
From OBJ to ML to Coq

Jacek Chrząszcz1 ? and Jean-Pierre Jouannaud2 ??

1 Institute of Informatics, Warsaw University, ul. Banacha 2, Warsaw
http://www.mimuw.edu.pl/~chrzaszc

2 École Polytechnique, LIX, CNRS UMR 7161, F-91400 Palaiseau
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

This work is dedicated to our colleague Joseph Goguen, who was ex-
tremely influential in the design of modern programming languages.

1 Introduction

Rigorous program development is notoriously difficult because it involves
many aspects, among which specification, programming, verification,
code reuse, maintenance, and version management. Besides, these var-
ious tasks are interdependent, requiring going back and forth between
them. In this paper, we are interested in certain language features and in
languages which help make the user’s life easier for developing programs
satisfying their specifications.

Our interest focuses on three implemented specification/programming
languages, OBJ [14, 18], ML[27] and Coq [10], which have played an
important historical role in the process of coming up with better lan-
guages. And indeed, both OBJ and ML had many successors or dialects,
among which OBJ3 [20], Cafe-OBJ [28], Maude [9] and ELAN [2] for
OBJ, and SML [23], CAML [30] and OCaml [29] among others for ML.
Coq has evolved with many different versions keeping the same name,
following the evolution of type theory from the calculus of construc-
tions [11] to the extended calculus of constructions [22] and the develop-
ment of the theory of inductive types from Martin-Löf’s type theory [25,
26] to the calculus of inductive constructions [12, 31]. Other proof as-
sistants based on a similar historical development include Lego [21],
Alf [24] and Agda/Alfa [1]. Coq remains the most mature and widely
used of them all.

We explain briefly in the introduction what important properties are
shared by these three languages, and how OBJ has been influential in

? Partly supported by Polish KBN Grant 3 T11C 002 27
?? Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud.



such a way that many important characteristics of ML and Coq were al-
ready present in OBJ, sometimes in disguise. In what sense can these
three languages be considered as specification languages, or program-
ming languages, or proof development systems is another important as-
pect we are interested in.

The user does not like doing things twice. Writing a specification in
one language before coding it in another language is more than a chal-
lenge: it is helpless. The coding part must be automated as is the case in
all three languages we are interested in. This automation obeys the same
principle: forgetting the non-executable subpart of the specification or of
its proof.

A specification is nothing but a logical property of the form∀x.P (x) →
Q(x), wherex is the vector of data,P (x) is the assumption, andQ(x) is
the conclusion. Therefore, the specification/programming language must
contain (possibly via an encoding) a mechanism for expressing proper-
ties, as well as one for expressing computations and, possibly, a last one
for expressing proofs. In ML, the specification part is simple enough to
be inferred automatically by the system from the user’s functional pro-
gram: this is called type inference. The program then satisfies this (ex-
tremely poor) specification without requiring any further proof. In OBJ,
specifications are algebraic, that is, conditional equations giving meaning
to the various functions and predicates introduced by the user, and are ex-
ecutable via rewriting. Showing that the rewrite program implements the
specification requires several checks (confluence and termination) left to
the user. Proving properties of an OBJ specification can be done in the
language itself by using reflexion, this has been done in Maude and Elan,
as well as in CafeOBJ — to a limited extent. Coq uses higher-order in-
tuitionistic logic as a specification language, and includes the possibility
to carry out the development of a (constructive) proof of the specifica-
tion by using a tactic language which generates a Coq term represent-
ing the proof. A functional program meeting the specification can then
be extracted automatically from that proof by erasing all subepressions
without computational content which differ from the others by their type.

The old paradigm that the same program piece can be used several
times in a bigger program with different data has led to a first notion of
abstraction, giving rise to the notion of function, or subprogram. The idea
that a program operating upon certain data should not depend upon the
way they are actually represented has led to the notion of abstract data
type. The same paradigm applied to groups of functions or subprograms



achieving some well-defined task, processing some well-defined data,
has led to the notion of module. Abstracting over modules themselves
has lead to the notion of functor. All three languages have pioneered the
design of modules and functors in their respective areas, not to speak
about abstract types, and OBJ has been very influential in this matter.

Object-orientation is a different, important abstraction mechanism
that is not part of our three languages, and indeed, the first two have been
extended so as to include object-oriented features. We will not say more
about object orientation, although OCaml, a dialect of ML, played an im-
portant role in popularizing object orientation among the community of
functional programmers.

Among the programming tasks that should be eased by a good lan-
guage choice, only the last one, version management, is not taken care
of at all by our three languages. Some of the others tasks are better taken
care of by OBJ or by ML or by Coq. In particular, the verification princi-
ples behind these languages differ in the expressivity of their underlying
specification language. In OBJ, typing looks very elementary, since OBJ
static types are checked in linear time by a bottom-up tree automaton.
But OBJ types are not all static, requiring some runtime type-checking as
well. In ML, static typing is more advanced, with a polymorphic type dis-
cipline for which types can be inferred by an exponential (but practically
linear) algorithm. In Coq, types are arbitrary formulas of higher-order
(intuitionistic) logic which can be checked in finite (but indefinite) time,
and cannot be inferred in general. This typing system generalizes both
OBJ’s and ML’s typing as we will see. Verification can also be achieved
by model checking or testing. Both are lacking in OBJ, ML and Coq, but
can of course be made available as tactics in OBJ’s successors and Coq.

The quest for the ideal programming language will continue until a
satisfactory language is designed that internalizes features still taken care
of by the user or by the programming environment.

2 The three languages

2.1 OBJ

In their first landmark paper on CLEAR, Rod Burstall and Joseph Goguen
introduced the brand new bright idea that specifying a program required
a specific language able to reflect the structure of the problem itself [6].
Following the ADJ group [16, 15], they advocated for an algebraic spec-
ification language based on equationnal logic, together with a module



system in which logical theories could be specified. This was the birth
of CLEAR, later developped more formally in [7]. To our knowledge,
CLEAR was the very first specification language. CLEAR was algebraic,
using many-sorted algebras with error-sorts, an approach later revised to
yield OBJ’s order-sorted algebras. CLEAR had parameterized modules
and theories, but no functors and was not implemented, although one can
consider that the first implementation of OBJ by Joseph Tardo [17], a
student of Joseph Goguen at UCLA, was indeed an implementation of
CLEAR. A second more advanced implementation was then written by
David Plaisted when visiting Joseph Goguen at SRI in 1982, which in-
cluded associative-commutative rewriting.

OBJ2 was the third implementation of OBJ. It was developped in
1984, when Kokichi Futatsugi and the second author visited Joseph Goguen
and and José Meseguer at SRI for one year. OBJ2 was the first algebraic
specification language based on a fragment of a Horn logic built on the
equality predicate and finitely many membership predicates called sub-
sorts [14]. The many novel features of OBJ2 included a flexible user-
defined syntax, defining subsorts by Horn sentences, rapid prototyping
via rewriting modulo associativity, commutativity, identity and their com-
binations, parameterized modules and functors. OBJ2 was followed by
OBJ3 [20], an improved implementation developped by Claude and Hélène
Kirchner whose postdoctoral visit closely followed their advisor’s. Full
Horn logic is available in the Maude language [9, 3], one of OBJ’s suc-
cessors developped by José Meseguer and his collaborators.

An OBJ program is a collection of modules followed by queries. A
module is either anobject or a theory. A module has a name, which
we always write with capital letters. Objects are made of two parts: a
signaturemade of basic types called sorts, and of constructors and (de-
fined) operators for these sorts; the meaning of the operators and of the
subsorts is given by (executable) Horn clauses (calledequalitiesor sort
constraintsdepending on the predicate heading the positive atom). We
will also use the name ofmembershipfor sort constraint, as in Maude.
In general, theprincipal sort of a module bears the same name as the
module itself, but the first letter only is capitalized. Semantically, objects
are initial algebras, implemented via the computation of normal forms:
the meaning of the defined operators must be given by a convergent set
of conditional rewrite rules (possibly modulo associativity, commutativ-
ity and the like). A theory is much like an object except that it is not
executable: its (loose) semantics is given by the class of all algebras that



satisfy the arbitrary first-order logical sentences specifying its properties.
The definition of an object or theory can use other objects or theories. The
keywords:usingallows to import a module without ensuring any prop-
erty of the imported module which must therefore be copied;protecting
ensures that the imported module is not modified, making copying un-
necessary;extendingstands in-between, since new values can be added
in sorts, but old values cannot be made equal unless they were equal be-
forehand.Parameterizationis one more way for importing a module. If
T is a theory, parameterizing a moduleM by an abstract moduleX sat-
isfying T will allow using the symbols defined inT in order to buildM ,
possibly by using qualification as a disambiguation mechanism. The pa-
rameterized moduleM can later be instantiated by an actualA provided
A satisfies the axioms ofT . Asserting a module property is done by a
view, which is the third kind of entity in OBJ. The construction of the
instantiated module may also involve some copying.

OBJ has a much more powerful mechanism for defining types than it
appears. Besides its basic types calledsorts, like IN andList, it also has
type constructors: if the moduleLIST is parameterized by an abstract
moduleX assumed to satisfy the theoryT , then any typeList(Elt) ex-
ists potentially, providedElt is the sort of a module satisfyingT . This
allows to build the typesList(IN) as well asList(List(IN)), therefore
providing with some form of polymorphism. However, these types can
only be used if the corresponding module instancesLIST [NAT ] and
LIST [LIST [NAT ]] are explicitly constructed. The same mechanism
provides with dependent types like bounded lists of lengthn, wheren can
be a parameter of sort IN defined via a theory. It also has arbitrary first-
order Horn sentences as types, writtent : s′ if A, whereA is an arbitrary
conjunction of equations and memberships built from the variables int.
OBJ’s subsort declaration is a static restriction of this mechanism. So,
OBJ’s type system was quite strong at the time OBJ was implemented,
and has even some Curry-Howard flavour. In retrospect, theories them-
selves can be seen as types for modules, and a view becomes then an
assertion that a module has some theory as type.

OBJ’s types, however, only serve specification purposes. Unlike mod-
ern functional programming languages like ML, typing is not really in-
ternalized in OBJ: property checking is left to the user’s responsibility.
Still, a limited amount of type-checking is done. For example, the left-
hand and right-hand side of an equality must have the same sort. And



the expression occurring in the head of a membership must have a sort
whose asserted sort must be a subsort.

OBJ specifications are assumed to satisfy a few other properties, all
left to the user. For example, the set of rules in a module is supposed ter-
minating and confluent, and the operators should be completely defined.
Maude provides support for checking these properties.

2.2 ML

ML was the first functional programming language in which specifica-
tions were given (actually, inferred) as types, another novel bright idea
from the late seventies due to Robin Milner [27]. ML has a powerful
higher-order module system, an efficient execution model via separate
compilation, and a primitive verification mechanism via type inference.

An ML program is a collection ofmodules. A module is either a
structure, which corresponds to an OBJ non-parametric object, or afunc-
tor which corresponds to a parametric object. Contrary to the latter, ML
functors can be higher order, i.e. they can be parametrized by a mod-
ule which itself is parametrized. Specification of a functor parameter is
given by amodule type. This can either be asignature, corresponding to
an OBJ theory, or a functor type. Contrary to OBJ theories, values cannot
be specified by equations, but types can.

Another difference is the lack of views in the ML module system.
Since subtyping is implicit, a functorF, expecting an argument of type
SIG, can be applied to all modulesM, whose principal module typeMSIG
is a subtype ofSIG. Using type inference, the principal module type can
be computed efficiently and since subtyping is an extension of inclusion,
views are not necessary. On the other hand, the OBJ views can also be
used to rename components of an object, which in ML can only be done
via a functor.

The important feature of OBJ that is missing in ML is theory exten-
sion via keywordsextendingandusing. Because equational specification
of values is lacking in ML, signature inclusion, present in most ML im-
plementations, is much weaker than its OBJ counterpart, hence cannot
be seen as a substitute. Indeed, theory extension can be used as another
means of parametrisation: assume one declares a functionf of some type
in a theoryA and one then uses it in a subsequent equational specifica-
tion of some functiong; in a theoryB extendingA, one can then provide
equations definingf, therefore completing the specifications ofg at the



same time. In fact, the specification ofg is parametrized byf. Similar
ideas are currently being investigate by the ML community with the so
called mixins [4, 19].

2.3 Coq

In the mid-eighties, following the path initiated by Curry, Howard, Girard
and De Bruijn, Thierry Coquand and Gérard Huet made another impor-
tant step with the beautiful Calculus of Constructions [11], in which types
are arbitrary sentences of higher-order intuitionistic logic. This calculus
was the start of the language Coq, a proof assistant including a full func-
tional programming language as an executable subset. Coq has a power-
ful higher-order module system with cut elimination semantics studied
and implemented by the first author [8], at that time a phd-student of the
second author, a primitive execution model via rewriting and an efficient
execution model via compilation. It also includes a sophisticated proof
search engine via tactics (and a tactic language), a secure proof checker
based on type checking, and an extraction mechanism towards modular
ML code. Here, it must be stressed that the module system is used to
structure first specifications, then proofs, and finally the programs ex-
tracted from proofs. The latter is of course facilited by the fact that the
module systems of Coq and ML are essentially the same.

The logical formalism implemented in Coq is based on the calculus
of inductive constructions [12, 31]. The terms in Coq are of two sorts:
calculableSet and logicalProp 3. Values are typed by types, which
are typed by the sortSet (for example0:nat and nat:Set ). The
second sort,Prop , is a type of logical formulas, which in turn are types
of their proofs (formula, whose proof is e.g.fun x ⇒ x ). In type theory
with dependent types these two worlds interleave, but it is nevertheless
possible to use this dichotomy in order to extract the computable content
of a proof, by deleting all its (logical) subterms of sortProp .

The general structure of a Coq development is the same as that of an
ML program. The main difference lies in logical parts: axioms in spec-
ifications and theorems in implementations. While in ML code precise
specifications are usually written informally as comments and correct-
ness is based on trusting the programmer, in Coq one can write specifi-
cations as logical formulas, and then carry out the proof that the specifi-
cation is satisfied.

3 There are other sorts in Coq, namely the predicative hierarchy ofType i, i ∈ N, called uni-
verses [22], but we do not use them in this paper.



3 Example

To compare the modular features of the three languages, we shall study
a simple sorting algorithm using an abstract priority queue. We also pro-
vide a naive implementation of the priority queue and show how the ab-
stract algorithm can be composed with the given implementation. The
obtained algorithm and data structure remain parameterized with respect
to the element ordering, which can itself be instantiated later on.

Priority queues are data structures implementing the following func-
tionalities: creation of an empty queue, insertion of an element into the
queue and extraction of the minimal element from the queue. They can be
realized very efficiently imperatively (Fibonacci heaps, binomial heaps,
etc) but efficient functional implementations also exist (see e.g. [5]).

Using a priority queue, one can implement the following sorting algo-
rithm: insert all element into the queue and then extract them one by one.
Several apparently different sorting algorithms can be seen as instances
of this abstract schema using a particular implementation of a priority
queue: selection sort uses unsorted lists, insertion sort uses sorted lists
and heapsort uses heaps.

This example, despite being so small and simple, illustrates quite well
the modular features of our three languages and how they evolved from
OBJ to ML and Coq. We show how a specification and an implemen-
tation of a data structure look like, how an implementation of the data
structure can be composed with an abstract algorithm, and how the re-
sulting concrete but parametric algorithm can be instantiated and used in
a program.

Our example shows the advantages of each approach: in OBJ one
can write very concise equational specifications, in ML specifications
are very brief (and imprecise) but implementations are very efficient, and
Coq allows one to formally specify and prove correctness of a data struc-
ture or algorithm. The comparison between ML and Coq further shows
how much work is needed to formally specify and verify a piece of code.

We will give the actual code of the example in the presentation.

4 Priority queues in OBJ

We will take the liberty to exploit the full power of Maude and use its
syntax when appropriate, to ease the understanding. Using OBJ instead
would sometimes require some irrelevant detour.



Specification of an ordered type, pairs, queues and priority queues.
We define successively trivial theories with a distinguished sort, pairs,

totally ordered sets, queues and priority queues. Being part of any OBJ
specification, the predefined moduleBOOLhas one sort,Bool , two (truth)
values,true andfalse , and the usual Boolean connectives as opera-
tions. In all examples, italics are used to identify OBJ keywords. All
sentences are terminated by a dot for parsing purposes. Underscores are
used to indicate arguments of operators which use a mixfix syntax.
th TRIV is
sort Elt .
endt

The theory TRIV requires the existence of (at least) one sort, namedElt .
obj PAIR[X :: TRIV, Y :: TRIV] is
sort Pair .
op pair : Elt.X Elt.Y -> Pair .
op 1st : Pair -> Elt.X .
op 2nd : Pair -> Elt.Y .
var E : Elt.X .
var E’ : Elt.Y .
eq 1st(pair(E, E’)) == E .
eq 2nd(pair(E, E’)) == E’ .
endo

The parameterized objectPAIR builds upon two formal objectsXand
Y satisfyingTRIV , which acts as a binder for the sort namesElt.X and
Elt.Y , therefore providing for the polymorphic sort constructorpair .
Note the use of qualification for disambiguating between the two in-
stances ofTRIV . The symbol== is used for equations in theories and
for rules in objects. It is also used for the built-in equality available at
all sorts. Similarly, : s is the built-in membership predicate available
at sorts. In the equations, the variablesE, E’ andE’’ are universally
quantified by the binding declarationvar.
th TOSET[X :: TRIV] is protecting BOOL .
op ≤ : Elt Elt -> Bool .
var E E’ E’’ : Elt .
E E ≤ E == true .
eq E == E’ if E ≤ E’ and E’ ≤ E .
eq E ≤ E’’ == true if E ≤ E’ and E’ ≤ E’’ .
eq E ≤ E’ or E’ ≤ E == true .
endt



The theoryTOSETuses the module BOOL with the keywordprotect-
ing implying two important properties: no new element of sort Bool can
exist in the semantics (for any two elementse,e’ of sortX, e≤e’ must
be equal to eithertrue or false ), and no two elements of sortBool
that were semantically different inBOOLcan be equated inTOSET.
th QUEUE[X :: TRIV] is protecting BOOL .
sorts NeQueue Queue .
subsorts Elt < NeQueue < Queue .
op empty : Queue .
op get : NeQueue -> Elt .
op rest : NeQueue -> Queue .
op insert : Elt Queue -> NeQueue .
op eq : Queue Queue -> Bool .
var Q : NeQueue .
eq eq(empty, empty) == true .
eq eq(insert(E, Q), empty) == false .
eq eq(insert(E, Q), insert(E’, Q’) ==

(E == E’) and eq(Q, Q’) .
eq eq(insert(get(Q), rest(Q)), Q) == true .
endt

In the theory of queues, the declarationNeQueue < Queue im-
plies thatget andrest are total on their domain. An alternative is
var Q : NeQueue .
mb Q : Queue .

th PRIOQUE[X :: TRIV, Y :: POSET[X]] is extending
PAIR[X, QUEUE[X]] .

op extract : NeQueue -> Pair .
op ≤ : Elt Queue -> Bool .
var Q : NeQueue .
var E, E’ : Elt .
eq E ≤ nil == true .
eq E ≤ insert(E’, Q) == E ≤ .Y E’ and E ≤ Q .
eq extract(insert(E, Q)) == pair(E, Q) if E ≤ Q .
eq extract(insert(E, Q)) == pair(1st(extract(Q)),

insert(E, 2nd(extract(Q)))) if E ≤ Q == false .
endt
Note how models ofPRIOQUEalternate loose interpretations (ofTRIV ,
QUEUEandPRIOQUE) with initial interpretations (ofPAIR andBOOL).
The role of thePAIR is to provide a polymorphic pairing construct.



Specification of an abstract sorting algorithm based on priority queues.
th LIST[X :: TRIV] is protecting BOOL .
sorts NeList List .
subsorts Elt < NeList < List .
op nil : List .
op : List List -> List [assoc id : nil ] .
op head : NeList -> Elt .
op tail : NeList -> List .
var E E’ : Elt .
var L L’ : List .
eq head(E L) == E .
eq tail(E L) == L .
mb L L’ : NeList if L : NeList or L’ : NeList .
endt

th ORDLIST[X :: TRIV, Y :: POSET[X],
Z :: LIST[X]] is

sorts NeOList OList .
subsorts NeOlist < OList < List .
subsorts NeOlist < NeList .
op sorted : List -> Bool .
op sort : List -> OList .
var L L’ L’’ : List .
var E E’ : Elt .
eq sorted(nil) == true .
eq sorted(E) == true .
eq sorted(E E’ L) == E ≤ E’ and sorted(E’ L) .
mb nil : OList .
mb L : NeOList if sorted(L) and L : NeList .
eq sort(L E L’ E’ L’’) == sort(L E’ L’ E L’’) .
eq sort(L) == L if sorted(L) .
endt

Note the subtle use of associativity and identity of concatenation in
specifyingsort andsorted .
obj SORT[X :: TRIV, Y :: POSET[X], Z :: PRIOQUE[X, Y]] is
op sort : Queue -> OList .
var Q : NeQueue .
eq sort(empty) == nil .
eq sort(Q) == 1st(extract(Q)) sort(2nd(extract(Q))) .
endo



Concrete algorithms for sorting elements of an ordered set.
view QLIST[X :: TRIV] of LIST[X] as QUEUE[X] .
sort Queue to List .
sort NeQueue to NeList .
op empty to nil
op get to head .
op rest to tail .
op insert to .
endv

This kind of typing assertion implies proof obligations to be checked
by the user. Here, the equation given forinsert , get andrest must
be verified for their interpretation inLIST . We now construct specific
priority queues as views to instantiate the abstract sorting algorithm.
view PRIOQUE1[X :: TRIV, Y :: POSET[X]] of

PAIR[X, QLIST[X]] as PRIOQUE[X, Y] .
var L L’ : Queue .
var E : Elt .
op extract(L E L’) to pair(E, L L’)

if E ≤ L and E ≤ L’ .
op insert(E, L) to E L .
endv

view PRIOQUE2[X :: TRIV, Y :: POSET[X]] of
PAIR[X, ORDLIST[X, QLIST[X]]] as PRIOQUE[X, Y] .

var L : NeOList .
var L’ : OList .
var E E’ E’’ : Elt .
op extract(L) to pair(head(L), tail(L)) .
op insert : Elt List -> NeList .
eq insert(E, nil) == E .
eq insert(E, E’) == E E’ if E ≤ E’ .
eq insert(E, L E’ E’’ L’) == L E’ E E’’ L’

if E’ ≤ E and E ≤ E’’ .
endv

The moduleSORT[X, Y, PRIOQUE1[X, Y]] and the module
SORT[X, Y, PRIOQUE2[X, Y]] both inherit a sorting algorithm
still parameterized byX, a set, andY, an order on that set. Applying fur-
ther to, for example, the built-in moduleNATof natural numbers having
the usual ordering on natural numbers, will generate objects in which we
can run the obtained sorting algorithms.



5 Priority queues in ML

The ML version of our example is given in the Caml [29] dialect. It is
divided into four parts: the definition of all needed signatures, a simple
implementation of priority queues as unsorted listsListPQ , an imple-
mentation of sorting by an abstract priority queuePQSort and compo-
sition of both implementations into a sorting moduleSort .

The first file contains the signatures of an ordered type (consisting of
a type and an ordering function), a priority queue and a sorting algorithm.
The latter two declare a submoduleE defining the ordering.

module type OrderedType =
sig
type t

(* The type of elements *)

val compare : t → t → int

(* compare a b is smaller than 0 if a is smaller than b, 0 if
a=b, and is larger than 0 if a is larger than b *)

end
module type PrioQueSig =

sig
module E : OrderedType

(* The type and ordering of the elements of the queue *)

type t

(* The type of priority queues *)

(* Operations: *)
val create : t
val insert : E.t → t → t
val extract : t → t * E.t

(* raisesNot found if the queue is empty *)
end

module type SortSig =
sig
module E : OrderedType

(* The type and ordering of the elements to sort *)

val sort : E.t list → E.t list

(* The sorting function *)



end

The second file contains the definition of a priority queue based on
unordered lists. We skip the (straightforward) implementation here, the
only interesting thing is the functor’s header:

module ListPQ (O: OrderedType)
: PrioQueSig with module E=O

which says that the moduleListPQ is a functor, taking an orderO as
parameter and returning a priority queue where the ordering is the same
as inO. Note that since the output signature of this functor is given, its
users will only have access to types and functions specified in this signa-
ture. Other types and functions are treated as local and implementation
specific and therefore they will be inaccessible.

The third element is the abstract algorithm, whose implementation is
also trivial. Again the interesting part is the functor’s header, which can
have two possible forms. The first one is the following:

module PQSort1 (O: OrderedType)
(PQ: PrioQueSig with module E=O)

: SortSig with module E=O

Now, in order to obtain the final sorting algorithm one can do it in
OCaml in the following way:

module Sort1 (O: OrderedType)
: SortSig with module E=O
= PQSort1(O)(ListPQ(O))

The module’s output signature is the signature of sorting with respect
to the argument ordering. Its implementation is simply the composition
of existing algorithms, all this under the abstraction with respect to the
argument ordering.

There is also a second way of writing the header of the abstract pri-
ority queue sorting algorithm:

module type PQFunctSig
= functor (O’: OrderedType)

→ PrioQueSig with module E=O’

module PQSort2 (O: OrderedType) (PQF: PQFunctSig)
: SortSig with module E=O



The above code fragment consists of two parts: first the functor type
is defined, which corresponds exactly to the specification ofListPQ .
Then the sorting algorithm is presented as a higher-order functor, i.e. a
functor which itself takes a functor as a parameter. Of course, the first line
of PQSort2 is the application ofPQFto O in order to get the priority
queuePQ, and from this point on the code of both functors is identical.

Higher-order functors are not available in OBJ.
In order to obtain the final sorting algorithm, one appliesPQSort2

to ListPQ :

module Sort2 (O: OrderedType)
: SortSig with module E=O
= PQSort2(O)(ListPQ)

The first approach to composing modules is more general than the
second, because one does not necessarily have to use a generic priority
queue functor. Consequently the use of data structures specialized to a
given type is possible (e.g. if a set of values is finite a priority queue can
be based on counting elements).

On the other hand, the higher-order functor may correspond better to
the intended way the programmer wishes to use a given part of code in
the whole program. This is exactly our case, since we want to compose
PQSort with the genericListPQ functor.

Of course it is possible to get the advantages of both approaches:
write the most general specification, as inPQSort1 , and then wrap it in
a higher-order functor, presenting the intentions of the programmer:

module PQSort2’ (O: OrderedType) (PQF: PQFunctSig)
: SortSig with module E=O
= PQSort1(O)(PQF(O)).

6 Priority queues in Coq

The structure of the Coq development is the same as in ML, but the sig-
natures now contain formal specifications, and structures contain proofs
of desired properties.

The first file, as in ML, contains the definition of all needed signa-
tures. The signatures are preceded by the definition of the type of a three-
value proof-carrying comparison: the typecomparison t < = a b



is for example inhabited byLt p , wherep is a proof of the property
a < b .

Inductive comparison(X : Set) (lt eq : X→ X→ Prop) (x y : X) : Set:=
| Lt : lt x y→ comparison X lt eq x y
| Eq : eq x y→ comparison X lt eq x y
| Gt : lt y x→ comparison X lt eq x y.

Module Type OrderedType.

Parameter t : Set.

Parameter eq: t → t → Prop.
Parameter lt : t → t → Prop.

Parameter compare: ∀ x y : t, comparison t lt eq x y.

Axiom eq refl : ∀ x : t, eq x x.
Axiom eq sym: ∀ x y : t, eq x y→ eq y x.
Axiom eq trans: ∀ x y z: t, eq x y→ eq y z→ eq x z.

Axiom lt trans: ∀ x y z: t, lt x y→ lt y z→ lt x z.
Axiom lt not eq: ∀ x y : t, lt x y→¬ eq x y.

Hint Immediate eq sym.
Hint Resolve eqrefl eq trans lt not eq lt trans.

End OrderedType.

Module Type PrioQueSig.

(* Declarations *)
Declare Module E : OrderedType.

Parameter t : Set.

Parameter create: t.
Parameter insert : t → E.t→ t.
Parameter extract: t → option(t × E.t).

(* Specification - auxiliary functions and predicates *)

Parameter number: t → E.t→ nat .

Definition empty q: Prop := ∀ x, number q x= 0.

(* Queues are similar iffq1= q2+ {x} *)
Definition similar (q1 q2: t) (x : E.t) : Prop :=

(∀ y : E.t, ¬ E.eq x y→ number q1 y= number q2 y)
∧ (∀ y : E.t, E.eq x y→ number q1 y= S(number q2 y)).

(* Specification of operations *)



Axiom create empty: empty create.
Axiom insert similar :
∀ (q : t) (x : E.t), similar (insert q x) q x.

Axiom extract similar :
∀ (q q2: t) (x : E.t),

extract q= Some(q2, x)→ similar q q2 x.
Axiom extract minimal :
∀ (q q2: t) (x y : E.t),

extract q= Some(q2, x)→ E.lt y x→ number q y= 0.
Axiom extract empty none:
∀ q : t, extract q= None→ empty q.

End PrioQueSig.

Module Type SortSig.
Declare Module E : OrderedType.
Parameter sort : list E.t→ list E.t.
Definition le e1 e2:= E.lt e1 e2∨ E.eq e1 e2.
Axiom sort sorted: ∀ l : list E.t, Sorting.sort le(sort l).
Axiom eq dec: ∀ e1 e2: E.t, {E.eq e1 e2} + { ¬ E.eq e1 e2}.
Axiom sort permut:
∀ l : list E.t, Permutation.permutation E.eq eqdec l(sort l).

End SortSig.
The signatureOrderedType , taken from [13], contains the same cal-
culable elements as its ML counterpart, but is constructed differently. Its
main elements are the type and the equality and ordering predicates (i.e.
logical elements). The functioncompare is only an addition to the pred-
icates. Instead of anint , thecompare function returns an element of
thecomparison type defined earlier, i.e. the ordering decision together
with the proof that the decision is right.

Apart from this, theOrderedType signature contains axioms spec-
ifying the properties of ordering and equality and hints to instrument au-
tomatic tactics, trying to prove properties concerned with the order. The
latter element is of course not part of the type theory.

The priority queue signature is also divided into two parts: declara-
tions and specifications. The declarations contain the same elements as
in ML with the only exception of theextract function, which returns
an option type, i.e.Some value if the queue is not empty andNone
otherwise (instead of raising an exception). Note, however, that in order



to specify the queue operations one must declare additional functions,
counting thenumber of occurrences of a given element in the queue.
Based on this function, two predicatesempty andsimilar can eas-
ily be defined in order to write the purely logical axioms specifying how
create , insert andextract work.

The signature of a sorting algorithm is simply an extension of its ML
counterpart by the logical axioms, saying that the list resulting from sort-
ing is sorted and is a permutation of the input list. TheSorting.sort
andPermutation.permutation predicates from the Coq standard
library need additional elements such as less than or equal predicatele
or equality decidability propertyeq dec .

In the second file, the header ofListPQ is the following:

Module ListPQ(O: OrderedType) <: (PrioQueSigwith Module E:=O).

The difference between the ML and Coq versions of this functor is the
way the resulting module type is declared. The Coq syntaxModule M <:
SIGmeans that the type checker should check that the principal signature
of M is included inSIGand the users ofM are allowed to use all the in-
formation inferred in its principal signature. We say that this module type
annotation is transparent as opposed to the opaque one that was used in
the ML version. The fact the transparent annotation is used is only im-
portant for evaluation of programs inside Coq, such asEval compute in
(sort l), see below. Thanks to transparency the reduction mechanism can
seethe definitions of all functions and evaluate them. For typechecking
reasons the opaque module type annotations would be equally good.

In Coq, we also have two possibilities of writing thePQSortfunctor.
The header of the first order one is as follows:

Module PQSort1(O: OrderedType)
(PQ: PrioQueSigwith Module E := O)

<: SortSigwith Module E := O.

Unfortunately, due to the requirement that functors are applied only to
namesof modules, and the lack of local module bindings, the composi-
tion of PQSort1andListPQ is somewhat lengthy:

Module Sort1(O: OrderedType) <: (SortSigwith Module E:=O).
Module ListPQ O := ListPQ O.
Module PQSort O := PQSort1 O ListPQO.
(* Include PQSortO. *)
Module E := PQSort O.E.



Definition sort := PQSort O.sort.
Definition le := PQSort O.le.
Definition sort sorted:= PQSort O.sort sorted.
Definition eq dec:= PQSort O.eq dec.
Definition sort permut:= PQSort O.sort permut.

End Sort1.

Now we can apply the functor to an example module NatOrder and test
the sorting!

Module NatSort1<: (SortSigwith Module E:=NatOrder)
:= Sort1 NatOrder.

Eval compute in (NatSort1.sort(4::5::1::2::nil)).

The higher-order way of writingPQSort

Module Type PQFunctSig(O’ : OrderedType)
:= PrioQueSigwith Module E := O’.

Module PQSort2(O: OrderedType) (PQF: PQFunctSig)
<: SortSigwith Module E := O.

starting with the creation of the priority queue forO:

Module PQ := PQF O.
leads to a much simpler composition code:

Module Sort2(O: OrderedType)
<: SortSigwith Module E:=O
:= PQSort2 O ListPQ.

Unfortunately, due to a certain weakness of the Coq module system with
respect to transparency of higher-order functors, the instances of thePQ-
Sort2functor cannot be evaluated inside Coq. However, the ML code ex-
tracted from both functors can of course be evaluated without any prob-
lems.

To summarize, it is interesting to compare the size of ML and Coq
code. It follows that Coq signatures with specifications by logical formu-
las are about 2-3 times longer than their commented ML counterparts.
Unfortunately, the implementations, which in Coq contain proofs of re-
quired properties, are about 10-20 times longer than the corresponding
ML code.



7 Conclusion

We have presented three languages which integrate specification and im-
plementation. With the simple example of an abstract sorting algorithm
based on a priority queue, we demonstrate how each of the three lan-
guages can be used for programming in the large by writing specifica-
tions, implementations and by composing abstract components. In par-
ticular, we want to stress that parameterization should be available for all
kinds of modules.

We have seen that the most important concepts of the OBJ modules
are still present in more recent systems such as ML and Coq. Indeed, OBJ
objects correspond to structures, parametric objects to functors and OBJ
theories to signatures. Only the parametric OBJ theories do not have di-
rect representatives in the ML and Coq module systems, but abstract sig-
natures can easily be refined to concrete ones using the “with” notation.
On the other hand, higher-order modules are lacking in OBJ. Although
they are not much used in practice, our example shows their adequacy to
describing dependencies on other parametric components.

Concerning the ability of these languages to specify and implement
software components, OBJ lies somewhere between ML and Coq. In
ML, specifications are simply given as types for functions, and execu-
tion is based on an efficient call-by-value evaluation strategy. In OBJ,
one can write first-order equational and membership specifications that
are executable via an efficient built-in associative-commutative rewriting
mechanism guided by user-defined strategies. In Coq, the specification
language is higher-order predicate logic, which is by far the most expres-
sive of the three. This makes it possible to write a specification, imple-
ment it, prove that the implementation is correct, run the implementation
inside Coq and even extract the program into an executable ML code.
Some of these steps may of course involve complex, lengthy machine
computations.

The question arises of which language is best suited for fast proto-
typing. If no verification is needed, the answer would probably be ML.
Separating signatures from their actual implementation is just very neat,
and allows a two steps development methodology which does not require
much interaction between these two phases unless there are major design
errors. Because OBJ modules provide at the same time with an inter-
face and logical requirements for the interface, specification and coding
are no more clearly separated. The development process becomes more



complicated, going back and forth between different pieces of the code.
A comparison with Coq is more difficult, since Coq gives you a lot more:
while it is possible in OBJ to forget about the proof obligations generated
when typing modules, this is not the case with Coq. A consequence is that
every change requires tedious adjustments of the proofs.

Acknowledgments:We thank Andrzej Gąsienica-Samek and Tomasz
Stachowicz for their help with the Coq development, Pierre-Yves Strub
for checking preliminary versions of the OBJ development in Maude,
and the referee for many valuable comments.

References

1. The Agda proof assistant.http://www.cs.chalmers.se/~catarina/agda/ .
2. Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Marian

Vittek. ELAN: A logical framework based on computational systems. In J. Meseguer,
editor,1st International Workshop on Rewriting Logic and its Applications, Electronic Notes
in Theoretical Computer Science 4, 1996.

3. Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and proof in mem-
bership equational logic.Theoretical Computer Science, 236:35–132, 1999.

4. Gilad Bracha.The Programming Language Jigsaw: Mixins, Modularity and Multiple Inher-
itance. PhD thesis, Dept. of Computer Science, University of Utah, 1992.

5. Gerth Stolting Brodal and Chris Okasaki. Optimal purely functional priority queues.Journal
of Functional Programming, 6(6):839–857, 1996.

6. Rod M. Burstall and Joseph A. Goguen. Putting theories together to make specifica-
tions. InProc. 5th International Joint Conference of Artificial Intelligence, Cambridge Mas-
sachusetts, pages 1045–1058, Edinburgh University, 1977.

7. Rod M. Burstall and Joseph A. Goguen. The semantics of CLEAR, a specification language.
In 1979 Copenhagen Winter School on Abstract Software Specification, volume 86 ofLNCS.
Springer-Verlag, 1980.

8. Jacek Chrząszcz. Modules in Coq are and will be correct. In Stefano Berardi, Mario Coppo,
and Ferruccio Damiani, editors,Types for Proofs and Programs, International Workshop,
TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers, volume 3085
of LNCS, pages 130–146. Springer, 2004.

9. Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of Maude. In
J. Meseguer, editor,1st International Workshop on Rewriting Logic and its Applications,
Electronic Notes in Theoretical Computer Science 4, 1996.

10. The Coq proof assistant.http://coq.inria.fr/ .
11. Thierry Coquand and Gérard Huet. The calculus of constructions.Information and Compu-

tation, 76:95–120, February 1988.
12. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In P. Martin-Löf

and G. Mints, editors,COLOG-88: International conference on computer logic, volume 417
of LNCS. Springer-Verlag, 1990.

13. Jean-Christophe Filliâtre and Pierre Letouzey. Functors for Proofs and Programs. InEu-
ropean Symposium on Programming, volume 2986 ofLNCS, pages 370–384, Barcelona,
Spain, April 2004. Springer-Verlag.

14. Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer. Principles
of OBJ2. InProc. 12th ACM Symp. on Principles of Programming Languages, New Orleans,
1985.



15. J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specifica-
tion, correctness and implementation of abstract data types. InCurrent Trends in Program-
ming Methodology, vol. 4, pages 80–149. Prentice Hall, 1978.

16. J. A. Goguen, J. W. Thatcher, E. W. Wagner, and J. B. Wright. Initial algebra semantics and
continuous algebra.Journal of the ACM, 24(1):68–95, January 1977.

17. Joseph A. Goguen and Joseph J. Tardo. An introduction to obj, a language for writing and
testing formal algebraic specifications. InSpecification of Reliable Software Conference,
pages 170–189, April 1979.

18. Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud.Applications of Algebraic Specifications Using OBJ, chapter Introducing OBJ*.
Cambridge University Press, 1993. D. Coleman, R. Gallimore and J. A. Goguen, eds.

19. Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In D. Le
Métayer, editor,Programming Languages and Systems, ESOP’2002, volume 2305 ofLNCS,
pages 6–20. Springer-Verlag, 2002.

20. Claude Kirchner, Hélène Kirchner, and José Meseguer. Operational semantics of OBJ3. In
15th International Conference on Automata, Languages and Programming, volume 317 of
LNCS, pages 287–301. Springer-Verlag, 1988.

21. The LEGO proof assistant.http://www.dcs.ed.ac.uk/home/lego/ .
22. Zhaohui Luo. ECC an Extended Calculus of Constructions. In4th Symposium on Logic in

Computer Science, Pacific Grove, California, 1989.
23. David MacQueen. Theory and practice of higher-order type systems or the Standard ML

type system. Copy of Transparencies.
24. Lena Magnusson and Bengt Nordström. The alf proof editor and its proof engine. In

H. Barendregt and T. Nipkow, editors,Types for Proofs and Programs, volume 806 ofLNCS,
pages 213–237. Springer-Verlag, 1993.

25. Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.
Sheperdson, editors,Logic Colloquium ’73, volume 80 ofStudies in Logic, pages 73–118.
North-Holland, 1975.

26. Per Martin-Löf. Intuitionistic Type Theory. Biblioplois, Napoli, 1984. Notes of Giowanni
Sambin on a series of lectues given in Padova.

27. Robert Milner. A theory of type polymorphism programming.Journal of Computer and
System Sciences, 17, 1978.

28. Shin Nakajima and Kokichi Futatsugi. An object-oriented modeling method for algebraic
specifications in Cafe OBJ. In19th International Conference on Software Engineering,
pages 34–44. ACM Press, 1997.

29. The Objective Caml language.http://caml.inria.fr/ .
30. Pierre Weis et al. The CAML reference manual. Rapport de Recherche 121, INRIA, 1990.
31. Benjamin Werner.Méta-théorie du Calcul des Constructions Inductives. PhD thesis, Univ.

Paris VII, 1994.


