
Efficient Data Stream Classification via Probabilistic
Adaptive Windows

Albert Bifet
Yahoo! Research Barcelona
Barcelona, Catalonia, Spain
abifet@yahoo-inc.com

Jesse Read
Dept. of Signal Theory and

Communications
Universidad Carlos III

Madrid, Spain
jesse@tsc.uc3m.es

Bernhard Pfahringer
Dept. of Computer Science

University of Waikato
Hamilton, New Zealand

bernhard@waikato.ac.nz

Geoff Holmes
Dept. of Computer Science

University of Waikato
Hamilton, New Zealand

geoff@waikato.ac.nz

ABSTRACT
In the context of a data stream, a classifier must be able to
learn from a theoretically-infinite stream of examples using
limited time and memory, while being able to predict at any
point. Many methods deal with this problem by basing their
model on a window of examples. We introduce a probabilis-
tic adaptive window (PAW) for data-stream learning, which
improves this windowing technique with a mechanism to in-
clude older examples as well as the most recent ones, thus
maintaining information on past concept drifts while being
able to adapt quickly to new ones. We exemplify PAW with
lazy learning methods in two variations: one to handle con-
cept drift explicitly, and the other to add classifier diversity
using an ensemble. Along with the standard measures of
accuracy and time and memory use, we compare classifiers
against state-of-the-art classifiers from the data-stream lit-
erature.

1. INTRODUCTION
The trend to larger data sources is clear, both in the real

world and the academic literature. Nowadays, data is gen-
erated at an ever increasing rate from sensor applications,
measurements in network monitoring and traffic manage-
ment, log records or click-streams in web exploration, man-
ufacturing processes, call-detail records, email, blogs, RSS
feeds, social networks, and other sources. Real-time anal-
ysis of these data streams is becoming a key area of data
mining research as the number of applications demanding
such processing increases.

A data stream learning environment has different require-
ments from the traditional batch learning setting. The most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

significant are the following, as outlined in [1]:

• process one example at a time, and inspect it only once
(at most);

• be ready to predict (a class given a new instance) at
any point;

• adapt to data that may evolve over time; and

• expect an infinite stream, but process it under finite
resources (time and memory).

Proper evaluation of the performance of algorithms in a
stream environment is a major research question. Up to now
the focus has mainly been on developing correct procedures
for comparing two or more classifiers with respect to their
predictive performance. In practice, finite resources limit
the choice of algorithms that can actually be deployed; we
need to gauge at least approximately how much predictive
performance can be obtained given the investment of com-
putational resources. Therefore we argue for the inclusion
of time and memory usage as dimensions in the assessment
of algorithm performance.

Several methods from the literature incrementally record
probabilistic information from each example they see in the
stream to build an incremental model over time (for ex-
ample, Naive Bayes, or Hoeffding Trees). Other methods
maintain a “window” of examples to learn from (for exam-
ple k-Nearest Neighbour (kNN), nearest centroid (Rocchio)
classifiers, and other lazy methods). A basic implementa-
tion will maintain a sliding window of a fixed size. It is
not possible to store of all stream instances due to eventual
memory (and processing) limitations.

Despite the fact that the implementation is limited by the
size of its sliding window, our analysis has revealed that such
methods can be extremely competitive in a data-stream en-
vironment, not only in terms of predictive performance but
also time and memory usage. They require very few training
examples to learn a concept (many less than, for example,
Hoeffding Trees) and their window provides a natural mech-
anism for handling concept drift; as it will contain the most
recent instances – precisely the ones which are most likely to
be relevant for the next prediction. The resulting classifier

needs to be tuned to the data stream in terms of the size
of the window, but even relatively small windows provide
surprisingly good performance.

However, a weakness of this existing sliding-window ap-
proach is that it can forget too many old instances, as they
are dropped from the window. While the most recent train-
ing instances are usually most likely to be the most relevant
ones when making a prediction for a new instance, this is
not always the case, and older instances may carry informa-
tion that is still relevant, or may become relevant again in
the future.

Using our analysis, we introduce a new method for learn-
ing from data streams: Probabilistic Approximate Win-
dow (PAW). This method finds the compromise between
the relevance of information in the most recent instances,
and the preservation of information carried by older instances.
PAW maintains a sample of instances in logarithmic mem-
ory, giving greater weight to newer instances. But rather
than leaving the window to naturally adapt to the stream
we use an explicit change detector and keep only those in-
stances that align with the most recent distribution of the
data.

Additionally, since it has been shown previously [2] that
adding classifier diversity can significantly boost the perfor-
mance of a base classifier, we also investigate the accuracy
gains of deploying this leveraging bagging for our k-Nearest
Neighbour method.

This paper is structured as follows. Section 2 details prior
work that we draw on for comparison. We introduce the
Probabilistic Approximate Window method and its two
variations in Section 3. Section 4 then details the data sets
used and the results of comparing the three lazy learning
methods with state-of-the-art base and ensemble classifiers.
Finally, we make concluding remarks in Section 6 and indi-
cate avenues for future research on these methods.

2. PRIOR WORK
Naive Bayes [3] is a widely known classifier; it simply

updates internal counters with each new instance and uses
these counters to assign a class to an unknown instance prob-
abilistically.

Naive Bayes makes a good baseline for classification, but
in terms of performance, has been superseded by Hoeffd-
ing Trees [4]: an incremental, anytime decision tree induc-
tion algorithm that is capable of learning from massive data
streams by exploiting the fact that a small sample is often
enough to choose an optimal splitting attribute. Hoeffding
Trees have been shown to work particularly well in a Bag-
ging ensemble [5, 2].

Unlike Naive Bayes and Hoeffding Trees, a k-Nearest Neigh-
bour algorithm cannot learn from a stream indefinitely with-
out discarding data, since it maintains an internal buffer of
instances that it must search through to find the neighbours
of each test instance. When the internal buffer fills up, it
serves as a first-in-first-out sliding window of instances. The
prediction of the class label of an instance is made using
the majority vote of its k nearest neighbors from inside this
window.

Even though improved search [6] and instance-compression
techniques [7] have been shown to improve its capacity con-
siderably, the question of how to properly deal with kNN in
a concept drift setting is still open. Recent work, such as [6]
still only removes outdated instances when space is needed

for new instances, and they test their methods mainly on
medium sized datasets. [8] also provides a fast implemen-
tation of k-Nearest Neighbour, but this work is focussed on
automatically calibrating the number of neighbours k and
does not consider data with concept drift.

Reacting to concept drift is a fundamental part of learning
from data streams [9]. As previously mentioned, k-Nearest
Neighbour methods do this to some extent automatically, as
they are forced to phase out part of their model over time
due to resource limitations; nevertheless it is possible to add
an explicit change detection mechanism. ADWIN [10], which
keeps a variable-length window of recently seen items (such
as the current classification performance), is an example of
this, and has been used successfully with Hoeffding Trees [5].

Our experimental evaluation reveals that kNN methods
perform surprisingly well. This has an important implica-
tion: that it is not necessary to learn from all instances in a
stream to be competitive in data-stream classification.

3. PROBABILISTIC APPROXIMATE WIN-
DOWS (PAW)

In the dynamic nature of data streams, more recent exam-
ples tend to be the most representative ones of the current
concept. Nevertheless, forgetting too many old instances
will result in reduced accuracy, as too much past informa-
tion disappears, leaving the learner with a small snapshot of
part of the current concept. A classifier, therefore, should
aim to learn as quickly as possible from new examples, but
also maintain some information from older instances. We
propose a new methodology which does exactly this by main-
taining in logarithmic memory a sample of the instances,
giving more weight to newer ones.

Rather than storing all instances or only a limited win-
dow, the Probabilistic Approximate Window algorithm
(PAW) keeps a sketch window, using only a logarithmic
number of instances, storing the most recent ones with higher
probability. It draws inspiration from the Morris approx-
imate counting algorithm, which was introduced in what
is considered to be the first paper on streaming algorith-
mics [11]. The main motivation of this counting algorithm,
is how to store in 8 bits, a number larger than 28 = 256.
Suppose that we have a stream of events or elements, and
we want to count its number of events n using only a counter
of 8 bits. The idea of the method is simple, instead of stor-
ing n using log(n) bits, it is possible to store its logarithm
using log(log(n)) bits.

Algorithm 1 Morris approximate counting

1 Init counter c← 0
2 for every event in the stream
3 do rand = random number between 0 and 1
4 if rand < p
5 then c← c+ 1

Algorithm 1 shows the pseudocode of the algorithm. Ba-
sically, for each new event that arrives, it decides with prob-
ability p if it updates the counter c by one. The error and
the variance of the estimation depends on the probability p
chosen.

0 2 4 6 8 10
0

2

4

6

8

10

x

0 20 40 60 80 100
0

20

40

60

80

100

x

Figure 1: Probability function used by Morris to
store counts for a = 30: f(x) = log(1 + x/30)/ log(1 +
1/30); plotted up to x = 10 (top) and x = 100 (bot-
tom). The first values are stored with higher prob-
ability and the rest with lower probability.

Let us see a simple case: for each event that arrives in
the stream, the algorithm decides, randomly with p = 1/2,
if it updates the counter c by one or not. The counter will
maintain an estimate of the number of items arrived divided
by two. The variance is σ2 = np(1 − p) = n/4 as p = 1/2.
For example, imagine that we have 400 events, the counter
will maintain a count of c = n/2 = 200, and the standard

deviation will be σ =
√
n/4, i.e. σ = 10 for this case.

Morris proposed to store in the register the value given
by the function f(x) = log(1 + x/a)/ log(1 + 1/a). Figure 1
shows for a = 30 how the first 10 values stored are similar
to the real ones, but for values after the 10th element, the
values follow a logarithmic law.

Choosing p = 2−c where c is the value of the counter
that we are maintaining, Flajolet [12] proved that we get an
estimation E[2c] = n+ 2 and a variance of σ2 = n(n+ 1)/2.

A way to improve the variance using the same amount
of space, is using a base b smaller than 2 in the logarithms.
Then p = b−c, the estimation is E[bc] = n(b−1)+b, the value
of the counter is n = E[(bc − b)/(b− 1)] and the variance is
σ2 = (b− 1)n(n+ 1)/2.

For example, suppose that we have 8 bits to store our
counter, and b = 2. The maximum value stored is 2255 − 1
and the standard deviation is approximately 2255/

√
2. In-

stead, if we use b = 21/16 then we reduce the variance to a
twentieth part, since b− 1 = 0.044.

Algorithm 2 shows the pseudocode of the Probabilis-
tic Approximate Window algorithm (PAW). Morris ap-
proximate counting can be used to store the size of a win-

Algorithm 2 Probabilistic Approximate Window

Probabilistic Approximate Window

1 Init window w ← ∅
2 for every instance i in the stream
3 do store the new instance i in window w
4 for every instance j in the window
5 do rand = random number between 0 and 1
6 if rand > b−1

7 then remove instance j from window w

dow, but not the window itself. PAW extends it to keep the
window of elements using logarithmic memory. The algo-
rithm works as follows: when a new instance of the stream
arrives, it is stored in the window. Then, each single in-
stance in the window is up for randomized removal, with
a probability of 1 − b−1. We use the setting proposed by
Flajolet: b = 2−1/w where w is a parameter value related to
the size of the sketch window that we would like to keep.

Proposition 1. Given a data stream of items i1, i2, i3,
. . . , it, . . . , the Probabilistic Approximate Window al-
gorithm maintains a window data structure with the follow-
ing properties:

• Given b = 2−1/w , the probability pn of having item in
stored in the window, after receiving a further m items,
is pm−n = 2−(m−n)/w

• An estimate of the size of the window W after receiving
m items is given by (1− 2−(m+1)/w)/(1− 2−1/w)

• An estimate of the size of the window W to maintain
an infinite stream is given by 1/(1− 2−1/w)

We omit proofs here, as they are straightforward from
Flajolet’s work.

We further improve the method in two ways:

1. We add concept-drift adaptive power, using a change
detector to keep only the examples that correspond
to the most recent distribution of the data. We use
ADWIN [10], since it is a change detector and estima-
tor that solves, in a well-specified way, the problem of
tracking the average of a stream of bits or real-valued
numbers. ADWIN keeps a variable-length window of re-
cently seen items, with the property that the window
has the maximal length statistically consistent with
the hypothesis “there has been no change in the aver-
age value inside the window”. ADWIN maintains its own
window in a compressed fashion, using only O(ln(w))
space for a window of size w.

2. We add diversity using a leveraging bagging method [2]
to improve accuracy, creating classifiers using different
random instances as input. First, we initialize n clas-
sifiers. For each new instance that arrives, we train
each classifier with a random weight of Poisson(λ),
where λ is a parameter chosen by the user. When a
change is detected, the worst classifier of the ensemble
of classifiers is removed and a new classifier is added to
the ensemble. To predict the class of an example, we
output as a prediction the class with the most votes.

4. EXPERIMENTS
In this section we look at the performance offered by Prob-

abilistic Adaptive Windowing (PAW).
We exemplify PAW with the k Nearest Neighbour algorithm

(kNN), using the PAW window as its sliding window. The
prediction of a class label for each instance is made by taking
the majority vote of its k nearest neighbors in the window.
kNN has been shown to perform surprisingly well against a
variety of other methods in the data-stream context [13, 14].

We compare the performance of our method (kNN with
PAW) to existing well-known and commonly-used methods
in the literature: Naive Bayes, Hoeffding Tree, Hoeffding
Tree ensembles, and kNN using a standard windowing tech-
nique of the previous w examples. These methods, and their
parameters, are displayed in Table 1. We also compare to
kNN with the variations of PAW we described in Section 3.

All algorithms evaluated in this paper were implemented
in Java by extending the MOA software [15].

We use the experimental framework for concept drift pre-
sented in [1]: considering data streams as data generated
from pure distributions, we can model a concept drift event
as a weighted combination of two pure distributions that
characterizes the target concepts before and after the drift.
This framework defines the probability that a new instance
of the stream belongs to the new concept after the drift
based on the sigmoid function.

Our experimental evaluation comprises two parts:

1. We study the effects of different batch-size parameters
value for the k nearest neighbour methods; and then

2. We compare the performance of all methods.

We measure predictive performance (accuracy), running
time, and RAM-Hours (as in [16] where one GB of RAM
deployed for one hour equals one RAM-Hour).

4.1 Data
In our experiments we use a range of both real and syn-

thetic data sources.
Synthetic data has several advantages – it is easier to re-

produce and there is little cost in terms of storage and trans-
mission. For this paper we use the data generators most
commonly found in the literature.

SEA Concepts Generator An artificial dataset, introduced
in [17], which contains abrupt concept drift. It is gen-
erated using three attributes. All attributes have val-
ues between 0 and 10. The dataset is divided into
four concepts by using different thresholds θ; such that:
f1+f2 ≤ θ where f1 and f2 are the first two attributes,
for θ = 9, 8, 7 and 9.5.

Rotating Hyperplane The orientation and position of a
hyperplane in d-dimensional space is changed to pro-
duce concept drift; see [18].

Random RBF Generator Using a fixed number of cen-
troids of random position, standard deviation, class
label and weight. Drift is introduced by moving the
centroids with constant speed.

LED Generator The goal is to predict the digit displayed
on a seven-segment LED display, where each attribute
has a 10inverted; LED comprises 24 binary attributes,
17 of which are irrelevant; see [19].

Table 1: The methods we consider. Leveraging Bag-
ging methods use n models. kNNWA empties its win-
dow (of max w) when drift is detected (using the
ADWIN drift detector).

Abbr. Classifier Parameters

NB Naive Bayes
HT Hoeffding Tree
HTLB Leveraging Bagging with HT n = 10
kNN k Nearest Neighbour w = 1000, k = 10
kNNW kNN with PAW w = 1000, k = 10
kNNWA kNN with PAW+ADWIN w = 1000, k = 10
kNNLB

W Leveraging Bagging with kNNW n = 10

Table 2: The window size for kNN and corresponding
performance.

Accuracy

−w 100 −w 500 −w 1000 −w 5000

Real Avg. 77.88 77.78 79.59 78.23
Synth. Avg. 57.99 81.93 84.74 86.03
Overall Avg. 62.53 80.28 82.59 83.11

Time (seconds)

−w 100 −w 500 −w 1000 −w 5000

Real Tot. 297 998 1754 7900
Synth. Tot. 371 1297 2313 10671
Overall Tot. 668 2295 4067 18570

RAM Hours

−w 100 −w 500 −w 1000 −w 5000

Real Tot. 0.007 0.082 0.269 5.884
Synth. Tot. 0.002 0.026 0.088 1.988
Overall Tot. 0.009 0.108 0.357 7.872

Nemenyi significance (for Accuracy):
kNN −w 500 � kNN −w 100; kNN −w 1000 � kNN

−w 100; kNN −w 5000 � kNN −w 100

The UCI machine learning repository [20] contains some
real-world benchmark data for evaluating machine learning
techniques. We consider three of the largest:

Forest Covertype Contains the forest cover type for 30 x
30 meter cells obtained from US Forest Service data.
It contains 581, 012 instances and 54 attributes. It has
been used in, for example, [21, 22].

Poker-Hand 1, 000, 000 instances represent all possible poker
hands. Each card in a hand is described by two at-
tributes: suit and rank. Thus there are 10 attributes
describing each hand. The class indicates the value
of a hand. We sorted by rank and suit and removed
duplicates.

Electricity Contains 45, 312 instances describing electric-
ity demand. A class label identifies the change of the
price relative to a moving average of the last 24 hours.
It was described by [23] and analysed also in [9].

Table 3: Comparison of all methods.

Accuracy∗

NB HT HTLB kNN kNNW kNNWA kNNLB
W

CovType 60.52 80.31 88.61 92.22 91.92 91.89 92.39
Elec. 73.36 79.20 88.77 78.38 79.73 79.91 80.78
Poker 59.55 76.07 94.97 69.35 66.74 68.74 70.34
Real avg. 64.48 78.53 90.78 79.98 79.46 80.18 81.17
LED(5E5) 54.02 68.65 73.15 63.20 64.99 65.04 69.77
SEA(50) 85.37 86.42 88.24 86.80 87.20 87.20 88.00
SEA(5E5) 85.38 86.42 88.80 86.55 86.92 86.92 87.74
HYP10

0.0001 91.25 89.04 88.06 83.29 84.06 84.06 87.10
HYP10

0.001 70.91 78.77 84.85 83.33 83.87 83.87 86.91
RBF0

0 51.21 83.25 89.70 88.99 90.09 90.10 90.59
RBF50

0.0001 30.99 45.49 76.70 89.36 89.99 90.04 90.49
RBF10

0.0001 52.10 79.24 85.54 89.30 90.28 90.31 90.73
RBF50

0.001 29.14 32.29 55.72 84.03 80.62 80.60 82.10
RBF10

0.001 51.96 76.39 81.82 88.34 88.41 88.40 88.93
Synth. avg. 60.23 72.60 81.26 84.74 84.65 84.65 86.24
Overall avg 61.21 73.96 83.46 83.11 83.45 83.62 85.07
∗Nemenyi significance: {HTLB, kNNW, kNNWA , kNNLB

W } � HT

Time (s)

NB HT HTLB kNN kNNW kNNWA kNNLB
W

CovType 19 20 248 272 374 665 6708
Elec. 1 1 9 7 11 19 164
Poker 9 9 128 197 293 329 3454
Real Tot. 29 30 385 476 678 1013 10326

LED(5E5) 9 16 189 399 613 1171 10816
SEA(50) 3 5 94 110 208 355 3138
SEA(5E5) 3 5 95 111 206 367 3126
HYP10

0.0001 4 8 222 224 384 691 6492
HYP10

0.001 4 10 225 223 368 691 6380
RBF(0,0) 16 14 204 209 327 610 6279
RBF50

0.0001 16 15 237 203 323 620 7494
RBF10

0.0001 15 13 201 206 331 614 5523
RBF50

0.001 17 14 234 221 362 696 6766
RBF10

0.001 15 13 201 204 336 622 5858
Synth. tot. 103 112 1901 2313 3459 6437 61873
Overall tot. 115 145 2097 2789 4013 7167 66529

RAM Hours

NB HT HTLB kNN kNNW kNNWA kNNLB
W

CovType 0.00 0.14 0.49 0.37 0.75 1.31 42.06
Elec. 0.00 0.00 0.03 0.00 0.01 0.01 0.40
Poker 0.00 0.02 1.96 0.08 0.16 0.22 8.80
Real tot. 0.00 0.16 2.48 0.45 0.92 1.54 51.26

LED(5E5) 0.00 0.07 4.92 0.28 0.62 1.30 44.69
SEA(50) 0.00 0.01 19.54 0.02 0.07 0.15 6.53
SEA(5E5) 0.00 0.01 8.93 0.02 0.07 0.16 6.50
HYP10

0.0001 0.00 0.04 133.01 0.08 0.21 0.45 17.65
HYP10

0.001 0.00 0.08 15.42 0.08 0.20 0.45 17.46
RBF0

0 0.00 0.03 30.06 0.08 0.18 0.40 16.88
RBF50

0.0001 0.00 0.03 2.03 0.08 0.18 0.40 20.09
RBF10

0.0001 0.00 0.03 33.14 0.08 0.18 0.40 14.98
RBF50

0.001 0.00 0.02 0.17 0.08 0.20 0.44 18.09
RBF10

0.001 0.00 0.02 30.80 0.08 0.19 0.40 15.91
Synth. tot. 0.00 0.34 278.02 0.88 2.11 4.54 178.78
Overall tot. 0.00 0.50 280.50 0.80 3.02 6.09 230.04

Table 4: Summary of Efficiency: Accuracy and
RAM-Hours.

NB HT HTLB kNN kNNW kNNWA kNNLB
W

Accuracy 56.19 73.95 83.75 82.59 82.92 83.19 84.67
RAM-Hrs 0.02 1.57 300.02 0.36 8.08 8.80 250.98

4.2 Results
The experiments were performed on 2.66 GHz Core 2

Duo E6750 machines with 4 GB of memory. The evalua-
tion method used was Interleaved Test-Then-Train; a stan-
dard online learning setting where every example is used for
testing the model before using it to train. This procedure
was carried out on 10 million examples from the hyperplane
and RandomRBF datasets, and one million examples from
the SEA dataset. The parameters of these streams are the
following:

• RBFx
v : RandomRBF data stream of 5 classes with x

centroids moving at speed v.

• HYPx
v : Hyperplane data stream of 5 classes with x

attributes changing at speed v.

• SEA(v): SEA dataset, with length of change v.

• LED(v): LED dataset, with length of change v.

The Nemenyi test [24] is used for computing significance:
it is an appropriate test for comparing multiple algorithms
over multiple datasets; it is based on the average ranks of
the algorithms across all datasets. We use a p-value of 0.05.
Under the Nemenyi test, x � y indicates that algorithm x is
statistically significantly more likely to be more favourable
than y.

Table 2 displays results for a variety of window sizes for
kNN. It illustrates the typical trade-off for window sizes:
too small a window can significantly degrade the accuracy
of a classifier (see w = 100); whereas too large a window
can significantly augment the running time and memory re-
quirements (w = 5000). Our choice is for w = 1000. Using
higher w, for example, w = 5000, can result in slightly better
accuracy, but the improvement is in our opinion not signif-
icant enough to justify the massive increase in the use of
computational resources.

Table 3 displays the final accuracy and resource use (time
and RAM-hours) of all the methods, as detailed in Table 1.
Accuracy is measured as the final percentage of examples
correctly classified over the test/train inter-leaved evalua-
tion.

5. DISCUSSION
The overall most accurate method is our PAW-based kNNLB

W :
a lazy method with a data-stream specific adaption for phas-
ing out older instances, combined with the power of Lever-
aging Bagging. This method performs the best on average
of all the methods in our comparison.

The kNN methods perform much better than baseline
Naive Bayes (NB) and even the reputed Hoeffding Tree (HT).
This is noteworthy, since their models are restricted to a
relatively small subset of instances (1000 in this case). HT is
relatively more competitive on the real data. This is almost

certainly because the real data comprises relatively stable
concepts (little drift) where Hoeffding Trees perform well.
HTLB is relatively much more powerful; achieving rela-

tively higher accuracy compared to HT and even proving
competitive with kNN methods overall. However, this is at
the price of being RAM Hours, orders of magnitude greater
than HT, and over 14 times slower. It is comparable with the
kNN methods insofar as time, but uses many more RAM
Hours.

When our kNNW method is applied under Leveraging Bag-
ging (kNNLB

W) we also see a considerable increase in the use of
computational resources. But with this trade off it performs
best on over half of all datasets.

Table 3 provides us with an interesting comparison of
Naive Bayes, Hoeffding trees, Leveraging Bagging with Ho-
effding Tress, and variations of kNN. Naive Bayes (NB) uses
the least resources, but its accuracy is poor compared to all
other methods; with the single exception of HYP(10,0.0001),
for which it obtains the second-best score. As claimed in the
literature, Hoeffding Trees (HT) are a better choice than NB

for instance-incremental methods.

6. CONCLUSIONS
In this paper we presented a probabilistic adaptive window

method for window-based learning in evolving data streams,
based on the approximate counting of Morris. Using this
window approach we designed three methods: one that does
not take into consideration concept drift explicitly, one that
detects concept drift explicitly and removes instances that
may be not corresponding to the actual distribution of data,
and additionally an approach using leveraging bagging as an
ensemble method to improve diversity.

Our experimental evaluation – of real and synthetic data
sources with different types and magnitudes of concept drift
– justified the effectiveness of our probabilistic adaptive win-
dow; the lazy learning strategies we employed with this win-
dow obtained a high predictive performance to efficiency ra-
tio over the comparison methods.

In future work we intend to experiment with different dis-
tance metrics in our lazy methods, and investigate the per-
formance gains of using our probabilistic adaptive window
approach with other classification techniques.

7. REFERENCES
[1] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and

R. Gavaldà, “New ensemble methods for evolving data
streams,” in KDD, 2009, pp. 139–148.

[2] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging
bagging for evolving data streams,” in ECML/PKDD
(1), ser. Lecture Notes in Computer Science, J. L.
Balcázar, F. Bonchi, A. Gionis, and M. Sebag, Eds.,
vol. 6321. Springer, 2010, pp. 135–150.

[3] G. H. John and P. Langley, “Estimating continuous
distributions in bayesian classifiers,” in Eleventh
Conference on Uncertainty in Artificial Intelligence.
San Mateo: Morgan Kaufmann, 1995, pp. 338–345.

[4] P. Domingos and G. Hulten, “Mining high-speed data
streams,” in KDD, 2000, pp. 71–80.

[5] A. Bifet and R. Gavaldà, “Adaptive learning from
evolving data streams,” in IDA, ser. Lecture Notes in
Computer Science, N. M. Adams, C. Robardet,

A. Siebes, and J.-F. Boulicaut, Eds., vol. 5772.
Springer, 2009, pp. 249–260.

[6] P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling
fast lazy learning for data streams,” in ICDM, 2011,
pp. 932–941.

[7] E. Spyromitros-Xioufis, M. Spiliopoulou,
G. Tsoumakas, and I. Vlahavas, “Dealing with concept
drift and class imbalance in multi-label stream
classification,” in IJCAI, 2011, pp. 1583–1588.

[8] Y.-N. Law and C. Zaniolo, “An adaptive nearest
neighbor classification algorithm for data streams,” in
9th European Conference on Principles and Practice of
Knowledge Discovery in Databases, 2005, pp. 108–120.

[9] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues,
“Learning with drift detection,” in SBIA, 2004, pp.
286–295.

[10] A. Bifet and R. Gavaldà, “Learning from
time-changing data with adaptive windowing,” in
SDM, 2007.

[11] R. Morris, “Counting large numbers of events in small
registers,” Commun. ACM, vol. 21, no. 10, pp.
840–842, Oct. 1978.

[12] P. Flajolet, “Approximate counting: A detailed
analysis,” BIT, vol. 25, no. 1, pp. 113–134, 1985.

[13] J. Read, A. Bifet, B. Pfahringer, and G. Holmes,
“Batch-incremental versus instance-incremental
learning in dynamic and evolving data,” in 11th Int.
Symposium on Intelligent Data Analysis, 2012.

[14] A. Shaker and E. Hüllermeier, “Instance-based
classification and regression on data streams,” in
Learning in Non-Stationary Environments. Springer
New York, 2012, pp. 185–201.

[15] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer,
“MOA: Massive Online Analysis
http://moa.cs.waikato.ac.nz/,” JMLR, 2010.

[16] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank,
“Fast perceptron decision tree learning from evolving
data streams,” in PAKDD, 2010.

[17] W. N. Street and Y. Kim, “A streaming ensemble
algorithm (SEA) for large-scale classification,” in
KDD, 2001, pp. 377–382.

[18] G. Hulten, L. Spencer, and P. Domingos, “Mining
time-changing data streams,” in KDD, 2001, pp.
97–106.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone, Classification and Regression Trees.
Wadsworth, 1984.

[20] A. Asuncion and D. Newman, “UCI machine learning
repository,” 2007.

[21] J. Gama, R. Rocha, and P. Medas, “Accurate decision
trees for mining high-speed data streams,” in KDD,
2003, pp. 523–528.

[22] N. C. Oza and S. J. Russell, “Experimental
comparisons of online and batch versions of bagging
and boosting,” in KDD, 2001, pp. 359–364.

[23] M. Harries, “Splice-2 comparative evaluation:
Electricity pricing,” The University of South Wales,
Tech. Rep., 1999.

[24] J. Demšar, “Statistical comparisons of classifiers over
multiple data sets,” The Journal of Machine Learning
Research, vol. 7, pp. 1–30, 2006.

