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Proof assistant

A programming language dedicated to
processing mathematics

A set of deduction and computation rules
characterizing the logic chosen for expressing
mathematical statements and their proofs.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.
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Curry Howard and CC

Mathematical propositions are seen as Types
Given a set of assumptions Γ, p a proof of P

Γ ` p : P

is a judgement expressing that p is a term of
type P under type declarations in Γ

If Γ ` q : P → Q, Γ ` p : P then Γ ` q(p) : Q
l : List(2), l ′ : List(3) ` app(l , l ′) : List(5)

app :
Πn, n′ : Nat , l : List(n), l ′ : List(n′).List(n + n′)
l : List(2), l ′ : List(3) ` app(2, 3, l , l ′) :
List(2 + 3)

` app(2, 3) : Πl : List(2) l ′ : List(3).List(2 + 3)
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CC Terms

t ::= s | x | [x : t ]t | (x : t)t | t(t)
where

s ∈ {∗, 2} and x ∈ X
∗ is the universe of types and propositions

2 is the universe of predicate types (` ∗ : 2)

[x : t ]t ′ is the function of parameter x of type t
and body t ′

(x : t)t ′ is the product type of parameter x of
type t and predicate t ′

t(t ′) is the application of t to t ′
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Most important CC Rules

(prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U]v : (x : U)V

(app)
Γ ` t : (x : U)V Γ ` u : U

Γ ` t(u) : V{x 7→ u}

(conv)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T →∗β ∗

β← T ′)



Problem and Objective

Proofs may need complex computations: the
four color theorem completed late 2004 by
Georges Gonthier and Benjamin Werner.

Transparent computations are powerful,
change our style of making proofs, and are
required for complex tasks [Gonthier]

Computations should not require user’s
assistance.

First attempt: CIC
Computations as primitive recursion.

Second attempt: CAC
Computations as user defined rewrite rules.
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Third attempt : Convertibility by Congruence Closure

We assume a set F of typed constants,
The conversion rule

(conv)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T →∗β ∗

β← T ′)

becomes

(conv)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T →∗β ∼Γ

∗
β← T ′)

where ∼Γ is the equality generated by the

ground equations available in Γ

∼Γ can be decided in time O(nlogn) by

[Nelson and Oppen, Shostak, Kozen]
congruence closure algorithm.
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Definition of ∼Γ

Assuming a declaration eq : (A : ∗)A→ A→ ∗,
eq(Γ) is the set of unquantified equations u = v
such that x : eq(A, u, v) ∈ Γ. Equations of the
form y = v with y 6∈ FV(t) are called definitions.

Given an arbitrary environment Γ, {∼Γ}Γ is the
least indexed family of equivalences defined as:
– T ∼Γ T ′ if T = T ′ ∈ eq(Γ),
– (x : U)V ∼Γ (x : U ′)V ′ if U ∼Γ U ′, V ∼Γ,x :U V ′

and x /∈ dom(Γ),
– [x : U]V ∼Γ [x : U ′]V ′ if U ∼Γ U ′ and V ∼Γ V ′,
– U(V ) ∼Γ U ′(V ′) if U ∼Γ U ′ and V ∼Γ V ′.
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Main Properties

ASSUMPTION:
rules in RΓ are algebraic or definitions.

CCC satisfies the following properties:
– Inversion
– Subject reduction and Type convertibility
– Strong normalization
– Church-Rosser, that is :

U(−→∗β ∼Γ ←− ∗β )∗V
if and only if

U −→∗β ∼Γ ←− ∗β V

Main technical tool: ground completion.
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Decidability of Type Checking

The only non-structural rule is conversion.
Conversion is incorporated into the application
rule:

Γ ` t : T T ∗−→
β

(x : U)V Γ ` u : U ′ U ′ ↓∗β∼Γ↓∗β U

Γ ` t(u) : V{x 7→ u}

The only difference with the usual type checking
algorithm is that the equality of U and U ′ uses
the congruence closure algorithm.
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Extensions

Associativity and commutativity.

Universally quantified algebraic equations.

Non equality-based decidable theories:
reduces to the previous case.

Combining decision procedures with
Shostak’s algorithm.

Combining with CAC: requires strong linearity
assumptions.



Extensions

Associativity and commutativity.

Universally quantified algebraic equations.

Non equality-based decidable theories:
reduces to the previous case.

Combining decision procedures with
Shostak’s algorithm.

Combining with CAC: requires strong linearity
assumptions.



Extensions

Associativity and commutativity.

Universally quantified algebraic equations.

Non equality-based decidable theories:
reduces to the previous case.

Combining decision procedures with
Shostak’s algorithm.

Combining with CAC: requires strong linearity
assumptions.



Extensions

Associativity and commutativity.

Universally quantified algebraic equations.

Non equality-based decidable theories:
reduces to the previous case.

Combining decision procedures with
Shostak’s algorithm.

Combining with CAC: requires strong linearity
assumptions.



Extensions

Associativity and commutativity.

Universally quantified algebraic equations.

Non equality-based decidable theories:
reduces to the previous case.

Combining decision procedures with
Shostak’s algorithm.

Combining with CAC: requires strong linearity
assumptions.



Prototype Implementation and Conclusion

Prototype done in Maude by Strub with the
help of Mark-Oliver Stehr. Two decision
procedures have been implemented:
congruence closure and linear arithmetic.

Allows a modular design of the kernel: the
decision procedures can be designed and
checked separately.

Good candidate for a future version of Coq.

Compiled mode?
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