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e A programming language dedicated to
processing mathematics

e A set of deduction and computation rules
characterizing the logic chosen for expressing
mathematical statements and their proofs.

e An proof-checking algorithm, kernel of the
proof assistant.

e Proof tactics helping the user building proofs.
e A tactic language for writing new tactics.
e Libraries of proved theorems.
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e The Calculus of Guarded Constructions
CGC : Gimenez, 1996

e The Calculus of Modular Constructions
CMC : Chrzaczsz, 2003

e The Calculus of Algebraic Constructions
CAC : Blanqui, 2001

e The Calculus of Congruent Constructions
CCC : Blanqui, Jouannaud and Strub, 2004
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e Mathematical propositions are seen as Types
e Given a set of assumptions I, p a proof of P

Fp:P

IS a judgement expressing that p is a term of

type P under type declarations in I’
olfTFq:P—-Q, T'p:PthenTkFq(p):Q
o | : List(2)," : List(3) F app(l,l’) : List(5)
e app :

Mn,n’: Nat,| : List(n), I’ : List(n’).List(n + n’)
o | : List(2),I" : List(3) - app(2,3,1,I") :

List(2 + 3)
o Fapp(2,3): Ml : List(2) I : List(3).List(2 + 3)
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e x IS the universe of types and propositions
e O is the universe of predicate types (- x : O)

e [x : t]t" is the function of parameter x of type t
and body t’

e (X : t)t"is the product type of parameter x of
type t and predicate t’

e t(t') is the application of t to t’



Most important CC Rules

q N-u:s rHx:Urv:s
(prod) NE(x:U)V:¢
x:UkFv:V TE(X:U)V:s
(abs)
ME[x:UJv:(x: UV
NFt:(x:U)V Tru:U
(@pp) M t(u): Vix — u}
TEt:T THT :s L
(conv) Fet:T/ (T =5 5= T)
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e Proofs may need complex computations: the
four color theorem completed late 2004 by
Georges Gonthier and Benjamin Werner.

e Transparent computations are powerful,
change our style of making proofs, and are
required for complex tasks [Gonthier]

e Computations should not require user’s
assistance.

e First attempt: CIC
Computations as primitive recursion.

e Second attempt: CAC
Computations as user defined rewrite rules.
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e We assume a set F of typed constants,
e The conversion rule

Frt: T THT':s

(conv) T (T =5 =T

e becomes
r-t:T T+~T':s . . ,
(conv) T (T—5 ~rp=T)

where ~r is the equality generated by the

ground equations available in I
e ~r can be decided in time O(nlogn) by

[Nelson and Oppen, Shostak, Kozen]
congruence closure algorithm.
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Definition of ~r

Assuming a declaration eq : (A : x)A — A — x,
eq) is the set of unquantified equations u = v
such that x : eq(A,u,v) € I'. Equations of the

formy = v withy ¢ FV(t) are called definitions.

Given an arbitrary environment I, {~r}r is the

least indexed family of equivalences defined as:

— T~ T T =T €eqr),

- (X : U)V ~r (X : U/)V/ if U ~r U/, V ~T x:U V'’
and x ¢ dom(l"),

— [x: UV ~r [x:UV'ifU ~f U and V ~r V/,

— U\V)~ U (V)ifU~U and V ~r V'
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Main Properties

ASSUMPTION:
rules in Ry are algebraic or definitions.

CCC satisfies the following properties:

— Inversion

— Subject reduction and Type convertibility
— Strong normalization

— Church-Rosser, that is :

U(—>Z ~r <—ﬁ*)*V
if and only if
U —>E ~r <_5*V

Main technical tool: ground completion.
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Decidability of Type Checking

The only non-structural rule is conversion.
Conversion is incorporated into the application
rule:

FrEt:T T%(X:U)V rEu:U U 5~rl5 U
M=t(u): V{x — u}

The only difference with the usual type checking
algorithm is that the equality of U and U’ uses
the congruence closure algorithm.
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Extensions

e Associativity and commutativity.
e Universally quantified algebraic equations.

e Non equality-based decidable theories:
reduces to the previous case.

e Combining decision procedures with
Shostak’s algorithm.

e Combining with CAC: requires strong linearity
assumptions.



Prototype Implementation and Conclusion

e Prototype done in Maude by Strub with the
help of Mark-Oliver Stehr. Two decision
procedures have been implemented:
congruence closure and linear arithmetic.



Prototype Implementation and Conclusion

e Prototype done in Maude by Strub with the
help of Mark-Oliver Stehr. Two decision
procedures have been implemented:
congruence closure and linear arithmetic.

e Allows a modular design of the kernel: the
decision procedures can be designed and
checked separately.



Prototype Implementation and Conclusion

e Prototype done in Maude by Strub with the
help of Mark-Oliver Stehr. Two decision
procedures have been implemented:
congruence closure and linear arithmetic.

e Allows a modular design of the kernel: the
decision procedures can be designed and
checked separately.

e Good candidate for a future version of Cog.



Prototype Implementation and Conclusion

e Prototype done in Maude by Strub with the
help of Mark-Oliver Stehr. Two decision
procedures have been implemented:
congruence closure and linear arithmetic.

e Allows a modular design of the kernel: the
decision procedures can be designed and
checked separately.

e Good candidate for a future version of Cog.
e Compiled mode?
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