
Polymorphic Higher-Order Recursive Path Orderings∗

Jean-Pierre Jouannaud†

École Polytechnique
LIX, UMR CNRS 7646

91400 Palaiseau, FRANCE

Albert Rubio
Technical University of Catalonia

Dep. LSI, Jordi Girona 1-3
08034 Barcelona, SPAIN

Abstract

This paper extends the termination proof techniques based on reduction orderings to a higher-order
setting, by defining a family of recursive path orderings for terms of a typed lambda-calculus generated
by a signature of polymorphic higher-order function symbols. These relations can be generated from two
given well-founded orderings, on the function symbols and on the type constructors. The obtained or-
derings on terms are well-founded, monotonic, stable under substitution and includeβ-reductions. They
can be used to prove the strong normalization property of higher-order calculi in which constants can
be defined by higher-order rewrite rules using first-order pattern matching. For example, the polymor-
phic version of G̈odel’s recursor for the natural numbers is easily oriented. And indeed, our ordering
is polymorphic, in the sense that a single comparison allows to prove the termination property of all
monomorphic instances of a polymorphic rewrite rule. Many non-trivial examples are given which ex-
emplify the expressive power of these orderings. All have been checked by our implementation.

This paper is an extended and improved version of [32]. Polymorphic algebras have been made more
expressive than in our previous framework. The intuitive notion of a polymorphic higher-order ordering
has now been made precise. The higher-order recursive path ordering itself has been made much more
powerful by replacing the congruence on types used there by an ordering on types satisfying some
abstract properties. Besides, using a restriction of Dershowitz’s recursive path ordering for comparing
types, we can integrate both orderings into a single one operating uniformly on both terms and types.

1 Introduction

Rewrite rules are used in programming languages and logical systems, with three main goals: defin-
ing functions by pattern matching; encoding rule-based decision procedures; describing computations
over lambda-terms used as a suitable abstract syntax for encoding functional objects like programs or
specifications. ML and the current version of Coq based on the Calculus of Inductive Constructions [14]
exemplify the first use. A prototype version of Coq exemplifies the second use [9]. Alf [15] and Is-
abelle [44] exemplify the third use. In Isabelle, rules operate on terms inβ-normal,η-expanded form
and use higher-order pattern matching. In ML and Coq, they operate on arbitrary terms and use first-
order pattern-matching. Both kinds of rules target different needs, and should, of course, coexist.

∗This work was partly supported by the RNTL project AVERROES, France-Telecom, and the CICYT project LOGICTOOLS, ref. TIN2004-07925.
†Project LogiCal, P̂ole Commun de Recherche en Informatique du Plateau de Saclay, CNRS,École Polytechnique, INRIA, Université Paris-Sud.

The use of rules in logical systems is subject to three main meta-theoretic properties : type preserva-
tion, local confluence, and strong normalization. The first two are usually easy. The last one is difficult,
requiring the use of sophisticated proof techniques based, for example, on Tait and Girard’s computabil-
ity predicate technique [22]. Our ambition is to provide a remedy for this situation by developing for
the higher-order case the kind of automatable termination proof techniques that are available for the
first-order case, of which the most popular one is the recursive path ordering [16].

Our contribution to this program is a reduction ordering for typed higher-order terms following a
typing discipline including polymorphic sort constructors, which conservatively extendsβ-reductions
for higher-order terms on the one hand, and on the other hand Dershowitz’s recursive path ordering
for first-order unisorted terms. In the latter, the precedence rule allows to decrease from the terms =
f(s1, . . . , sn) to the termg(t1, . . . , tn), provided that (i)f is bigger thang in the given precedence on
function symbols, and (ii)s is bigger than everyti. For typing reasons, in our ordering the latter condition
becomes: (ii) for everyti, eithers is bigger thanti or somesj is bigger than or equal toti. Indeed, we
can instead allowti to be obtained from the subterms ofs by computability preserving operations. Here,
computability refers to Tait and Girard’s strong normalization proof technique which we have used to
show that our ordering is well-founded.

In a preliminary version of this work presented at the Federated Logic Conference in Trento, our
ordering could only compare terms of equal types (after identifying sorts such as Nat or List). In the
present version, the ordering is capable of ordering terms ofdecreasing types, the ordering on types being
simply a slightly weakened form of Dershowitz’s recursive path ordering. Several other improvements
have been made, which allow to prove a great variety of practical examples. To hint at the strength of
our ordering, let us mention that the polymorphic version of Gödel’s recursor for the natural numbers is
easily oriented. And indeed, our ordering can prove at once the termination property of all monomorphic
instances of a polymorphic rewrite rule. Many other examples are given which exemplify the expressive
power of the ordering.

In the literature, one can find several attempts at designing methods for proving strong normalization
of higher-order rewrite rules based on ordering comparisons. These orderings are either quite weak [38,
31], or need a heavy user interaction [47]. Besides, they operate on terms inη-longβ-normal form, hence
apply only to the higher-order rewriting “à la Nipkow” [40], based on higher-order pattern matching
modulo βη. To our knowledge, our ordering is the first to operate on arbitrary higher-order terms,
therefore applying to the other kind of rewriting, based on plain pattern matching. It is also the first to
be automatable: an implementation is provided which does not require user-interaction. And indeed we
want to stress several important features of our approach. Firstly, it can be seen as a way to lift an ordinal
notation operating on a first-order language (here, the set of labelled trees ordered by the recursive path
ordering) to an ordinal notation of higher type operating on a set of well-typedλ-expressions built over
the first-order language. Secondly, the analysis of our ordering, based on Tait and Girard’s computability
predicate proof technique, leads to hiding this technique away, by allowing one to carry out future meta-
theoretical investigations based on ordering comparisons rather than by a direct use of the computability
predicate technique. Thirdly, a very elegant presentation of the whole ordering machinery obtained by
integrating both orderings on terms and types into a single one operating on both kinds shows that this
presentation can in turn be the basis for generalizing the ordering to dependent type calculi. Last, a
modification of our ordering described in a companion paper can be used to prove strong normalization
of higher-order rewrite rules operating on terms inη-longβ-normal form and using higher-order pattern
matching for firing rules [33].

Described in Section 2, our framework for rewriting includes several novel aspects, among which two
important notions of polymorphic higher-order rewriting and of polymorphic higher-order rewrite order-

2

ings. In order to define these notions precisely, we first introduce polymorphic higher-order algebras.
Types will therefore play a central role in this paper, but the reader should be aware that the paper is by
no means about polymorphic typing : it is about polymorphic higher-order orderings. In particular, we
could have also considered inductive types, without having to face unpredictable difficulties. We chose
not to do so in the present framework, which, we think, is already quite powerful and complex, to a
point that those readers who feel no particular interest in typing technicalities should probably restrict
their first reading of this section to the type system of Figure 1, Definition 2.17 and Theorem 2.18. The
rest of the paper, we think, can be understood without knowing the details of the typing apparatus. The
basic version of our ordering is defined and studied in Section 3, where several examples are given.
The notion of computability closure [6] used to boost the expressiveness of the ordering is introduced
and studied in Section 4. Our prototype implementation is discussed in Section 5. Related work and
potential extensions are discussed in Section 6.

The reader is expected to have some familiarity with the basics of term rewriting systems [17, 37, 1, 4]
and typed lambda calculi [2, 3].

2 Polymorphic Higher-Order Algebras

This section describes polymorphic higher-order algebras, a higher-order algebraic framework with
typing “à la ML” which makes it possible to precisely define what are polymorphic higher-order rewrit-
ing and polymorphic higher-order rewrite orderings. Our target is indeed to have higher-order rewrite
rules in the calculus of constructions and check their termination property by means of orderings, but,
although our results address polymorphic typing, they do not scale up yet to dependent types.

We define our typing discipline in Sections 2.1 to 2.5, before investigating their properties in Sec-
tion 2.6, and then define higher-order rewriting in Section 2.8 and finally polymorphic higher-order
rewrite orderings in Section 2.9. We conclude in Section 2.10 that polymorphic higher-order rewrite
orderings allow showing that the derivation relation defined by a set of polymorphic rewrite rules is
well-founded by checking the rules for decreasingness.

2.1 Types

Given a setS of sort symbolsof a fixed arity, denoted bys : ∗n ⇒ ∗, and a denumerable setS∀ of
type variables, the setTS∀ of (first-order)typesis generated by the following grammar:

TS∀ := α | s(T n
S∀) | (TS∀ → TS∀)

for α ∈ S∀ ands : ∗n ⇒ ∗ ∈ S

We denote byVar(σ) the set of type variables of the typeσ ∈ TS∀, and byTS the set ofmonomorphic
or groundtypes, whose set of type variables is empty. Types inTS∀ \ TS arepolymorphic.

Types arefunctionalwhen headed by the→ symbol, anddata typeswhen headed by a sort symbol.
As usual,→ associates to the right. We will often make explicit the functional structure of an arbitrary
type τ by writing it in the canonical formσ1 → . . . → σn → σ, with n ≥ 0, wheren is thearity of
τ andσ is a data type or a type variable calledcanonical output typeof τ . A basic typeis either a data
type or a type variable.

A type substitutionis a mapping fromS∀ to TS∀ extended to an endomorphism ofTS∀. We use postfix
notation for their application to types or to other type substitutions. We denote byDom(ξ) = {α ∈ S∀ |
αξ 6= α} thedomainof ξ, and byRan(ξ) =

⋃
α∈Dom(ξ) Var(αξ) its range. Note that all variables in

3

Ran(ξ) belong toS∀ by assumption, that is, they must be declared beforehand. A type substitutionσ is
groundif Ran(σ) = ∅, and atype renamingif it is bijective.

We useα, β for type variables,σ, τ, ρ, θ for arbitrary types andξ for type substitutions.
A unification problemis a conjunction of equation among types such asσ1 = τ1 ∧ . . . σn = τn. A

solution is a ground type substitutionξ such thatσiξ = τiξ for all i ∈ [1..n]. Solutions are ground
instances of a unique (up to renaming of type variables in its range) type substitution called themost
general unifierof the problem and denoted bymgu(σ1 = τ1 ∧ . . . σn = τn), a result due to Robinson.

2.2 Signatures

We are given a set of function symbols denoted by the lettersf, g, h, which are meant to be algebraic
operators equipped with a fixed numbern of arguments (called thearity) of respective typesσ1 ∈
TS∀ , . . . , σn ∈ TS∀, andoutput typeσ ∈ TS∀. LetF =

⊎
σ1,...,σn,σ Fσ1×...×σn⇒σ be the set of all function

symbols. The membership of a given function symbolf to a setFσ1×...×σn⇒σ is called atype declaration
and writtenf : σ1 × . . . × σn ⇒ σ. This type declarations is not a type, but corresponds to the type
∀Var(σ1) . . . ∀Var(σn)∀Var(σ)σ1 → . . . → σn → σ, hence, the intended meaning of a polymorphic
type declaration is the set of all its monomorphic instances. In casen = 0, the declaration is written
f : σ. A type declaration isfirst-order if its constituent types are solely built from sort symbols and
variables, and higher-order otherwise. It ispolymorphicif it uses some polymorphic type, otherwise, it
is monomorphic. F is said to befirst-order if all its type declarations are first-order, andhigher-order
otherwise. It ispolymorphicif some type declaration is polymorphic, andmonomorphicotherwise.

The tripleS;S∀;F is called thesignature. We sometimes say that the signature isfirst-order, higher-
order, polymorphic, monomorphicwhenF satisfies the corresponding property.

2.3 Raw terms

The setT (F ,X) of raw algebraicλ-termsis generated from the signatureF and a denumerable set
X of variables according to the grammar rules:

T := X | (λX : TS∀ .T) | @(T , T) | F(T , . . . , T).

Raw terms of the formλx : σ.u are calledabstractions, while the other raw terms are said to beneutral.
@(u, v) denotes the application ofu to v. We may sometimes omit the typeσ in λx : σ.u as well as
the application operator, writingu(v) for @(u, v), in particular whenu is a higher-order variable. As
a matter of convenience, we may writeu(v1, . . . , vn), or @(u, v1, . . . , vn) for u(v1) . . . (vn), assuming
n ≥ 1. The raw term@(u, v1, . . . , vn) is called a (partial)left-flatteningof s = u(v1) . . . (vn), u being
possibly an application itself (hence the word “partial”).

Note that our syntax requires using explicit applications for variables, since they cannot take argu-
ments. On the other hand, function symbols have arities, eliminating the need for an explicit application
of a function symbol to its arguments. Curried function symbol have arity zero, hence must be applied.

Raw terms are identified with finite labeled trees by consideringλx : σ. , for each variablex and type
σ, as a unary function symbol taking a raw termu as argument to construct the raw termλx : σ.u. We
denote the set of free variables of the raw termt by Var(t), its set of bound variables byBVar(t), its
size (the number of symbols occurring int) by |t|. The notations will be ambiguously used to denote a
list, or a multiset, or a set of raw termss1, . . . , sn.

Positionsare strings of positive integers.Λ and· denote respectively the empty string (root position)
and the concatenation of strings. We usePos(t) for the set of positions int. Thesubtermof t at position

4

p is denoted byt|p, and we writet � t|p for the subterm relationship. The result of replacingt|p at
positionp in t by u is denoted byt[u]p. We sometimes uset[x : σ]p for a raw term with a (unique) hole
of typeσ at positionp, also called acontext.

Type substitutions are extended to terms as homomorphisms by lettingxξ = x, @(u, v)ξ = @(uξ, vξ),
f(t)ξ = f(tξ) and(λx : σ.u)ξ = λx : σξ.uξ.

2.4 Environments

Definition 2.1 A variable environmentΓ is a finite set of pairs written as{x1 : σ1, . . . , xn : σn} such
thatxi ∈ X , σi ∈ TS∀, andxi 6= xj for i 6= j. Var(Γ) = {x1, . . . , xn} is the set of variables ofΓ. Given
two variable environmentsΓ andΓ′, their compositionis the variable environmentΓ · Γ′ = Γ′ ∪ {x :
σ ∈ Γ | x 6∈ Var(Γ′)}. Two variable environmentsΓ andΓ′ arecompatibleif Γ · Γ′ = Γ ∪ Γ′.

We now collect all declarations into a singleenvironmentΣ; Γ, where the signatureΣ = S;S∀;F is
the fixed part of the environment. We assume that there is exactly one declaration for each symbol in an
environmentΣ; Γ.

Example 1 We give here the signature for the specification of Gödel’s system T. In contrast with G̈odel’s
formulation, we use polymorphism to have the recursor rule as a polymorphic rewrite rule instead of a
rule schema.

Σ = {IN : ∗; α : ∗; 0 : IN, s : IN ⇒ IN, + : IN × IN ⇒ IN, rec : IN × α× (IN → α→ α)⇒ α}.
Γ = {x : IN, U : α, X : IN → α→ α}.
Gödel’s recursor rules are given in Example 2. 2

2.5 Typing Rules

Typing rules restrict the set of raw terms by constraining them to follow a precise discipline. Ourprin-
cipal typing judgementsare written asΓ `c

Σ s : σ, and read “s has principal typeσ in the environment
Γ”. The typing judgements are displayed in Figure 1.

Variables:
x : σ ∈ Γ

Γ c̀
Σ x : σ

Abstraction:
Γ · {x : σ} `cΣ t : τ

Γ c̀
Σ (λx : σ.t) : σ → τ

Application:
Γ `cΣ s : σ Γ `cΣ t : τ

ξ most general unifier ofα→ β = σ ∧ α = τ

Γ c̀
Σ @(s, t) : βξ

Functions:
f : σ1 × . . .× σn ⇒ σ ∈ F

Γ `cΣ t1 : τ1 . . . Γ `cΣ tn : τn

ξ most general unifier ofσ1 = τ1 ∧ . . . ∧ σn = τn

Γ c̀
Σ f(t1, . . . , tn) : σξ

Figure 1. Typing judgements in higher-order algebras

According to the intended meaning of type declarations, we assume that the declarationf : σ1× . . .×
σn ⇒ σ is renamed so as to ensure thatVar(σ1, . . . , σn, σ) ∩ Var(τ1, . . . , τn, τ) = ∅. Further, since the
last two rules introduce a type substitutionξ, we shall consider for uniformity reason that the first two
introduce the identity type substitution. Note also that the rule for applications is nothing but the Rule
Functionsapplied to the symbol@ : (α→ β)× α⇒ β.

5

Example 2 [Example 1 continued] Let us type check in the environmentΣ; {} the ground raw term
rec(s(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z)))):

{} `c
Σ 0 : IN

{} `c
Σ s(0) : IN {} `c

Σ 0 : IN
The three required premises are proved below

{} `c
Σ rec(0, λx, y : IN. + (x, y), λx : IN y : U z : IN.y(+(x, z))) : IN

{} `c
Σ rec(s(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z)))) : IN

in whichU is an abbreviation for the type IN→ IN → IN. We start with the first two required premises:

{} `c
Σ 0 : IN

{x, y : IN} `c
Σ x : IN {x, y : IN} `c

Σ y : IN
{x, y : IN} `c

Σ + (x, y) : IN
{} `c

Σ λx, y : IN. + (x, y) : IN

ending up with the third, in whichΘ is an abbreviation for the environment{x, z : IN, y : IN → IN →
IN}:

Θ `c
Σ y : IN → (IN → IN)

Θ `c
Σ x : IN Θ `c

Σ z : IN
Θ `c

Σ + (x, z) : IN
{x, z : IN y : IN → IN → IN} `c

Σ y(+(x, z)) : IN → IN
{} `c

Σ λx : IN y : IN → IN → IN z : IN . y(+(x, z)) : IN → (IN → IN → IN)→ IN → IN → IN

Classically, we consider the proof of a given judgementΓ `c
Σ s : σ as a tree whose nodes are labelled

by the judgements derived in the proof in the following way: assuming that∆ `c
Σ t : τ labels the node

at positionp, and∆′ ` c
Σ t1 : τ1, . . . , ∆

′ ` c
Σ tn : τn are the premisses of the rule used to derive the

judgement∆ `cΣ t : τ , then the judgement∆′ `cΣ ti : τi labels the i-th son of the nodep, that is the node
at positionp · i (i ∈ [1..n]), and the substitutionξ introduced by the rule labels all edges going from the
nodep to its sons. For convenience, we will assume an incoming edge at the root of the tree labelled by
the identity type substitution. We use as usualPos(P) for the set of positions of the proof treeP , and
draw as usual the proof trees upside down (that is, like a biological tree).

Definition 2.2 Given an environmentΣ; Γ, a raw terms is typablewith principal typeσ if the judgement
Γ `c

Σ s : σ is provable in our system.
Given an environmentΣ; Γ, a raw terms is typablewith typeτ , writtenΓ `Σ s : τ , if Γ `c

Σ s : τ and
τ = σξ for some type subtitutionξ.

We define the proof tree of theordinary typing judgementΓ `Σ s : τ as being a proof tree for the
judgementΓ ` c

Σ s : σ, in which the incoming edge at the root is now labelled by the substitutionξ
satisfyingτ = σξ. The judgementΓ ` c

Σ s : σ appears then as a particular case of the judgement
Γ `Σ s : τ whenξ is the identity.

2.6 Typing properties

We now come to some simple properties of our type system which are instrumental to develop a
theory of polymorphic higher-order rewriting. All these properties are fairly standard and easily proved
by induction on the type derivation for most of them. We therefore skip their proofs.

Lemma 2.3 Given an environmentΣ; Γ and a raw terms, whethers is typable is decidable in linear
time in the size ofs. Whens is typable, its typing derivationΓ `c

Σ s : σ and principal typeσ are unique
(up to renaming of type variables), hence all its typesτ are type instances ofσ.

6

Lemma 2.4 (weakening)Assume given an environmentΣ; Γ, a terms and a typeσ such thatΓ Σ̀ s : σ
holds. Then,Γ · Γ′ `Σ s : σ for all Γ′ compatible withΓ. Further,Γ · Γ′ `c

Σ s : σ if Γ `Σ s : σ.

Lemma 2.5 (strengthening)Assume given an environmentΣ; Γ · {x : τ} · Γ′, a terms such thatx 6∈
Var(s) and a typeσ such thatΓ · {x : τ} · Γ′ `Σ s : σ. Then,Γ · Γ′ `Σ s : σ. Further,Γ · Γ′ `c

Σ s : σ if
Γ · {x : τ} · Γ′ `c

Σ s : σ.

Lemma 2.6 (subterm) Let P denote the proof of the judgementΓ ` c
Σ s : σ and p be a position in

Pos(s). Then, there exists a unique positionq(p) ∈ Pos(P) such that the subproofP |q(p) is a proof of
a judgement of the formΓs|p `c

Σ s|p : τ .

Definition 2.7 Given a judgementΓ `Σ s : σ and a positionp ∈ Pos(s), we callactual typeof s|p,
the typeθ = τξ instance of the principal typeτ of s|p in the environmentΓs|p by the type substitutionξ
labelling the arc ending at positionq(p).

Example 3 [Example 1 continued] Let us type check in the environmentΣ; {} the simple raw terms =
rec(0, 0, λ x : IN y : α.y) with the rules of Figure 1, writing the type substitution used inApplications
andFunction to the right of the rule when it is not the identity:

{} `c
Σ 0 : IN {} `c

Σ 0 : IN

{x : IN, y : α} `c
Σ .y : α

{x : IN} `c
Σ λ y : α.y : α→ α

{} `c
Σ λ x : IN y : α.y : IN → α→ α

{} `c
Σ rec(0, 0, λ x : IN y : α.y : IN → α→ α) : IN

{α 7→ IN}

The principal and actual types of all subterms ofs coincide, except for its subterms|3 = λ x : IN y : α.y
whose principal and actual type in the judgement{} ` c

Σ s : IN are respectively IN→ α → α and
IN → IN → IN. The latter is obtained from the former by the type instantiation{α 7→ IN}.

Given a typing judgementΓ `Σ s : σ and a positionp ∈ Pos(s), the actual typeθ of s|p plays a key
role throughout the paper, and in the implementation as well.

Lemma 2.8 (replacement)Assume given an environmentΣ; Γ, two termss andv, two typesσ andτ ,
and a positionp ∈ Pos(s) such thatΓ `Σ s : σ, Γs|p `Σ s|p : τ whereτ is the actual type ofs|p, and
Γs|p `Σ v : τ . Then,Γ `Σ s[v]p : σ.

As a consequence of the replacement lemma, we will use ordinary judgements only in the sequel.

2.7 Substitutions

Definition 2.9 A term substitution, or simplysubstitutionis a finite setγ = {(x1 : σ1) 7→ (Γ1, t1); . . . ; (xn :
σn) 7→ (Γn, tn)}, whose elements are quadruples made of a variable symbol, a type, a term environment
and a term, such that

(i) for eachi ∈ [1..n], ti is typable inΓi with principal typeτi;
(ii) ∀i 6= j ∈ [1..n], Γi andΓj are compatible environments;
(iii) the type unification problemσ1 = τ1 ∧ . . . ∧ σn = τn has a most general unifierξγ;
(iv) ∀i ∈ [1..n], ti 6= xi or σiξγ 6= σi and∀i 6= j ∈ [1..n], xi 6= xj;

The substitutionγ is type preservingif ξγ is the identity, and aspecializationif ti = xi for all i.
The domain of the substitutionγ is the environmentDom(γ) = {x1 : σ1, . . . , xn : σn} while itsrange

is the environmentRan(γ) =
⋃

i∈[1..n] Γi. We say thatx ∈ Dom(γ) wheneverx : σ ∈ Dom(Γ) for some
typeσ. We sometimes omit the parentheses, the typeσi and the environmentΓi in (xi : σi) 7→ (Γi, ti).

7

Note that the setRan(γ) is indeed an environment by our compatibility assumption (iv), which is of
course compatible with every environmentΓi.

The need of a term environmentΓi for each variablexi comes from the requirement of typing the
termti (with a type compatible with the typeσi of the variablexi that it will be substituted to, a property
ensured by condition (iii)). In caseti is ground, its typing environment is of course empty. This is the
case in the coming example:

Example 4 [Example 3 continued] Here is an example of a ground substitution, for which condition (i)
have been proved in Example 3. The other conditions are easily checked here (condition (iii) is satisfied
with the substitutionξγ = α 7→ IN):

{(x : IN) 7→ ({}, s(0));
(U : IN) 7→ ({}, 0);

(X : IN → IN → IN) 7→ ({}, λ x : IN y : α.y)}

In general, condition (iii) may yield a non-trivial unification problem as in the following example:

Example 5 Let
Σ = {IN, IB : ∗, pair : ∗2 ⇒ ∗, list : ∗ ⇒ ∗}; {α, β, α′ : ∗}; {iter : (α→ β)× list(α)⇒ list(β)}.

Consider the termiter(F, l) in the environment{F : α → β, l : list(α)} which will be used in the
rest of the example as the domain for a substitutionγ. We have the typing derivation:
{F : α→ β, l : list(α)} `Σ iter(F, l) : list(β)

Let us now first consider a non-substitution fullfilling all conditions but (iii):
γ = {(F : α→ β) 7→ ({F : pair(IN, α′)→ α′}, F), (l : list(α)) 7→ ({l : list(pair(α′, IB))}, l)}.
Then, the unification problem originating from condition (iii),α→ β = pair(IN, α′)→ α′ ∧ list(α) =
list(pair(α′, IB)) fails by generating the unsolvable equation IN= IB.
Trying to type the same termiter(F, l) in the environmentRan(γ) = {F : pair(IN, α′) → α′, l :
list(pair(α′, IB))} results in a failure, since theFunctions rule generates the very same unsolvable
unification problem as before.

Let us finally consider the substitution (indeed, a specialization)
γ = {(F : α→ β) 7→ ({F : pair(IN, α′)→ α′}, F), (l : list(α)) 7→ ({l : list(pair(α′, IN))}, l)}.
We check condition (iii) by solving the unification problemα → β = pair(IN, α′) → α′ ∧ list(α) =
list(pair(α′, IN)), which has most general unifier{α 7→ pair(IN, IN), α′ 7→ IN, β 7→ IN}.
Trying now to type the termiter(F, l) in the environmentRan(γ) = {F : α→ β, l : list(α)}, we get:
{F : pair(IN, α′)→ α′, l : list(pair(α′, IN))} `Σ iter(F, l) : list(IN))
We observe that the obtained type foriter(F, l) is the instance of its type in the environmentDom(γ) =
{F : α→ β, l : list(α)} by the type substitutionξγ. 2

Definition 2.10 A substitutionγ is said to becompatiblewith an environmentΓ if
(i) Dom(γ) is compatible withΓ,
(ii) Ran(γ) is compatible withΓ \ Dom(γ).
We will also say thatγ is compatible with the judgementΓ `Σ s : σ.

Compatibility of a term substitution with an environmentΓ is a necessary condition for defining
how the substitution operates on a term typable in the environmentΓ to yield a term typable in the
environment(Γ \ Dom(γ)) · Ran(γ):

8

Definition 2.11 A term substitutionγ compatible with a judgementΓ Σ̀ s : σ operates as an endomor-
phism ons (keeping its bound variables unchanged) and yields a termsγ defined as follows:

If s = x ∈ X andx 6∈ Var(γ) then sγ = x
If s = x ∈ X and(x : σ) 7→ (Θ, t) ∈ γ then sγ = t
If s = @(u, v) then sγ = @(uγ, vγ)
If s = f(u1, . . . , un) then sγ = f(u1γ, . . . , unγ)
If s = λx : τ.u andy a fresh variable then sγ = λy : τξγ.(u{(x : τ) 7→ ({y : τξγ}, y)})γ

Term substitutions can be factored out via a specialization (possibly the identity) as follows:

Lemma 2.12 Every term substitutionγ can be written in the formδθ whereδ is a specialization andθ
is type preserving, that is, for any terms, sγ = (sδ)θ.

Proof: Let γ = {(xi : σi) 7→ (Γi, ti)}i. Take δ = {(xi, σi) 7→ ({xi : σiξγ}, xi)}, and θ =
{(xi, σiξγ) 7→ ({}, xiγ)}. 2

When writingsγ, using postfixed notation for substitutions, we will always make the assumption that
the domain ofγ is compatible with the judgementΓ `Σ s : σ. We will use the letterγ for arbitrary
substitutions and the notationAγ, whereA is a set of terms, for the set of instances of the terms inA.

Example 6 [Example 1 continued] Let us illustrate the use of term substitutions with the term
rec(s(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z)))), which
happens to be an instance of the lefthand side of the second Gödel’s recursor rulerec(s(x), U, X) →
@(X, x, rec(x, U,X)) for whichx : IN, U : α andX : IN → α→ α, by the substitution

{(x : IN) 7→ ({}, s(0))
(U : α) 7→ ({}, 0)

(X : IN → α→ α) 7→ ({}, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z))))}
while its subterm
rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z))) is an instance of the same
lefthand side by the substitution

{(x : IN) 7→ ({}, 0)
(U : α) 7→ ({}, λ x : IN y : IN. + (x, y))

(X : IN → α→ α) 7→ ({}, λ x : IN y : IN → IN → IN z : IN.y(+(x, z)))}.
These substitutions are factored out by the respective specializations
{(U : α) 7→ ({U : IN}, U); (X : IN → α→ α) 7→ ({X : IN → IN → IN}, X)} and
{(U : α) 7→ ({U : IN}, U); (X : IN → α → α) 7→ ({X : IN → (IN → IN → IN) → IN → IN →
IN}, X)},
whose associated type instantiations are respectivelyα 7→ IN andα 7→ (IN → IN → IN). 2

The next lemma makes precise the action of substitutions on typing:

Lemma 2.13 Assume given an environmentΣ; Γ and a substitutionγ compatible with the judgement
Γ `Σ s : σ. Then,(Γ \ Dom(γ)) · Ran(γ) `Σ sγ : σξγ.

Proof: The proof is done by induction on the derivation of the judgementΓ `Σ s : σ. We carry out
theAbstraction case, which shows the need for instantiating the types of bound variables.

Assume thats = λx : τ.u with σ = τ → σ′, henceΓ · {x : τ} `Σ u : σ′ by the ruleAbstraction.
Given now a fresh variabley, let us consider the substitutionγ′ = γ ∪ {(x : τ) 7→ ({y : τξγ}, y)}.
SinceΓ is compatible withγ andy is a fresh variable,Γ is compatible withγ′. By induction hypothesis,
(Γ \ Dom(γ′)) · Ran(γ′) ` Σ uγ′ : σξ′γ. By construction,ξγ′ = ξγ, and sincey is a fresh variable,

9

(Γ\Dom(γ′))·Ran(γ′) = (Γ\Dom(γ))·Ran(γ)·{y : τξγ}. Therefore, our typing judgement becomes
(Γ \ Dom(γ)) · Ran(γ) · {y : τξγ} `Σ u{(x : τ) 7→ ({y : τξγ}, y)}γ : σ′ξγ. By the ruleAbstraction,
we get(Γ \ Dom(γ)) · Ran(γ) `Σ λy : τξγ.u{(x : τ) 7→ ({y : τξγ}, y)γ : (τξγ → σ′ξγ) = σξγ.
Definition 2.11 now yields the expected result. 2

Note that Lemma 2.5 allows us to clean the environment from the variables which do not occur insγ.
As corollaries of Lemma 2.13, we obtain:

Corollary 2.13.1 Letγ be a type preserving substitution compatible with the judgementΓ `Σ s : σ.
Then,(Γ \ Dom(γ)) · Ran(γ) `Σ sγ : σ.

Corollary 2.13.2 Let δ be a specialization compatible with the judgementΓ `Σ s : σ. Then,sδ = sξδ

and(Γ \ Dom(δ)) · Ran(δ) `Σ sδ : σξδ.

2.8 Plain higher-order rewriting [28]

We now come to the definition of plain higher-order rewriting based on plain pattern-matching, as
considered in Jouannaud and Okada [28] or in the Calculus of Inductive Constructions [14].

Definition 2.14 Given a signatureΣ, ahigher-order rewrite ruleor simplyrewrite ruleis a triple written
Γ ` l→ r, whereΓ is an environment andl, r are higher-order terms such that

(i) Var(r) ⊆ Var(l) ⊆ Var(Γ),
(ii) for all substitutionsγ such thatΓ `Σ lγ : σ, thenΓ `Σ rγ : σ.
The rewrite rule is said to bepolymorphicif σ is a polymorphic type for some substitutionγ.

A plain higher order rewriting system, or simplyrewriting systemis a set of higher-order rewrite rules.

Example 7 Here is an example of a triple which is not a rewrite rule because it violates condition (ii):
letF = {f : α⇒ α, g : β ⇒ β, 0 : IN}, TS∀ = {α, β}, and consider the triple{x : α} ` f(x)→ g(0).
We have{x : α} `Σ f(x) : α, {x : α} `Σ g(0) : IN, andα has instances different from IN such as
IN → IN. Therefore, the triple{x : α} ` f(x) → g(0) is not a rule. On the other hand, the instance
{x : α} ` f(0)→ g(0) is a rule. 2

One may wonder whether a given tripleΓ ` l → r is a rewrite rule, since condition (ii) quantifies
over all possible substitutions. One can indeed answer the question, since types are first order terms
and the existence of instances of a typeσ (the principal type ofs) which are not instances ofτ (the
principal type ofr) can be expressed by the first-order formula∃α.α = σ ∧ ¬(α = τ), with α a fresh
variable, interpreted over the set of ground types. Validity of such formulas is decidable by a result of
Mal’cev [39], but it is clear that there is noα satisfyingα = σ ∧ ¬(α = τ) iff σ is an instance ofτ , that
is, the principal type of the righthand side is more general that the principal type of the lefthand one.
There are useful examples of such rules in practice.

We shall sometimes omit the environmentΓ in the ruleΓ `Σ l → r when it can be inferred from the
context. Theβ- andη-rules below are two examples of polymorphic rewrite rule schemas:

{u : α, v : β} `Σ @(λx : α.v, u) −→β v{x 7→ u}
{x : α, u : α→ β} `Σ λx.@(u, x) −→η u if x 6∈ Var(u)

Making these rule schemas true rewrite rules is possible to the price of including variables with arities
in our framework, an idea due to Klop [36].

We are now ready for defining the rewrite relation :

10

Definition 2.15 Given a plain higher-order rewriting systemR and an environmentΓ, a terms such
that Γ `Σ s : σ rewrites to a termt at positionp with the ruleΘ ` l → r and the term substitution
γ, writtenΓ ` s

p−→
Θ ` l→r

t, or simplyΓ ` s →R t, or evens →R t assuming the environmentΓ, if the

following conditions are satisfied :
(i) Dom(γ) ⊆ Θ; (ii) Θ · Ran(γ) ⊆ Γs|p ; (iii) s|p = lγ; (iv) t = s[rγ]p.

Note that, by definition of higher-order substitutions, condition (iii) implies that variables which are
bound in the rule do not occur free inγ, therefore avoiding capturing variables when rewriting.

Type checking the rewritten term is not necessary, thanks to the following property:

Lemma 2.16 (type preservation)Assume thatΓ `Σ s : σ andΓ ` s→R t. ThenΓ `Σ t : σ.

Proof: LetΓ ` s
p−→

Θ ` l→r
t. By Lemma 2.6,Γs|p Σ̀ s|p : τ , with τ the actual type ofs|p in Γ Σ̀ s : σ.

By condition (iii), Γs|p ` Σ lγ : τ . By conditions (i) and (ii), the substitutionγ is compatible with
the environmentΘ, and by condition (i) in Definition 2.14,Var(l) ⊆ Var(Θ) ⊆ Var(Θ · Ran(γ)).
By Lemma 2.5 (repeated) it follows thatΘ · Ran(γ) `Σ lγ : τ . By condition (ii) of Definition 2.14,
Θ · Ran(γ) ` Σ rγ : τ . By conditions (ii) and Lemma 2.4,Γs|p ` Σ rγ : τ . By Lemma 2.8,
Γ `Σ s[rγ]p : σ. We conclude with condition (iv). 2

Example 8 [Example 1 continued] Here are Gödel’s recursor rules for natural numbers:

{U : α, X : IN → α→ α} ` rec(0, U, X) → U
{x : IN, U : α, X : IN → α→ α} ` rec(s(x), U, X) → @(X, x, rec(x, U,X))

Rewriting rec(s(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z))))
with a call-by-value strategy (redexes are underlined) until a normal form is obtained, we get:

rec(s(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z))))
→3

{U :α, X:IN→α→α} ` rec(0,U,X)→U
rec(s(0), 0, λ x : IN y : IN. + (x, y))

→ε
{x:IN, U :α, X:IN→α→α} ` rec(s(x),U,X)→@(X,x,rec(x,U,X)

@(λ x : IN y : IN. + (x, y), 0, rec(0, 0, λ x : IN y : IN. + (x, y)))
→ε

β @(λ y : IN. + (0, y), rec(0, 0, λ x : IN y : IN. + (x, y)))
→ε

β +(0, rec(0, 0, λ x : IN y : IN. + (x, y)))
→2

{U :α, X:IN→α→α} ` rec(0,U,X)→U
+(0, 0)

→ε
{x:IN} ` +(x,0)→x

0

As a general benefit, the use of polymorphic signatures allows us to have only one recursor rule,
instead of infinitely many rules described by one rule schema as in Gödel’s original presentation. 2

Other examples of higher-order rewrite systems are developed in section 3.
Because plain higher-order rewriting is type preserving, we may often omit the environment in which

a term is type checked as well as its type, and consider the sequence of terms originating from a given
term s type checked in an environmentΓ by rewriting with a given setR of higher-order rules. In
other words, we will often consider rewriting as arelation on terms, which will allow us to simplify our
notations when needed.

A terms such thats
p−→
R

t is calledreducible(with respect toR). s|p is aredexin s, andt is thereduct

of s. Irreducible terms are said to be inR-normal form. A substitutionγ is in R-normal form ifxγ is

11

in R-normal form for allx. We denote by ∗−→
R

the reflexive, transitive closure of the rewrite relation

−→
R

, and by←→∗
R its reflexive, symmetric, transitive closure. We are indeed interested in the relation

−→Rβη = −→R ∪−→β ∪−→η.
Given a rewrite relation−→, a terms is strongly normalizableif there is no infinite sequence of

rewrites issuing froms. A substitutionγ is strongly normalizableif all termsxγ such thatx ∈ Dom(γ)
are strongly normalizable.

The rewrite relation itself isstrongly normalizing, or terminating, if all terms are strongly normaliz-
able. It is confluent ifs−→∗ u ands−→∗ v implies thatu−→∗ t andv−→∗ t for somet.

2.9 Higher-Order Reduction Orderings

We will make intensive use of well-founded relations for proving strong normalization properties,
using the vocabulary of rewrite systems for these relations. For our purpose, these relations may not be
transitive, hence are not necessarily orderings, although their transitive closures will be well-founded
orderings, which justifies to sometimes call them orderings by abuse of terminology.

For our purpose, astrict ordering> is an irreflexive transitive relation, anordering≥ is the union
of its strict part> with equality=, and aquasi-ordering� is the union of its strict part� with its
equivalence'. Because we identifyα-convertible higher-order terms, their equality contains implicitly
α-conversion. The following results will play a key role, see [17]:

Assume�,�1, . . . ,�n are relations onn given setsS, S1, . . . , Sn. Let
- (�1, . . . ,�n)lex be the relation on

⋃
k≤n S1×. . .×Sk defined as(s1, . . . , sm)(�1, . . . ,�n)lex(t1, . . . , tp)

iff ∃i ∈ [1..min(m, p)] such thats1 = t1, . . . , si−1 = ti−1 and (si �i ti or (si = ti andi = p < m);
- �mul be the relation on the set of multisets of elements ofS defined as

M ∪ {x} �mul N ∪ {y1, . . . , yn} iff ∀i ∈ [1..n] x � yi andM = N or M �mul N .
It is well known that both operations preserve the well-foundedness of the relations�,�1, . . . ,�n,

and that they also preserve transitivity, hence orderings.
We end up this section by defining the notion of a reduction ordering operating on higher-order terms.

Definition 2.17 A higher-order reduction ordering� is a well-founded ordering of the set of judgements
which is

(i) monotonic: (Γ `Σ s : σ) � (Γ `Σ t : σ) implies that for allΓ′ compatible withΓ such that
Γ′ `Σ u[x : σ] : τ , then(Γ · Γ′ `Σ u[s] : τ) � (Γ · Γ′ `Σ u[t] : τ);

(ii) stable: (Γ `Σ s : σ) � (Γ `Σ t : σ) implies that for all type preserving substitutionγ whose
domain is compatible withΓ, then(Γ · Ran(γ) `Σ sγ : σ) � (Γ · Ran(γ) `Σ tγ : σ);

(iii) polymorphic: (Γ `Σ s : σ) � (Γ `Σ t : σ) implies that for all specializationδ whose domain is
compatible withΓ, then(Γ · Ran(δ) `Σ sδ : σξδ) � (Γ · Ran(δ) `Σ tγ : σξδ);

(iv) compatible: (Γ `Σ s : σ) � (Γ `Σ t : σ) implies(Γ′ `Σ s : σ) � (Γ′ `Σ t : σ) for all
environmentsΓ′ such thatΓ andΓ′ are compatible,Γ′ `Σ s : σ andΓ′ `Σ t : σ;

(v) functional: (Γ `Σ s : σ−→β ∪−→η t : σ) implies(Γ `Σ s : σ) � (Γ `Σ t : σ).

Note that (iii) is indeed equivalent toΓξ `Σ sξ : σξ for all type substitutionsξ, therefore justifying
separating (iii) from (ii).

We will often abuse notations by writing(Γ Σ̀ s : σ � t : τ) instead of(Γ Σ̀ s : σ) � (Γ Σ̀ t : τ),
therefore sharing the environmentΓ. This amounts to view the ordering as a relation on typed terms
instead of a relation on judgements. We may even omit types and/or environments, considering the
ordering as operating directly on terms, and writeΓ ` s � t, s : σ � t : τ , or s � t.

12

2.10 Termination of polymorphic higher-order rules

Theorem 2.18Let� be a polymorphic, higher-order reduction ordering andR = {Γi `Σ li → ri}i∈I

be a higher-order rewrite system such that∀i ∈ I, (Γi `Σ li : σi) � (Γi `Σ ri : σi), whereσi is the
principal type ofli in Γi. Then the relation−→R ∪−→β ∪−→η is strongly normalizing.

Proof: LetΓ `Σ s : σ andΓ `Σ s
p−→

Γ ` l→r∈R
t. We assume without loss of generality thatVar(l) ∩

Dom(Γ) = ∅. By Lemma 2.6,Γs|p ` Σ s|p : τ , the actual type ofs|p in the environmentΓs|p . By
Definition 2.15(iii,iv) and Lemma 2.12,s|p = lδγ and t|p = rδγ, whereδ is a specialization andγ
is type preserving. Therefore,Γs|p ` Σ lδγ : τ . SinceΓ · Ran(δγ) ⊆ Γs|p by our assumption and
Definition 2.15(ii) andVar(r) ⊆ Var(l) ⊆ Var(Γ) by Definition 2.14(i), thenΓ · Ran(δγ) `Σ lδγ : τ
by applications of lemma 2.5. Sinceγ is type preserving,Γ · Ran(δ) `Σ lδ : τ . By Lemma 2.16, it
follows thatΓ · Ran(δ) `Σ rδ : τ , Γ · Ran(δγ) `Σ rδγ : τ , andΓ `Σ t : σ.

By polymorphism,Γ · Ran(δ) `Σ lδ : τ � rδ : τ . By stability,Γ · Ran(δγ) `Σ lδγ : τ � rδγ : τ .
By the previous remark thatΓ · Ran(δγ) ⊆ Γs|p and by compatibility,Γs|p ` Σ lδγ : τ � rδγ : τ .
By monotonicity and Lemma 2.8,Γs|p · Γ ` Σ s[lδγ] : σ � s[rδγ] : σ. By Definition 2.15(iii,iv),
Γs|p · Γ `Σ s : σ � t : σ. By compatibility again,Γ `Σ s : σ � t : σ.

Finally, the case of aβ- or anη-step follows from functionality. 2

The polymorphic property of higher-order reduction orderings allows us to show termination in all
monomorphic instances of the signature by means of a single comparison for each polymorphic rewrite
rule. Polymorphic higher-order reduction orderings are therefore an appropriate tool in order to make
termination proofs of polymorphic plain higher-order rewrite systems. In case of a monomorphic rewrite
system, there is of course no need for a polymorphic ordering, even if the signature itself is polymorphic.

We are left with constructing polymorphic higher-order reduction orderings.

3 The Higher-Order Recursive Path Ordering

The higher-order recursive path ordering (HORPO) on higher-order terms is generated from three
basic ingredients: atype ordering; a precedenceon functions symbols; and astatusfor the function
symbols. We describe these ingredients before defining the higher-order recursive path ordering, and
study its properties, including strong normalization. We then consider a first set of examples which can
all be run with our prototype implementation. Some proofs are omitted in this section, since they will
be carried out in Section 4, in which a more advanced version of HORPO is studied.

3.1 The ingredients

• A quasi-ordering on types≥TS calledthe type orderingsatisfying the following properties:

1. Well-foundedness: >TS is well-founded;

2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ andσ =TS σ′;

3. Arrow decreasingness: τ → σ >TS α impliesσ ≥TS α or α = τ ′ → σ′, τ ′ =TS τ andσ >TS σ′;

4. Arrow monotonicity: τ ≥TS σ impliesα→ τ ≥TS α→ σ andτ → α ≥TS σ → α;

5. Stability:
(i) σ >TS τ impliesσξ >TS τξ for all type substitutionξ;
(ii) σ =TS τ impliesσξ =TS τξ for all type substitutionξ.

13

We show the existence of a type ordering generated by the above properties in Section 3.5.1, and
give a particular type ordering in Section 5.1.

• A quasi-ordering≥F onF , called theprecedence, such that>F is well-founded.

• A statusstatf ∈ {Mul, Lex} for every symbolf ∈ F , therefore partitioningF into Mul] Lex.
We say thatf has amultisetor (left-to-right) lexicographicstatus iff ∈ Mul and f ∈ Lex
respectively. We use a right-to-left status in one example.

3.2 The definition

The definition of the higher-order recursive path ordering builds upon Dershowitz’s recursive path
ordering (RPO) for first-order terms [16]. A major difference is that we do not compare terms, but
terms together with their type in a given environment. A difficulty is that the environments in which
two given terms are compared may change along recursive calls, and even change differently for the two
recursively compared terms, which makes it impossible to factor the environment out. As a consequence,
the ordering is defined on pairs of judgements(Γ ` s : σ, Σ ` t : τ) instead of on pairs of terms
(s, t). Following Theorem 2.18, the starting comparison is of the formΓ `Σ l : σ � Γ `Σ r : σ for
some ruleΓ `Σ l → r, whereσ is the principal type ofl in Γ and a non-necessarily principal type ofr
in Γ. We are therefore using actual rather than principal types1. A second difficulty is that we need to
compare subterms recursively, hence to have an appropriate typing judgement for a subterm in a term.
Definition 2.7 provides the answer by giving us the actual type of a subterm in a term with respect to the
typing judgement. In the sequel, all judgementsΓ `Σ s : σ we consider are therefore canonical, andσ
is the actual type ofs, allowing us to use the simpler notatioǹΣ in place of the more precisè c

Σ .
Following the tradition, we consider equivalence classes of terms moduloα-conversion, using the

syntactic equality symbol= for the equivalence=α, and define our ordering�horpo by means of a set
of rules, writing�horpo for �horpo ∪ =. In contrast, the recursive path ordering contains a non-trivial
equivalence allowing one to freely permute subterms below multiset function symbols [17]. Using here
a richer equivalence relation would raise technical complications for no practical benefit.

The definition starts with 4 cases reproducing Dershowitz’s recursive path ordering for first-order
terms, with one main difference when higher-order terms are compared: the rules can also take care of
higher-order terms in the arguments of the smaller side by having a corresponding bigger higher-order
term in the arguments of the bigger side. This is redundant for first-order terms because of the subterm
property. This idea is captured in the followingweak subterm propertyused throughout the definition :

A = ∀v ∈ t (Γ `Σ s : σ) �
horpo

(Σ `Σ v : ρ) or (Γ `Σ u : θ) �
horpo

(Σ `Σ v : ρ) for someu ∈ s

Cases 5 and 6 allow one to use the subterm case for applications and abstractions. In the abstraction
case, we may need to rename the bound variablex of s to prevent confusing it with a free variable of
t. Cases 7 and 8 are precedence cases for comparing a term headed by an algebraic symbol with a term
headed by an application or an abstraction. Case 7 is crucial for the usefulness of the ordering. Cases 9
and 10 allow one to compare terms headed both by applications or both by lambdas. They are essential
for monotonicity. Cases 11 and 12 include respectivelyβ- andη-reductions in the ordering.

Definition 3.1 Given two judgementsΓ `Σ s : σ andΣ `Σ t : τ ,

(Γ `Σ s : σ) �
horpo

(Σ `Σ t : τ) iff σ ≥TS τ and

1Using principal types would require thatl andr have the same principal type inΓ to make sure that they are comparable. We have actually implemented
both choices, and all our examples run on both implementations.

14

1. s = f(s) with f ∈ F , and(Γ `Σ u : θ) �
horpo

(Σ `Σ t : τ) for someu ∈ s

2. s = f(s) with f ∈ F , andt = g(t) with f >F g, andA

3. s = f(s) andt = g(t) with f =F g ∈Mul, and(Γ `Σ s : σ) (�
horpo

)mul (Σ `Σ t : τ)

4. s = f(s) andt = g(t) with f =F g ∈ Lex, and(Γ `Σ s : σ) (�
horpo

)lex (Σ `Σ t : τ) andA

5. s = @(s1, s2), and(Γ `Σ s1 : ρ→ σ) �
horpo

(Σ `Σ t : τ) or (Γ `Σ s2 : ρ) �
horpo

(Σ `Σ t : τ)

6. s = λx : α.u with x 6∈ Var(t), and(Γ · {x : α} `Σ u : θ) �
horpo

(Σ `Σ t : τ)

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) and(Γ `Σ s : σ) �
horpo

(Σ `Σ v : ρ)

9. s = @(s1, s2), t = @(t) is a partial left-flattening oft, and
{(Γ `Σ s1 : θ → σ), (Γ `Σ s2 : θ)}(�

horpo
)mul(Σ `Σ t : τ)

10. s = λx : α.u, t = λx : β.v, α =TS β, and(Γ · {x : α} `Σ u : θ) �
horpo

(Σ · {x : β} `Σ v : ρ)

11. s = @(λx : α.u, v) and(Γ `Σ u{x 7→ v} : σ) �
horpo

(Σ `Σ t : τ)

12. s = λx : α.@(u, x), x 6∈ Var(u) and(Γ `Σ u : σ) �
horpo

(Σ `Σ t : τ)

The definition is recursive, and, apart from case 11, recursive calls operate on judgements whose terms
are subterms of the term in the starting judgement. This ensures the well-foundedness of the definition,
since the union ofβ-reduction with subterm is well-founded, by comparing pairs of argument terms
in the well-founded compatible relation(−→β ∪�, �)lex. This will actually be used as an inductive
argument in many proofs to come. It must be stressed that multiset and lexicographic extensions are
defined for arbitrary relations and preserve well-foundedness of arbitrary (well-founded) relations. As a
consequence, our definition is inductive.

Carrying judgements systematically would often make it look awkward. Therefore, from now on,
we indulge forgetting judgements when comparing terms, leaving environments and types implicit when
possible.

Example 9 (Example 8 continued). We use here the existence of an ordering on types generated by the
properties of the type ordering introduced in Section 3.1, and assume a multiset status forrec. The first
rule succeeds immediately by case 1. For the second, we apply case 7, and need to show recursively that
(i) X �horpo X, (ii) s(x)�horpo x, and (iii) rec(s(x), u, X)�horpo rec(x, u, X).
(i) is clear. (ii) is by case 1. (iii) is by case 3, calling again recursively fors(x)�horpo x.

Note that we have proved termination of Gödel’s polymorphic recursor, for which the output type of
rec is any given type. This is so because our ordering is polymorphic, as we will show. This example
was already proved in [32], where polymorphism was claimed but neither formally defined nor proved.

We can of course now add some defining rules for sum and product for which we omit environments
and types for bound variables which can be easily inferred by the reader:

15

x + 0 → 0
x + s(y) → s(x + y)

x ∗ y → rec(y, 0, λz1z2.x + z2)

The first two rules are easy work. For the third, we use the precedence∗ >F rec to eliminate therec
operator. But the computation fails, since no subterm ofx∗y can take care of the righthand side subterm
λz1z2.x + z2. We will come back to this example later, after having boosted the ordering. 2

Example 10 We consider here lists of natural numbers. Let

S = {List, IN}
F = {nil : List, cons : IN × List⇒ List, map : List× (IN → IN)⇒ List}

The rules formap are:

{X : IN → IN} ` map(nil, X) → nil
{x : IN, l : List, X : IN → IN} ` map(cons(x, l), X) → cons(@(X, x), map(l, X))

We use the ordering on types generated as previously by the properties of the type ordering and the
additional equality IN=TS List. For the precedence, we takemap >F cons, andmap ∈ Mul for the
statuses.

The first rule is easily taken care of by case 1. For the second, sincemap >F cons, applying case 2
yields the subgoalsmap(cons(x, l), X)�horpo @(X, x) andmap(cons(x, l), X)�horpo map(l, X). The
latter is true by case 3, sincecons(x, l)�horpo l by case 1. The first is by case 7, asX is an argument of
the first term andcons(x, l)�horpo x by case 1. Note that we use the type comparisonList =TS IN in
this computation.

Example 11 We now consider a specification of polymorphic lists. Let

S∀ = {α};S = {List : ∗ ⇒ ∗};
F = { nil : α, cons : α× List(α)⇒ List(α), map : List(α)× (α→ α)⇒ List(α) }

The rules formapbecome:
{X : α→ α} ` map(nil, X) → nil

{x : α, l : List(α), X : α→ α} ` map(cons(x, l), X) → cons(@(X, x), map(l, X))

Letting againmap ∈ Mul andmap >F cons, the first rule is taken care of by case 1 as previously.
For the second, we need to setList(α) >TS α for the subgoalmap(cons(x, l), X)�horpo @(X, x). The
computation goes then as previously. 2

Important observations are the following:

• HORPO compares terms of comparable types, improving over [32] where terms of equivalent
types only could be compared, as done in Example 10. Without type comparisons being based
on an ordering instead of an equivalence, we could never allow a subterm case for terms headed
by an application or by an abstraction. Subterm cases, however, must be controlled by the type
comparison for the ordering to be well-founded.

• Another important improvement for practice is the inclusion ofβ- andη-reductions in the ordering
via Cases 11 and 12. We will see several examples where it is used.

16

• Note that there is no precedence case for applications against abstractions and that partial-flattening
is used in the righthand sides only, that is, in Cases 7 and 9, and indeed, our strong normalization
proof does not go through if it is also used in the lefthand sides. left-flattening is essential for
stability. The choice of a particular partial left-flattening in practice is considered in Section 5.

• HORPO is unfortunately not transitive, therefore explaining our statement in Theorem 3.2. Remov-
ing Cases 11 and 12, as well as left-flattening in Cases 7 and 9 yields a transitive ordering having
the weak-subterm property. Some examples will indeed need using one step of transitivity, which
raises some difficulties for the implementation addressed in Section 5.

• When the signature is first-order, Cases 1, 2, 3 and 4 of the definition of�horpo together reduce to
the usual recursive path ordering for first-order terms, whose complexity is known to be inO(n2)
for an input of sizen. Inferring a precedence for comparing two given terms is also known to be
NP-complete. This is not a problem for practice since signatures and terms are usually small. We
have not investigated the complexity of HORPO, because an unbounded use of Case 11 may result
in an arbitrary high complexity. We think however that both results still hold for HORPO when
dropping Case 11 or restricting its use.

We now state the main result of this section, whose proof is the subject of the coming two subsections:

Theorem 3.2 (�horpo)
+ is a decidable polymorphic, higher-order reduction ordering.

3.3 Candidate Terms

Because our strong normalization proof is based on Tait and Girard’s reducibility technique, we need
to associate to each typeσ, actually to the equivalence class ofσ modulo=TS , a set of terms[[σ]] closed
under certain operations. In particular, ifs ∈ [[σ → τ]] andt ∈ [[σ]], then the raw term@(s, t) must
belong to the set[[τ]] even if it is not typable. In this section, we give a more liberal type system in which
all raw terms needed in the strong normalization proof become typablecandidate terms.

Variables:
x : σ ∈ Γ σ′ =TS σ

Γ Σ̀ x :C σ′

Abstraction:
Γ · {x : σ} Σ̀ t :C τ θ =TS σ

Γ Σ̀ (λx : σ.t) :C θ → τ

Instantiation:
Γ Σ̀ s :C σ

ξ some type substitution
of domainVar(σ)

σξ =TS τ

Γ Σ̀ s :C τ

Application:
Γ Σ̀ s :C σ Γ Σ̀ t :C τ

ξ most general unifier ofα→ β = σ ∧ α = τ
βξ =TS τ

Γ Σ̀ @(s, t) :C τ

Functions:
f : σ1 × . . .× σn → σ ∈ F

Γ Σ̀ t1 :C τ1 . . . Γ Σ̀ tn :C τn

ξ most general unifier ofσ1 = τ1 ∧ . . . ∧ σn = τn

τ =TS σξ

Γ Σ̀ f(t1, . . . , tn) :C τ

Figure 2. Typing judgements for candidate terms

Definition 3.3 A raw term is acandidate termsif it is typable in the type system of Figure 2.

The set of types of a typable candidate term of typeσ is a union of type equivalence classes modulo
=TS :

17

Lemma 3.4 ∀στ such thatσ =TS τ , Γ `Σ s :C σ iff Γ `Σ s : τ .

This allows us to talk aboutthe typesof a candidate term up to type equivalence. Note finally five
easy, important properties of candidate terms:

1. Every term is a candidate term;

2. Typing Lemmas 2.4, 2.5, 2.6, 2.8 and 2.13.1 hold for candidate terms;

3. HORPO applies to candidate terms as well as to terms, by keeping the same definition;

4. Becauseβ-reduction is type preserving, the set of candidate terms is closed underβ-reductions;

5. Becauseβ-reduction is strongly normalizing for a typedλ-calculus with arbitrary constants, the
set of candidate terms is well-founded with respect toβ-reductions (for the argument, consider a
signatureF ′ in which f : σ′1 × . . . × σ′n ⇒ σ′ ∈ F ′ providedf : σ1 × . . . × σn ⇒ σ ∈ F with
σ′i =TS σi for everyi ∈ [1..n] andσ′ =TS σ).

To make sense of the second observation, we need to show that�horpo, when comparing candidate
terms, is compatible with type equivalence.

Lemma 3.5 Assume given candidate termss, t and typesσ, σ′, τ, τ ′ such thats :C σ�horpo t :C τ ,
σ =TS σ′ andτ =TS τ ′. Thens :C σ′�horpo t :C τ ′.

Proof: By Lemma 3.4,s :C σ′ andt :C τ ′, hence the statement makes sense. Now, since=TS⊆≥TS ,
thenσ ≥TS τ impliesσ′ ≥TS τ ′ by transitivity.

The proof of the ordering statement proceeds by induction on(−→β ∪�, �)lex, and by case on the
definition of the ordering, using for each case the induction hypothesis together with Lemma 3.4.2

3.4 Ordering properties of HORPO

Because the strong normalization proof requires using candidate terms, two results of this section,
monotonicity and stability, which are used in the strong normalization proof, must be stated and proved
for both terms and candidate terms. Since terms are closed under taking subterms, proofs are indeed
essentially the same in both cases. We do them for candidate terms.

Lemma 3.6 (Stability) �horpo is stable for candidate terms and for terms.

Proof: LetΓ `Σ s :C σ�horpo t :C τ andγ be a type preserving substitution compatible withΓ. By
Lemma 2.13.1,Γ ·Ran(γ) Σ̀ sγ :C σ andΓ ·Ran(γ) Σ̀ tγ :C τ . We show thatΓ ·Ran(γ) Σ̀ sγ :C
σ�horpo tγ :C τ by induction on(−→β ∪�, �)lex. Since type preserving substitutions preserve types,
we will from now on only consider the term comparisons of the ordering and omit all references to types
and judgements. There are 12 cases according to the definition:

1. If s�horpo t by case 1, thensi�horpo t, and by induction hypothesissiγ�horpo tγ, and therefore,
sγ�horpo tγ by case 1.

2. If s�horpo t by case 2, thens = f(s), t = g(t), f >F g and for all ti ∈ t eithers�horpo ti or
sj �horpo ti for somesj ∈ s. By induction hypothesis, for alltiγ ∈ tγ either sγ�horpo tiγ or
sjγ�horpo tiγ for somesjγ ∈ sγ. Therefore,sγ = f(sγ)�horpo g(tγ) = tγ by case 2.

18

3. If s�horpo t by case 3, thens = f(s), t = g(t), f =F g, f, g ∈ Mul ands(�horpo)mult. By
induction hypothesissγ(�horpo)multγ, and hencesγ�horpo tγ by case 3.

4. If s�horpo t by case 4, thens = f(s), t = g(t), f =F g, f, g ∈ Lex, s(�horpo)lext, and for allti ∈ t
eithers�horpo ti or sj �horpo ti for somesj ∈ s. By induction hypothesissγ(�horpo)lextγ, and as in
the precedence case, by induction hypothesis, for alltiγ ∈ tγ eithersγ�horpo tiγ or sjγ�horpo tiγ
for somesjγ ∈ sγ. Thereforesγ�horpo tγ by case 4.

5. If s�horpo t by case 5, the reasoning is similar to Case 1.

6. If s�horpo t by case 6, thens = λx.u andu�horpo t. Letγ a substitution of domainVar(s)∪Var(t),
hencex 6∈ Dom(γ) by assumption onx. By induction hypothesis,uγ�horpo tγ, hencesγ =
λx.uγ�horpo tγ by case 6.

7. If s�horpo t = @(t) by case 7, then for everyti ∈ t, eithers�horpo ti, andsγ�horpo tiγ by induction
hypothesis, orsj �horpo ti for somesj ∈ s, andsjγ�horpo tiγ by induction hypothesis. Therefore,
since@(tγ) is a partial left-flattening oftγ, sγ�horpo tγ by case 7.

8. If s�horpo t by Case 8, thent = λx.v with x 6∈ Var(v) ands�horpo v. By induction hypothesis,
sγ�horpo vγ for every substitutionγ of domainVar(v) \ {x} such thatx 6∈ Var(vγ), hence
sγ�horpo tγ = λx.vγ by Case 8.

9. If s = @(s1, s2)�horpo t = @(t) by case 9, then the proof goes as in case 2, concluding by case 9.

10. If s�horpo t by case 10, thens = λx.u, t = λx.v and u�horpo v. By induction hypothesis
uγ�horpo vγ. Assuming thatx /∈ Dom(γ), thensγ = λx.uγ�horpo λx.vγ = tγ by case 10.

11. If s = �horpo t by case 11, then the property holds by stability ofβ-reduction.

12. If s = �horpo t by case 12, then the property holds by stability ofη-reduction. 2

Lemma 3.7 (Polymorphism)�horpo is polymorphic for candidate terms and for terms.

Proof: LetΓ `Σ s :C σ�horpo t :C τ andδ be a specialization compatible withΓ. By Lemma 2.13.2,
Γ · Ran(δ) ` Σ sδ :C σξδ andΓ · Ran(δ) ` Σ tδ :C τξδ. We show thatΓ · Ran(δ) ` Σ sδ :C
σξδ �horpo tδ :C τξδ as before, by induction on(−→β ∪�, �)lex. Since the type ordering is stable,
σ ≥TS τ implies σξδ ≥TS τξδ and the proof continues as previously, using the stability of the type
ordering for each recursive comparison. 2

Lemma 3.8 (Monotonicity) �horpo is monotonic for candidate terms and for terms.

Proof: Omitting the environment, we prove thats :C σ�horpo t :C σ impliesu[s] :C τ �horpo u[t] :C τ
for all u[x : σ] :C τ .

We proceed by induction on the size ofu. If u is empty it holds. Otherwise there are three cases:

• u[x : σ] is of the formu′[f(. . . , x : σ, . . .)] for some function symbolf . If f ∈ Mul, then
f(. . . s . . .) :C θ�horpo f(. . . t . . .) :C θ follows by Case 3, and we conclude by induction sinceu′

is smaller thanu. Otherwise,f ∈ Lex, hence{. . . s . . .}(�horpo)lex{. . . t . . .} and, for everyv ∈
{. . . t . . .}, there existsu ∈ {. . . s . . .} such thatu�horpo v. Therefore,f(. . . s . . .)�horpo f(. . . t . . .)
by Case 4 and we conclude by induction hypothesis as before.

19

• u[x : σ] is of the formu′[@(u, x : σ)] (resp.u′[@(x : σ, u)]). Then,@(s, u) : θ�horpo @(t, u) : θ
(resp.@(u, s) : θ�horpo @(u, t) : θ) follows by Case 9. We conclude by induction hypothesis.

• u[x : σ] is of the formu′[λy.x]. The result follows similarly by Case 10. 2

From Lemmas 3.8 and 3.5, we easily get a generalized monotonicity property of�horpo for candidate
terms of equivalent type. In the rest of the paper we will make use of this generalized monotonicity
property by referring to Lemma 3.8. Note also that the monotonicity property of�horpo implies the
monotonicity of the ordering�horpo on terms of equivalent type.

A key usual consequence of monotonicity is that every subterm of a strongly normalizable term is
itself strongly normalizable. This is true when decreasing sequences of terms are type preserving, since
an infinite decreasing sequence originating in a subterm can be lifted in an infinite decreasing sequence
originating in the superterm. This becomes false otherwise, since typing prevents lifting a decreasing
sequence from a subterm to its superterm.

Lemma 3.9�horpo is compatible.

This is so because types, hence comparisons, are preserved by the use of a compatible environment.

Lemma 3.10�horpo is functional.

Proof: By definition and monotonicity. 2

Although the above proofs are slightly more difficult technically than the usual proofs for the recur-
sive path ordering, they follow the same kind of pattern (polymorphism was actually never considered
before). This contrasts with the proof of strong normalization to come.

3.5 Strong Normalization

In this section, we consider the well-foundedness of the strict ordering(�horpo)
+, that is, equivalently,

the strong normalization of the rewrite relation defined by the ruless−→ t such thats�horpo t. For
the recursive path ordering, well-foundedness follows from Kruskal’s tree theorem. Since we do not
know of any non-trivial extension of Kruskal’s tree theorem for higher-order terms that includesβ-
reductions (and wasted much of our time in looking for an appropriate one), we adopt a completely
different method, the computability predicate proof method of Tait and Girard. To our knowledge, the
use of this method for proving well-foundedness of a recursively defined relation is original. This proof
method will suggest an important improvement of our ordering discussed in Section 4.

A proof based on that method starts by defining for each typeσ, a set of terms called the computabil-
ity predicate[[σ]]. Terms in[[σ]] are said to be computable. So are substitutions made of computable
terms. In practice,[[σ]] can be defined by the properties it should satisfy. The most important one is
that computable terms must be strongly normalizable. Given an arbitrary computable, hence strongly
normalizable substitutionγ, one can then build an induction argument to prove that, for an arbitrary
term t, the termtγ is computable. The identity substitution being computable, we then conclude thatt
is computable, hence strongly normalizable. See [22] for a detailed exposition of the method in case of
systemF , and [20] for a discussion about the different possibilities for defining computability predicates
in practice.

20

3.5.1 Type orderings

Two lemmas needed to justify our coming construction of the candidate interpretations: preservation of
groundness first; second, any type ordering is included into an ordering enjoying the subterm property.

Lemma 3.11 Assumeσ is ground andσ ≥TS τ . Thenτ is ground as well.

Proof: Because the type ordering is both stable and well-founded. 2

Lemma 3.12 Let≥TS be a quasi-ordering on types such that>TS is well-founded, arrow monotonic and
arrow preserving. Then, the relation≥→TS = (≥TS ∪�→)∗ is a well-founded quasi-ordering on types
extending≥TS and�→, whose equivalence coincides with=TS .

Proof: First, we show that�→ and≥TS commute, i.e that≥TS ·�→ ⊆ �→· ≥TS . Assuming first
thatτ → σ �→ σ ≥TS ρ, then, by arrow monotonicity,τ → σ ≥TS τ → ρ �→ ρ. Assuming now that
τ → σ �→ τ yields a similar computation. By transitivity of≥TS , it follows that≥→TS=≥TS ·�∗

→.
We show now that=TS = =→

TS . Assume thatσ ≥TS ρ1 �n
→ τ ≥TS ρ2 �m

→ σ for typesρ1 andρ2,
and natural numbersn,m. By applying commutation twice followed by transitivity of≥TS , we get
σ �m+n

→ θ ≥TS σ. Therefore,θ = u[σ]p for some contextu and positionp with |p| = m + n, such
that there is an arrow inu at each positionq < p. Assume thatm + n > 0. By arrow preservation
σ 6=TS u[σ]p, henceσ >TS u[σ]p. By arrow monotonicity,u[σ] ≥TS u[u[σ]] and by arrow preservation
again,u[σ] >TS u[u[σ]], and so on, resulting in an infinite sequenceσ >TS u[σ] >TS u[u[σ]] >TS . . .
which contradicts the well-foundedness of>TS . The property follows.

Sinceτ → σ ≥→TS τ andτ → σ ≥→TS σ by definition of≥→TS , and=TS = =→
TS , arrow preservation

implies thatτ → σ >→
TS τ andτ → σ >→

TS σ.
We are left with well-foundedness. From=TS = =→

TS and≥→TS=≥TS ·�∗
→, it follows that>→

TS⊆>TS
∪ ≥TS ·�+

→. We show that the latter is well-founded. Since>TS is well-founded and>TS⊆≥TS , any
infinite sequence with(>TS ∪ ≥TS ·�+

→) is an infinite sequence with≥TS ·�+
→. Commutation and

well-foundeness of�→ yield the contradiction. 2

3.5.2 Candidate interpretations

Again, this section refers to candidate terms, rather than to candidate judgements. Computability of
candidate terms of variable type is reduced to the computability of candidate terms of ground type by
type instantiation. Our definition of computability for candidate terms of a ground type is standard, but
we must make sure that it is compatible with the equivalence=TS on types. Technically, we denote by
[[σ]] the computability predicate of the typeσ, which, by construction, will be equal to the predicate[[τ]]
for any typeτ =TS σ. Without loss of generality, we assume a global environment for variables.

Definition 3.13 The family ofcandidate interpretations{[[σ]]}σ∈TS is a family of subsets of the set of
candidates whose elements are the least sets satisfying the following properties:

(i) If σ is a ground data type, thens :C σ ∈ [[σ]] iff t ∈ [[τ]] for all t :C τ such thats�horpo t
(ii) If σ is a ground functional typeρ→ τ thens ∈ [[σ]] iff @(s, t) ∈ [[τ]] for all t :C∈ [[ρ]];
(iii) If σ is not ground, thens ∈ [[σ]] iff s ∈ [[σξ]] for all ground type substitutionsξ.
A candidate terms of typeσ is said to becomputableif s ∈ [[σ]]. A vectors of terms of typeσ is

computable iff so are all its components. A (candidate) term substitutionγ is computable if all candidate
terms in{xγ | x ∈ Dom(γ)} are computable.

21

Case (iii) in the definition allows us to eliminate non-ground types by appropriate type instantiations:
all properties of candidate interpretations proved for ground types can then be easily lifted to non-
ground ones. This is so because Cases (i) and (ii) of the definition refer to ground types only: in Case
(ii), ρ andτ are ground sinceρ → τ is ground; in Case (i),τ is ground by Lemma 3.11. Therefore,
[[σ]] is a subset of the set of candidate terms of typeσ recursively defined in terms of itself in Case
(i) when τ =TS σ, and of other sets[[τ]], in Case (i) and (ii) withσ >TS τ , and [[ρ]] with σ >→

TS ρ.
Therefore, our definition splits into two: a definition of candidate interpretations on ground types, based
on a lexicographic combination of an induction on the well-founded type ordering>→

TS (which includes
>TS), and a fixpoint computation for data types; a definition of candidate interpretations for non-ground
types which reduces to the definition on ground types.

Instead of our indexed family of sets, we could consider the functionF : TS −→ 2T such thatF (σ) =
[[σ]]. This functionF is defined by induction on types (using>→

TS). Besides, for each date typeσ, F (σ) is
defined by a fixpoint computation (Case (i) withτ =TS σ). Since Case (i) does not involve any negation,
it is monotonic with respect to set inclusion, therefore ensuring the existence of a least fixpoint.

The choice of a particular formulation for the computability predicate is entirely driven by thecom-
putability propertiesone needs. Most of these are proved for ground types by an ”induction on the
definition of the candidate interpretations”, by which we mean an outer induction on the type ordering
>→
TS followed by an inner induction on the fixpoint computation. Since the ordering computations in-

volve subterms, a potential difficulty is that a term of a ground type may have subterms of a non-ground
type. Fortunately, type comparisons will imply the type-groundness property when needed.

We denote byT min
S the set of ground types which are minimal with respect to>→

TS .

Lemma 3.14 Assuming thatS contains a constant, thenT min
S is a non-empty set of data types.

Proof: Because>→
TS is well-founded and arrow types cannot be minimal in>→

TS . 2

Preservation of data types follows easily from arrow preservation and stability:

Lemma 3.15 Assume thatσ =TS τ andσ is a data type, thenτ is a data type as well.

The following property is a clear consequence of the definition, Lemma 3.4 and arrow preservation:

Lemma 3.16 Assumeσ =TS τ . Then[[σ]] = [[τ]].

In the sequel, we assume that functional types are in canonical form and thatn > 0 in σ = σ1 →
. . .→ σn → τ .

We first give the properties of the interpretations. Properties (i) to (v) are standard. Recall that a term
is neutral if it is not an abstraction. Property (vi) is adapted from the simple type discipline, in which
case the property is true of all basic types. Property (vii) is void when the algebraic signature is empty.
It appeared first in [28].

Property 3.17 (Computability Properties)
(i) Every computable term is strongly normalizable;
(ii) Assuming thats is computable ands�horpo t, thent is computable;
(iii) A neutral terms is computable ifft is computable for everyt such thats�horpo t;
(iv) If t be a vector of computable terms such that@(t) is a candidate term, then@(t) is computable;
(v) λx : σ.u is computable iffu{x 7→ w} is computable for every computable termw :C σ;
(vi) Lets :C σ ∈ T min

S . Thens is computable iff it is strongly normalizable.
(vii) Let f : σ → τ ∈ F ands = f(s) :C σ. Thens is computable ifs :C σ is computable.

22

Our definition does not explicitly state that variables are computable. Variables of a data type are of
course computable by definition (item (i)) since they have no reduct. But variables of a functional type
will be computable by computability property (iii). This will actually forbid us to prove the computabil-
ity properties (i), (ii) and (iii) separately. A possible alternative would be to modify the definition of the
computability predicates by adding the property that variables of a functional type are computable. This
would make the properties (i), (ii) and (iii) independent to the price of other complications.

Proof:

• Property (iv).

Straightforward induction on the length oft and use of Case (ii) of the definition.

• Properties (i), (ii), (iii).

Note first that the only if part of property (iii) is property (ii). We are left with (i), (ii) and the if
part of (iii) which we now spell out as follows:

Given a ground typeσ and a candidate terms such thats :C σ ∈ [[σ]], we prove by induction on the
definition of[[σ]] that

(i) s is strongly normalizable;

(ii) ∀t :C τ such thats�horpo t, t is computable;

(iii) ∀u :C σ neutral,u is computable ifw :C θ ∈ [[θ]] for everyw such thatu�horpo w.

Sinces�horpo t andu�horpo w, it follows from the definition of the ordering thatσ ≥TS τ and
σ ≥TS θ, implying thatτ and θ are ground by Lemma 3.11. We prove each property in turn,
distinguishing in each case whetherσ is a data type or functional.

(i) (a) Assume first thatσ is a data type. All reducts ofs are computable by definition of the
interpretations, hence strongly normalizable by induction hypothesis, implying thats is
strongly normalizable.

(b) Assume now thatσ = θ → τ , and lets0 = s :C σ = θ0�horpo s1 :C θ1 . . .�horpo sn :C
θn�horpo . . . be a derivation issuing froms. Note thatθi must be ground by Lemma 3.11.
Hencesn ∈ [[θn]] by assumption forn = 0 and repeated applications of induction property
(ii) for n > 0. Such derivations are of the following two kinds:
i. σ >TS θi for somei, in which casesi is strongly normalizable by induction hypothesis,

hence the derivation issuing froms is finite;
ii. θn =TS σ for all n, in which case{@(sn, y :C σ1) :C σ2 → . . . σn → τ}n is a sequence

of candidate terms of ground types which is strictly decreasing with respect to�horpo

by monotonicity. Sinceσ >→
TS σ1, y :C σ1 is computable by induction hypothesis (iii),

hence, by definition,@(sn, y) is computable. By induction hypothesis (i), the above
sequence is finite, implying that the starting sequence itself is finite.

(ii) (a) Assume thatσ is a data type. The result holds by definition of the candidate interpretations.
(b) Let σ = θ → ρ, henceθ andρ are ground. By arrow preservation and decreasingness

properties, there are two cases:
i. ρ ≥TS τ . Sinces is computable,@(s, u) is computable for everyu ∈ [[θ]]. Let y :C θ.

By induction hypothesis (iii),y ∈ [[θ]], hence@(s, y) is computable. Since@(s, y) :C
ρ�horpo t :C τ by case 5 of the definition,t is computable by induction hypothesis (ii).

23

ii. τ = θ′ → ρ′, henceθ′ and ρ′ are ground, withθ =TS θ′ and ρ ≥TS ρ′. Sinces
is computable, givenu ∈ [[θ]], then@(s, u) ∈ [[ρ]], hence, by induction hypothesis
(ii) @(t, u) ∈ [[ρ′]]. Since[[θ]] = [[θ′]] by Lemma 3.16,t ∈ [[τ]] by definition of the
interpretations.

(iii) (a) Assume thatσ is a data type. The result holds by definition of the candidate interpretations.
(b) Assume now thatσ = σ1 → . . . → σn → τ , wheren > 0 andτ is a data type. Then,

σ1, . . . , σn, τ are ground types. By property (iv)u is computable if@(u, u1, . . . , un) is
computable for arbitrary termsu1 ∈ [[σ1]], . . . , un ∈ [[σn]] which are strongly normalizable
by induction property (i). By definition, asτ is a data type,@(u, u1, . . . , un) is computable
iff so are all its reducts.
We prove by induction on the multiset of computable terms{u1, . . . , un} ordered by
(�horpo)mul the property (H) stating that all termsw strictly smaller than@(u, u1, . . . , ui)
in �horpo are computable. Remark thatw has a ground type by definition of the ordering
and Lemma 3.11. Takingi = n yields the desired property, implying thatu is computable.
If i = 0, terms strictly smaller thanu are computable by assumption. For the gen-
eral case, leti = (j + 1) ≤ n. We need to consider all termsw strictly smaller than
@(@(u, u1, . . . , uj), uj+1). Sinceu is neutral, hence is not an abstraction, there are two
possible cases:
i. @(@(u, u1, . . . , uj), uj+1)�horpo w by Case 5. There are again two possibilities:

– @(u, u1, . . . , uj)�horpo w, and therefore@(u, u1, . . . , uj)�horpo w for type reason
sincew is also a reduct of@(u, u1, . . . , uj+1). We then conclude by induction hy-
pothesis (H).

– uj+1�horpo w. We conclude by assumption and induction property (ii).
ii. @(@(u, u1, . . . , uj), uj+1)�horpo w by Case 9, hencew = @(w). By definition of the

multiset extension and for type reasons, there are the following two possibilities:
– for all v ∈ w, either@(u, u1, . . . , uj)�horpo v, andv is computable by induction

hypothesis (H), oruj+1�horpo v, in which casev is computable by assumption and
induction property (ii). It follows thatw is computable by Property 3.17 (iv).

– w1 = @(u, u1, . . . , uj) anduj+1�horpo w2, implying thatw2 is computable by as-
sumption and induction property (ii). By induction property (H), all reducts ofw are
computable. Sincew is an application hence is neutral, it is computable by induction
property (iii).

As a consequence, all reducts of@(u, u1, . . . , un) are computable and we are done. 2

• Property (v), assuming that the type ofλx : σ.u is ground. In particular,σ is a ground type, as well
as the type ofu.

The only if part is property (ii) together with the definition of computability. For the if part, we
prove that@(λx.u, w) is computable for an arbitrary computablew of typeσ such thatu{x 7→ w}
is computable, implying thatλx.u is computable by Definition 3.13 (ii).

Since variables are computable by property (iii),u = u{x 7→ x} is computable by assumption. By
property (i),u andw are strongly normalizable, hence they are strongly normalizable by property
(i). We can now prove that@(λx.u, w) is computable by induction on the pair{u, w} ordered by
(�horpo)lex. By property (iii), the neutral term@(λx.u, w) is computable iffv is computable for all
v such that@(λx.u, w)�horpo v. Once more, the definition and Lemma 3.11 imply that the type of
v is ground. There are several cases to be considered.

24

1. If the comparison is by case 5, there are two cases:
- if w�horpo v, we conclude by property (ii).
- if λx.u�horpo v, there are two cases. Ifu�horpo v by case 6, we conclude by property
(ii) again. Otherwise,v = λx.u′ andu�horpo u′, implying thatu′ has a ground type, and
u{x 7→ w}�horpo u′{x 7→ w} by Lemma 3.6. By assumption and property (ii),u′{x 7→ w} is
therefore computable. Hence,@(v, w) which has the same ground type asu′ is computable by
induction hypothesis applied to the pair(v = λx.u′, w). We then conclude by definition of the
interpretations thatv is computable.

2. If the comparison is by case 9, thenv = @(v) and all terms in{v} are smaller thanw or λx.u,
hence have a ground type. There are two cases:
- v1 = λx.u andw�horpo vi for i > 1. Thenvi is computable by property (ii) and, since
u{x 7→ v2} is computable by the main assumption,@(v1, v2) is computable by induction
hypothesis. Ifv = @(v1, v2), we are done, and we conclude by property (iv) otherwise.
- For all other cases, terms inv are reducts ofλx.u andw. Note that reducts ofw and reducts
of λx.u which are themselves reducts ofu are computable by property (ii). Therefore, if all
terms inv are such reducts,v is computable by property (iv).
Otherwise, for typing reason,v1 is a reduct ofλx.u of the formλx.u′ with u�horpo u′, and
all other terms inv are reducts of the previous kind. By the main assumption,u{x 7→ v′′}
is computable for an arbitrary computablev′′. Besides,u{x 7→ v′′}�horpo u′{x 7→ v′′} by
Lemma 3.6. Thereforeu′{x 7→ v′′} is computable for an arbitrary computablev′′ by Property
(ii). By induction hypothesis,@(v1, v2) is again computable. Ifv = @(v1, v2), we are done,
otherwisev is computable by property (iv).

3. Otherwise,@(λx.u, w)�horpo v by case 11, thenu{x 7→ w}�horpo v. By assumption,u{x 7→
w} is computable, and hencev is computable by property (ii).

• Property (vi).

The only if direction is property (i). For the if direction, lets be a strongly normalizable term of
ground typeσ ∈ T min

S . We prove thats is computable by induction on the definition of�horpo.
Sinceσ is a data type,s must be neutral. Let nows�horpo t :C τ , henceσ ≥TS τ which is therefore
ground. By definition ofT min

S , τ =TS σ, hence, by Lemma 3.15,τ is a data type, and sinceσ is
minimal, so isτ , henceτ ∈ T min

S . By assumption ons, t must be strongly normalizable, and by
induction hypothesis, it is therefore computable. Since this is true of all reducts ofs, by definition
s is computable.

• Property (vii).

Assuming that the typeσ of f(s) is ground does not imply, unfortunately, that terms ins have
a ground type. On the other hand, all other properties have been already proved, hence hold for
arbitrary types by the lifting argument. Because we do not need to refer to the definition of the
candidate interpretations in the coming proof, but will use instead the proved computability proper-
ties, we will be able to carry out the proof without any groundness assumption. In particular, since
terms ins are computable by assumption, they are strongly normalizable by property (i). We use
this remark to build our induction argument: we prove thatf(s) is computable by induction on the
pair (f, s) ordered lexicographically by(>F , (�horpo)statf)lex.

Sincef(s) is neutral, by property (iii), it is computable iff everyt such thatf(s)�horpo t is com-
putable, which we prove by an inner induction on the size oft. We discuss according to the possible

25

cases of the definition of�horpo.

1. Let f(s)�horpo t by case 1, hencesi�horpo t for somesi ∈ s. Sincesi is computable,t is
computable by property (ii).

2. Lets = f(s)�horpo t by case 2. Thent = g(t), f >F g and for everyv ∈ t eithers�horpo v,
in which casev is computable by the inner induction hypothesis, oru�horpo v for someu ∈ s
and v is computable by property (ii). Therefore,t is computable, and sincef >F g, t is
computable by the outer induction hypothesis.

3. If f(s)�horpo t by case 3, thent = g(t), f =F g, ands(�horpo)mult. By definition of the
multiset comparison, for everyti ∈ t there is somesj ∈ s, s.t.sj �horpo ti, hence, by property
(ii), ti is computable. This allows us to conclude by the outer induction hypothesis thatt is
computable.

4. If f(s)�horpo t by case 4, thent = g(t), f =F g, s(�horpo)lext and for everyv ∈ t either
f(s)�horpo v or u�horpo v for someu ∈ s. As in the precedence case, this implies thatt is
computable. Then, sinces(�horpo)lext, t is computable by the outer induction hypothesis.

5. If f(s)�horpo t by case 7, let@(t1, . . . , tn) be the partial left-flattening oft used in that proof.
By the same token as in case 2, every term int is computable, hencet is computable by
property (iv).

6. If f(s)�horpo t by case 8, thent = λx.u with x 6∈ Var(u), andf(s)�horpo u. By the in-
ner induction hypothesis,u is computable. Hence,u{x 7→ w} = u is computable for any
computablew, and therefore,t = λx.u is computable by property (v). 2

3.5.3 Strong normalization proof

We are now ready for the strong normalization proof.

Lemma 3.18 Letγ be a type-preserving computable substitution andt be an algebraicλ-term. Thentγ
is computable.

Proof: The proof proceeds by induction on the size oft.

1. t is a variablex. Thenxγ is computable by assumption.

2. t is an abstractionλx.u. By Property 3.17 (v),tγ is computable ifuγ{x 7→ w} is computable for
every well-typed computable candidate termw. Takingδ = γ ∪{x 7→ w}, we haveuγ{x 7→ w} =
u(γ ∪ {x 7→ w}) sincex may not occur inγ. Sinceδ is computable and|t| > |u|, by induction
hypothesis,uδ is computable.

3. t = @(t1, t2). Thent1γ andt2γ are computable by induction hypothesis, hencet is computable by
Property 3.17 (iv).

4. t = f(t1, . . . , tn). Thentiγ is computable by induction hypothesis, hencetγ is computable by
Property 3.17 (vii). 2

We can now easily conclude the proof of well-foundedness needed for our main result, Theorem 3.2,
by showing that every term is strongly normalizable with respect to�horpo.

Proof: Given an arbitrary termt, let γ be the identity substitution. Sinceγ is type-preserving and
computable,t = tγ is computable by Lemma 3.18, and strongly normalizable by Property 3.17 (i).2

26

The restriction of our proof to the first-order sublanguage reduces essentially to Property 3.17 (vii),
in which computability is simply identified with strong normalizability. This simple proof of well-
foundedness of Dershowitz’s recursive path ordering is spelled out in full detail in [27]. The same proof
technique had previously been used in a first order context first by Buscholz [10], and later in [19]
and [23]. This simple well-foundedness proof of RPO proof does not use Kruskal’s tree theorem, and of
course, does not show that the recursive path ordering is a well-order. It appears therefore that proving
the property of well-foundedness of the recursive path ordering is quite easy while proving the slightly
stronger (and useless) property of well-orderedness becomes quite difficult.

3.6 Examples

We now illustrate both the expressive power of HORPO and its weaknesses with more examples. We
start with a polymorphic example that shows the power of Case 7 of HORPO.

Example 12 (adapted from [38]) LetS = {},S∀ = {α, β} and

F =


nil : List(α), cons : α× List(α)⇒ List(α),
dapply : β × (β → β)× (β → β)⇒ β,
lapply : β × List(β → β)⇒ β


{F, G : β → β, x : β} ` dapply(x, F, G) → F (G(x))

{x : α} ` lapply(x, nil) → x
{F : β → β, x : β, l : List(β → β)} ` lapply(x, cons(F, L)) → F (lapply(x, L))

The first rule follows by applying Case 7 twice. The second one holds by Case 1. For the third, we
needList(α) >TS α for every typeα. Using Case 7, we show thatlapply(x, cons(F, L))�horpo F which
holds by applying Case 1 twice (note that types decrease) andlapply(x, cons(F, L))�horpo lapply(x, L)
which holds by applying Case 3 (takinglapply ∈Mul) and Case 1 forcons(F, L)�horpo L. 2

The following classical example defines insertion for a polymorphic list. Polymorphism is then ex-
ploited by applying the algorithm to particular ascending and descending sorting algorithms for lists of
natural numbers.

Example 13 Insertion Sort. LetS∀ = {α}; S = {IN : ∗, List : ∗ ⇒ ∗}

F =



nil : List(α); cons : α× List(α)⇒ List(α);
insert : α× List(α)× (α→ α→ α)× (α→ α→ α)⇒ List(α);
sort : List(α)× (α→ α→ α)× (α→ α→ α)⇒ List(α);
ascending sort, descending sort : List(IN)⇒ List(IN);
max, min : IN × IN ⇒ IN


Let Γ1 = {X, Y : α→ α→ α, n : α} andΓ2 = {X, Y : α→ α→ α, n, m : α, l : List(α)}.

Γ1 ` insert(n, nil, X, Y) → cons(n, nil)
Γ2 ` insert(n, cons(m, l), X, Y) → cons(X(n, m), insert(Y (n,m), l, X, Y))

The firstinsert rule is easily taken care of by applying Case 2 with the precedenceinsert >F cons,
and then Case 1. For the second rule, we use Case 2 and recursively need to show two subgoals:

insert(n, cons(m, l), X, Y)�horpo @(X,n, m),
which follows by Case 7, and then Case 1 recursively (usingList(α) >TS α);

insert(n, cons(m, l), X, Y)�horpo insert(Y (n, m), l, X, Y),
which follows by Case 4 with a right-to-left lexicographic status forinsert, calling recursively for the

27

subgoalinsert(n, cons(m, l), X, Y)�horpo @(Y, n,m) which is solved by Case 7 and Case 1. We now
give the rules for sorting:

{X, Y : α→ α→ α} ` sort(nil, X, Y) → nil
{X, Y : α→ α→ α, n : α, l : List(α)} ` sort(cons(n, l), X, Y) → insert(n, sort(l, X, Y), X, Y)

These rules are easily oriented by�horpo, with the precedencesort >F insert. We now introduce rules
for computingmax andmin on natural numbers (with either{x : IN} or {x, y : IN} as environment):

max(0, x) → x max(x, 0) → x max(s(x), s(y)) → s(max(x, y))
min(0, x) → 0 min(x, 0) → 0 min(s(x), s(y)) → s(min(x, y))

We simply need the precedencemax, min >F s for these first-order rules. We come finally to the
ascending and descending sort functions for lists of natural numbers, for which typing the righthand
sides (with type IN) illustrates the use of type substitutions:

{l : List(IN)} ` ascending sort(l) → sort(l, λxy.min(x, y), λxy.max(x, y))
{l : List(IN)} ` descending sort(l) → sort(l, λxy.max(x, y), λxy.min(x, y))

Unfortunately,�horpo fails to orient these two seemingly easy rules. This is so, because the term
λxy.min(x, y) occurring in the righthand side has type IN→ IN → IN, which is not comparable to
any lefthand side type. We will come back to this example in Section 4. 2

We now come to a more tricky example, for which we actually need the transitive closure of the
ordering to show termination of a rule, that is, we will need to invent amiddle terms such that
l�horpo s�horpo r for some rulel→ r.

Example 14 (Surjective Disjoint Union, taken from [47]). Let
S = {A, B, U}, α ∈ {A, B, U},
F = {inl : A⇒ U ; inr : B ⇒ U ; caseα : U × (A→ α)× (B → α)⇒ α}.

{X : A, F : A→ α, G : B → α} ` caseα(inl(X), F,G) → @(F, X)
{Y : B, F : A→ α, G : B → α} ` caseα(inr(Y), F,G) → @(G, Y)
{Z : U, F : U → α} ` caseα(Z, λx.H(inl(x)), λy.H(inr(y))) → @(H, Z)

The typeU here is the disjoint union of typesA andB, while thecaseα function is the associated
recursor. This construction exists in functional languages with sum types.

Note that we write@(F, X) instead ofF (X) to make clear that@ is the top function symbol of the
termF (X). For the type ordering we needA =TS B =TS U . The first two rules are taken care of by
Case 7. For the last one, we apply Case 7, and then proveλx.H(inl(x))�horpo H by showing

λx.H(inl(x)) �
horpo

λx.H(x) �
horpo

H

The last comparison holds by Case 12. The first one holds by Cases 10, then Case 9 and finally Case 1.

4 Computability Closure

The ordering is quite sensitive to innocent variations of the rules to be checked, like adding (higher-
order) dummy arguments to righthand sides orη-expanding higher-order variables in the righthand sides.

28

We will solve these problems by improving our definition in the light of the strong normalization proof.
In Case 1 of Definition 3.1, we assume that the righthand side termt is indeed smaller or equal to a
subtermu of the lefthand sidef(s). Assuming thats is computable, we conclude by Property 3.17 (ii)
thatt is computable. This argument comes again and again in the proofs of the computability properties.
Let us now change the definition of Case 1, and require thatu = @(v, w)�horpo t, for some subterms
v andw of s. By assumption,v andw are computable, making@(u, v) computable by Property 3.17
(iv), and we are back to the previous case We see here thatu may not be a term ins, but must be built
from terms ins by computability preserving operations. For example, since a higher-order variableX is
computable if and only ifλx.X(x) is computable, we may haveX as a subterm of the lefthand side of a
rule, andλx.X(x) in the righthand side. This discussion is formalized in subsection 4.1 with the notion
of a computability closure borrowed from [6], with a slightly enhanced formulation.

4.1 The Computability Closure

Given a set of computable terms, the computability closure builds a superset of computable terms
by using computability preserving operations such as those listed in Property 3.17. First, we need a
technical definition allowing us to control the type of a selected subterm:

Definition 4.1 Let >TS be a type ordering. The (strict)type-decreasing subterm relation, denoted by
�≥TS

, is defined as:s : σ �≥TS
t : τ iff s � t, σ ≥TS τ andVar(s) ⊆ Var(t).

Definition 4.2 Given a termt = f(t) with f ∈ F , we define itscomputability closureCC(t) asCC(t, ∅),
whereCC(t,V), withV ∩ Var(t) = ∅, is the smallest set of typable terms containing all variables inV,
all terms int, and closed under the following operations:

1. subterm of minimal type: lets ∈ CC(t,V), andu : σ be a subterm ofs such thatσ ∈ T min
S and

Var(u) ⊆ Var(t); thenu ∈ CC(t,V);

2. precedence: letg such thatf >F g, ands ∈ CC(t,V); theng(s) ∈ CC(t,V);

3. recursive call: lets be a sequence of terms inCC(t,V) such that the termf(s) is well typed and
t(�horpo ∪�≥TS

)statf s; theng(s) ∈ CC(t,V) for everyg =F f ;

4. application: lets : σ1 → . . . → σn → σ ∈ CC(t,V) andui : σi ∈ CC(t,V) for everyi ∈ [1..n];
then@(s, u1, . . . , un) ∈ CC(t,V);

5. abstraction: letx /∈ Var(t) ∪ V ands ∈ CC(t,V ∪ {x}); thenλx.s ∈ CC(t,V);

6. reduction: letu ∈ CC(t,V), andu�horpo v; thenv ∈ CC(t,V);

7. weakening: letx 6∈ Var(u, t) ∪ V. Then,u ∈ CC(t,V ∪ {x}) iff u ∈ CC(t,V).

As an illustration of the definition, we show that abstraction as well as extensionality are equivalences:

Example 15 Assume thatλx.s ∈ CC(t,V) andx 6∈ Var(t)∪ V. By weakening,λx.s ∈ CC(t,V ∪ {x}).
Sincex ∈ CC(t,V ∪ {x}) by base case of the definition,@(λx.s, x) ∈ CC(t,V ∪ {x}) by application
case. Therefore,s ∈ CC(t,V ∪ {x}) by reduction case. 2

29

Example 16 Assuming thatx 6∈ Var(u) ∪ V, we show thatλx.@(u, x) ∈ CC(t,V) iff u ∈ CC(t,V).
For the if direction, assuming without loss of generality thatx 6∈ Var(t), by weakening,u ∈ CC(t,V∪

{x}). By basic case,x ∈ CC(t,V ∪ {x}), hence, by application,@(u, x) ∈ CC(t,V ∪ {x}), and by
abstraction, we getλx.@(u, x) ∈ CC(t,V).

Conversely, assuming thatλx.@(u, x) ∈ CC(t,V) with x 6∈ Var(u), thenu ∈ CC(t,V) by reduction,
sinceλx.@(u, x)�horpo u by Case 12 of Definition 3.1. 2

An important remark is that we use the previously defined ordering�horpo in Case 6 and the relation
�horpo ∪�≥TS

in Case 3 of the closure definition instead of simplyβ-reductions andβ ∪ �-reductions
respectively as in [32]. And indeed, we will consequently use�horpo and�horpo ∪�≥TS

as induction
arguments in our proofs. The derivation of the extensionality rule shows the usefulness of rule 6. A
price has to be paid for the added expressive power: because�+

horpo is not order-isomorphic to the
natural numbers, the computational closure may be infinite, and since�+

horpo is probably undecidable,
so is the membership of a term to the computability closure. But this membership remains decidable if
the number of times Rules 6 and 3 are used is bound. In practice, we can restrict their use by allowing
a single step only, which is enough for all examples of the paper. More complex examples to come
illustrate how checking membership of a term to a closure can be done by a goal-oriented use of the
rules of Defining 4.2.

The following property of the computability closure is shown by induction on the definition:

Lemma 4.3 Assume thatu ∈ CC(t). Then,uγ ∈ CC(tγ) for every type-preserving substitutionγ.

Proof: We prove that ifu ∈ CC(t,V) with V ⊆ X \ (Var(t) ∪ Var(tγ) ∪ Dom(γ)), thenuγ ∈
CC(tγ,V). We proceed by induction on the definition ofCC(t,V). Note that the property onV depends
on t andγ, but not onu. It will therefore be trivially satisfied in all cases but abstraction and weakening.
And indeed, these are the only cases in the proof which are not routine, hence we do them in detail as
well as Case 1 to show its simplicity.

Case 1: lets = f(s) : σ ∈ CC(t,V) with f ∈ F and u : τ be a subterm ofs with σ ∈ T min
S and

Var(u) ⊆ Var(t). By induction hypothesis,sγ ∈ CC(tγ,V). By assumption onu, uγ : τ is a
subterm ofsγ : σ andVar(uγ) ⊆ Var(tγ). Therefore,uγ ∈ CC(tγ,V) by Case 1.

Case 5: letu = λx.s with x ∈ X \ (V ∪ Var(t)) ands ∈ CC(t,V ∪ {x}). To the price of renaming the
variablex in s if necessary, we can assume in addition thatx 6∈ Var(tγ) ∪ Dom(γ), and therefore
V ∪ {x} ⊆ X \ (Var(t) ∪ Var(tγ) ∪ Dom(γ)). By induction hypothesis,sγ ∈ CC(tγ,V ∪ {x}).
Sincex 6∈ Var(tγ) ∪ V, by Case 5 of the definitionλx.sγ ∈ CC(tγ,V) and, sincex 6∈ Dom(γ),
we haveuγ = λx.sγ.

Case 7: letV ′ = V ∪ {x}. By definition,u ∈ CC(t,V ′), with x 6∈ Var(u, t) ∪ V. By induction hypothesis,
uγ ∈ CC(tγ,V ′). Sincex 6∈ Var(uγ, tγ) ∪ V, uγ ∈ CC(tγ,V) by Case 7.

2

Lemma 4.4 Assume thatu : σ ∈ CC(t : τ). Then,uδ : σξδ ∈ CC(tδ : τξδ) for every specializationδ.

Proof: The proof is similar as previously, but uses the polymorphic property of�horpo in Case 6.

30

4.2 The Higher-Order Recursive Path Ordering with Closure

From now on, both orderings�horpo and�chorpo will coexist. They differ only by the definition of the
propertyA, and by the first, subterm case. As a way to stress their similarities, we do not reformulate
the entire ordering. Environments and types are again omitted here.

A = ∀v ∈ t s �
chorpo

v or u �
chorpo

v for someu ∈ CC(s)

Definition 4.5

s : σ �
chorpo

t : τ iff σ ≥TS τ and

1. s = f(s) with f ∈ F , and (i)u �
chorpo

t for someu ∈ s or (ii) t ∈ CC(s)

Cases 2 to 12 are kept unchanged,�horpo (resp.�horpo) being replaced by�chorpo (resp.�chorpo).

The definition is recursive, since recursive calls operate on pairs of terms which decrease in the well-
founded ordering(�horpo, �)right−to−left−lex.

As an easy consequence of Case 1, we obtain thats = f(s) : σ�chorpo t : τ with f ∈ F if σ = τ and
t ∈ CC(s). This shows that the technique based on the general schema, essentially based on the closure
mechanism introduced by Blanqui, Jouannaud and Okada [6], is a very particular case of the present
method. Besides, this new method inherits all the advantages of the recursive path ordering, in particular
it is possible to combine it with interpretation based techniques [12].

The proofs of Lemmas 3.8, 3.6 and 3.7 are easy to adapt (using now Lemma 4.3 for the proof of the
new version of Lemma 3.6 and Lemma 4.4 for Lemma 3.7) to the ordering with closure:

Lemma 4.6�chorpo is monotonic, stable, and polymorphic.

4.3 Strong Normalization

We first show that terms in the computability closure of a term are computable.
First, the computability predicate is of course now defined with respect to�chorpo. To show that

the computability properties remain valid, we simply observe that there is no change whatsoever in the
proofs, since the rules applying to application-headed terms did not change. For this, it is crucial to
respect the given formulation of Case 5, avoiding the use of the closure as in Case 1. Actually, we could
have defined a specific, weaker closure for terms headed by an application, to the price of doing again
the two most complex proofs of the computability properties. We did not think it was worth the trouble.

Second, we are still using the previous ordering�horpo in the definition of the new ordering�chorpo,
via the closure definition in particular. We therefore need to prove that�horpo ⊆ �chorpo in order to apply
the induction arguments based on the well-foundedness of�chorpo on some appropriate set of terms:

Lemma 4.7�horpo ⊆ �chorpo.

The proof is easily done by induction since all cases in the definition of�horpo appear in the definition
of �chorpo. The importance of this lemma comes from the computability properties. By the above
inclusion, any term smaller than a computable term in the ordering�horpo will therefore be computable
by Property 3.17 (ii).

31

We may of course wonder whether�+
horpo ⊆ �chorpo. Let s1�horpo s2�horpo . . .�horpo sn. Then

s1�chorpo sn in casesn ∈ CC(s1). This is in particular true whens2 ∈ CC(s1), since Case 6 of the
closure definition then implies thatsn ∈ CC(s1). This is not true in general sinces1 6∈ CC(s1).

We now show that�horpo, which is monotonic for terms of equivalent types and well-founded, remains
well-founded when combined with�≥TS

:

Lemma 4.8 Let> be a well-founded relation on terms which is monotonic for terms of equivalent types
(in =TS). Then,> ∪�≥TS

is well-founded.

Proof: Since> is well-founded, it is enough to show the absence of infinite decreasing sequences
for terms of equivalent types, which follows from the fact that�≥TS

and> commute for such terms by
monotonicity of>. 2

We now come to the main property of terms in the computability closure, which justifies its name:

Property 4.9 Assumet : τ is computable, as well as every termg(s) with s computable andg(s) smaller
thant = f(t) in the ordering(>F , (�horpo ∪�≥TS

)statf)lex operating on pairs〈f, t〉. Then every term in
CC(t) is computable.

The precise formulation of this statement arises from its forthcoming use inside the proof of Lemma 4.10.
Proof: We prove thatuγ : σ is computable for every computable substitutionγ of domainV and every

u ∈ CC(t,V) such thatV ∩ Var(t) = ∅. We obtain the result by takingV = ∅. We proceed by induction
on the definition ofCC(t,V).

For the basic case: ifu ∈ V, thenuγ is computable by the assumption onγ; if u ∈ t, we conclude
by the assumption thatt is computable, sinceuγ = u by the assumption thatV ∩ Var(t) = ∅; and if u
is a subterm off(t), we again remark thatγ acts as the identity on such terms, and therefore, they are
computable by assumption.

For the induction step, we discuss the successive operations to form the closure:

case 1:u is a subterm of type inT min
S of somev ∈ CC(t,V). By induction hypothesis,vγ is computable,

hence strongly normalizable by Property 3.17 (i). By monotonicity of�chorpo, its subtermuγ is
also strongly normalizable, and hence computable by Property 3.17 (vi).

case 2:u = g(u) whereu ∈ CC(t,V). By induction hypothesis,uγ is computable. Sincef >F g, uγ is
computable by our assumption that terms smaller thanf(t) are computable.

case 3:u = g(u) wheref =F g, u ∈ CC(t,V) andVar(u) ⊆ Var(t). By induction hypothesis,uγ is com-
putable. By assumption, and stability of the ordering under substitutions,tγ(�horpo ∪�≥TS

)statf uγ.
Note thattγ = t by our assumption thatV ∩ Var(t) = ∅. Thereforeuγ = g(uγ) is computable by
our assumption that terms smaller thanf(t) are computable.

case 4: by induction and Property 3.17 (iv).

case 5: letu = λx.s with x 6∈ V ands ∈ CC(t,V ∪ {x}). To the price of possibly renamingx, we can
assume without loss of generality thatx 6∈ Dom(γ) ∪ Var(t). As a first consequence,V ∪ {x} ∩
Var(t) = ∅; as a second, given an arbitrary computable termw, γ′ = γ∪{x 7→ w} is a computable
substitution of domainV ∪ {x}. By induction hypothesis,sγ′ is therefore computable, and by
Property 3.17 (v),(λx.s)γ is computable.

case 6: by induction, stability and Property 3.17 (ii).

32

case 7: by induction hypothesis. 2

We now restate Property 3.17 (vii) and show in one case how the proof makes use of Property 4.9.

Lemma 4.10 Letf ∈ F and lett be a set of terms. Ift is computable, thenf(t) is computable.

Proof: We prove thatf(t) is computable if terms int are computable by an outer induction on the pair
〈f, t〉 ordered lexicographically by the ordering(>F , (�chorpo ∪�≥TS

)statf)lex, and an inner induction on
the size of the reducts oft. Since terms int are computable by assumption, they are strongly normalizable
by Property 3.17(ii), hence, by Lemma 4.8 the ordering(>F , ((�chorpo ∪�≥TS

)stat)lex is well founded
on the pairs satisfying the assumptions.

By Lemma 4.7, the set of pairs smaller than the pair〈f, t〉 for the ordering(>F , (�chorpo ∪�≥TS
)stat)lex

contains the set of pairs that are smaller than that pair for the ordering(>F , (�horpo ∪�≥TS
)stat)lex. This

key remark allows us to use Property 4.9.
The proof is actually similar to the proof of Property 3.17 (vii), except for Case 1 and for the cases

using propertyA. We therefore do Cases 1 and 2, the latter using propertyA.

case 1: letf(t)�chorpo s by case 1, henceti�horpo s for someti ∈ t or s ∈ CC(t). In the former case, since
ti is computable,s is computable by Property 3.17 (ii); in the latter case, all terms smaller than
f(t) with respect to(>F , (�horpo)stat)lex are computable by induction hypothesis and the above
key remark, hences is computable by Property 4.9.

case 2: lett = f(t)�chorpo s by case 2. Thens = g(s), f >F g and for everysi ∈ s eithert�chorpo si, in
which casesi is computable by the inner induction hypothesis, orv�chorpo si for somev ∈ CC(t),
in which casev is computable by Property 4.9 and hencesi is computable by Property 3.17 (ii).
We then conclude thats is computable the by outer induction hypothesis sincef >F g. 2

Theorem 4.11�+
chorpo is a polymorphic higher-order reduction ordering.

Proof: Thanks to Property 4.9, the strong normalization proof of this improved ordering is exactly the
same as the one for HORPO, using of course Lemma 4.10 instead of Property 3.17 (vii). Using now
Lemma 4.6, we therefore conclude that the transitive closure of�chorpo is a higher-order polymorphic
reduction ordering. 2

4.4 Examples

This new definition of the ordering is much stronger than the previous one. In addition to allowing us
proving the strong normalization property of the remaining rules of the sorting example, it also allows
proving termination of the following rule, which is added to the rules of Example 8:

Example 17 x ∗ y → rec(y, 0, λz1z2.x + z2)
This rule can be proved terminating with the precedence∗ >F {rec, +, 0}. Indeed,

x ∗ y�chorpo rec(y, 0, λz1z2.x + z2) by Case 2 of�chorpo, sincex ∗ y�chorpo y by case 1,x ∗ y�chorpo 0
by case 2 again, andλz1z2.x + z2 ∈ CC(x ∗ y):
applying Case 5 of the definition of the computability closure twice, we need to showx + z2 ∈ CC(x ∗
y, {z1, z2}). By Case 2 we are left withx ∈ CC(x ∗ y, {z1, z2}) andz2 ∈ CC(x ∗ y, {z1, z2}), which both
hold by base Case of the definition of the computability closure. 2

The coming example is quite classical too.

33

Example 18 Let

S = {List : ∗ ⇒ ∗}; S∀ = {α}

F =

{
0, 1 : α; + : α× α⇒ α; nil : List(α); cons : α× List(α)⇒ List(α);
foldl : (α→ α→ α)× α× List(α)⇒ α; sum : List(α)⇒ α; +c : α→ α⇒ α

}

{x : α, F : α→ α→ α} ` foldl(F, x, nil) → x
{x, y : α, F : α→ α→ α, l : List(α)} ` foldl(F, x, cons(y, l)) → foldl(F, (F x y), l)

{} ` +c → λxy.x + y
{l : List(α)} ` sum(l) → foldl(+c, 0, l)

The first rule is by subterm case.
For the second, we set a right-to-left lexicographic status forfoldl, and, applying Case 4, we recur-

sively have to show that (i)F �chorpo F ; (ii) foldl(F, x, cons(y, l))�chorpo @(F, x, y), which succeeds
easily by rule 7; and (iii)cons(y, l)�chorpo l, which succeeds by subterm case providedList(α) ≥TS α.

For the third, we show thatλxy.x + y is in the closure of+c, provided+c >F +, by successively
applying Case 5 twice, Case 2 and, finally, the base Case twice.

For the last, we add the precedencesum >F {foldl, +c, 0} in order to prove it by Case 2 of�chorpo,
followed by Case 2 forsum(l)�chorpo 0 and showing that+c ∈ CC(sum(l)), by Case 2. 2

The following example, a definition of formal derivation, illustrates best the power of the computabil-
ity closure.

Example 19 Let S = {<} be the sort of real numbers.

F =


D : (< → <)⇒ (< → <);
0, 1 :→ <; −, sin, cos, ln : < ⇒ <;
+,×, / : <× < ⇒ <


D(λx.y) → λx.0

(λx.x) → λx.1
D(λx.sin(x)) → λx.cos(x)
D(λx.cos(x)) → λx.− sin(x)

{F, G : < → <} ` D(λx.(F x) + (G x)) → λx.(D(F) x) + (D(G) x)
{F, G : < → <} ` D(λx.(F x)× (G x)) → λx.(D(F) x)× (G x) + (F x)× (D(G) x)
{F : < → <} ` D(λx.ln(F x)) → λx.(D(F) x)/(F x)

We takeD >F {0, 1,×,−, +, /} for precedence and assume that the function symbols are inMul.
Apart from the first rule, this example makes a heavy use of the closure. The computations involved
are quite complex, and can be followed by using our implementation. The but-last rule, in particular, is
entirely processed by the closure mechanism (together with Case 1). This does not mean that it could be
already solved with the same proof by the technique developed in [6], where the computability closure
was first introduced without any other mechanism. The point is that the closure defined here is more
powerful thanks to case 6 based on�horpo instead of simply usingβ-reductions as in [6].

We are not completely satisfied with this computation, though, because the structural definition of the
ordering has been completely lost here. We would like to improve the ordering so as to do more compu-
tations with the ordering and delegate the hard parts only to the more complex closure mechanism. For
the time being, however, the closure mechanism is the only one which applies to rules whose righthand

34

side is an abstraction with the bound variable occurring in the body, assuming that the lefthand side of
rule is not itself an abstraction. We discuss its implementation in Section 5.2.

The next example (currying/uncurrying) shows again the use of a middle term.

Example 20 First, to a signatureF , we associate the signature

F curry =

{
fi : σ1 × . . .× σi ⇒ σi+1 → . . .→ σp → τ for everyi ∈ [0..p] |
f : σ1 × . . .× σn ⇒ σn+1 → . . .→ σp → τ ∈ F whereτ is a data-type

}

and we introduce the following sets of rewrite rules for currying/uncurrying:

j ∈ J ⊆ [1..p] : {t1 : σ1, . . . , tj+1 : σj+1} ` fj+1(t1, . . . , tj+1) → @(fj(t1, . . . , tj), tj+1)
i ∈ I ⊆ [1..p] : {t1 : σ1, . . . , ti+1 : σi+1} ` @(fi(t1, . . . , ti), ti+1) → fi+1(t1, . . . , ti+1)

Wheni = j, the above rules are clearly non-terminating since they originate from the same equation
oriented in both directions. Termination therefore requires that the two subsetsI andJ of [0..p] are
disjoint. We postpone their precise definition.

Starting with the first rule, we setfj+1 >F fj. Applying case 7 we have to show thatfj(t1, . . . , tj) ∈
CC(fj+1(t1, . . . , tj+1)) which holds by the precedence case followed by the base case for all the argu-
ments.

Moving now to the second rule, we setfi >F fi+1. The only possible case is subterm for application,
that is Case 5. But the obtained subgoalfi(t1, . . . , ti)�chorpo fi+1(t1, . . . , ti+1) cannot succeed since
there is a new free variable(ti+1) in the righthand side. The computability closure does not help either
here, since it is defined for terms headed by an algebraic function symbol.

The trick is to invent a middle term, and show that the lefthand side is bigger than the righthand one in
thetransitive closureof the ordering. The convenient middle term here is@(λx.fi+1(t1, . . . , ti, x), ti+1),
which reduces to the righthand side by the use of Case 11. We therefore simply need to show that
the lefthand side is bigger than the middle term. Since both terms are headed by an abstraction, by
Case 9 we have to prove thatfi(t1, . . . , ti)�chorpo λx.fi+1(t1, . . . , ti, x), which we prove now by showing
that the righthand side term is in the closure of the lefthand side one: by abstraction case we need
fi+1(t1, . . . , ti, x) ∈ CC(fi(t1, . . . , ti), {x}), and by precedence case, we are left witht1, . . . ti, x ∈
CC(fi(t1, . . . , ti), {x}), which holds by the base case.

Although the use of a middle terms looks like a lucky trick, the conditions for applying it successfully
can be easily characterized and hence implemented, making it transparent for the user. This is described
in Section 5.

We can accommodate a mixture of currying and uncurrying by choosing an appropriate well-founded
precedence for selecting the right number of arguments desired for a given function symbol: letJ =
[1..m] andI = [m + 1..p] for somem ∈ [1..p], and let us add the rule

{x1 : σ1, . . . , xn : σn} ` f(x1, . . . , xn)→ fn(x1, . . . , xn)

which is easily proved terminating by addingf >F fn to the precedence. The resulting set of rules will
then replace all occurrences off by fm while adding or eliminating the necessary application operators.

4.5 A mutually inductive definition of the ordering and the computability closure

So far, we restrained ourselves using�chorpo in the computability closure definition, and used instead
�horpo in order to avoid a mutually inductive definition of the ordering and the closure. This allowed

35

us to present both separately, starting with the computability closure which is built on a simple intuitive
idea. Using�chorpo recursively in Cases 3 and 6 of the closure definition would of course yield a stronger
relation. In this section, we show that this indeed yields a well-founded ordering.

First, we need to show that the mutually recursive definition yields a leat fixpoint. This is the case
since the underlying functional is defined by a set of Horn clauses, hence is monotone.

Then, we need to show that the computability properties remain true when using this new definition.
Indeed, there is no impact on any of the proofs but thde proof of Lemma 4.9. However, it suffices to
replace the assumption based on the ordering(>F , (�horpo ∪�≥TS

)statf)lex by the very same assump-
tion based now on the stronger ordering(>F , (�chorpo ∪�≥TS

)statf)lex. The proof then goes exactly as
before.

Finally, we remark that the proof of Lemma 4.10 is itself based on an induction with the ordering
(>F , (�chorpo ∪�≥TS

)statf)lex, hence can be kept as it is. Note however that we needed to prove that
�horpo was included into�chorpo. This was Lemma 4.7, needed to relate both inductions, with re-
spect to(>F , (�horpo ∪�≥TS

)statf)lex in Lemma 4.9, and with respect to(>F , (�chorpo ∪�≥TS
)statf)lex

in Lemma 4.10. This is no more needed, hence the need for lemma 4.7 disappears.

5 Implementation

A PROLOG implementation is available from our web page whose principles are described here. We
define first an ordering on types satisfying the required properties before explaining how to approximate
(�horpo)

∗ and the closure mechanism.

5.1 The recursive path ordering on types

Given a partial quasi-ordering≥S on sort constructors again called aprecedence, as well as a status,
we define the following rpo-like quasi ordering on types:

Let B = ∀v ∈ τ σ >TS v

Definition 5.1 σ ≥TS τ iff

1. σ = c(σ) for somec ∈ S andσi ≥TS τ for someσi ∈ σ

2. σ = c(σ) andτ = d(τ) for somec, d ∈ S such thatc >S d, andB

3. σ = c(σ) andτ = d(τ) for somec, d ∈ S such thatc =S d andσ(≥TS)mulτ

4. σ = c(σ) andτ = d(τ) for somec, d ∈ S such thatc =S d andσ(≥TS)lexτ , andB

5. σ = α→ β, andβ ≥TS τ

6. σ = α→ β, τ = α′ → β′, α =TS α′ andβ ≥TS β′

Note that, because of the subterm property for sort symbols (since they belong to a first-order unisorted
structure), our above definition ofB (∀v ∈ τ σ >TS v) is equivalent to the former definition ofA applied
to types (∀v ∈ τ σ >TS v or u ≥TS v for someu ∈ σ). This remark will be used in Section 6.3 to build
a single uniform ordering operating on both terms and types.

Proposition 5.2≥TS is a type ordering and>→
TS is the recursive path ordering generated by the given

precedence onS.

36

Proof: It is clear that adding the subterm property for the arrow to the definition of>TS yields the
recursive path ordering (note that the precedence is not changed, hence symbols inS do not compare
with the arrow). This shows the latter property and implies therefore well-foundedness of>TS . Arrow-
preservation and arrow-decreasingness are built-in. Stability is proved by induction on types.2

All examples given so far can use the above type ordering, provided the appropriate precedence on
type constructors is given by the user as well as their status.

5.2 Implementable approximation of�horpo and�chorpo

Among the many issues that must be dealt with, we consider here only thenewones. Guessing a
precedence and a status for the function symbols and the type constructors is by no means different
from what it is for Dershowitz’s recursive path ordering, and the technology is therefore well-known.
Accordingly, this is not done by our current implementation: the user is supposed to input the precedence
to the system which can thenchecka set of rules. On the other hand, guessing a middle term or how to
implement the closure mechanism effectively are new implementation problems that we consider here.

Property A. The non-deterministic or comparison of propositionA used in cases 2, 4, and 7, can be
replaced by the equivalent deterministic one:

∀v : ρ ∈ t if ρ ≤TS τ then s �
horpo

v otherwiseu �
horpo

v for someu : θ ∈ s such thatθ ≥TS ρ

Left-flattening. There is a tradeoff between the increase of types and the decrease of size when using
left-flattening in Case 9: moving from@(@(a, b), c)) to @(a, b, c) replaces the subterm@(a, b) by the
two smaller subtermsa, b, but a has a bigger type than@(a, b). Type considerations may therefore be
used to drive the choice of the amount of flattening.

Guessing middle terms. A weakness of our definition is that the relation�horpo does not satisfy transitiv-
ity. This is why our statement in Theorem 3.2 uses(�horpo)

∗. In most examples, we have used�horpo,
and indeed, the lack of transitivity has two origins: left-flattening and Cases 11 and 12. Therefore,
the use of these two cases will usually come together with the need of guessing a middle termu such
thats�horpo u�horpo t, the second comparison being done by one of the above two cases. It turns out
that it is quite easy to guess when such a middle term may be necessary: when no case other than 11
and 12 applies to compares andt. More specifically, when we need to compare a terms headed by an
application with a termt headed by a function symbol. In this case, a middle termu can be generated
by β-expandingt, and we can now try applying Case 9 betweens andu and Case 11 betweenu andt.
Similarly, in cases is an abstraction whoseλ cannot be pulled out, we canη-expandt before comparing
s andu by Case 10 and thenu andt by Case 12.

Approximation of the closure. Our implementation of the closure mechanism is an approximation as well,
by weakening propositionA defined in Section 4.2 so as to be the same as in the subterm case (Case 1),
that isA = ∀v ∈ ~t s�chorpo v or v ∈ CC(s), which amounts to have a simple guess of the termu
defined in the afore mentioned version ofA to bet itself. Reduction is only applied to the arguments
of the starting term itself, it can therefore now be seen as a new basic case. The implementation of
the other rules defining the closure is goal-directed. We have implemented a subset of them, namely
application, abstraction, precedence, recursive call and reduction which turned out to suffice for all our

37

examples -we of course had proved these examples by hand before, but the resulting proofs were indeed
more complex proofs and used a larger set of rules. In the current version of the implementation, we
use�chorpo recursively in the computability closure definition, rather than�horpo so as to enhance the
expressivity of the ordering.

Examples All examples considered in the paper have been checked with our implementation, therefore
supporting our claim that HORPO is automatable. The only user inputs are the following: the type
constructors, their arity and their precedence; the function symbols, their type and their precedence;
the terms to be compared and the type of their free variables. The implementation checks the type of
both terms to be compared in the environment formed by the type of the variables, and proceeds with
checking the ordering with the approximation of�chorpo that we just described.

6 From Past to Future Work

6.1 Comparisons

Higher-order termination is a difficult problem with several instances.
Higher-order rules using plain pattern matching are routinely used in proof systems with inductive

types, at the object level (G̈odel’s recursor is one example), and at the type level as well (under the
name of strong elimination in the Calculus of Inductive Constructions [14]). These rules have a specific
format, hence their strong normalization property can be proved by ad’hoc arguments. By allowing
rule-based definitions in proof systems, one provides with more general induction schemas than the
usual structural induction schema for inductive types. This however requires user-defined plain higher-
order rules with the recursor rules for inductive types as particular cases. Then, showing that proof-
checking is decidable, and the obtained proof system is sound, requires proving that these rules are
strongly normalizing (together with the built-inβη rules). Our program aims at proving the strong
normalization property of such rules, therefore including the recursor rules for inductive types, and
provide a generic tool for that purpose. So far, we have answered this question within the framework
of polymorphic higher-order algebras only. Our future target is a framework including dependent types,
therefore containing the Calculus of Inductive Constructions as a special case.

Higher-order rewrite rules are also used in logical systems to describe computations over lambda-
terms used as a suitable abstract syntax for encoding functional objects like programs or specifications.
This approach has been pioneered in this context by Nipkow [40] and is available in Isabelle [44]. Its
main feature is the use of higher-order pattern matching for firing rules. A recent generalization of Nip-
kow’s setting allows one for rewrite rules of polymorphic, higher-order type [30, 26]. Proving the strong
normalization property of such rules is a different problem, somewhat harder, since requiring a well-
founded ordering compatible withβη-equivalence classes of terms, and it is well known that building
compatible well-founded orderings is a hard problem as exemplified with the case of associativity and
commutativity in the first-order case.

There is still a third way of defining higher-order rewriting, due to Klop, which came actually first [36].
Retrospectively, this approach appears to be a sort of instance of Nipkow’s more recent approach, in the
sense that, given a set of rules, a typed term rewrites in Klop sense when it does so in Nipkow’s sense.
Since Klop was more interested in confluence than in termination properties, the question of proving
termination of Klop’s rewrite relation has not been investigated.

Surprisingly, the question of designing orderings for proving higher-order termination attracted at-
tention first within Nipkow’s framework. The initial attempts, however, including ours, were not very

38

convincing. All methods were based either on very weak orderings [31], or required interaction with
a general purpose higher-order theorem prover [47]. Only recently were we able to answer the ques-
tion with a decidable ordering able to prove all examples we have found in the literature [33]. What is
interesting to note is that this ordering builds on the present one in a decisive way.

Let us therefore now compare the different attempts to prove termination of plain higher-order rules.
First, it should be noted that the present definition is by far superior to the one given in [32], which

could only compare terms of the same type, or of equivalent types. Consequently, we are able to solve
many more examples. Besides, the definition of the ordering has been enriched considerably, by adding
new cases. We are convinced that Definition 3.1 cannot be substantially improved, except by: han-
dling explicitly bound variables in the recursive calls; using the computability properties of subterms in
presence of inductive types; using interpretations as it was successfully done for the recursive path order-
ing [34] and for the first version of the higher-order recursive path ordering [12]. On the other hand, we
hope that the more complex closure mechanism can be improved and integrated to the ordering. These
improvements are carried out in part in [8].

There is an alternative to using the higher-order recursive path ordering for proving termination of
plain higher-order rewriting, based on the computability closure and the general schema [7]. Because
the main construction in [5] is the computability closure, it can indeed be obtained by restricting�chorpo

to its first case, and is therefore much weaker for our framework of polymorphic algebras. On the other
hand, this method is more advanced insofar it allows for dependent types and even for rules, like strong
elimination, operating at the type level. This lets us hope that generalizing the higher-order recursive
path ordering to dependent types may be at reach.

Let us finally mention two completely different methods by Jones and Bohr [25] and by Giesl, Thie-
mann and Schneider-Kamp [21]. They differ from ours by targeting functional programs rather than
proof systems, and encoding these programs as a set of termination-preserving applicative rules ob-
tained by Currying [35]. Termination of these applicative rules is then analyzed by various methods.
However, since the structure of terms is lost because of the translation, these methods must be based on
an analysis of the flow of redexes in terms. This analysis must of course cope with the flow of beta-
redexes via the translation. In presence of polymorphic or dependent types, there is no method known,
apart from Girard’s, which is able to account for the flow of redexes in lambda-terms. Therefore, we do
not think that these method can help us solving our grand challenge. In the simpler case of functional
programs, these methods may be quite effective whenever termination does not depend upon the type
structure used. We believe that the orderings methods considered here are inherently more powerful
since they can in principle easily integrate semantic information such as that obtained from an analysis
of the flow of redexes.

6.2 Future work

The higher-order recursive path ordering should be seen as a firm step to undergo further developments
in different directions. Two of them have been investigated in the first order framework: the case of
associative commutative operators, and the use of interpretations as a sort of elaborated precedence
operating on function symbols. The second extension has been carried out for a restricted higher-order
framework [12]. Both deserve immediate attention. Other extensions are specific to the higher-order
case: incorporating the computability closure into the ordering definition; enriching the type system
with inductive types, a problem considered in the framework of the general schema by Blanqui [7, 5];
enriching the type system with dependent types, considered for the original version of the higher-order
recursive path ordering [32] by Walukiewicz [50]. We suggest below a path to an extension of the

39

higher-order recursive path ordering defined here to a dependent type framework.

6.3 A uniform ordering on terms and their types

We are going here to give a single definition working uniformly on terms and types. Its restriction
to types will be the type ordering defined in Section 3, while its restriction to terms will be the higher-
order recursive path ordering using this type ordering. This ensures that the new definition is equivalent
to Definition 3.1 when using the type ordering introduced in Section 5, since terms and types do not
interfere in our framework. The definition is very uniform, working by induction, as it is usual for the
recursive path ordering, with cases based on the top operator of the lefthand and righthand expressions
to be compared. What makes this uniform definition possible is that the type ordering is a restriction
of Dershowitz’s recursive path ordering for first-order terms, and that the higher-order recursive path
ordering restricts to Dershowitz’s recursive path ordering when comparing first-order terms.

For making uniformity possible, we add a new constant in our language,∗, such that all types have
themselves type∗. We omit the straightforward type system for typing types, which only aims at verify-
ing arities of sorts symbols.∗ will therefore be the only non-typable term in the language.

6.3.1 Statuses and Precedence

We assume given
- a partitionMul] Lex of F ∪ S;
- a well-founded precedence≥FS onF ∪ S such that≥FS is the union of a quasi-ordering≥F onF

and a quasi-ordering≥TS onS whose strict parts are well-founded; variables are considered as constants
incomparable in>FS among themselves and with other function symbols.

6.3.2 Definition of the ordering

Definition 6.1

LetA = ∀v ∈ t s �
horpo

v or u �
horpo

v for someu ∈ s

Givens : σ andt : τ, s �
horpo

t iff σ = τ = ∗ or σ �
horpo

τ and

1. s = f(s) with f ∈ FS, andu �
horpo

t for someu ∈ s

2. s = f(s) andt = g(t) with f >FS g, andA

3. s = f(s) andt = g(t) with f =FS g ∈Mul ands(�
horpo

)mult

4. s = f(s) andt = g(t) with f =FS g ∈ Lex ands(�
horpo

)lext, andA

5. s = @(s1, s2) ands1 �
horpo

t or s2 �
horpo

t

6. s = λx : σ.u, x 6∈ Var(t) andu �
horpo

t

7. s = f(s), @(t) is an arbitrary left-flattening oft, andA

40

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands �
horpo

v

9. s = @(s1, s2), @(t) is an arbitrary left-flattening oft and{s1, s2}(�
horpo

)mult

10. s = λx : α.u, t = λx : β.v, α=β andu �
horpo

v

11. s = @(λx.u, v) andu{x 7→ v} �
horpo

t

12. s = λx.@(u, x) with x 6∈ Var(u) andu �
horpo

t

13. s = α→ β, andβ �
horpo

t

14. s = α→ β, t = α′ → β′, α =
horpo

α′ andβ �
horpo

β′

This uniform higher-order recursive path ordering operating on terms and types opens the way to its
generalization to dependent type calculi such as the Calculus of Constructions.

7 Conclusion

We have defined a powerful mechanism for defining polymorphic reduction orderings on higher-order
terms that includeβ- andη-reductions. To the best of our knowledge, this is the first such ordering ever.
Moreover, these orderings can be implemented without much effort, as witnessed by our own prototype
implementation and the many examples proved. And because these orderings restrict to Dershowitz’s
recursive path ordering on first-order terms, a hidden achievement of our work is a new, simple, easy to
teach well-foundedness proof for Dershowitz’s recursive path ordering itself.

Our construction includes the computable closure mechanism originating from [6], where it was used
to define a syntactic class of higher-order rewrite rules that are compatible with beta reductions and with
recursors for arbitrary positive inductive types. The language there is indeed richer than the one consid-
ered here, since it is the calculus of inductive constructions generated by a monomorphic signature. The
usefulness of the notion of closure in these different context shows the strength of the concept.

Using the computability technique instead of the Kruskal theorem to prove the strong normalization
property of the ordering is intriguing, and raises the question whether it is possible to exhibit a suitable
extension of Kruskal’s theorem that would allow proving that the higher-order recursive path ordering is
a well-order of the set of higher-order terms ? Here, we must confess that we actually failed in our initial
quest to find one. In retrospect, the reason is that we were looking for too strong a statement. It may
be that a version of Kruskal’s theorem holds based on an adequate notion of subterm such as the weak
subterm property satisfied by HORPO when dropping Case 11. We do not think that any Kruskal-like
theorem holds when Case 11 is included.

Acknowledgments: we are grateful to Fréd́eric Blanqui, Adam Koprowski and Femke Van Rams-
doonk for several useful remarks and to a careful referee for scrutinizing the paper and making important
suggestions.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1999.

41

[2] Henk Barendregt.Handbook of Theoretical Computer Science, volume B, chapter Functional Pro-
gramming and Lambda Calculus. North-Holland, 1990. J. van Leeuwen ed.

[3] Henk Barendregt.Handbook of Logic in Computer Science, chapter Typed lambda calculi. Oxford
Univ. Press, 1993. Abramsky et al. eds.

[4] M. Bezem, J.W. Klop and R. de Vrijer eds.Term Rewriting Systems. Cambridge Tracts in Theo-
retical Computer Science 55, Cambridge University Press, 2003.

[5] F. Blanqui. Inductive Types in the Calculus of Constructions. In TLCA,Lecture Notes in Computer
Science2701:395–409. Springer-Verlag, 2003.

[6] F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In RTA,
Lecture Notes in Computer Science1631:301–316. Springer-Verlag, 1999.

[7] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Types.Theoretical Computer Science
277:41–68, 2002.

[8] F. Blanqui, J.-P. Jouannaud and A. Rubio. Higher-Order Termination: from Kruskal to Computabil-
ity. In LPAR, Lecture Notes in Computer Science4246:1–14. Springer-Verlag, 2006.

[9] F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. The Calculus of Congruent Constructions. draft
available from the web at http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

[10] W. Buchholz. Proof-theoretic analysis of termination proofs.Annals Pure Applied Logic75(1-
2):57–65, 1995.

[11] C. Borralleras, M. Ferreira and A. Rubio. Complete monotonic semantic path orderings. In CADE,
Lecture Notes in Artificial Intelligence1831:346–364. Springer-Verlag, 2000.

[12] C. Borralleras and A. Rubio. A monotonic, higher-order semantic path ordering. In LPAR,Lecture
Notes in Computer Science2250:531–547. Springer-Verlag, 2001.

[13] A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In FGCS, pp. 85–99.
OHMSHA Ltd. Tokyo and North-Holland, 1984.

[14] T. Coquand and C. Paulin-Mohring. Inductively defined types. In COLOG-88,Lecture Notes in
Computer Science417:50–66. Springer-Verlag, 1990.

[15] T. Coquand. Inductive definitions and type theory. In Second Int. summer school in logic for
computer science. Chambéry, France, 1994.

[16] N. Dershowitz. Orderings for term rewriting systems.Theoretical Computer Science, 17(3):279–
301, March 1982.

[17] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. InHandbook of Theoretical Computer
Science, volume B:243–309. North-Holland, 1990.

[18] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo.Journal of Automated Reasoning,
31(1):33–72, 2003.

[19] M. Ferńandez and J.-P. Jouannaud. Modular termination of term rewriting systems revisited. InRe-
cent Trends in Data Type Specification, Lecture Notes in Computer Science906:255–272. Springer-
Verlag, 1995.

42

[20] J. Gallier. On Girard’s ”Candidats de Reductibilité”. In Logic and Computer Science, pp. 123–203.
Academic Press, 1990.

[21] J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and Disproving Termination of Higher-Order
Functions. In FroCoS,Lecture Notes in Artificial Intelligence3717:216–231, Springer Verlag,
2005.

[22] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1989.

[23] J. Goubault-Larrecq. Well founded recursive relations. In CSL 2001,Lecture Notes in Computer
Science2142:484–497. Springer-Verlag, 2002.

[24] G. Huet, G. Kahn and C. Paulin-Mohring. The Coq Proof Assistant. A Tutorial. Version 7.3. INRIA
Rocquencourt and ENS Lyon.

[25] N. Jones and N. Bohr. Termination Analysis of the Untyped lambda-Calculus. In RTA,Lecture
Notes in Computer Science3091:1–23. Springer-Verlag, 2004.

[26] J.P. Jouannaud. Higher-order rewriting: framework, confluence and termination. InProcesses,
Terms and Cycles: Steps on the road to infinity. Essays Dedicated to Jan Willem Klop on the
occasion of his 60th Birthday. Springer Verlag, 2005.

[27] J.-P. Jouannaud. Extension orderings revisited. Available from the web at
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

[28] J-P. Jouannaud and M. Okada. A Computation Model for Executable Higher-Order Algebraic
Specifications Languages. In LICS, pp. 350–361. IEEE Computer Society Press, 1991.

[29] J-P. Jouannaud and M. Okada. Abstract data type systems.Theoretical Computer Science,
173(2):349–391, 1997.

[30] J-P. Jouannaud and F. van Raamsdonk and A. Rubio. Higher-order Rewriting with Types and
Arities. Available from the web at http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

[31] J.-P. Jouannaud and A. Rubio. Rewrite orderings for higher-order terms inη-long β-normal form
and the recursive path ordering.Theoretical Computer Science, 208(1–2):3–31, 1998.

[32] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS, pp. 402–411.
IEEE Computer Society Press, 1999.

[33] J.-P. Jouannaud and A. Rubio. Higher-Order Orderings for Normal Rewriting. In RTA,Lecture
Notes in Computer Science4098:387–399. Springer-Verlag, 2006.

[34] S. Kamin and J.-J. Levy. Two generalizations of the recursive path ordering. Technical report,
Department of computer science, University of Illinois at Urbana-Champaign, 1980.

[35] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Comparing curried and uncurried rewrit-
ing. Journal of Symbolic Computation, 21:15–39, 1996.

[36] J. W. Klop. Combinatory Reduction Relations. Mathematical Centre Tracts 127. Mathematisch
Centrum, Amsterdam, 1980.

43

[37] J. W. Klop. Term Rewriting Systems. InHandbook of Logic in Computer Science, volume 2:2–116.
Oxford University Press, 1992.

[38] C. Loŕıa-Śaenz and J. Steinbach. Termination of combined (rewrite andλ-calculus) systems. In
CTRS,Lecture Notes in Computer Science656:143–147. Springer-Verlag, 1992.

[39] A. Mal’cev. On the elementary theories of locally free algebras.Soviet Math. Doklady, 1961.

[40] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence.Theoretical Computer
Science, 192(1):3–29, 1998.

[41] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification.Journal of Logic and Computation, 1(4):497–536, 1991.

[42] T. Nipkow. Higher-order critical pairs. In LICS, pp. 342–349. IEEE Computer Society Press, 1991.

[43] M. Okada and G. Takeuti. On the theory of quasi ordinal diagrams. In Logic and Combinatorics,
1985.Contemporary Mathematics65:295–308. American Mathematical Society, 1987.

[44] L. C. Paulson. Isabelle: the next 700 theorem provers. InLogic and Computer Science, pp. 361–
386. Academic Press, 1990.

[45] J. van de Pol. Termination proofs for higher-order rewrite systems. In HOA 1993,Lecture Notes
in Computer Science816:305–325. Springer-Verlag, 1994.

[46] J. van de Pol.Termination of Higher-Order Rewrite Systems. PhD thesis, Utrecht University, The
Netherlands, 1996.

[47] J. van de Pol and H. Schwichtenberg. Strict functional for termination proofs. In TLCA,Lecture
Notes in Computer Science902:350-364. Springer-Verlag, 1995.

[48] F. van Raamsdonk. Confluence and Normalization for Higher-Order Rewrite Systems. Phd thesis,
Vrije Universiteit, Amsterdam, The Netherlands, 1996.

[49] A. Rubio. A fully syntactic AC-RPO. In RTA,Lecture Notes in Computer Science1631:133-147,
Springer-Verlag, 1999.

[50] D. Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions.Journal
Functional Programming, 13(2):339–414, 2003.

44

