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Multi-label Classification

Multi-label classification: a subset/vector of labels is be assigned
to each input instance.

x =

Beach
Sunset
Foliage
Urban

y = [1, 0, 1, 0]⇔ labels {Beach, Foliage} are relevant to x.
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Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?

Task:
ŷ = [?, ?, ?, ?] = h(x) ŷ ∈ {0, 1}m
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Also,

text categorization
missing-value imputation
recommender systems
time-series forecasting
network inference
tracking and localization
image segmentation
molecule design
audio labelling
. . .
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https://arxiv.org/pdf/2006.04700.pdf
https://link.springer.com/article/10.1007/s10618-018-0595-5
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Label Dependence: The ‘Why’ of Multi-Label Learning

Graph of correlation among the labels of the Music-Emotions data
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Standard ‘Recipe’/Traditional Approach
1 ‘We measure label dependence using <xxx>’

y1
y2

y3

y4

2 ‘We construct a model called <yyy>’
3 ‘We show <zzz>%-improvement vs independent models’

y4y3y2y1

x

vs y4y3y2y1

x

vs . . . ?
Implication: Predictive performance ⇔ label dependence.

This talk: A fresh investigation, and an updated view.
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A Timeline of Multi-label Learning in Academia
< 2000s Just use independent models.
. . . 2010 Model labels together; label dependence/co-occurrences.
. . . 2015 Using label dependence in a more sophisticated/efficient way.
. . . 2015 Multi-label learning for image, text, forecasting,

recommendation, audio, health applications, distilling wine . . .
2020 [. . . and for covid19].

. . . 2020 Just use independent models

. . . 2020 Must use deep [convolution / recurrent] neural networks.
2020 . . . . . . deep [graph-embedding / residual / generative adversarial

/ transformer/. . . ] neural networks
with [missing / weak / incremental / evolving / imbalanced /
millions of/. . . ] labels.

2023 Still persistent in the literature1

Multi-target regression? < 1/10-th volume of literature.

1Mylonas et al., “On the Persistence of Multilabel Learning, Its Recent Trends, and Its Open Issues”, 2023
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Multi-label Classifiers: Examples

x

y1y3 y2y4

Random k-Label Sets and
Meta Labels

y4y3y2y1

x

Classifier Chains and
Bayesian Networks

y4

y3y2

y1

x

Conditional Dependency
Networks

y1

y2

z

x

Neural Networks

4 3 2 1 0 1 2 3 4
x1

5

4

3

2

1

0

1

2

3

x
2

000
001
010
011
101
?

k-Nearest Neighbours

x1 = 1

x2 = 1 x2 = 1

y = [0, 1, 1] y = [1, 1, 0]y = [0, 0, 0] y = [0, 1, 1]

no
yes

no yesno yes

Decision Trees and Random
Forests

Algorithm Adaptation vs Task Adaptation / Problem Transformation

Refs. in Bogatinovski et al., “Comprehensive comparative study of multi-label classification methods”, 2022;
plus Cisse, Al-Shedivat, and Bengio, “ADIOS: Architectures Deep In Output Space”, 2016
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Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
Cascaded prediction across a chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2 ŷ3 ŷ4

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021



11

Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
Cascaded prediction across a chain/graph
Motivation: Model label dependence

y4y3y2y1

x
X Y1 Y2 Y3 Y4
x(1) 0 1 1 1
x(2) 1 0 0 0
x(3) 0 1 0 1
x(4) 1 0 0 0
x(5) 0 0 0 0

x̃ ŷ1 ŷ2
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For example, ŷ3 = h3( x, ŷ1, ŷ2 ) with base classifier (or regressor)
h3 (e.g., decision tree, logistic regression, . . . ).

Typical example of a “problem transformation" (or model agnostic)
meta method that works well vs independent models

Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021



11

Classifier Chains: An Example of ‘Problem Transformation’

A chain (structure) over the output variables;
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h3 (e.g., decision tree, logistic regression, . . . ).
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Read et al., ECML-PKDD 2009 and Read et al., “Classifier Chains: A Review and Perspectives”, 2021
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Issues with the Standard Approach/Assumptions

1 Introduction: Multi-Label Learning

2 Issues with the Standard Approach/Assumptions

3 Label Dependence: A Fresh Investigation and Update

4 Cross-Domain Transfer Learning: Lessons from MLL

5 Summary (and Recent Advances and Open Questions)
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War Story 1 (Initial Intuition Fails)

These models perform well:

y4y3y2y1

x

y4y3y2y1

x

These ones perform not so well:

y3y1y2y4

x

y4y3y2y1

x

Yet it is difficult to associate accuracy to a particular [type of]
structure based on dependence, time order, or ‘inherent’ hierarchy.
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War Story 2 (Sanity Check Fails)
Take two totally unrelated datasets; stick them together; search for
inherent structure.

Hypothesis: Find something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4

Outcome: Found something like this,

x x

y1 y2 y3 y4 y1 y2 y3 y4

Remark: It’s not [only] a small data problem!
Credits to Laurence Park here
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War Story 3 (More Weirdness)

y4y3y2y1

x

outperforms
y4y3y2y1

x

Average accuracy over 100 random train/test splits:

(Left) 0.47 > 0.41 (Right)

and the left wins 100/100 times! Yet, it’s the
same model (classifier chains)!
same base classifier (SGD)
same structure!
same data (Scene dataset; same splits)
except: YRight = 1− YLeft (all bits are flipped).



16

War Story 4 (Theory != Practice?)

y4y3y2y1

x

outperforms y4y3y2y1

x

(significantly) under Hamming loss metric which does not require
joint modelling to optimize2!

2Neither do ranking-based metrics, by the way; Dembczyński et al., “On Label
Dependence and Loss Minimization in Multi-label Classification”, 2012
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War Story 5 (Back to Square One?)

y4y3y2y1

x

equals performance of
y4y3y2y1

x

under 0/1-Loss/exact-match metric which requires joint modelling
to optimize, and even though we know there is label dependence.
(By the way: especially common in multi-target regression3).

3Borchani et al., “A Survey on Multi-output Regression”, 2015
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Label Dependence: A Fresh Investigation and
Update

1 Introduction: Multi-Label Learning

2 Issues with the Standard Approach/Assumptions

3 Label Dependence: A Fresh Investigation and Update

4 Cross-Domain Transfer Learning: Lessons from MLL

5 Summary (and Recent Advances and Open Questions)
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Suggestion 1: Because Label Dependence
Argument: If label variables are correlated/interdependent, we
should model/predict them together; accuracy will better.

Label dependence:

P(Y1, Y2) ̸= P(Y1)P(Y2)

Actually, we should be interested in conditional dependence:

P(Y1, Y2|x) ̸= P(Y1|x)P(Y2|x)

e.g., Y1 Y2 vs

X

Y1 Y2

Dembczyński et al., “On Label Dependence and Loss Minimization in Multi-label Classification”, 2012
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Label Dependence and Loss Metrics

Posterior of two multi-label classifiers (2 labels, test instance x):

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)
E[Hamming loss] the same; E[0/1-loss]: twice as large!

Not only a question of dependence, but of loss metrics and
uncertainty; modelling together ̸= predicting together.

Figures from work with Ekaterina Antonenko and Ander Carreño
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A ‘Logical’ Problem: The ‘Wrong’ Dependence
X1 X2 Yxor Yand
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

yAND yXOR

x1, x2

outperforms
yXOR yAND

x1, x2

(sometimes†)
†when

P⋆(y1, y2 | x) ̸= P̂(y1, y2 | x)

where P̂ depends on base classifier, inference, etc. We measured
the ‘wrong’ dependence; but got extra capacity from it!
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Suggestion 2: Put Easy Labels First

Argument: There may be error propagation across the structure,
so we should, e.g., put easy labels first.

y4y1y2y3

x

But
Empirically: Incorrect label predictions may also increase the
accuracy of other label predictions!
Observation x is available at each step; error should not
propagate!4

4A more complete discussion in Senge, Coz, and Hüllermeier, “On the Problem of Error Propagation in
Classifier Chains for Multi-label Classification”, 2014 (probabilistic/probability-tree view)
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Suggestion 3: Error Correction
Argument: We can ‘correct’ errors at prediction time, e.g., via
stacking.

y1 y2 y3 y4

ỹ1 ỹ2 ỹ3 ỹ4

x

Maybe we can5; but
P(y1|ỹ1, ỹ2, ỹ3, ỹ4) ̸= P(y1, y2, y3, y4|x), i.e., this is not label
dependence modelling, we only correct bias of individual
models;
Empirical results: Not much improvement (esp. in 0/1 loss)
involves a separate training mechanism for each layer.

5e.g., (among many others) Loza Mencía and Janssen, “Learning rules for multi-label classification: a stacking
and a separate-and-conquer approach”, 2016
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Suggestion 4: Build (Deep) Neural Networks
Argument: Structure among labels ⇒ ‘deep’ ‘neural’ network.
Classifiers as activation/transfer functions, labels as hidden nodes.
A bit like ResNets.

x

y1 y2 y3

z1 z2 z3

≈ x

y1x

y2x y1

y3

OK (depth works). But, note in ‘deep chains’ (right):
No back propagation (this is deep prediction, but not deep
learning);
the hidden nodes are not ‘hidden’.
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Consider prediction task

x̃ 7→ ŷ2

y2

x

and the data available at training time (left) vs test time (right):

X1 Y2
Basis expansion x ϕ1 y2

Stacking x ỹ2 y2
Classifier chain x y1 y2
Neural network x y2

X1 Y2
x̃ ϕ2 ŷ2
x̃ ỹ2 ŷ2
x̃ ŷ1 ŷ2
x̃ z ŷ2
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Suggestion 5: Structure Provides Regularisation
Argument: Modelling labels together provides better results even
if they are independent, because of regularization.

For example the James Stein estimator

ŷJS = 1− (m − 2)σ̂2

∥ŷ∥2
ŷ = λ · ŷ

where λ shrinks (regularises) the max.-likelihood estimate ŷ.

2 1 0 1 2 3
yj

0.0

0.2

0.4

0.6

0.8

1.0
yj

yJS
j

E
j = 0.5
( j, j)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
y1

0.5

0.0

0.5

1.0

1.5

y 2

= [ 1, 2, ]
y = [ 1, 2, ]
yJS = [ 1, 2, ]

1 = 0.5
2 = 0.5

This helps explain the bit-inversion story!
Good discussion by Waegeman, Dembczyński, and Hüllermeier, “Multi-target prediction: a unifying view on

problems and methods”, 2019
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Benefit from modelling non-existent label dependence (shown
where blue > 0):

0 20 40 60 80 100
n

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
ELS EJS1

But: gains are minimal when n≫ m (many examples, few labels).
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Suggestion 6: The ‘Ensemble Effect’
Argument: Modelling labels appears to provide better results but
actually the ensemble deserves the credit, by providing

More predictive power
More regularisation

Here, reg. only (task is fully linear/independent models/concept):

1 2 3 4 5 6 7 8 9 10 15 20
n

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

M
SE

IR
RC
ERC
EIR

E = Ensemble, I = Independent, C = Chain
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So Which Is It Then?
Classifier chains vs independent models (Music-Emotions data):

Exp. 1 Exp. 2 Exp. 3 Exp. 4
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ga
in

Experiment 1: All effects confounded (logistic reg., 0/1 loss)
Experiment 2: Remove motiv. of label dependence (→h.loss)
Experiment 3: Remove influence of capacity (+ depth)
Experiment 4: Remove influence of regularisation (+ reg.)

interesting result: 20% higher accuracy by modelling label
dependence, even when theoretically pointless!

Read, From Multi-label Learning to Cross-Domain Transfer. In Press/Accepted 2023
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A First Update

We can offer a minor rephrasing:
We should model and predict labels together mainly be-
cause of label dependence (i.e., if our loss metric suggests
that we need to learn it), but we can also get benefits
from additional capacity and regularisation brought by ad-
ditional structure inherent to modelling labels together.

With enough data/computational power, regularised deep
neural network architectures likely to overpower traditional
methods of multi-label learning.

But (to say it again): this is not because of label depen-
dence modelling!
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Reasons to Retain Interest

Modelling labels together with model-agnostic/base-classifier
approaches (and other algorithm-adaptations):

still work well especially on fewer training examples
(important for, e.g., small data and recovery from concept
drift in data streams)
require no hidden units; depth/non-linearity comes ‘for free’
requires no back propagation
more choice (decision trees, including a mixture of different
models, . . . ) – for reasons of interpretability or reliability; and

And we have seen improvement from modelling totally
unrelated tasks together

← very interesting!?
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Cross-Domain Transfer Learning: Lessons from
MLL

1 Introduction: Multi-Label Learning

2 Issues with the Standard Approach/Assumptions

3 Label Dependence: A Fresh Investigation and Update
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5 Summary (and Recent Advances and Open Questions)
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Transfer Learning: A Quick Intro

1 Find related source task (S)
2 Use it to improve the model you deploy on target task (T )

y1 y2

z

x

vs yS yT

zS zT

xS xT

Plot (right) from Torrey and Shavlik, “Transfer learning”, 2010.

A key word was: related. But what if related-
ness is not a requirement?

In other words: we go back to where our sanity check failed
(multi-label learning with no label dependence).
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Thoughts on That

Transfer learning by connecting the model from an unrelated
source task; This is similar to connecting the first layer of a neural
network randomly.

"[C]onnecting the first layer randomly is just about the
stupidest thing you could do" – Yann LeCun

Remarks:
He said "just about"
He didn’t say it didn’t work
Theres a minor difference: We mean, not randomly drawn
from all possible models, rather randomly drawn from all [a
collection of] existing trained models

So let’s try it anyway. . .
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Insomniac Fungi
A model (random forest) for classifying patients6: suffering
insomnia (red) or not (blue), based on sleep measurements
xS = [x1, x2]:

xS

xS

A yeast genome vector is cast into x̃S , and given an insomnia
diagnosis ŷS ; which, when used as new feature, boosts +2%
accuracy when predicting genome function.

6Medical data thanks to Olivier Pallanca
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Replicating on Synthetic Data
A target task xor (data shown, some noise added) is solved via
predictions from and-function (decision boundary shown) as an
additional feature:

0 1 2 3
xS, 1

3

2

1

0

1

x S
,2

ỹS yT

xTx̃S
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Multi-Label Chain vs Deep Transfer vs Chain Transfer

y1 y2

z

x

yS yT

zS zT

xS xT

ŷS yT

xTx̃S

f

hS

hT

hT

Main difference from standard Deep Transfer: A model agnostic
approach; require only outputs (as per chained multi-label models).
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Results (Did it Work?)

0 1 2 3 4 5

0.00
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TC2
ECT

0 1 2 3 4
0.375

0.400
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TC2
ECT

Well, it, ‘shows promise’ (green line gets higher).
Not a state-of-the-art method.
But it works!
Reminder: extremely difficult transfer setting: no model
introspection, no source data, no label/task dependence
Advantages: depth without the deep learning; use ‘any’ source
model
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Discussion Points

Intersection with multi-task learning, deep transfer learning,
lifelong learning, concept drift adaptation; ‘pretrained’,
‘frozen’ layers, ‘parameter isolation’, ‘universal computation’,
. . .
Interest of multi-label models: larger ŷ (more information)
What does it mean for a label/task to be related to another?
Transfer learning vs reduction/reuse/recycling of models?
Model-driven learning rather than [raw] data-driven learning
Example implication: When adapting to concept shift in data
streams; keep using the ‘irrelevant’ models!
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Summary (and Recent Advances and Open
Questions)

1 Introduction: Multi-Label Learning

2 Issues with the Standard Approach/Assumptions

3 Label Dependence: A Fresh Investigation and Update

4 Cross-Domain Transfer Learning: Lessons from MLL

5 Summary (and Recent Advances and Open Questions)
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Multi-label Learning: An Update
Take-away points (so far):

Many methods, many applications; still relevant!
But not just ‘model label dependence ⇒ good accuracy’
You may model labels/tasks together even if there is ‘none’!
Label dependence, model capacity, regularization
You may ignore label dependence and still perform optimally
Big data + deep learning ⇒ good accuracy
But extreme multi-label classification can imply extreme cost

And let’s not forget about
Interpretability: how methods work; why labels together;
different contexts of uncertainty
Ever larger/more complex problems via data-driven learning
‘from scratch’ – increasingly challenging/wasteful!
(sparse learning is interesting) Reduce/Reuse/Recycle models!

But many current trends do not need to be considered separately.
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Current Work: Missing Value Imputatation
Missing values are common
Problem: Often, too many to ignore
e.g., in high-d data (many attributes, few instances)
Missing inputs ≈ noisy labels
‘Structured missing-ness’ and predicting modes
Proposed: Auto-replicative Random Forests: f : X 7→ X
Connection to Denoising Auto-Encoder

X1 X2 X3 X4
0 1 1 0
1 ? 0 ?
0 1 0 0
1 ? 0 1
0 0 ? ?

⇒

X1 X2 X3 X4 Y1 Y2 Y3 Y4
0 1 1 0 0 1 1 0
1 1 0 0 1 - 0 -
0 1 0 0 0 1 0 0
1 0 0 1 1 - 0 1
0 0 0 0 0 0 - -

& repeat (impute). We produce multi-mode estimates x ∼ P(x).

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

00 01 10 11
y|x

0.00
0.25
0.50
0.75
1.00

P(
y|

x)

Work with Ekaterina Antonenko and Ander Carreño
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Current Work: Multi-label ECG Classification and Transfer
Multi-label classification of ECG signals (multiple heart issues)
A pre-trained deep neural network works well, but
Problem: Multiple datasets, partial[ly-overlapping] labels
Problem: Poor domain transfer

Image credit: Eran Zvuloni ,
Work with Eran Zvuloni, Duy Nhat Vo, Joachim A. Behar, . . .



44

Multi-label Learning: An Update

Jesse Read

Thank you!
jesse.read@polytechnique.edu

http://www.lix.polytechnique.fr/~jread/

jesse.read@polytechnique.edu
http://www.lix.polytechnique.fr/~jread/
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