Theorem Proving languages for Verification

Jean-Pierre Jouannaud
Ecole Polytechnique
91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr
http: //w?3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, P6le Commun de Recherche en
Informatique du Plateau de Saclay, CNRS, Ecole
Polytechnique, INRIA, Université Paris-Sud.)@

COLE!
POLYTECHNIQUE

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi

POLYTECHNIQUE

Outline

Outline

@ \Verification = Specification + Deduction +
Computation + Abstraction

@ Logical foundations
© Proof Assistants
O Coq

© Current developments and Conclusions

Ecg

POLYTECHNIQUE

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi

e Given a system to be analyzed,

e Given a system to be analyzed,
e 1. elaborate a model of the system.

e Given a system to be analyzed,
e 1. elaborate a model of the system.
e 2. Test some liveness property

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e 2. Prove a general logical property

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e 2. Prove a general logical property

e 3. When available ressources do not suffice,
abstract the model and try again

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e 2. Prove a general logical property

e 3. When available ressources do not suffice,
abstract the model and try again

e 4. When the task is finally completed,
prove the abstractions used.

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e 2. Prove a general logical property

e 3. When available ressources do not suffice,
abstract the model and try again

e 4. When the task is finally completed,
prove the abstractions used.

e Given a system to be analyzed,

e 1. elaborate a model of the system.
e 2. Test some liveness property

e 2. Verify some safety property

e 2. Prove a general logical property

e 3. When available ressources do not suffice,
abstract the model and try again

e 4. When the task is finally completed,
prove the abstractions used.

Real need of powerful, secure, interactive tools

Logical foundations

Logical Foundations

Hilbert’s program:
automate mathematical reasonning

b

COLE!
POLYTECHNIQUE

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi

Undecidability of Proof-Search

e Given: a logical statement.

Undecidability of Proof-Search

e Given: a logical statement.
e Question: is it a theorem?

Undecidability of Proof-Search

e Given: a logical statement.
e Question: is it a theorem?

e GOdel: there is no program able to answer
this question.

Decision procedures

e Decision procedures are programs able to
answer specific instances of the question.

Decision procedures

e Decision procedures are programs able to
answer specific instances of the question.

e For example, reachability is decidable
in PSPACE for finite state systems.

Decision procedures

e Decision procedures are programs able to
answer specific instances of the question.

e For example, reachability is decidable
in PSPACE for finite state systems.

e Shostak: combine decision procedures.

Decidability of Proof-Checking

e Given: a statement S about arithmetic and a
proof P of S.

Decidability of Proof-Checking

e Given: a statement S about arithmetic and a
proof P of S.

e Question: is the proof correct?

Decidability of Proof-Checking

e Given: a statement S about arithmetic and a
proof P of S.

e Question: is the proof correct?

e Gentzen: There is a program able to answer
this question.

Decidability of Proof-Checking

e Given: a statement S about arithmetic and a
proof P of S.

e Question: is the proof correct?

e Gentzen: There is a program able to answer
this question.

e Such a program is called a proof assistant.

Decidability of Proof-Checking

e Given: a statement S about arithmetic and a
proof P of S.

e Question: is the proof correct?

e Gentzen: There is a program able to answer
this question.

e Such a program is called a proof assistant.

e Our target: a proof assistant which
- Is garanteed to construct correct proofs,

- performs automatically in case of a
decidable verification problem.

Computations and Deductions

e In general, a proof requires deduction as
well as computation steps:

Computations and Deductions

e In general, a proof requires deduction as
well as computation steps:

e A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Computations and Deductions

e In general, a proof requires deduction as
well as computation steps:

e A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

e Three ingredients are needed in proofs:
deductions: I + p: P
computations: ' - P — Q

r-p:P T FP—=Q

conversion:
N=p:Q

Example: 2 + 2 is even

e Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Example: 2 + 2 is even

e Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

o ={p:E(0),q: Vx.E(xX) = E(s(s(x))),
VXy X +8(y) = s(X +Yy), ¥X.X +0 — x}

Example: 2 + 2 is even

e Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

o ={p:E(0),q: Vx.E(xX) = E(s(s(x))),
VXy X +8(y) = s(X +Yy), ¥X.X +0 — x}

e Computation:
'+ E(2+42) - E(3+1) - E(4+0) — E(4)

Example: 2 + 2 is even

e Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

o={p:E(0),q: ¥.E(X) = E(s(s(x))),
VXy X +8(y) = s(X +Yy), ¥X.X +0 — x}
e Computation:
'+ E(2+42) - E(3+1) - E(4+0) — E(4)
e Conversion:
[?77:E(4) T F E(Q2+2)—E(4)
= ?77:E(2+2)

Example continued

Deduction:

qg: F W.E(X) = E(s(s(x)))
- p:E(0) F q(0): E(0) = E(2)
= q(0,p) : E(2)

Proof checking

e Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

Proof checking

e Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

e The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A — B.

Proof checking

e Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

e The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A — B.

e This algorithm constitutes the kernel of a
proof assistant.

Proof Assistants

Proof Assistants

De Bruijn’s program

b

COLE!
POLYTECHNIQUE

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

e A set of deduction and computation rules
which characterize the chosen logic.

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

e A set of deduction and computation rules
which characterize the chosen logic.

e An proof-checking algorithm, kernel of the
proof assistant.

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

e A set of deduction and computation rules
which characterize the chosen logic.

e An proof-checking algorithm, kernel of the
proof assistant.

e Proof tactics helping the user building proofs.

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

e A set of deduction and computation rules
which characterize the chosen logic.

e An proof-checking algorithm, kernel of the
proof assistant.

e Proof tactics helping the user building proofs.
e A tactic language for writing new tactics.

What is a proof assistant ?

e A logic programming language dedicated to
processing mathematics

e A set of deduction and computation rules
which characterize the chosen logic.

e An proof-checking algorithm, kernel of the
proof assistant.

e Proof tactics helping the user building proofs.
e A tactic language for writing new tactics.
e Libraries of proved theorems.

Major proof assistants

e Coqg, PCRI, France.

Major proof assistants

e Coqg, PCRI, France.
e PVS, Stanford Research Institute, California.

Major proof assistants

e Coqg, PCRI, France.
e PVS, Stanford Research Institute, California.
e HOL, UK, and Isabelle, Germany.

Major proof assistants

e Coqg, PCRI, France.
e PVS, Stanford Research Institute, California.
e HOL, UK, and Isabelle, Germany.

e NUPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial's company in France), ...

Coq

The proof assistant Coq

ECOLE!
POLYTECHNIQUE

Jean-Pierre Jouan: Ecole Polytechnique 91400 Palaiseau, Fi

Cog'’s logical foundations

e Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Cog'’s logical foundations

e Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

e Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Cog'’s logical foundations

e Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

e Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate
e Prototype version includes
rewriting by Blanqui
small proof engines by Strub

Cog’s interactive module system

Module OrderedTypeFacts [O : OrderedType].
Lemma It_not gt : (X,y:0.1)(O.ltyy) — = (O.lty x).
Proof. Intros; Intro; Absurd (O.eq x x); EAuto.

Qed.

... many other lemmas. ..

End OrderedTypeFacts.

Cog’s interactive module system

Module Type Orderedtype.

Parameter t : Set.

Parametereq:t — t — Prop.

Paremeter eq_refl : (x:t)(eq x x).

Paremeter eg_sym : (x,y:t) (eg xy) — (eqy X).
Paremeter eq_trans : (x,y,z:t) (eqxy) — (eqy z) — |
Paremeter It_trans : (X,y,z:t) (Itxy) — (Ity z) — (It x .
Paremeter It_not_eq : (x,y:t) (Itxy) — - (eq xy).
Parameter compare : (x,y:t) (Comp It eq x y).

End OrderedType.

Cog’s interactive module system

Inductice Comp [X:Set; It,eq:X— X — Prop; X,y:X] :
|Lt: (Itxy) — (Complteqxy)
| Eq: (eqxy) — (Comp lteqxy)
| Gt: (Ity x) — (Comp It eq x y).

The proof assistant Coq

e Kernel: 10K lines of Objective Caml

The proof assistant Coq

e Kernel: 10K lines of Objective Caml

e Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

The proof assistant Coq

e Kernel: 10K lines of Objective Caml

e Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

e Libraries of checked proof developments and
tactics,

The proof assistant Coq

e Kernel: 10K lines of Objective Caml

e Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

e Libraries of checked proof developments and
tactics,

e Academic as well as industrial users.

The proof assistant Coq

e Kernel: 10K lines of Objective Caml

e Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

e Libraries of checked proof developments and
tactics,

e Academic as well as industrial users.
e User’s group, hotline, website, LGPL licence.

Using Coq

e Load Coq from http://coq.inria.fr

Using Coq

e Load Coq from http://coq.inria.fr
e Read the Coq primer and user’s manual

Using Coq

e Load Coq from http://coq.inria.fr
e Read the Coq primer and user’s manual
e Load the platform suited to your application

Using Coq

e Load Coq from http://coq.inria.fr

e Read the Coq primer and user’s manual

e Load the platform suited to your application
e Calife: timed automata (telecommunications)

Using Coq

e Load Coq from http://coq.inria.fr

e Read the Coq primer and user’s manual

e Load the platform suited to your application
e Calife: timed automata (telecommunications)

e Why: annotated imperative programs
translated into functional programs +
verification conditions

Using Coq

e Load Coq from http://coq.inria.fr

e Read the Coq primer and user’s manual

e Load the platform suited to your application
e Calife: timed automata (telecommunications)

e Why: annotated imperative programs
translated into functional programs +
verification conditions

e Krakatoa: JAVA/JAVACARDS programs

Using Coq

e Load Coq from http://coq.inria.fr

e Read the Coq primer and user’s manual

e Load the platform suited to your application
e Calife: timed automata (telecommunications)

e Why: annotated imperative programs
translated into functional programs +
verification conditions

e Krakatoa: JAVA/JAVACARDS programs

e Caduceus: prototype platform for C
programs

Using Coq

e Load Coq from http://coq.inria.fr

e Read the Coq primer and user’s manual

e Load the platform suited to your application
e Calife: timed automata (telecommunications)

e Why: annotated imperative programs
translated into functional programs +
verification conditions

e Krakatoa: JAVA/JAVACARDS programs

e Caduceus: prototype platform for C
programs

e Build your own platform otherwise

e XML-based input format for timed automata

e XML-based input format for timed automata
e Interactive graphic support

e XML-based input format for timed automata
e Interactive graphic support
e Graphic simulation tools

e XML-based input format for timed automata
e Interactive graphic support

e Graphic simulation tools

e Testing tools

e XML-based input format for timed automata
e Interactive graphic support

e Graphic simulation tools

e Testing tools

e Code generators for
Coq, Chronos, Hytech, and Prism

e XML-based input format for timed automata
e Interactive graphic support

e Graphic simulation tools

e Testing tools

e Code generators for
Coq, Chronos, Hytech, and Prism

e Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

e XML-based input format for timed automata
e Interactive graphic support

e Graphic simulation tools

e Testing tools

e Code generators for
Coq, Chronos, Hytech, and Prism

e Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

e Funded by RNRT, RNTL and France
Telecom

e For JAVA/JAVACARDS programs

e For JAVA/JJAVACARDS programs

e Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

e For JAVA/JAVACARDS programs

e Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

e Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

e For JAVA/JAVACARDS programs

e Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

e Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

e Few interactions with both companies

Current developments and Conclusions

Current developments and Conclusions

b

COLE!
POLYTECHNIQUE

Jean-Pierre Jouannaud Ecole Polytechnique 91400 Palaiseau, Fi

Current developments

e Verification of probabilistic statements about
deterministic processes

Current developments

e Verification of probabilistic statements about
deterministic processes

e Specification and verification of probabilistic
protocols

Current developments

e Verification of probabilistic statements about
deterministic processes

e Specification and verification of probabilistic
protocols

e Compiler for rewriting

Current developments

e Verification of probabilistic statements about
deterministic processes

e Specification and verification of probabilistic
protocols

e Compiler for rewriting
e Small proof engines and their combination

Current developments

e Verification of probabilistic statements about
deterministic processes

e Specification and verification of probabilistic
protocols

e Compiler for rewriting
e Small proof engines and their combination

e Extraction of complexity information from
proofs

Current developments

e Verification of probabilistic statements about
deterministic processes

e Specification and verification of probabilistic
protocols

e Compiler for rewriting
e Small proof engines and their combination

e Extraction of complexity information from
proofs

e More experiments

Conclusion

e Proof assistants are very powerful
specification languages

Conclusion

e Proof assistants are very powerful
specification languages

e Proof assistants should be at the heart of
any verification tool

Conclusion

e Proof assistants are very powerful
specification languages

e Proof assistants should be at the heart of
any verification tool

e Proof assistants should incoporate decision
procedures in a transparent way

Conclusion

e Proof assistants are very powerful
specification languages

e Proof assistants should be at the heart of
any verification tool

e Proof assistants should incoporate decision
procedures in a transparent way

e Proof assistants are hard to use without
dedicated platforms

Conclusion

e Proof assistants are very powerful
specification languages

e Proof assistants should be at the heart of
any verification tool

e Proof assistants should incoporate decision
procedures in a transparent way

e Proof assistants are hard to use without
dedicated platforms

e Market is very small (electronic commerce)

Acknowledgments to

G. Huet, T. Coquand, C. Paulin, G. Dowek

for their vision and early implementations;
Barras, Filliatre, Grégoire, Herbelin,

Blanqui, Chrzaczsz, Monate, Strub

for their theoretical and software contributions;
LogiCal for its extreme dedication to Coq;
Trusted Logics for putting forward their use of
Coqg and Why;

France-Telecom, EADS, Thales for funding us;
INRIA, CNRS for their continuous support.

	Outline
	Verification = Specification + Deduction + Computation + Abstraction
	Logical foundations
	Proof Assistants
	Coq
	Current developments and Conclusions

