
Twenty years later?

Jean-Pierre Jouannaud??

LIX, École Polytechnique
91400 Palaiseau, France

Email: jouannaud@lix.polytechnique.fr
http://www.lix.polytechnique.fr/Labo/jouannaud

Abstract. The first RTA conference took place in Dijon, in 1985. This year,
2005, it takes place in Nara. Nara and Dijon share a glorious past but can be
considered as being “Sleeping Beauties”, after the title of a book by the Nobel
price novelist yasunari Kawabata.
Is RTA sleeping on its glorious past ? Back in the late 80s, many of us feared
that this would soon be the case, that research in rewrite systems was deepening
the gap with everyday’s computer science practice, and that we should develop
rewrite-based powerful provers that would make a difference with the state of art
and help address real applications such as software verification.
More than ten years later this has not really happened in the way we thought
it would. What has happened is that many research areas, such as programming
languages, constraint solving, first-order provers, proof assistants, security theory,
and verification have all been fertilized by ideas coming from term rewriting. In
return, our field has been renewed by new problems and techniques coming from
outside our small community.
I am convinced that this will continue, and that new subject areas will join the
journey. There are at least two reasons. To quote a celebrated sentence that I have
read in many papers:Equations are ubiquitous in computer science. This is the
first reason : we all like to use equations for modeling problems. The second is
that we have developed extremely powerful, sophisticated tools to reason with
equations. Many computer scientists do not know these tools. It is our responsi-
bility to preach for their use by showing all we can do with them.

1 Introduction

My goal is to illustrate several aspects of the contributions of rewriting
theory to problems originating from programming and theorem proving,
two closely related fields that benefit from a term rewriting perspective.
I will concentrate on ordered paramodulation, a very old problem which
is still progressing, rule-based programming, tree automata, and proof
assistants. I will not refrain quoting my self.
? Twenty years lateris the title of a novel by the french writer Alexandre Dumas.

?? Project LogiCal, P̂ole Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
École Polytechnique, INRIA, Université Paris-Sud.



2 Basic ordered resolution and paramodulation

Ordered completion is a generalization of ground completion, because
it yields a convergent rewrite system from an arbitrary set of equations,
therefore providing with a uniform technique to reason about the word
problem in an arbitrary equational theory, which is based on the existence
of normal forms. The main difference with the case of ground completion
is that the rewrite system may be infinite, and therefore no decidability
result can be obtained in general. This is indeed the main strength of this
method, that decidability is not required.

Ordered completion was first successfully addressed by Peterson [50],
who addressed the case of a finite rewrite ordering, before the general
case was solved by Hsiang and Rusinowitch who developedtransfinite
semantic treesfor that purpose [31]. The use of transfinite semantic trees
was made necessary by the possible use of transfinite orderings in or-
dered completion.

A more general, earlier framework was elaborated by Robinson and
Wos [54], combining resolution and paramodulation: they were the first
to propose the replacement of the axioms for equality by specific infer-
ence rules in order to reduce the search space. The idea of restricting
the set of inferences further by systematically using normal forms gen-
erated by a rewrite ordering as it is the case with ordered completion is
due to Lankford [42]. Lankford, however, did not have the tools to solve
the problem in its full generality. This was done much later in a series
of papers pioneered by Bachmair and Ganzinger, who came up with a
novel, model theoretic method based on the idea of forcing [3, 2, 4, 5].
It is interesting to notice that Goubault succeeded recently to improve
over Bachmair and Ganzinger by using finite semantic trees: the very
simple but beautiful idea, which Goubault himself ascribes to Rusinow-
itch, consists in applying a compactness argument before to construct the
finite semantic tree of a given unsatisfiable set of clauses [28].

The last 15 years saw another achievement, with constraints taking
over unification in deduction calculi [40]. This is an important phe-
nomenon: after logic programming, constraints are making their way ev-
erywhere, in term rewriting theory where the difficult problem of local
confluence of order-sorted rewrite rules was reduced to satisfiability of
membership constraints [20], in automated deduction seen as a general-
ization of logic programming, but also in model checking where it allows
to go smoothly from finite to some decidable infinite systems [25], or in

2



functional programming where it yields a more elegant and powerful tool
to express type inference algorithms [1]. In particular, constraints have
been used very successfully to block inferences that were made inside
substitutions inherited from previous inferences [48, 6]. This restriction
of deduction calculi is dubbedbasicafter Hullot’s pionneering work on
basic narrowing[35].

Examples of use of ordered completion tomodularityproblems in-
clude : modular unification algorithms [13], modular confluence proper-
ties [36], and the study of CCC, a calculus of constructions embedding
the congruence closure algorithm into the conversion rule [11]. Examples
of use of constrained deduction todecidabilityresults include: decidabil-
ity of set constraints [7] and decidability of standard theories [47].

3 Rule-based programming

This topic is probably best examplified with MAUDE, a language de-
veloped by Jośe Meseguer and his collaborators at SRI first, and now at
the state university of Illinois at Urbana-Champaign [45]. Related efforts
were conducted in parallel in France and in Japan, by Claude Kirchner
and his group, who developed the language ELAN [41], and by Kokichi
Futatsugi and his collaborators, who developed the language CAFE [46].
All three languages owe their origin to the OBJ-family of languages, a
project started in California by Joseph Goguen in the early 80s, following
his earlier work on Clear [16].

The main novelty of MAUDE was to consider that both functional and
concurrent programming could be addressed uniformly by rewriting, de-
pending whether confluence was satisfied or not. Elan goes even further
by internalizing rewriting in the so-calledρ-calculus via a specific bind-
ing construct generalizing theλ-calculus [8], while Cafe insists on the
use of co-algebrsa [23]. The use of rewriting as a functional model was of
course well accepted [22], while the use of rewriting for non-functional
programming had been advocated before for particular applications, es-
pecially unification, and more generally constraint solving [37].

There are even more familiar programming languages that use rule
based constructs: this is the case of the Ocaml family of languages, where
the case construct bases selection on pattern matching.

Another language based on rewriting is Isabelle, implementing Nip-
kow’s higher-order rewrite systems [44]. Isabelle is targeting applications
in which programs operate on data structures with binders, like program

3



transformations. What makes this work apparently different from a lan-
guage like MAUDE is that it uses higher-order pattern matching instead
of plain matching. But this singularity is not really relevant: MAUDE
uses pattern matching modulo associativity and commutativity, and a
close look to Nipkow’s higher-order rewrite systems shows that the prob-
lems are exactly those of rewriting modulo [39].

4 Tree automata

At the first RTA, there was not a single paper using tree automata. There
were of course papers in formal language theory using word automata.
But no tree automaton. However, there were many informal talks about
an almost published paper by David Plaisted, who solved the problem of
inductive reducibility [51]1.

It is easy to see that tree automata are equivalent to OBJ’s order-sorted
signatures, and they were actually introduced in the 60s in a related con-
text, see also [14]. But they had been almost completely forgotten. In
some sense, RTA’85 was their second birth. They were later used in many
different context, with the strong push coming from the rewriting com-
munity: set constraints [26], higher-order matching [33], strong sequen-
tiality [19], Presbuger arithmetic [12], AC-inductive-reducibility [43], in-
ductive theorem proving [15] and more. The theory of tree-automata and
its many applications is studied in depth in [32].

5 Proof assistants

Many will agree with me when saying that Isabelle, Coq and PVS are
three among the most important proof assistants. Isabelle is based on
Nipkow’s higher-order rewriting [44]. PVS is based on Shostak’s deci-
sion procedure for a combination of convex theories, whose ideas are
clearly based on rewriting [52, 53]. Originally based on the Calculus of
Constructions [21], then on the Calculus of Inductive Constructions [49],
Coq is now rapidly moving towards a heavy use of rewriting, for defining
inductive types on the one hand [10], and for specifying the conversion

1 Actually, the proof was wrong. I had found a counterexample to asimple lemmastated with-
out proof, and the whole proof could not be repaired. When Emmanuel Kounalis and myself
explained the problem to David Plaisted, he succeeded to found a new, completely different
proof at the blackboard in ten minutes. This was really impressing: he understood our coun-
terexample much better than ourselves. This new proof contained a complex argument that
was much later understood as a pumping lemma on tree automata with equality tests [17].

4



rule on the other hand [9]. None of these proof-assistants was available
in 1985. At that time, most people in our community believed in the fu-
ture of first-order provers, rather than higher-order ones. The situation is
now reversed: many believe in the superiority of higher-order languages
for modeling purposes : first-order provers are often seen as supplement-
ing tactics for higher-order provers. And first-order decidability results
are accordingly seen as a particular way to automate the higher-order
prover in these cases. An even stronger argument is the existence of the
Curry-Howard isomorphism which allows to see intuitionistic logic as a
kind of abstract machine for implementing formal proofs. On the other
hand, first-order provers have been successful for solving very particular
problems such as crypto-attacks, for which a blind search appears ade-
quate [24].

My own perspective on this question is that the coming years will see
a new generation of proof assistants, in which (higher-order) rewriting
superseeds the lambda calculus. Isabelle is the first prover of this kind,
but has lost many of the important features of Curry-Howard based cal-
culi. I anticipate both approaches to merge in the coming years, and some
work has been done already [9, 11]. An other merge is coming as well:
dependent types are making their way in programming languages [55],
while modules and functors have been successfully added to the calculus
of inductive constructions [18] as well as a compiler for reductions [29,
30]. This move towards harmony will make its way through in the com-
ing years. I do not see a good reason in the present dichotomy between
programming languages and proof assistants.

6 Conclusion

I tried to sketch what important unexpected developments based on
rewriting took place in the past. I will try now to give my idea about
the future.

First, I think that we need to continue investigating the fundamen-
tal properties of term rewriting formats: type preservation, termination
and Church-Rosser properties are equally important. Any progress there
means a progress with the applications. Another important fundamental
question is the relationship between term rewriting and tree automata.
We need to investigate these questions in various contexts, first-order,
higher-order, and modulo. And we need to continue our work on abstract
rewriting, in the light of Huet’s work for the first-order case [34], and

5



what was later done for the modulo [38] and higher-order cases [27].
The higher-order case, especially, needs more work, since the only ab-
stract property investigated there was the finite development theorem.

Second I think we need to continue investigating the efficient imple-
mentation techniques of rewriting systems. Much has been done for the
first-order case with Maude and Elan, and with the work of Ganzinger’s
group and of Nieuwenhuis’s group with the SATURATE and SPASS sys-
tems, but this is not the end of the road. Since type-checking in proof-
assistants like Coq relies on rewriting techniques, compilation techniques
must be throroughly studied which combine first- and higher-order pat-
tern matching.

Third, I think that we need to understand which other areas of com-
puter science may benefit from our work. A recent interesting example
was provided by security protocols: since rewrite rules can be seen as a
specification language, security protocols can be modeled by rules. Us-
ing this approach, Rusinowitch showed that finding an attack to a cryp-
tographic protocol could be achieved by using narrowing. Comon and
others also showed that rewriting was a good tool for modeling security
protocols since it allowed to smoothly integrate properties of the crypto-
graphic primitives which were naturally expressed as equations.

Last, but not least, I think that we need to integrate the different ex-
isting kinds of rewriting, plain rewriting based on plain pattern match-
ing, rewriting modulo based on plain pattern matching, rewriting modulo
based on pattern matching modulo, normalized rewriting, normal rewrit-
ing, higher-order rewriting based on plain pattern matching, higher-order
rewriting based on higher-order pattern matching, higher-order rewrit-
ing based on higher-order pattern matching modulo, into a single coher-
ent framework in order to better understand how to design an abstract
machine to implement them all, and make them available to users. This
question is of course directly related to my view on the future of proof
assistants that I sketched in the previous section. It is also related to the
need of an abstract investigation of the fundamental properties of term
rewriting formats

Acknowledgments: to all those I met during these 20 years and
helped me understand that their problems were more important than
mine.

6



References

1. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. InProc. 7th ACM
Conference on Functional programming and Computer Archtecture, pages 31–41, Copenh-
aguen, Denmark, 1993.

2. Leo Bachmair and Harald Ganzinger. Completion of first-order clause with equality by strict
superposition. InProc. 2nd Int. Workshop on Conditional and Typed Rewriting Systems,
Montreal, LNCS 516, 1990.

3. Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with sim-
plification. In Proc. 10th Int. Conf. on Automated Deduction, Kaiserslautern, LNCS 449,
1990.

4. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selec-
tion and simplification. Technical Report MPI-I-91-208, Max-Planck-Institut für Informatik,
Saarbr̈ucken, September 1991. to appear in Journal of Logic and Computation.

5. Leo Bachmair and Harald Ganzinger. Non-clausal resolution and superposition with selec-
tion and redundancy criteria. InProc. of the LPAR’92, 1992. Lecture Notes in Computer
Science.

6. Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramod-
ulation and superposition. In Deepak Kapur, editor,Proc. 11th Int. Conf. on Automated
Deduction, Saratoga Springs, NY, LNAI 607. Springer-Verlag, June 1992.

7. Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are the monadic class.
In Proceedings of the Eigth Annual IEEE Symposium on Logic in Computer Science. IEEE
Comp. Soc. Press, 1993.

8. Gilles Barthe, Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Pure patern type systems.
In Conference Record of the 30th Symposium on Principles of Programming Languages,
New-Orleans, USA, January 2003. ACM.

9. Fŕed́eric Blanqui. Definitions by rewriting in the Calculus of Constructions.Mathematical
Structures in Computer Science, 15(1):37–92, 2005.

10. Fŕed́eric Blanqui. Inductive types in the Calculus of Algebraic Constructions.Fundamenta
Informaticae, to appear.

11. Fŕed́eric Blanqui, Jean-Pierre Jouannaud, and Pierre-Yves Strub. A calculus of congruent
constructions. Technical report,École Polytechnique, 2005. submitted.

12. Alexandre Boudet and Hubert Comon. Diophantine equations, Presburger arithmetic and
finite automata. In H. Kirchner, editor,Proc. Coll. on Trees in Algebra and Programming
(CAAP’96), Lecture Notes in Computer Science, pages 30–43, 1996.

13. Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-Schauß. Unification in
Boolean rings and Abelian groups.Journal of Symbolic Computation, 8:449–477, 1989.

14. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership
equational logic. In Michel Bidoit and Max Dauchet, editors,Theory and Practice of Soft-
ware Development, volume 1214 ofLecture Notes in Computer Science, pages 67–92, Lille,
France, April 1997. Springer-Verlag.

15. Adel Bouhoula and Jean-Pierre Jouannaud. Automata-driven automated induction. In
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 14–25, War-
saw,Poland, June 1997. IEEE Comp. Soc. Press.

16. R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification language. In
Proc. Winter School on Abstract Software Specifications, Copenhagen, LNCS 86, 1979.

17. Anne-Ćecile Caron, Jean-Luc Coquidé, and Max Dauchet. Encompassment properties and
automata with constraints. In Claude Kirchner, editor,5th International Conference on
Rewriting Techniques and Applications, volume 690 ofLecture Notes in Computer Science,
pages 328–342, Montreal, Canada, June 1993. Springer-Verlag.

7



18. Jacek Chrzaszcz. Modules in cow are and will be correct. In M. Coppo S. Berardi and
F. Damiani, editors,Proceedings TYPES’03, volume 3085 ofLecture Notes in Computer
Science, pages 135–150, Torino, Italy, 2003. Springer-Verlag.

19. Hubert Comon. Sequentiality, second-order monadic logic and tree automata. In Dexter
Kozen, editor,Tenth Annual IEEE Symposium on Logic in Computer Science, pages 508–
517, San Diego, CA, June 1995. IEEE Comp. Soc. Press.

20. Hubert Comon and Catherine Delor. Equational formulae with membership constraints.
Information and Computation, 112(2):167–216, August 1994.

21. Thierry Coquand and Ǵerard Huet. The calculus of constructions.Information and Compu-
tation, 76:95–120, February 1988.

22. Nachum Dershowitz. Equations as programming language. InProceedings of the Fourth
Jerusalem Conference on Information Technology, pages 114–124, Jerusalem, Israel, May
1984. IEEE Computer Society.

23. Razvan Diaconescu and Kokichi Futatsugi. Cafeobj-report: The language, proof techniques
and methodologies for object-oriented algebraic specification. InAMAST series in Comput-
ing, volume 6. World Scientific, 1998.

24. Michäel Rusinowitch et alii. The aviss security protocols analysis tool – system description.
In Proceedings of Computer-Aided Verification 02, 2003.

25. Laurent Fribourg and Morcos Veloso Peixoto. Automates concurrentsà contraintes.Tech-
nique et Science Informatiques, 13(6), 1994.

26. Ŕemy Gilleron, Sophie Tison, and Marc Tommasi. Solving systems of set constraints using
tree automata. Instacs93, 1993.

27. G. Gonthier, J.-J. Ĺevy, and P.-A. Mellies. An abstract standardisation theorem. InProc. 7th
IEEE Symp. on Logic in Computer Science, Santa Cruz, CA, 1992.

28. Jean Goubault-Larrecq. Résolution ordonńee avec śelection et classes décidables de la
logique du premier ordre, 2004. available from the web.

29. Benjamin Gregoire.Compilation de termes de preuves. Un mariage entre Coq et OCaml.
PhD thesis,́Ecole Polytechnique, Palaiseau, France, 2003.

30. Olivier Hermant. A rewriting abstract machine for coq, 2004.
31. Jieh Hsiang and Michaël Rusinowitch. On word problems in equational theories. In Thomas

Ottmann, editor,14th International Colloquium on Automata, Languages and Programming,
volume 267 ofLecture Notes in Computer Science, pages 54–71, Karlsruhe, Germany, July
1987. Springer-Verlag.

32. Denis Lugiez Hubert Comon, Max Dauchet and Sophie Tison, editors.Tree Automata tech-
niques and Applications. http://www.grappa.univ-lille3.fr/tata/, Lille, France, 2002.

33. Hubert Comon and Yann Jürsski. Higher-order matching and tree automata. In M. Nielsen
and W. Thomas, editors,Proc. 11th Computer Science Logic, volume 1414 ofLecture Notes
in Computer Science, Aarhus, Denmark, August 1997. Springer-Verlag.

34. Ǵerard Huet. Confluent reductions: abstract properties and applications to term rewriting
systems.Journal of the ACM, 27(4):797–821, October 1980.

35. J.-M. Hullot. Canonical forms and unification. In W. Bibel and R. Kowalski, editors,5th In-
ternational Conference on Automated Deduction, volume 87 ofLecture Notes in Computer
Science, Les Arcs, France, July 1980. Springer-Verlag.

36. Jean-Pierre Jouannaud. Modular associative commutative confluence. Technical report,
École Polytechnique, 2005.

37. Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In Jean-Louis Lassez and Gordon Plotkin, editors,Computa-
tional Logic: Essays in Honor of Alan Robinson. MIT-Press, 1991.

38. Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by induction in equa-
tional theories without constructors. InLogic in Computer Science, June 1986.

8



39. Jean-Pierre Jouannaud, Albert Rubio, and Femke Van Raamsdonk. Higher-order rewriting
with types and arities. Technical report,École Polytechnique, 2005. submitted.

40. Claude Kirchner, Helene Kirchner, and Michaël Rusinowitch. Deduction with symbolic
constraints.Revue Française d’Intelligence Artificielle, 4(3):9–52, 1990. Special issue on
automatic deduction.

41. Claude Kirchner and Piere Moreau. Non deterministic computations in elan. In J.L. Fiadeiro,
editor,Proceedings 13th workshop on abstract data types, volume 1589 ofLecture Notes in
Computer Science, Lisbon, Portugal, October 1999. Springer-Verlag.

42. Dallas S. Lankford. Canonical inference. Memo ATP-32, University of Texas at Austin,
March 1975.

43. D. Lugiez and J.-L. Moysset. Complement problems and tree automata in AC-like theories.
In Proc. Symp. on Theoretical Aspects of Computer Science, Würzburg, 1993. also available
as techincal report CRIN 92-R-175.

44. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.The-
oretical Computer Science, 192(1):3–29, February 1998.

45. Jośe Meseguer. A logical theory of concurrent objects and its realization in the maude lan-
guage. To appear in G. Agha, P.Wegner, and A.Yoneezawa (editors), Research Directions in
Object-Based Concurrency, 1992.

46. A.T. Nakagawa and K. Futatsugi. An overview of cafe specification environment. InProc.
of the 1st IEEE International Conference on Formal Engineering Methods, pages 170–181.
IEEE Computer Society Press, 1997.

47. Robert Nieuwenhuis. Basic paramodulation and decidable theories. In Amy Felty, editor,
Eleventh Annual IEEE Symposium on Logic in Computer Science, New-Brunswick, CA,
June 1996. IEEE Comp. Soc. Press.

48. Robert Nieuwenhuis and Albert Rubio. Completion of first-order clauses by basic superpo-
sition with ordering constraints. Tech. report, Dept. L.S.I., Univ. Polit. Catalunya, 1991. To
appear in Proc. 11th Conf. on Automated Deduction, Saratoga Springs, 1992.

49. Christine Paulin-Mohring. Inductive definitions in the system COQ. InTyped Lambda Cal-
culi and Applications, pages 328–345. Springer-Verlag, 1993. LNCS 664.

50. Gerald E. Peterson. A technique for establishing completeness results in theorem proving
with equality.SIAM Journal on Computing, 12(1):82–100, February 1983.

51. David A. Plaisted. Semantic confluence tests and completion methods.Information and
Control, 65(2-3):182–215, May/June 1985.

52. R. E. Shostak. An efficient decision procedure for arithmetic with function symbols.J. of
the Association for Computing Machinery, 26(2):351–360, April 1979.

53. R.E. Shostak. Deciding combinations of theories. Technical Report CSL 132, SRI Interna-
tional, February 1982.

54. L. Wos, G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in theorem
proving. Journal of the ACM, 14:698–709, 1967.

55. Hongwei Xi and Franck Pfenning. Dependent types in practical programming. InConfer-
ence Record of the 21st Symposium on Principles of Programming Languages, San Antonio,
Texas, 1998. ACM.

9


