Multi-Output Learning with Chaining

Jesse Read

14 November 2019 Wrocław

Outline

1 Multi-Label Classification and Related Applications

2 Classifier Chains

- 3 View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

Multi-Label Classification

Input	Beach	Sunset	Foliage	Urban
	1	0	1	0
	0	1	0	0
Lat	0	1	0	1
	0	1	1	0
5	0	0	1	1
	?	?	?	?

Given an instance \boldsymbol{x} , we obtain predictions $\widehat{\boldsymbol{y}} = h(\boldsymbol{x})$.

Missing Value Imputation

X_2	X_4	X_1	<i>X</i> ₃	X_5
0	0	1	1	0
1	1	?	0	?
0	0	1	0	0
1	1	?	0	1
0	0	0	?	?
1	0	?	1	?

Missing Value Imputation

Also applicable to recommender systems.

Time Series Forecasting

e.g., series $\{19, 21, 24, 23, 20, 17, 15, 12, 13, \dots, 7, 9, 10, ?, ?, ?, \dots\}$:

X_{t-3}	X_{t-2}	X_{t-1}	X_t	X_{t+1}	X_{t+2}
19	21	24	23	20	17
21	24	23	20	17	15
24	23	20	17	15	12
23	20	17	15	12	13
7	9	10	?	?	?

Predicting Celular Growth in Scots Pine across 6 Sites

Trajectory prediction in urban environment using mobile phone data

Other topics (a selection, found in Google Scholar citing MEKA):

- [...] Multi-label Sentiment Classification of Health Forums
- Using Multi-Label Classification for Improved Question Answering
- Predictive Skill Based Call Routing [...]
- [...] Methods for Prediagnosis of Cervical Cancer
- [...] Expert Systems for Reasoning in Clinical Depressive Disorders
- Multi-label classification for intelligent health risk prediction
- Deep learning based multi-label classification for surgical tool presence detection in laparoscopic videos
- Spectral features for audio based vehicle and engine classification
- Ensemble-Based Location Tracking Using Passive RFID
- [...] big data streams analysis: The case of object trajectory prediction
- Multi-task network embedding
- Multi-Target Classification and Regression in Wineinformatics

Binary Relevance: The Baseline

The binary relevance method = one binary classifier trained for each label, i.e., independent models.

Binary Relevance: The Baseline

The binary relevance method = one binary classifier trained for each label, i.e., independent models.

Outline

Multi-Label Classification and Related Applications

2 Classifier Chains

- 3 View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

Classifier Chains

A chain of classifiers:

where the output of each classifier becomes an additional feature for all following classifiers.

- A model of label dependence
- A transformation method (base classifier as a hyperparameter)

Read et al., ECML-PKDD 2009; Kajdanowicz and Kazienko, CCI-SSM 2009

X	Y_1	X	Y_1	Y_2	X	Y_1	Y_2	Y_3	X	Y_1	Y_3	Y_3	Y_4
$x^{(1)}$	0	$\mathbf{x}^{(1)}$	0	1	$\mathbf{x}^{(1)}$	0	1	1	$x^{(1)}$	0	1	1	0
x ⁽²⁾	1	x ⁽²⁾	1	0	x ⁽²⁾	1	0	0	x ⁽²⁾	1	0	0	0
x ⁽³⁾	0	x ⁽³⁾	0	1	x ⁽³⁾	0	1	0	x ⁽³⁾	0	1	0	0
x ⁽⁴⁾	1	x ⁽⁴⁾	1	0	x ⁽⁴⁾	1	0	0	x ⁽⁴⁾	1	0	0	1
x ⁽⁵⁾	0	x ⁽⁵⁾	0	0	x ⁽⁵⁾	0	0	0	x ⁽⁵⁾	0	0	0	1
ĩ	\widehat{y}_1	ĩ	\widehat{y}_1	<i>ŷ</i> ₂	ĩ	\widehat{y}_1	\widehat{y}_2	<i>ŷ</i> ₃	ĩ	\widehat{y}_1	\widehat{y}_2	<i>ŷ</i> ₃	<i>ŷ</i> ₄

- Widely applicable in many domains, with
- Off-the-shelf binary classifiers
- State-of-the-art predictive performance
- Similar running time as independent classifiers in practice

- Widely applicable in many domains, with
- Off-the-shelf binary classifiers
- State-of-the-art predictive performance
- Similar running time as independent classifiers in practice

But how does it work?

What is it optimising?

Can we get a better chain?

Does it work with continuous outputs?

Is it still relevant?

Outline

Multi-Label Classification and Related Applications

2 Classifier Chains

3 View 1: Probabilistic Classifier Chains

- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

View 1: Classifier Chains as a Probabilistic Model

$$\widehat{y}_j = h_j(\mathbf{x}) = \operatorname*{argmax}_{y_j \in \{0,1\}} P(y_j | \mathbf{x}, y_1, \dots, y_{j-1})$$

e.g., logistic regression, then: 0.5 0.5 0.7 0.6 06 0.40.1 х 0.9 0.2 0.5 y_1 u_2 $\widehat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y} \in \{0,1\}^L} P(y_1 | \boldsymbol{x}) \prod_{j=2} P(y_j | \boldsymbol{x}, y_1, \dots, y_{j-1})$

as proposed in probabilistic classifier chains¹.

¹Dembczyński, Cheng, and Hüllermeier, ICML 2010; and followup work

$$\widehat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y} \in \{0,1\}^L} P(y_1 | \boldsymbol{x}) \prod_{j=2}^L P(y_j | \boldsymbol{x}, y_1, \dots, y_{j-1})$$

• It's a MAP estimate, optimising subset 0/1 loss,

$$\ell(\mathbf{y}, \widehat{\mathbf{y}}) = 1_{\mathbf{y} \neq \widehat{\mathbf{y}}}$$

- Inference is a search
 - standard classifier chain = greedy search.
 - exhaustive search: try all 2^L combinations/paths
 - much room for trade-off²

 $^{^{2}}$ As surveyed in Mena et al., Wiley Int. Rev. 2016

$$\widehat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y} \in \{0,1\}^L} P(y_1 | \boldsymbol{x}) \prod_{j=2}^L P(y_j | \boldsymbol{x}, y_1, \dots, y_{j-1})$$

• It's a MAP estimate, optimising subset $0/1 \log_2$,

$$\ell(\mathbf{y}, \widehat{\mathbf{y}}) = 1_{\mathbf{y} \neq \widehat{\mathbf{y}}}$$

- Inference is a search
 - standard classifier chain = greedy search.
 - exhaustive search: try all 2^L combinations/paths
 - much room for trade-off²

Empirical observation: Classifier chains also outperforms baseline methods on Hamming loss.

²As surveyed in Mena et al., Wiley Int. Rev. 2016

Outline

2 Classifier Chains

- **3** View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

View 2: Classifier Chains as a Deep Neural Network

with delay nodes z = f(x) = x

- Forward propagation = greedy inference
- It's deep in the label space!
- labels = feature space; "hidden nodes" for free

Read and Hollmén, IDA 2014; Cisse, Al-Shedivat, and Bengio, ICML 2016

Consider, where $\mathbf{x} \in \{0,1\}^2$, and labels are logical operations:

- Labels are conditionally independent, given a good choice of base classifier
- Only one of these models works with 'default parameters' (linear SVM, greedy inference)

Outline

Multi-Label Classification and Related Applications

2 Classifier Chains

- **3** View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

Chain Order/Structure

An important question for *accuracy* (good structure), *scalability* (sparse structure), and *interpretability*.

The literature proposes:

- Random (ensembles). Effective but boring (and large)
- Use an existing hierarchy. Not worth the effort in parsing (in terms of accuracy)³
- Solution Based on label dependence⁴. It depends (recall toy example!)
- Based on predictive power of individual classifiers. Still, it depends!
- Solution Trial and error (Search the label-structure space⁵): Slow!

³Puurula, Read, and Bifet, Kaggle 2014 won Kaggle LSHTC14 (large scale *hierarchical* text classification), *ignoring the hierarchy*!

[‡]Zaragoza et al., IJCAI 2011, Kajdanowicz and Kazienko, FQAS 2013; and others

⁵Kumar et al., ECML-PKDD 2012; Read, Martino, and Luengo, Pat. Rec. 2014; Gasse, U. Lyon 2017; etc.

Jaccard score for first 45 chain permutations, 'emotions' data.

- Note:
 - large difference chain [..., 3, 4] vs [..., 4, 3]
 - small difference chain [..., 1, 5, 2, 4, 3] vs [..., 2, 5, 3, 1, 4]
- Many local maxima; hill-climbing search can work
- No need to discard suboptimal models: use for dynamic chains

Alternatives to Chaining: Stacking and Undirected Nets

Stacking:

Strong connection with chaining: \hat{y}_i used to predict y_k

Outline

Multi-Label Classification and Related Applications

2 Classifier Chains

- 3 View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains
- Summary and Perspectives

What about Regressor Chains?

X_1	X_2	<i>X</i> ₃	X_4	X_5	Y_1	Y_2	Y_3
2.12	1.217	-0.675	-0.451	0.342	37.00	25	0.88
-0.717	-0.826	0.064	-0.259	-0.717	-22.88	22	0.22
1.374	0.95	0.175	-0.006	-0.522	19.21	12	0.25
1.392	-0.496	-2.441	-1.012	0.268	88.23	11	0.77
1.591	0.208	0.17	-0.207	1.686	?	?	?

Another easy off-the-shelf application of chaining?

• base learner - linear regression?

What about Regressor Chains?

<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	X_5	Y_1	Y_2	Y_3
2.12	1.217	-0.675	-0.451	0.342	37.00	25	0.88
-0.717	-0.826	0.064	-0.259	-0.717	-22.88	22	0.22
1.374	0.95	0.175	-0.006	-0.522	19.21	12	0.25
1.392	-0.496	-2.441	-1.012	0.268	88.23	11	0.77
1.591	0.208	0.17	-0.207	1.686	?	?	?

Another easy off-the-shelf application of chaining?

• base learner - linear regression?

Compared to individual classifiers, you get no improvement from classifier chains in the *best case*, and potentially catastrophic results otherwise (error propagation in \mathbb{R}^{L} !)

- Linear regression = chain collapses into $\hat{y}_j = x w_j$
- Minimizer of squared error = $\mathbb{E}[\mathbf{Y}|\mathbf{x}] = \mathbf{x}\mathbf{W}$

- We can use non-linear classifiers⁶, but
- can't do tree search for MAP estimate (there's no tree!)

⁶Spyromitros-Xioufis et al., Mach. Learn. 2016

Probabilistic Regressior Chains

For each x, we can build a tree by taking samples at each label/step

$$\{y_j^{(m)}\}_{m=1}^M \sim p(y|\mathbf{x}, y_1^{(m)}, \dots, y_{j-1}^{(m)})$$

(given suitable p).

Read and Martino, ArXiv 2019: Probabilistic Regressor Chains with Monte Carlo Methods

L = 3 labels/steps. A probability tree built on M = 3 samples per step

- We build a tree from the samples
- For an approx. MAP estimate: take the path of highest payoff.

Outline

Multi-Label Classification and Related Applications

2 Classifier Chains

- 3 View 1: Probabilistic Classifier Chains
- 4 View 2: Classifier Chains as a Neural Network
- 5 The Question of Chain Order
- 6 Regressor Chains

Summary so far

Chaining methods are flexible, widely applicable, competitive.

Classifier chains ...

- Have a probabilistic interpretation,
- are mode seekers, via probability tree search
- but also provide representation power via non-linearity.

Regressor chains ...

- have no natural non-linearity, not great off-the-shelf,
- but probabilistic chains help find modes; interpretable.

There are clear connections with many other methods.

Issues worth mentioning

- Scalability (features quadratic wrt number of labels).
- Overlap/competitiveness vs deep neural network architectures

Is 'chaining' still relevant vs deep learning?

- Interpretability what can the chain tell us about the data?
- Other issues (that affect multi-label learning in general):
 - Class imbalance
 - Weak labels
 - ...
 - What metrics should we be using?

Title recipe of many recent multi-label papers:

"Deep X for Extreme Multi-label [Text] Classification"

where $X \subset \{$ Neural Networks, Convolution, Attention, LSTM, Seq2Seq, Adversarial, Sparse, Autoencoder, Latent, ... $\}$.

Title recipe of many recent multi-label papers:

"Deep X for Extreme Multi-label [Text] Classification"

where $X \subset \{$ Neural Networks, Convolution, Attention, LSTM, Seq2Seq, Adversarial, Sparse, Autoencoder, Latent, ... $\}$.

It's difficult to justify chaining in this context, but Chains

- are still competitive useful for 'un-extreme' learning
- off interpretability
- a method of transfer learning
- But why contrast? Recall: chaining is a kind of deep network.

Chain-Inspired Deep Architectures

where y_h are based on subsets of labels $S_h \subseteq \mathcal{L}$, possibly overlapping.

Combining the advantages of chaining, probabilistic interpretation, stacking, deep learning frameworks.

Read and Hollmén, IDA 2014; Cisse, Al-Shedivat, and Bengio, ICML 2016

Exploration into Interpretation

'Feature chains' for predicting 'paradoxical insomnia' (IP)

Multi-Output Learning with Chaining

Jesse Read

Thank You!