ‘ground
truth’



37

Probabilistic Inference: Also difficult
Even with a single chosen structure,

y4y3y2y1

x

Recall (to minimize 0/1-loss), we want:

ŷ = argmax
y∈{0,1}m

P(y | x) = h(x)

= argmax
y∈{0,1}m

P(y1 | x)
m∏

j=1
P(y2 | x, y1, . . . , yj−1) ▷ from the graph

e.g., (when 4 labels)

y ∈ {[0, 0, 0, 0], [0, 0, 0, 1], . . . , [1, 1, 1, 1]}

and, in general, y ∈ {0, 1}m for m labels; exponential complexity!
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Probabilistic Classifier Chains: Inference as Tree-Search

ŷj = hj(x) = argmax
yj ∈{0,1}

P(yj |x, y1, . . . , yj−1)

e.g., logistic regression, then:

y3y2y1

x
x

0

0

0

0.5

10.5
0.2

1

0

0.9

10.1

0.8

0.4

1

0

0

0.4

10.6
0.7

1

0

0.5

10.5

0.3

0.6

ŷ = argmax
y∈{0,1}m

P(y1|x)
m∏

j=2
P(yj |x, y1, . . . , yj−1)

This is not the same as ŷ1, ŷ2, ŷ3 obtained greedly. We now have
p(y | x). Expensive, but many approximations via tree search.
.

Dembczyński, Cheng, and Hüllermeier, “Bayes optimal multilabel classification via probabilistic classifier
chains”, 2010; Mena et al., “An Overview of Inference Methods in Probabilistic Classifier Chains for Multilabel
Classification”, 2016



39

Meta Labels (e.g., RakEL) vs Probabilistic Classifier Chains

e.g., (recall) beach+sunset considered a meta label
(transformation to multi-class as a special case).

argmax
y∈{0,1}L

P(y1|x)
L∏

j=2
P(yj |x, y1, . . . , yj−1) ≈ argmax

y∈SL×SR

P(y|x)

y4y3y2y1

x

≈

x

y1y3 y2y4

(more efficient search vs smaller space(s) to search through)
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Summary of Problem-Transformation Methods

We have a
Principled way to minimize 0/1 loss (exact match);
A flexible and interpretble (and probabilistic) structure; and
Can use our favourite off-the-shelf classifiers (model agnostic)

But:
(to make a long story short) sometimes the gain results from
‘black magic’ rather than owing to the principled approach
Methodology tends to be scale poorly
Still a bit old fashioned, perhaps?

What next? Deep learning provides black magic, scalability and is
fashionable!
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Deep Multi-label Learning (20 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)



42

Graphical Models = Deep Neural Networks

We already have this (from graphical models): Structure among
labels ⇒ ‘deep’; base classifiers as transfer functions ⇒ ‘neural’.

x

y1 y2 y3

z1 z2 z3

≈ x

y1x

y2x y1

y3

=
y3y2y1

x

(‘≈’ in terms of capacity; ‘=’ in terms of greedy inference)

But previously, we didn’t have deep learning:
No back propagation
The hidden nodes are not ‘hidden’.
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Consider prediction task

x̃ 7→ ŷ2

y2

x

and the data available at training time (left) vs test time (right):

X1 Y2
Basis expansion x ϕ y2

Stacking x ỹ2 y2
Classifier chain x y1 y2
Neural network x y2

X1 Y2
x̃ ϕ ŷ2
x̃ ỹ2 ŷ2
x̃ ŷ1 ŷ2
x̃ z ŷ2

We’re talking about capacity more than dependency here!
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A ‘Logical’ Problem: The ‘Wrong’ Dependence

X1 X2 Yxor Yand
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

yAND yXOR

x1, x2

outperforms yXOR yAND

x1, x2

(sometimes†)
†when

P⋆(y1, y2 | x) ̸= P̂(y1, y2 | x)

where P̂ depends on base classifier, inference, etc. We measured
the ‘wrong’ dependence; but got extra capacity from it!
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Deep Multi-Label Learning

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

‘Off-the-shelf’ deep multi-label learning.
Basic idea: Powerful embeddings/capacity; go nuts with your
favourite deep-learning framework (easy to add CNN, etc. layers).

Nam et al., “Large-Scale Multi-label Text Classification - Revisiting Neural Networks”, 2014; Read and
Perez-Cruz, Deep Learning for Multi-label Classification, 2013; Wang et al., “CNN-RNN: A unified framework for
multi-label image classification”, 2016
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Extreme Multi-label Classification (XMC)

An example2

2e.g., Jasinska-Kobus et al., “Probabilistic Label Trees for Extreme Multi-label Classification”, 2020
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Deep Multi-Label via Multi-Class Transformation

Basic idea: Transform multi-labels to single labels3;
i.e., ‘deep’ version of meta labels4:

x

y1y3 y2y4

y3y2y1

y{1,2} y{2,3}

x5x4x3x2x1

3Chenghua Li et al. “DeepBE: Learning deep binary encoding for multi-label classification”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition workshops. 2016, pp. 39–46

4Tsoumakas, Katakis, and Vlahavas, “Random k-Labelsets for Multi-Label Classification”, 2011; Read,
Puurula, and Bifet, “Multi-label Classification with Meta Labels”, 2014
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Deep in the Label Space

y1

y2

z

x

u

y1

y2

z

x

Basic idea: Embeddings for the output space as well.
We can also import the ‘probabilistic chains’ into this context.

Cisse, Al-Shedivat, and Bengio, “ADIOS: Architectures Deep In Output Space”, 2016; Read and Hollmén,
Multi-label Classification using Labels as Hidden Nodes, 2017
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Two-Tower Networks

The two tower networks5 have been generalized to multi-label
learning6.

Basic idea: Embed the instance (x; left); embed the item (j ;
right); provide score yj(x) ∈ {0, 1} (at the top).

5e.g., Yang et al., “Mixed negative sampling for learning two-tower neural networks in recommendations”,
2020; He et al., “Neural collaborative filtering”, 2017

6Iliadis, De Baets, and Waegeman, “Multi-target prediction for dummies using two-branch neural networks”,
2022 (in the general sense of multi-target prediction)



50

Related to the ‘independent models’ transformation, but more
efficient, and flexible.

Iliadis, De Baets, and Waegeman, “Multi-target prediction for dummies using two-branch neural networks”,
2022
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Recurrent Neural Networks

y1

z1

x

y2

z2

yℓ

zℓ

Main idea: only predict positve labels
y1, y2, . . . , yℓ ⊂ {1, 2, . . . , m}; more efficient use of architecture.

Nam et al., “Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification”, 2017
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Modern Applications, Trends, and Open Areas
(20 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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Missing Value Imputatation
Missing values – what to do?
Connection to recommender systems, multi-label learning
Missing inputs ≈ noisy labels
Where to start: Two-Tower Networks, Denoising
Auto-Encoders, Expectation Maximization

X1 X2 X3 X4 Y
0 1 1 0 0
1 ? 0 ? 2
0 1 0 0 2
1 ? 0 1 1
0 0 ? ? 2

⇒

X1 X2 X3 X4 Y
0 1 1 0 0
1 1 0 0 2
0 1 0 0 2
1 0 0 1 1
0 0 0 0 2

Should keep information about uncertainty.

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)
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Multi-Task and Transfer Learning

Common opinion: label dependence is fundamental. So, if we take
two totally unrelated datasets; and stick them together; search for
inherent structure, we should find something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4

In reality: we can find something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4
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y1 y2

z

x

yS yT

zS zT

xS xT

ŷS yT

xTx̃S

f

hS

hT

hT

Multi-label (Chain) vs Deep Transfer vs Chain Transfer.
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A case study (toy example):
Souce dataset: function of yeast genomes; Target dataset: insomia
diagnosis among human patients.

xS

xS

The predictions of genome functionality are useful features for
insomnia prediction (+2% accuracy).

A hint towards Foundation Models without back-propagation;
reduce, re-use (modularize), recycle models.
e.g., Read, From Multi-label Learning to Cross-Domain Transfer: A Model-Agnostic Approach, 2023
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Partial and Weak Labels
We get partial labels from noisy annotators7:

And weak labels8 from lazy annotators (unknown missing labels):

Other scenarios: ambiguous/imprecise labels (multiple annotators).
7e.g., Xie and Huang, “Partial multi-label learning”, 2018
8e.g., Sun, Zhang, and Zhou, “Multi-label learning with weak label”, 2010
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Multiple Problems in MLL: A Case Study
Multi-labelled ECG signals (heart multi-diagnostic)
A pre-trained deep neural network works well, but
poor domain transfer (multiple collections); and
different label sets; missing labels when combined.

Image credit: Eran Zvuloni ,
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Multi-Target Regression
So far our focus was multi-label classification. But modelling
continuous targets is essential for many tasks: e.g., forecasting,
structured output.
Key points:

Several methods (e.g., greedy chains, decision trees, neural
networks) can be applied off the shelf as in multi-label
classification.
Expect relatively less improvement from modelling labels
together (Why? Think: loss metric; non-linearities)
Difficulty to model p(y | x): tree search not possible (unless
discretization; Monte Carlo tree search).
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Other Issues and Open Questions

Data streams and concept drift (in the label space)
Dynamic structures
Interepretation and explainability: which graph/structure
makes sense?
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Summary and Questions (5 mins)

1 Introduction and Motivation (10 mins)

2 Formalization: Loss Metrics and Label Dependence (10 mins)

3 Adaptation of Classic ML Methods (5 mins)

4 Model-Agnostic Methods and Graphical Models (20 mins)

5 Deep Multi-label Learning (20 mins)

6 Modern Applications, Trends, and Open Areas (20 mins)

7 Summary and Questions (5 mins)
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Questions? Comments?
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