
Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

Theorem Proving languages for Verification

Jean-Pierre Jouannaud
École Polytechnique

91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr
http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, Pôle Commun de Recherche en
Informatique du Plateau de Saclay, CNRS, École

Polytechnique, INRIA, Université Paris-Sud.

November 2, 2004
Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.





Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

Outline

1 Verification = Specification + Deduction +
Computation + Abstraction

2 Logical foundations

3 Proof Assistants

4 Coq

5 Current developments and Conclusions

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Verification

Given a system to be analyzed,

1. elaborate a model of the system.

2. Test some liveness property

2. Verify some safety property

2. Prove a general logical property

3. When available ressources do not suffice,
abstract the model and try again

4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools



Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

Logical Foundations

Hilbert’s program:
automate mathematical reasonning

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.



Undecidability of Proof-Search

Given: a logical statement.

Question: is it a theorem?

Gödel: there is no program able to answer
this question.



Undecidability of Proof-Search

Given: a logical statement.

Question: is it a theorem?

Gödel: there is no program able to answer
this question.



Undecidability of Proof-Search

Given: a logical statement.

Question: is it a theorem?

Gödel: there is no program able to answer
this question.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Computations and Deductions

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Computations and Deductions

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Computations and Deductions

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x + y), ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x + y), ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x + y), ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x + y), ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example continued

Deduction:

...

` q(0, p) : E(2)

` q : ∀x .E(x) =⇒ E(s(s(x)))

` q(2) : E(2) =⇒ E(4)

` q(2, q(0, p)) : E(4)

` p : E(0)

q : ` ∀x .E(x) =⇒ E(s(s(x)))

` q(0) : E(0) =⇒ E(2)

` q(0, p) : E(2)



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

Proof Assistants

De Bruijn’s program

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



What is a proof assistant ?

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

The proof assistant Coq

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
rewriting by Blanqui
small proof engines by Strub



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
rewriting by Blanqui
small proof engines by Strub



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
rewriting by Blanqui
small proof engines by Strub



Coq’s interactive module system

Module OrderedTypeFacts [O : OrderedType].
Lemma lt not gt : (x,y:O.t)(O.lt y y ) → ¬ (O.lt y x).
Proof. Intros; Intro; Absurd (O.eq x x); EAuto.
Qed.

. . . many other lemmas. . .

End OrderedTypeFacts.



Coq’s interactive module system

Module Type Orderedtype.
Parameter t : Set.
Parameter eq : t → t → Prop.
Paremeter eq refl : (x:t)(eq x x ).
Paremeter eq sym : (x,y:t) (eq x y) → (eq y x).
Paremeter eq trans : (x,y,z:t) (eq x y) → (eq y z) → (eq x z).
Paremeter lt trans : (x,y,z:t) (lt x y) → (lt y z) → (lt x z).
Paremeter lt not eq : (x,y:t) (lt x y) → ¬ (eq x y).
Parameter compare : (x,y:t) (Comp lt eq x y).
End OrderedType.



Coq’s interactive module system

Inductice Comp [X:Set; lt,eq:X→ X → Prop; x,y:X] : Set:=
| Lt : (lt x y) → (Comp lt eq x y)
| Eq : (eq x y) → (Comp lt eq x y)
| Gt : (lt y x) → (Comp lt eq x y).



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Outline
Verification = Specification + Deduction + Computation + Abstraction

Logical foundations
Proof Assistants

Coq
Current developments and Conclusions

Current developments and Conclusions

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Compiler for rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Conclusion

Proof assistants are very powerful
specification languages

Proof assistants should be at the heart of
any verification tool

Proof assistants should incoporate decision
procedures in a transparent way

Proof assistants are hard to use without
dedicated platforms

Market is very small (electronic commerce)



Conclusion

Proof assistants are very powerful
specification languages

Proof assistants should be at the heart of
any verification tool

Proof assistants should incoporate decision
procedures in a transparent way

Proof assistants are hard to use without
dedicated platforms

Market is very small (electronic commerce)



Conclusion

Proof assistants are very powerful
specification languages

Proof assistants should be at the heart of
any verification tool

Proof assistants should incoporate decision
procedures in a transparent way

Proof assistants are hard to use without
dedicated platforms

Market is very small (electronic commerce)



Conclusion

Proof assistants are very powerful
specification languages

Proof assistants should be at the heart of
any verification tool

Proof assistants should incoporate decision
procedures in a transparent way

Proof assistants are hard to use without
dedicated platforms

Market is very small (electronic commerce)



Conclusion

Proof assistants are very powerful
specification languages

Proof assistants should be at the heart of
any verification tool

Proof assistants should incoporate decision
procedures in a transparent way

Proof assistants are hard to use without
dedicated platforms

Market is very small (electronic commerce)



Acknowledgments to

G. Huet, T. Coquand, C. Paulin, G. Dowek
for their vision and early implementations;
Barras, Filliatre, Grégoire, Herbelin,
Blanqui, Chrzaczsz, Monate, Strub
for their theoretical and software contributions;
LogiCal for its extreme dedication to Coq;
Trusted Logics for putting forward their use of
Coq and Why;
France-Telecom, EADS, Thalès for funding us;
INRIA, CNRS for their continuous support.


	Outline
	Verification = Specification + Deduction + Computation + Abstraction
	Logical foundations
	Proof Assistants
	Coq
	Current developments and Conclusions

