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Abstract

In this paper we investigate the performance of two reinforcement learning (RL) agents
within a supply chain optimization environment. We model the environment as a Markov
decision process (MDP) where during each step it needs to be decided how many products
should be produced in a factory and how many products should be shipped to different
warehouses. We then design three different agents based on a static (ς, Q)-policy, the
approximate SARSA and the REINFORCE algorithm. Here we pay special attention to
different feature mapping functions that are used to model the value of state and state-
action pairs respectively. By testing the agents in different environment initializations, we
find that both the approximate SARSA and the REINFORCE algorithms can outperform
the static (ς, Q) agent in simple scenarios and that the REINFORCE agent performs best
even in more complex settings.

Keywords: Reinforcement-Learning, Approximate SARSA, REINFORCE, Supply chain
management

1. Introduction

Supply chain optimization is a problem faced by companies whose supply chain consists of
a factory and multiple warehouses (so called hub-and-spoke networks (Arnold, 2009)). The
main decision is how many products should be produced in the factory and how much stock
should be built up in the warehouses. Seasonal demand can further complicate the decision
problem since it might require the companies to start building up stock early to satisfy
future demands (e.g., eggnog for Christmas, needing to be built up during November and
December). While small companies can still maintain a supply chain management manually,
automatization is necessary for big businesses. Standard policies such as the (ς, Q)-policy
(Tempelmeier, 2011) are often too simple and cannot adapt to complex environments. Due
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to the multi-step decision characteristic of the problem, we propose an RL (Sutton and
Barto, 1998) approach for the supply chain network. Previous research has already shown
promising results for the application of RL to supply chain management (Pontrandolfo
et al., 2002; Chaharsooghi et al., 2008; Giannoccaro and Pontrandolfo, 2002).

Even for small supply chain networks we find that due to the curses of dimensionality,
(Powell, 2007), the state and action spaces of the respective decision problems become
unfeasibly large. Therefore, we turn to function-approximation and policy-search methods
of reinforcement learning that are less affected by these problems. In our case we chose
approximate SARSA (Rummery and Niranjan, 1994; Sutton, 1996) and the REINFORCE
(Williams, 1992) algorithm as a basis for the agents.

2. Problem setting

Within this paper we model a supply chain optimization problem that consists of 1 factory
(i.e., a butter-factory) and multiple warehouses regarded over a fixed number of periods.
In each period, the agent has to decide how much butter should be produced and stored
at the factory and how much butter should be shipped to the individual warehouses. A
representation of a network with 5 warehouses is depicted in Figure 1. For each of the

Figure 1: Example of a supply chain network with 5 warehouses and 1 factory.

warehouses, we model a stochastic, seasonal, demand for butter. If the demand can not
be satisfied at a specific warehouse, it will lead to a penalty cost that will occur until the
location is able to satisfy said demand. To make the problem more realistic we introduce
limits to the production capacity and storage at the factory and warehouses as well as
storage and shipment costs. Furthermore, we model the demand such that it can surpass the
production capacity, thus requiring the agent to build up stock at the individual warehouses.
This ultimately requires the agent to learn the seasonality of the demand curves and to build
up stock accordingly but as efficiently as possible.

MDPs are multi-step stochastic decision problems that rely on the Markov property
which implies that the transition probability P(st+1 | st,a) between two states st+1 and st
only relies on the current state st and the selected action a. We describe the MDP similar to
Moritz (2014) and Powell (2007) by defining a state-space, a random environment process
for the demand, an action space, a set of feasible actions, a transition function , a one-step
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Table 1: Components of the one-step reward function.

Component Formular Variables

Revenue from sold products p
∑K

j=1 dj Price p, demand dj
Production cost κpra0 Unit cost κpr, production level a0

Storage cost
∑K

j=0 κst,j max{sj , 0} Storage cost κst,j , stock level sj

Penalty cost κpe
∑k

j=1 min{sj , 0} Penalty cost κpe, stock level sj

Transportation cost
∑k

j=1 κtr,j daj/ζje
Truck cost κtr,j ,Truck capacity ζj
Transportation volume aj

reward function and a discount factor γ. Throughout the whole chapter we use j = 0, . . . ,K
as an identifier for the factory (j = 0) and the K warehouses (j = 1, . . . ,K) and t = 1, . . . , N
as an identifier for each period (where N is the terminal period).

The state space at period t is defined as st = [s0, . . . , sK ,dt−1,dt−2] where each sj ∈
[0, cj ] represents the stock levels of the factory s0 and warehouses (s1, . . . , sK), up to some
maximum capacity cj . For the demand vector dt = [d1,t, . . . , dK,t] we describe the individual
demand at warehouse j and time t by dj,t which can be modeled as an arbitrary stochastic
process. The reason we add the last demands (dt−1,dt−2) to the state space is to allow
the agent to have limited knowledge of the demand history to be able to gather a basic
understanding of its changes. We note that the actual stochastic demand in a period t will
not be observed until the next period t+ 1.

In each period the agent can now set the factory’s production level for the next period
a0 ∈ {0, .., ρmax} (with a maximum production of ρmax ∈ N) as well as the number of
products shipped to each location aj ∈ N that is naturally limited by the current storage

level in the factory (
∑K

j=1 aj ≤ s0). We can now define the action space as a = [a0, . . . , aK ]

and the set of feasible actions in a state s by X (st) := {a ∈ NK+1
0 | 0 ≤ a0 ≤ ρmax ∧∑K

j=1 aj ≤ s0}. Based on this information we can describe the state transitions by

T (st,dt,a) := (min{s0 +a0−
K∑
j=1

aj , c0},min{s1 +a1−d1, c1}, . . . ,min{sK +aK−dK , cK},dt,dt−1).

(1)
The one-step reward function models the profit that occurs in each period. It is defined

based on the revenue and cost components presented in Table 1.

r(st,d,a) := p

K∑
j=1

dj − κpra0 −
K∑
j=0

κst,j max{sj , 0}+ κpe

K∑
j=1

min{sj , 0} −
K∑
j=1

κtr,j

⌈
aj
ζj

⌉
(2)

with d·e to be the ceiling function. The terminal reward after the last period is zero,
meaning that we will not account for remaining positive or negative stock. Furthermore we
chose a discounting factor γ ∈ R+ that can be interpreted, e.g., as a result of inflation.

3. Our approach

To solve the supply chain optimization problem, we compare the performance of the two
reinforcement learning algorithms (approximate SARSA and REINFORCE) with an agent
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that acts according to a fixed heuristic based on the (ς, Q)-Policy1 as described by Tem-
pelmeier (2011). In order to test the agents we model the previously undefined elements
of the demand vector dt = [d1,t, . . . , dK,t] as a sinusoidal function with stochastic shocks to
simulate a simple seasonal demand behavior. This leads us to

dj,t =

⌊
dmax

2
sin

(
2π(t+ 2j)

12

)
+
dmax

2
+ εj,t

⌋
(3)

where b·c is the floor function and P(εj,t = 0) = P(εj,t = 1) = 0.5. In RL (Sutton and Barto,
1998) we design an agent that acts in an environment to independently learn a strategy
based on the rewards he collects after each action. Often this is done by approximating a
Q-function that maps state-action pairs to a value which is used by the agent to select the
action with the highest associated value for each state.

Figure 2: Schematic visualization of (ς, Q)-Policy for a single warehouse. A fixed amount
Q is replenished when stock falls under threshold ς.

The (ς, Q)-Policy based agent is not smart in the way that it does not learn over time.
Due to the popularity of the (ς, Q)-Policy in practice (Janssen et al., 1996), we use it as
a baseline for performance evaluation of the other agents. In our heuristic we iterate over
s1, ..., sK and replenish the respective warehouses by some amount aj = Qj if the current
stock is below a level ςj and there is still stock left in the factory s0. At the end we set the

production level for the next period to Q0 if s0 −
∑K

j=1 aj < ς0 and zero otherwise. The
thresholds ς and replenishment levels Q need to be set by the user when initializing the
agent.

Approximate SARSA Rummery and Niranjan (1994) use a linear approximation
Qw(s,a) = wTφ(s,a) of the Q-function (which describes the value of being in a state and
choosing a specific action) where w is a vector of parameters and φ(s,a) is a function of
features that we will call a feature-map. We chose this method as it solves the problem of
exponentially growing state and action spaces and allows us to use our knowledge of the
environment to design φ(s,a) such that it preserves some of the MDPs structure. One of
the crucial tasks when designing the approximate SARSA agent is the model for φ. In our
case we use the states s and actions a to compute over 15 different features to find a good
approximation of the Q-function. One of the main ideas is to explore our knowledge of the

1. In the literature this policy is usually called (s,Q)-Policy. We chose a slightly different name to avoid
notation conflicts in our model description.
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transition function to get a rough estimate of the next demand and state by

d̂(st) = dt−1 + (dt−1 − dt−2) = 2dt−1 − dt−2,

ŝt+1(s,a) = T (st, d̂(st),a).
(4)

Note that this does not imply that the agent fully understands all transition dynamics
since the actual realizations of the demand follow an unknown stochastic process. This
way the agent can get a basic understanding of rewards and penalties associated with ŝt+1.
Among others we use the expected penalty costs, the expected reward and include the
respective rewards and costs for two scenarios where d̂+ = d̂(st) + 1 and d̂+ = d̂(st) − 1.
A list of features can be found in appendix A. When testing the approximate SARSA
algorithm we found that for some environments the parameters w would increase until
computations became numerically unstable. To avoid this issue, a simple solution is to
restrict the temporal difference that is used to update w within the interval [−10100,+10100]
and to initialize the agent with a very small learning-rate (such as 10−10 vs. 0.02 which
we normally use). We deliberately chose a big interval in order to only affect the results
in cases where w tends to extreme values. In future work this basic approach could be
improved e.g., by using the softmax of the weights.

REINFORCE (Williams, 1992) is based on a parametrized policy for which the expected
reward has to be maximized. Due to the high dimensionality of the problem, we discretize
the action space and only allow 3 different actions for each location (i.e., the factory and
the warehouses). This can be for example to send 0,1 or 2 trucks to a warehouse or to
produce 0, 3 or 9 units at the factory. The maximum number of possible actions combining
all locations becomes na = 3(K+1) and we denote a(i) as the ith action. Note that the
constraints from X (st) still apply, i.e., that the number of allowed actions in a specific state
can be smaller. We parametrize our policy as a softmax function for multiple actions:

p(a = a(i)|s) = πΘ(a = a(i)|s) =
eφ(s)Tw

a(i) · f(a(i)|s)∑na
j=1 e

φ(s)Tw
a(j) · f(a(j)|s)

:= σi(s) (5)

where

f(a(j)|s) =

{
1 if a(j) is allowed in state s,

0 otherwise.
(6)

For REINFORCE, we used a simplified feature map φ(s) with only the state s as input
and a basis consisting of a bias with linear terms. Furthermore, we added quadratic or Radial
Basis Function (RBF) kernel terms. The RBF kernels were designed individually for each
location with means chosen to be zero, half and full capacity and a small constant standard
deviation. The parameters wi ∈ R3K+1, assembled in the matrix Θ =

(
w1|w2|...|wna

)
∈

R(3K+1)×na , are initialized to zeros in order to start with equal probabilities for each action.
The gradient of our objective function J(Θ) = EπΘ [

∑N
t=1 rt] evaluates to:

∇wjJ(Θ) = ∇wj ln(πΘ(a(i), s))Dt =

{
(1− σj(s))φ(s)Dt if i = j

−σj(s)φ(s)Dt if i 6= j

where Dt =
∑N

t′=t r
′
t. The full derivation for this gradient is shown in Appendix B.
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(a) Simple scenario (one warehouse). (b) Complex scenario (three warehouses).

Figure 3: Average reward on a sliding window of size 100.

(a) Stocks for the REINFORCE agent using a
quadratic φ.

(b) Stocks for the (ς, Q)-Policy based agent.

Figure 4: Stocks in the second test.

4. Results and Discussion

We carry out two tests, each of 24 steps to simulate a full demand cycle, where demand
increases along the length of the episode, thereby asking the question – can the agent learn
to build up stock? During the tests we simulate 15000 episodes for the agents to learn and
to track their performance which we will later display on a sliding window.

The first test consists of only the factory and one warehouse and includes cost for
production, storage (except for the factory), transportation and penalty cost for unsatisfied
demands. The agent should learn to invest in storage and transportation, despite short-term
negative rewards. Figure 3a shows that both the approximate SARSA and REINFORCE
agents (three versions thereof) are successful and outperform the baseline (ς, Q)-policy. The
REINFORCE methods are clearly superior to approximate SARSA.

We then test a more complex environment that consists of three warehouses where the
second and third warehouse have no storage costs and the third warehouse also has no
transportation cost. The results are depicted in Figure 3b. In this case only the quadratic
and RBF REINFORCE agents improve over the baseline (ς, Q)-Policy.

Figures 4a and 4b depict storage levels within the best episodes of both agents in the
second test. In this analysis it is clear that it is the higher flexibility of the REINFORCE
agent that builds up more stock than the (ς, Q)-Agent in the beginning and thus satisfies
high demands at the end of the episode. It also highlights that the (ς, Q)-agent cannot
adapt to changes in the environment.
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Furthermore we see that both agents manage to keep positive stock levels most of the
time but only REINFORCE is able to allocate stock more efficiently at warehouses two and
three that do not have storage costs while keeping the stock of warehouse one close to zero.

Results indicate that the REINFORCE approach is certainly a viable option to tackle the
supply chain optimization environment. Drawbacks come from the softmax parametrization
which requires to fit parameters for each action. This makes it necessary to conduct a lot of
training and can lead to difficulties for actions that are rarely feasible. Moreover, the actions
to replenish 0, 1 or 2 trucks are treated as completely separate, dropping the possibility
to make use of their natural order. Another parametrization that would make use of this
order would be e.g., a Gaussian setting. A big advantage of the used feature map for the
REINFORCE algorithm is that it does not exploit any knowledge about the environment
and can thus also be used if e.g., the demand process is unknown.

A crucial aspect for both approaches is feature engineering. In fact a different set of
features might improve the performance of the approximate SARSA agent. Often a linear
dependency of the optimal action on the current state is reasonable enough (e.g., the best
action for the replenishment of products for a warehouse might depend linearly on the
current stock in that warehouse) but also more complex, non-linear dependencies might be
present. Thus, a promising alternative might be to use a deep neural network in order for
the agent to be able to adapt to any non-linear dependency.

5. Conclusion and Future Work

The supply chain environment poses a demanding task faced by many companies in real
life contexts. We have shown a way to solve instances of this problem by policy gradient
methods that yield encouraging results, indicating that we can design agents that are able to
understand simple market trends, regulate production levels and allocate stock efficiently in
a simple model scenario. In future work we will model the stochastic policy of REINFORCE
by a deep neural network, and deploy it in more complex versions of the environment using
different demand curves. This way we will explore potential improvements to the agents
and evaluate how robust they react to different experiment designs and demand curves.
Lastly, the REINFORCE algorithm will be tested with real world data in order to examine
if the algorithm can improve supply chain networks in practice.
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Appendix A.

Table 2: Features of the Q-function approximation where d̂ and ŝ are simple estimates of
the next demand and state.

Feature Description Computation

Bias - 1

Sales reward Expected reward from sales p
∑K

j=1 d̂j
Production cost Production cost in the factory κpra0

Storage cost Per location j = 0, ...,K −κst,j max{ŝj , 0}
Penalty cost Per warehouse j = 1, ...,K κpe min{ŝj , 0}
Transportation cost Per warehouse j = 1, ...,K κtr,j

⌈
aj
ζj

⌉
Factory stock Sufficient factory stock to satisfy demand ŝ ≥

∑K
j=1 d̂j

Positive stock Per warehouse j = 1, ...,K ŝ ≥ 0

Estimated demand Per warehouse j = 1, ...,K d̂

Sq. estimated demand Per warehouse j = 1, ...,K d̂2

Storage level deviation Squared difference from different storage levels qj (ŝj − qj)2

Demand satisfaction Is production able to satisfy expected demand a0 ≥
∑K

j=1 d̂j

Appendix B.

∇wjJ(Θ) = ∇wj ln(πΘ(a(t) = a(i), s(t)))Dt

where for i = j

∇wj ln(πΘ(a(t) = a(i), s))

= ∇wj (φ(s)Twa(i)) +∇wj ln(f(a(i)|s))

−∇wj ln(

na∑
l=1

eφ(s)Tw
a(l) · f(a(l)|s))

= φ(s)− eφ(s)Tw
a(j) · f(a(j)|s)∑na

l=1 e
φ(s)Tw

a(l) · f(a(l)|s)
· φ(s)

= (1− σj(s)) · φ(s)

and for i 6= j:

∇wj ln(πΘ(a(t) = a(i), s))

= ∇wj (φ(s)Twa(i)) +∇wj ln(f(a(i)|s))

−∇wj ln(

na∑
l=1

eφ(s)Tw
a(l) · f(a(l)|s))

= − eφ(s)Tw
a(j) · f(a(j)|s)∑na

l=1 e
φ(s)Tw

a(l) · f(a(l)|s)
· φ(s)

= −σj(s) · φ(s)
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