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Multi-Label Classification

Input Beach Sunset Foliage Urban

1 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0 0 1 1

? ? ? ?

Given an instance x , we obtain predictions ŷ = h(x).
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Missing Value Imputation

X2 X4 X1 X3 X5

0 0 1 1 0
1 1 ? 0 ?
0 0 1 0 0
1 1 ? 0 1
0 0 0 ? ?
1 0 ? 1 ?

Also applicable to recommender systems.
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Time Series Forecasting

e.g., series {19, 21, 24, 23, 20, 17, 15, 12, 13, . . . , 7, 9, 10, ?, ?, ?, . . .}:

Xt−3 Xt−2 Xt−1 Xt Xt+1 Xt+2

19 21 24 23 20 17
21 24 23 20 17 15
24 23 20 17 15 12
23 20 17 15 12 13
. . . . . . . . . . . . . . . . . .
7 9 10 ? ? ?
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Predicting Celular Growth in Scots Pine across 6 Sites
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Trajectory prediction in urban environment using mobile phone data



8

Other topics (a selection, found in Google Scholar citing MEKA):

[. . . ] Multi-label Sentiment Classification of Health Forums

Using Multi-Label Classification for Improved Question Answering

Predictive Skill Based Call Routing [. . . ]

[. . . ] Methods for Prediagnosis of Cervical Cancer

[. . . ] Expert Systems for Reasoning in Clinical Depressive Disorders

Multi-label classification for intelligent health risk prediction

Deep learning based multi-label classification for surgical tool presence
detection in laparoscopic videos

Spectral features for audio based vehicle and engine classification

Ensemble-Based Location Tracking Using Passive RFID

[. . . ] big data streams analysis: The case of object trajectory prediction

Multi-task network embedding

Multi-Target Classification and Regression in Wineinformatics
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Binary Relevance: The Baseline

X Y1 Y2 Y3 Y4

x (1) 0 1 1 0
x (2) 1 0 0 0
x (3) 0 1 0 0
x (4) 1 0 0 1
x (5) 0 0 0 1
x̃ ? ? ? ?

y4y3y2y1

x

The binary relevance method = one binary classifier trained for
each label, i.e., independent models.
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X Y1
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Classifier Chains

A chain of classifiers:

y4y3y2y1

x

where the output of each classifier becomes an additional feature
for all following classifiers.

A model of label dependence
A transformation method (base classifier as a hyperparameter)

Read et al., ECML-PKDD 2009; Kajdanowicz and Kazienko, CCI-SSM 2009
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y4y3y2y1

x

X Y1

x (1) 0
x (2) 1
x (3) 0
x (4) 1
x (5) 0
x̃ ŷ1

X Y1 Y2

x (1) 0 1
x (2) 1 0
x (3) 0 1
x (4) 1 0
x (5) 0 0
x̃ ŷ1 ŷ2

X Y1 Y2 Y3

x (1) 0 1 1
x (2) 1 0 0
x (3) 0 1 0
x (4) 1 0 0
x (5) 0 0 0
x̃ ŷ1 ŷ2 ŷ3

X Y1 Y3 Y3 Y4

x (1) 0 1 1 0
x (2) 1 0 0 0
x (3) 0 1 0 0
x (4) 1 0 0 1
x (5) 0 0 0 1
x̃ ŷ1 ŷ2 ŷ3 ŷ4
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Widely applicable in many domains, with
Off-the-shelf binary classifiers
State-of-the-art predictive performance
Similar running time as independent classifiers in practice

But how does it work?

What is it optimising?

Can we get a better chain?

Does it work with continuous outputs?

Is it still relevant?
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View 1: Classifier Chains as a Probabilistic Model

ŷj = hj(x) = argmax
yj∈{0,1}

P(yj |x , y1, . . . , yj−1)

e.g., logistic regression, then:

y3y2y1

x
x
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ŷ = argmax
y∈{0,1}L

P(y1|x)
L∏

j=2

P(yj |x , y1, . . . , yj−1)

as proposed in probabilistic classifier chains1.

1Dembczyński, Cheng, and Hüllermeier, ICML 2010; and followup work
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ŷ = argmax
y∈{0,1}L

P(y1|x)
L∏

j=2

P(yj |x , y1, . . . , yj−1)

It’s a MAP estimate, optimising subset 0/1 loss,

`(y , ŷ) = 1y 6=ŷ

Inference is a search
standard classifier chain = greedy search.
exhaustive search: try all 2L combinations/paths
much room for trade-off2

Empirical observation: Classifier chains also outperforms baseline
methods on Hamming loss.

2As surveyed in Mena et al., Wiley Int. Rev. 2016
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View 2: Classifier Chains as a Deep Neural Network

x

y1z1

y2z2 z3

y3

with delay nodes z = f (x) = x

Forward propagation = greedy inference
It’s deep in the label space!
labels = feature space; “hidden nodes” for free

Read and Hollmén, IDA 2014; Cisse, Al-Shedivat, and Bengio, ICML 2016



19

Consider, where x ∈ {0, 1}2, and labels are logical operations:

or and xor

x

xorandor

x

orandxor

x

Labels are conditionally independent, given a good choice of
base classifier
Only one of these models works with ‘default parameters’
(linear SVM, greedy inference)
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Chain Order/Structure

An important question for accuracy (good structure), scalability
(sparse structure), and interpretability.

The literature proposes:

1 Random (ensembles). Effective but boring (and large)
2 Use an existing hierarchy. Not worth the effort in parsing (in

terms of accuracy)3

3 Based on label dependence4. It depends (recall toy example!)
4 Based on predictive power of individual classifiers. Still, it

depends!
5 Trial and error (Search the label-structure space5): Slow!

3Puurula, Read, and Bifet, Kaggle 2014 won Kaggle LSHTC14 (large scale hierarchical text
classification), ignoring the hierarchy !

4Zaragoza et al., IJCAI 2011, Kajdanowicz and Kazienko, FQAS 2013; and others
5Kumar et al., ECML-PKDD 2012; Read, Martino, and Luengo, Pat. Rec. 2014; Gasse, U. Lyon

2017; etc.
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Jaccard score for first 45 chain permutations, 'emotions' data. 

Note:
large difference chain [. . . , 3, 4] vs [. . . , 4, 3]
small difference chain [. . . , 1, 5, 2, 4, 3] vs [. . . , 2, 5, 3, 1, 4]

Many local maxima; hill-climbing search can work
No need to discard suboptimal models: use for dynamic chains
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Alternatives to Chaining: Stacking and Undirected Nets

Stacking:

y4y3y2y1

y4y3y2y1

x

Strong connection with chaining: ŷj used to predict yk
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What about Regressor Chains?

X1 X2 X3 X4 X5 Y1 Y2 Y3

2.12 1.217 -0.675 -0.451 0.342 37.00 25 0.88
-0.717 -0.826 0.064 -0.259 -0.717 -22.88 22 0.22
1.374 0.95 0.175 -0.006 -0.522 19.21 12 0.25
1.392 -0.496 -2.441 -1.012 0.268 88.23 11 0.77
1.591 0.208 0.17 -0.207 1.686 ? ? ?

Another easy off-the-shelf application of chaining?
base learner – linear regression?

Compared to individual classifiers, you get no improvement from
classifier chains in the best case, and potentially catastrophic
results otherwise (error propagation in RL!)
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Linear regression = chain collapses into ŷj = xwj

Minimizer of squared error = E[Y |x ] = xW

j = 1 j = 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y j

{yi}N
i = 1

y
yMSE

yMAP

p(yj|x)

We can use non-linear classifiers6, but
can’t do tree search for MAP estimate (there’s no tree!)

6Spyromitros-Xioufis et al., Mach. Learn. 2016
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Probabilistic Regressior Chains

For each x , we can build a tree by taking samples at each label/step

{y (m)
j }Mm=1 ∼ p(y |x , y (m)

1 , . . . , y
(m)
j−1 )

(given suitable p).

2 1 0 1 2
x
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1.0

y 1

{x, y(m)
1 }M

m = 1

{x(i), y(i)
1 }N

i = 1

0 1

p(y)
p(y|x)

1.0 0.5 0.0 0.5 1.0
y1

1.0

0.5

0.0

0.5

1.0

y 2

{y(m)
1 , y(m)

2 }M
m = 1

yMSE

yMAP

{y(i)
1 , y(i)

2 }N
i = 1

0 1

p(y)
p(y|x)

Read and Martino, ArXiv 2019: Probabilistic Regressor Chains with Monte Carlo Methods
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L = 3 labels/steps. A probability tree built on M = 3 samples per step

We build a tree from the samples
For an approx. MAP estimate: take the path of highest payoff.
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Summary so far
Chaining methods are flexible, widely applicable, competitive.

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y4y3y2y1

x

y3y1y2y4

x

Classifier chains . . .
Have a probabilistic interpretation,
are mode seekers, via probability tree search
but also provide representation power via non-linearity.

Regressor chains . . .
have no natural non-linearity, not great off-the-shelf,
but probabilistic chains help find modes; interpretable.

There are clear connections with many other methods.
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Issues worth mentioning

Scalability (features quadratic wrt number of labels).
Overlap/competitiveness vs deep neural network architectures

Is ‘chaining’ still relevant vs deep learning?

Interpretability – what can the chain tell us about the data?
Other issues (that affect multi-label learning in general):

Class imbalance
Weak labels
. . .
What metrics should we be using?
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Title recipe of many recent multi-label papers:

“Deep X for Extreme Multi-label [Text] Classification”

where X ⊂ {Neural Networks, Convolution, Attention, LSTM,
Seq2Seq, Adversarial, Sparse, Autoencoder, Latent, . . . }.

It’s difficult to justify chaining in this context, but Chains
are still competitive useful for ‘un-extreme’ learning
off interpretability
a method of transfer learning
But why contrast? Recall: chaining is a kind of deep network.
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Chain-Inspired Deep Architectures

y1

y2

z

x

where yh are based on subsets of labels Sh ⊆ L, possibly overlapping.

Combining the advantages of chaining, probabilistic interpretation,
stacking, deep learning frameworks.

Read and Hollmén, IDA 2014; Cisse, Al-Shedivat, and Bengio, ICML 2016
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Exploration into Interpretation

D

Ma2K
Pt1K

Hy

Sc1K

Mfm

Si

Pd4K

Pa Hs5K

IP

‘Feature chains’ for predicting ‘paradoxical insomnia’ (IP)

Manuscript in preparation
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Multi-Output Learning with Chaining

Jesse Read

Thank You!
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