
HORPO with Computability Closure : A Reconstruction

Frédéric Blanqui1, Jean-Pierre Jouannaud2?, and Albert Rubio3

1 INRIA & LORIA, Protheo team, Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy
Cedex, France

2 LIX, École Polytechnique, 91400 Palaiseau, France
3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. This paper provides a new, decidable definition of the higher-order
recursive path ordering in which type comparisons are made only when needed,
therefore eliminating the need for the computability closure, and bound variables
are handled explicitly, making it possible to handle recursors for arbitrary strictly
positive inductive types.

1 Introduction

The Higher-order Recursive Path ordering was first introduced in [3].
The goal was to provide a tool for showing strong normalization of sim-
ply typed lambda calculi in which higher-order constants were defined
by higher-order recursive rules using plain pattern matching. Inspired
by Dershowitz’s recursive path ordering for first-order terms, comparing
two terms started by comparing their types under a given congruence
generated by equating given basic types, before to proceed recursively
on the structure of the compared terms. In [4], the type discipline was
generalized to a polymorphic type discipline with type constructors, the
congruence on types was replaced by a well-founded quasi-ordering on
types (in practice, a restriction of the recursive path ordering on types),
and the recursive definition itself could handle new cases. There were
two variants of the subterm case: in the first, following the recursive path
ordering tradition, a subterm of the left-hand side was compared with
the whole right-hand side; in the second, a term belonging to the com-
putability closure of the left-hand side was used instead of a subterm.
And indeed, a subterm is the basic case of the computability closure
construction, whose fixpoint definition included various operations under
which Tait and Girard’s notion of computability is closed. The ordering
and the computational closure definitions shared a lot in common, rais-
ing some expectations for a simpler and yet more expressive definition
? Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud.

able to handle inductive types, as advocated in [2]. This paper meets
these expectations (and goes indeed much further) with a new definition
of HORPO that improves over the previous one [4] in several respects:

1. There is a single decidable recursive definition, instead of a pair of
mutually inductive definitions for the computability closure and the
ordering itself;

2. In contrast with the definition of HORPO with computability closure,
the new definition is decidable and syntax-directed (except, as usual,
for the subterm case);

3. Type checking applies only when really needed, that is, when the
comparison does not follow from computability arguments;

4. Bound variables are handled explicitly by the ordering, allowing for
arbitrary abstractions in the right-hand sides;

5. Strictly positive inductive types are accommodated;
6. There is no need for flattening applications on the right-hand side.

This new definition appears to be powerful enough to prove strong
normalization of recursors for arbitrary strictly positive inductive types.
The two major technical innovations which make it possible are the in-
tegration of the computability closure within the ordering definition on
the one hand, and the explicit handling of binders on the other hand. This
integration of the computability closure is not obtained by adding new
cases in the definition, as was suggested in [2], but instead by eliminat-
ing from the previous definition the unnecessary type checks.

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [4]. Their purpose
is twofold: to define a simple framework in which many-sorted algebra
and typed lambda-calculus coexist; to allow for polymorphic types for
both algebraic constants and lambda-calculus expressions. For the sake
of simplicity, we will restrict ourselves to monomorphic types in this
presentation, but allow us for polymorphic examples. Carrying out the
polymorphic case is no more difficult, but surely more painful.

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n → ∗,
the set of types is generated by the constructor → for functional types:

TS := s(T n
S) | TS → TS

for s : ∗n → ∗ ∈ S

2

Types are functional when headed by the → symbol, and data types
otherwise. → associates to the right. We use σ, τ, ρ, θ for arbitrary types.

Function symbols are meant to be algebraic operators equipped with
a fixed number n of arguments (called the arity) of respective types
σ1, . . . , σn, and an output type σ. Let F =

⊎
σ1,...,σn,σ Fσ1×...×σn→σ. The

membership of a given function symbol f toFσ1×...×σn→σ is called a type
declaration and written f : σ1 × . . .× σn → σ.

The set T (F ,X) of raw algebraic λ-terms is generated from the sig-
natureF and a denumerable setX of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

The raw term λx : σ.u is an abstraction and @(u, v) is an application.
We may omit σ in λx : σ.u and write @(u, v1, . . . , vn) or u(v1, . . . , vn),
n > 0, omitting applications. Var(t) is the set of free variables of t. A
raw term t is ground if Var(t) = ∅. The notation s shall be ambiguously
used for a list, a multiset, or a set of raw terms s1, . . . , sn.

Raw terms are identified with finite labeled trees by considering λx :
σ.u, for each variable x and type σ, as a unary function symbol taking u
as argument to construct the raw term λx : σ.u. Positions are strings of
positive integers. t|p denotes the subterm of t at position p. We use t� t|p
for the subterm relationship. The result of replacing t|p at position p in t
by u is written t[u]p.

An environment Γ is a finite set of pairs written as {x1 : σ1, . . . , xn :
σn}, where xi is a variable, σi is a type, and xi 6= xj for i 6= j. Our
typing judgements are written as Γ `Σ s : σ. A raw term s has type σ
in the environment Γ if the judgement Γ `Σ s : σ is provable in the
inference system given at Figure 1. An important property of our type
system is that a raw term typable in a given environment has a unique
type. Typable raw terms are called terms. We categorize terms into three
disjoint classes:

1. Abstractions headed by λ;
2. Prealgebraic terms headed by a function symbol, assuming that the

output type of f ∈ F is a base type;
3. Neutral terms are variables or headed by an application.

A substitution σ of domain Dom(σ) = {x1, . . . , xn} is a set of triples
σ = {Γ1 `Σ x1 7→ t1, . . . , Γn `Σ xn 7→ tn}, such that xi and ti have the
same type in the environment Γi. Substitutions are extended to terms by
morphism, variable capture being avoided by renaming bound variables
when necessary. We use post-fixed notation for substitution application.

3

Variables:
x : σ ∈ Γ

Γ Σ̀ x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

Γ Σ̀ t1 : σ1 . . . Γ Σ̀ tn : σn

Γ Σ̀ f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} Σ̀ t : τ

Γ Σ̀ (λx : σ.t) : σ → τ

Application:
Γ Σ̀ s : σ → τ Γ Σ̀ t : σ

Γ Σ̀ @(s, t) : τ

Fig. 1. The type system for monomorphic higher-order algebras

A rewrite rule is a triple Γ `Σ l → r such that Var(r) ⊆ Var(l), and
Γ `Σ l : σ and Γ `Σ r : σ for some type σ. Given a set of rules R, for
example the beta- and eta- rules of the lambda-calculus,

s
p−→

l→r∈R
t iff s|p = lγ and t = s[rγ]p for some substitution γ

The notation l → r ∈ R assumes that the variables bound in l, r (resp.
the variables free in l, r) are renamed away from the free variables of s[]p
(resp. the bound variables of s[]p), to avoid captures.

For simplicity, typing environments are omitted in the rest of the pa-
per.

A higher-order reduction ordering � is a well-founded ordering of
the set of typable terms which is

(i) monotonic: s � t implies that u[s] � u[t];
(ii) stable: s � t implies that sγ � tγ for all substitution γ.
(iii) functional: s−→β ∪−→η t implies s � t,
In [4], we show that the rewrite relation generated by R ∪ {beta,eta}

can be proved by simply checking that l > r for all l → r ∈ R with
some higher-order reduction ordering.

3 The Improved Higher-Order Recursive Path Ordering

The improved higher-order recursive path ordering on higher-order terms
is generated from four basic ingredients: a type ordering; an accessi-
bility relationship; a precedence on functions symbols; and a status for
the function symbols. Accessibility is a new ingredient originating in
inductive types, while the other three were already needed for defin-
ing HORPO. We describe these ingredients before defining the improved
higher-order recursive path ordering.

4

3.1 Ingredients

– A quasi-ordering on types≥TS called the type ordering satisfying the
following properties:
1. Well-foundedness: >TS is well-founded;
2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS

τ and σ =TS σ′;
3. Arrow decreasingness: τ → σ >TS α implies σ ≥TS α or α =

τ ′ → σ′, τ ′ =TS τ and σ >TS σ′;
4. Arrow monotonicity: τ ≥TS σ implies α → τ ≥TS α → σ and τ →

α ≥TS σ → α;
We denote by T min

S the set of minimal types with respect to >→
TS =

>TS ∪�.
We say that a data type σ occurs positively (resp. negatively) in a type
τ if τ is a data type (resp. τ is a data type non equivalent to σ in =TS),
or if τ = ρ → θ and σ occurs positively (resp. negatively) in θ and
negatively (resp. positively) in ρ.

– a set Acc(f) of accessible arguments for each function declaration
f : σ1 . . . σn → σ such that σ is a data type : i ∈ [1..n] is said to
be accessible if all data types occuring in σi are smaller than σ in the
quasi-order ≥TS , and in case of equivalence (with =TS), they must
occur positively in σi. Note that the application operator @ : (α →
β) × α → β can be seen as a function symbol with an empty set of
accessible positions, since its output type τ may occur negatively in
any of its two argument types σ and σ → τ .
A term u is accessible in f(s), f ∈ F , iff u = si or u is accessible
in si for some i ∈ Acc(f). Accessibility for f ∈ F ∪ {@} is now
obtained by adding the minimal type subterms: s = f(s) �accv : τ iff
v is accessible in s, or τ ∈ T min

S and Var(v) ⊆ Var(s).
– a precedence≥F on symbols inF∪{@}, with f >F @ for all f ∈ F .
– a status for symbols in F ∪ {@} with @ ∈ Mul.

We recall important properties of the type ordering [4]:

Lemma 1. Assuming σ =TS τ , σ is a data type iff τ is a data type.

Lemma 2. Let ≥TS be a quasi-ordering on types such that >TS is well-
founded, arrow monotonic and arrow preserving. Then, the relation≥→

TS =
(≥TS ∪�)∗ is a well-founded quasi-ordering on types extending≥TS and
�, whose equivalence coincides with =TS .

Lemma 3. T min
S is a non-empty set of data types if TS 6= ∅.

5

3.2 Notations

– s�X t for the main ordering, with a finite set of variables X ⊂ X ,
with the convention that X is omitted when empty;

– s : σ�X
TS t : τ for s�X t and σ ≥TS τ ;

– s �acc�X
TS t for s �accw for some w and @(w, x) : σ′ =TS σ�TS t for

some x ∈ X .

3.3 Ordering definition

Definition 1. s : σ�X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) si �acc�X

TS t for some i
(b) t = g(t) with f =F g ∈ F , s�X t and s(�TS ∪�acc�X

TS)statf t
(c) t = g(t) with f >F g ∈ F ∪ {@} and s�X t

2. s = @(u, v) and either of
(a) u �acc�X

TS t or v �acc�X
TS t

(b) t = @(u′, v′) and {u, v}(�X
TS)mul{u′, v′}

(c) u = λx : α.w and w{x 7→ v}�X t
3. s = λx : α.u and either of

(a) u{x 7→ z}�X
TS t for z : α fresh

(b) t = λy : β.v, α =TS β and u{x 7→ z}�X v{y 7→ z} for z : β fresh
(c) u = @(v, x), x 6∈ Var(v) and v�X t

4. (a) s 6∈ X and t ∈ X
(b) s 6∈ X , s 6= λx : α.u, t = λy : β.w and s�X∪{z} w{y 7→ z}

for z : β fresh

Our ordering definition comes in four parts, dealing the first three with
left-hand sides headed respectively by an algebraic symbol, the applica-
tion symbol and an abstraction, while the fourth factors out those cases
where the right-hand side is a previously bound variable or an abstrac-
tion.

Cases 1 are very similar (up to type checks) to those of Dershowitz’s
recursive path ordering with the subterm case 1a, the status case 1b and
the precedence case 1c. So are Cases 2 and 3. One difference is that
there is an additional case for handling respectively beta and eta. A more
substantial difference is that variable renaming has become explicit.

The major innovation of this new definition is the annotation of the
ordering by the set of variables X that were originally bound in the right-
hand side term, but have become free by taking some subterm. This al-
lows rule 4b to pull out abstractions from the right-hand side regardless

6

of the left-hand side term, meaning that abstractions are smallest in the
precedence. Note that freed variables become smaller than everything
else but variables.

One may wonder why Case 1b is so complicated: the reason is that
using recursively s(�X

TS)statf t would yield non-termination.
We give now an example of use of this new definition with the induc-

tive type of Brouwer’s ordinals, whose constructor lim takes an infinite
sequence of ordinals to build a new, limit ordinal, hence admits a func-
tional argument of type IN → Ord, in which Ord occurs positively. As
a consequence, the recursor admits a much more complex structure than
that of natural numbers, with an explicit abstraction in the right-hand side
of the rule for lim:

rec(lim(F), U, X,W) → @(W, F, λn.rec(@(F, n), U, X,W))
Although the strong normalization of such rules is known to be diffi-

cult to prove, it is checked automatically by our ordering:

Example 1. Brouwer’s ordinals.
0 : Ord S : Ord ⇒ Ord lim : (IN → Ord) ⇒ Ord
n : IN F : IN → Ord
rec : Ord× α× (Ord→α→α)× ((IN→Ord)→(IN→α)→α) ⇒ α

1. rec(lim(F), U, X,W)�TS @(W, F, λn.rec(@(F, n), U, X,W)) yields
4 subgoals according to Case 1c:

2. α ≥TS α which is trivially satisfied, and
3. rec(lim(F), U, X,W)�{W, F, λn.rec(@(F, n), U, X,W)}which sim-

plifies to:
4. rec(lim(F), U, X,W)�W which succeeds by Case 1a,
5. rec(lim(F), U, X,W)� F , which succeeds by Case 1a since F is

accessible in lim(F),
6. rec(lim(F), U, X,W)� λn.rec(@(F, n), U, X,W) which yields by

Case 4b
7. rec(lim(F), U, X,W)�{n} rec(@(F, n), U, X,W) which yields by

Case 1b
8. {lim(F), U, X,W}(�TS ∪�acc�{n}

TS)mul{@(F, n), U, X,W}, which re-
duces to

9. lim(F)�acc�{n}
TS @(F, n) which succeeds by Case 1a since F is acces-

sible in lim(F),
10. rec(lim(F), U, X,W)�{n}{@(F, n), U, X,W}, our remaining goal,

decomposes into three goals trivially solved by Case 1a, that is
11. rec(lim(F), U, X,W)�{n}{U,X, W}, and one additional goal

7

12. rec(lim(F), U, X,W)�{n} @(F, n) which yields two goals by Case 1c
13. rec(lim(F), U, X,W)�{n} F , which succeeds by Case1a, since F is

accessible in lim(F), and
14. rec(lim(F), U, X,W)�{n} n which succeeds by Case 4a, therefore

ending the computation.

4 Strong normalization

Theorem 1. (�TS)
+ is a decidable higher-order reduction ordering.

Contrasting with our previous proposal made of an ordering part and
a computability closure part, our new ordering is a decidable inductive
definition: s�X t is defined by induction on the triple (n, s, t), using the
order (>IN,−→β ∪�, �)lex, where n is the number of abstractions in
t. The quadratic time decidability follows since all operations used are
clearly decidable in linear time. The fact that �X is quadratic comes
from those cases that recursively compare one side with each subterm of
the other side. This assumes of course that precedence and statuses are
given, since inferring them yields NP-completeness as is well-known for
the recursive path ordering on first-order terms.

The stability and monotonicity proofs are routine. As the old one, the
new definition is not transitive, but this is now essentially due to the beta-
reduction case 2c. We are left with strong normalization, and proceed as
in [4]. The computability predicate differs however in case of data types,
since it has to care about inductive type definitions.

4.1 Candidate Terms

Because our strong normalization proof is based on Tait and Girard’s
reducibility technique, we need to associate to each type σ, actually to
the equivalence class of σ modulo =TS , a set of terms [[σ]] closed under
term formation. In particular, if s ∈ [[σ → τ]] and t ∈ [[σ]], then the raw
term @(s, t) must belong to the set [[τ]] even if it is not typable, which
may arise in case t does not have type τ but τ ′ =TS τ . Relaxing the type
system to type terms up to type equivalence =TS is routine [4]. We use
the notation t :C σ to indicate that the raw term t, called a candidate term
(or simply, a term), has type σ in the relaxed system.

4.2 Candidate interpretations

In the coming sections, we consider the well-foundedness of the strict
ordering (�TS)

+, that is, equivalently, the strong normalization of the

8

rewrite relation defined by the rules s−→ t such that s�TS t. Note that
the set X of previously bound variables is empty. We indeed have failed
proving that the ordering (�X

TS)
+ is well-founded for an arbitrary X , and

we think that it is not. As usual in this context, we use Tait and Girard’s
computability predicate method, with a definition of computability for
candidate terms inspired from [4, 1].

Definition 2. The family of candidate interpretations {[[σ]]}σ∈TS is a fam-
ily of subsets of the set of candidates whose elements are the least sets
satisfying the following properties:

(i) If σ is a data type and s :C σ is neutral, then s ∈ [[σ]] iff t ∈ [[τ]] for
all terms t such that s�TS t :C τ ;

(ii) If σ is a data type and s = f(s) :C σ is prealgebraic with f :
σ1 . . . σn ⇒ σ′ ∈ F , then s ∈ [[σ]] iff si ∈ [[σi]] for all i ∈ Acc(f) and
t ∈ [[τ]] for all terms t such that s�TS t :C τ ;

(iii) If σ is the functional type ρ → τ then s ∈ [[σ]] iff @(s, t) ∈ [[τ]]
for all t ∈ [[ρ]];

A candidate term s of type σ is said to be computable if s ∈ [[σ]]. A
vector s of terms of type σ is computable iff so are all its components.
A (candidate) term substitution γ is computable if all candidate terms in
{xγ | x ∈ Dom(γ)} are computable.

Our definition of candidate interpretations is based on a lexicographic
combination of an induction on the well-founded type ordering >→

TS (which
includes >TS), and a fixpoint computation for data types. This is so since

(i) the type of the right-hand side term has necessarily decreased strictly
in Case 4b: let s : σ and u{y : β 7→ z : β} : τ be the terms compared in
Case 4b, and assume that s : σ�X

TS t = λy : β : u is the originating com-
parison, hence σ ≥TS β → τ ; by Lemma 2, we get σ >TS τ , showing
our claim;

(ii) the type of the right-hand side term has not increased in Case 4a,
thanks to the type check.

4.3 Computability properties

We start with a few elementary properties stated without proofs:

Lemma 4. Assume σ =TS τ . Then, [[σ]] = [[τ]].

Lemma 5. Let s = @(u, v) :C τ . Then s is computable if u and v are
computable.

9

Lemma 6. Let s :C σ ∈ T min
S be a strongly normalizable term. Then s

is computable.

Lemma 7. Assume that s is computable and strongly normalizable and
that f(s) �accv for some f ∈ F ∪ {@}. Then v is computable.

We now give the fundamental properties of the interpretations. Note
that we use our term categorisation to define the computability predi-
cates, and that this is reflected in the computability properties below.

(i) Every computable term is strongly normalizable for �TS ;
(ii) If s is a computable candidate term such that s�TS t, then t is

computable;
(iii) A neutral term s is computable iff t is computable for all terms t

such that s�TS t;
(iv) An abstraction λx : σ.u is computable iff u{x 7→ w} is com-

putable for all computable terms w :C σ;
(v) A prealgebraic term s = f(s) :C σ such that f : σ → τ ∈ F is

computable if s :C σ is computable.
All proofs are adapted from [4], with some additional difficulties. The

first four properties are proved together.

Proof. Properties (i), (ii), (iii), (iv). Note first that the only if part of prop-
erties (iii) and (iv) is property (ii). We are left with (i), (ii) and the if parts
of (iii) and (iv) which spell out as follows:

Given a type σ, we prove by induction on the definition of [[σ]] that
(i) Given s :C σ ∈ [[σ]], then s is strongly normalizable;
(ii) Given s :C σ ∈ [[σ]] such that s�TS t for some t :C τ , then t ∈ [[τ]];
(iii) A neutral candidate term u :C σ is computable if w :C θ ∈ [[θ]]

for all w such that u�TS w; in particular, variables are computable;
(iv) An abstraction λx : α.u :C σ is computable if u{x 7→ w} is

computable for all w ∈ [[α]].
We prove each property in turn, distinguishing in each case whether

σ is a data or functional type.

(ii) 1. Assume that σ is a data type. The result holds by definition of the
candidate interpretations.

2. Let σ = θ → ρ. By arrow preservation and decreasingness prop-
erties, there are two cases:
(a) ρ ≥TS τ . Let y :C θ ∈ X . By induction hypothesis (iii), y ∈

[[θ]], hence @(s, y) ∈ [[ρ]] by definition of [[σ]]. Since @(s, y) :C
ρ�TS t :C τ by case 2a of the definition, t is computable by
induction hypothesis (ii).

10

(b) τ = θ′ → ρ′, with θ =TS θ′ and ρ ≥TS ρ′. Since s is com-
putable, given u ∈ [[θ]], then @(s, u) ∈ [[ρ]]. By monotonicity,
@(s, u)�X

TS @(t, u). By induction hypothesis (ii) @(t, u) ∈
[[ρ′]]. Since [[θ]] = [[θ′]] by Lemma 4, t is computable by def-
inition of [[τ]].

(i) 1. Assume first that σ is a data type. Let s�TS t. By definition of
[[σ]], t is computable, hence is strongly normalizable by induction
hypothesis. It follows s is strongly normalizable in this case.

2. Assume now that σ = θ → τ , and let s0 = s :C σ = σ0�TS s1 :C
σ1 . . .�TS sn :C σn�TS . . . be a derivation issuing from s. There-
fore si ∈ [[σi]] by induction on i, using the assumption that s is
computable for i = 0 and otherwise by the already proved prop-
erty (ii). Such derivations are of the following two kinds:
(a) σ >TS σi for some i, in which case si is strongly normalizable

by induction hypothesis (i). The derivation issuing from s is
therefore finite.

(b) σi =TS σ for all i, in which case σi = θi → τi with θi =TS θ.
Then, {@(si, y :C θ) :C τi}i is a sequence of candidate terms
which is strictly decreasing with respect to�TS by monotonic-
ity. Since y :C θ is computable by induction hypothesis (iii),
@(si, y) is computable by definition of [[τi]]. By induction hy-
pothesis, the above sequence is finite, implying that the start-
ing sequence itself is finite.

Therefore, s is strongly normalizing as well in this case.
(iii) 1. Assume that σ is a data type. The result holds by definition of [[σ]].

2. Assume now that σ = σ1 → σ2. By definition of [[σ]], u is com-
putable if the neutral term @(u, u1) is computable for all u1 ∈
[[σ1]]. By induction hypothesis, @(u, u1) is computable iff all its
reducts w are computable.
Since u1 is strongly normalizable by induction hypothesis (i), we
show by induction on the pair (u1, |w|) ordered by (�TS , >IN)
that all reducts w of @(u, u1) are computable. Since u is neutral,
hence is not an abstraction, there are three possible cases:
(a) @(u, u1)�TS w by Case 2a, therefore u �accv�TS w or u1 �

accv�TS w for some v. Since the type of w is smaller or equal
to the type of @(u, u1), it is strictly smaller than the type of
u, hence w 6= u. Therefore, in case v = u, w is a reduct of
u, hence is computable by assumption. Otherwise, v is u1 or
a minimal-type subterm of u1, in which case it is computable
by assumption on u1 and Lemma 6, or a minimal-type subterm

11

of u in which case u�TS v by Case 1a or 2a since the neutral
term u is not an abstraction, and therefore v is computable
by assumption. It follows that w is computable by induction
hypothesis (ii).

(b) @(u, u1)�TS w by Case 2b, therefore w = @(v, v1) and also
{u, u1}(�TS)mul{w1, w2}. For type reason, there are again two
cases:
• w1 and w2 are strictly smaller than u, u1, in which case

w1 and w2 are computable by assumption or induction hy-
pothesis (ii), hence w is computable by Lemma 5.

• u = w1 and u1�TS w2, implying that w2 is computable
by assumption and induction hypothesis (ii). We then con-
clude by induction hypothesis since (u1,)(�TS , >IN)lex(w2,).

(c) @(u, u1)�TS w by Case 4b, hence w = λx : β.w′, x 6∈ Var(w′)
and @(u, u1)�w′. By induction hypothesis (iv) and the fact
that x 6∈ Var(w′), w is computable if w′ is computable. Since
the type of λx : β.w′ is strictly bigger than the type of w′,
we get @(u, u1)�TS w′. We conclude by induction hypothe-
sis, since (u1, λx.w′)(�TS , >IN)lex(u1, w

′).
(iv) By definition of [[σ]], the abstraction λx : α.u :C σ is computable if

the term @(λx.u, w) is computable for an arbitrary w ∈ [[α]].
Since variables are computable by induction hypothesis (iii), u =
u{x 7→ x} is computable by assumption. By induction hypothe-
sis (i), u and w are strongly normalizable. We therefore prove that
@(λx.u, w) is computable by induction on the pair (u, w) compared
in the ordering (�TS ,�TS)lex.
Since @(λx.u, w) is neutral, we need to show that all reducts v of
@(λx.u, w) are computable. We consider the four possible cases in
turn:
1. If @(λx.u, w)�TS v by Case 2a, there are two cases:

- if w�TS v, we conclude by induction hypothesis (ii) that v is
computable.
- if λx.u�TS v, then λx.u�TS v since the type of λx.u must be
strictly bigger than the type of v. There are two cases depending
on the latter comparison.
If the comparison is by Case 3a, then u�TS v, and we conclude
by induction hypothesis (ii) that v is computable.
If the comparison is by Case 3b, then v = λx : α′.u′ with α =TS
α′. By stability, u{x 7→ w}�TS u′{x 7→ w}, hence u′{x 7→ w}

12

is computable by property (ii) for an arbitrary w ∈ [[α]] = [[α′]] by
lemma 4. It follows that v is computable by induction hypothesis,
since (u,)(�TS ,�TS)lex(u

′,).
2. If @(λx.u, w)�TS v by case 2b, then v = @(v1, v2), and by defi-

nition of �, {λx.u, w}(�TS)mul{v1, v2}. There are three cases:
- v1 = λx.u and w�TS v2. Then v2 is computable by induction hy-
pothesis (ii) and, since u{x 7→ v2} is computable by the main as-
sumption, @(v1, v2) is computable by induction hypothesis, since
(λx.u, w)(�TS ,�TS)lex(λx.u, v2).
- Terms in {v1, v2} are reducts of u and w. Therefore, v1 and v2

are computable by induction hypothesis (ii) and v is computable
by Lemma 5.
- Otherwise, for typing reason, v1 is a reduct of λx.u of the form
λx.u′ with u�TS u′, and v2 is a reduct of the previous kind. By
the main assumption, u{x 7→ v′′} is computable for an arbitrary
computable v′′. Besides, u{x 7→ v′′}�TS u′{x 7→ v′′} by stability.
Therefore u′{x 7→ v′′} is computable for an arbitrary computable
v′′ by induction hypothesis (ii). Then @(v1, v2) is computable by
induction hypothesis, since (u,)(�TS ,�TS)lex(u

′,).
3. If @(λx.u, w)�TS v by Case 4b, then v = λx.v′, x 6∈ Var(v′)

and @(λx.u, w)�TS v′. Since λx.v′�TS v′ by Case 3a, v′ is com-
putable by induction hypothesis. Since x 6∈ Var(v′), it follows
that λx.v′ is computable.

4. If @(λx.u, w)�TS v by case 2c, then u{x 7→ w}�horpo v. By as-
sumption, u{x 7→ w} is computable, and hence v is computable
by property (ii). 2

We are left with property (v) whose proof differs from [4].

Proof. Property (v). As we have seen, each data type interpretation [[σ]] is
the least fixpoint of a monotone function G on the powerset of the set of
terms. Hence, for every computable term t ∈ [[σ]], there exists a smallest
ordinal o(t) such that t ∈ Go(t)(∅), where Ga is the a transfinite iteration
of G. The relation =, defined by t = u iff o(t) > o(u), is a well-founded
ordering which is compatible with �TS : if t�TS u then t w u. The proof
is by induction on the type ordering. Therefore,�TS ∪= is well-founded
on computable terms. Note that the result would again hold for terms
headed by a function symbol with a functional output.

We use this remark to build our outer induction argument: we prove
that f(s) is computable by induction on the pair (f, s) ordered lexico-
graphically by (>F , (�TS ∪ =)statf)lex. This is our outer statement (OH).

13

Since f(s) is prealgebraic, it is computable if every subterm at an
accessible position is computable (which follows by assumption) and
reducts t of s are computable.

Since �TS is defined in terms of �X , we actually prove by an in-
ner induction on the recursive definition of �X the more general in-
ner statement (IH) that tγ is computable for an arbitrary term t such
that f(s)�X t and computable substitution γ of domain X such that
X ∩ Var(s) = ∅. Since the identity substitution is computable by prop-
erty (iii), our inner induction hypothesis implies our outer induction hy-
pothesis.

1. If f(s)�X u by Case 4a, Then u ∈ X and we conclude by assump-
tion on γ that uγ is computable.

2. If f(s)�X u by Case 1a, then si �acct for some i and @(t, x)�TS u
for some x ∈ X . By assumption on s and Lemma 7, t is computable.
Since t is a subterm of s and X ∩ Var(s) = ∅, then tγ = t is com-
putable. It follows that @(t, xγ) is computable. Thus, by stability, uγ
is computable.

3. If f(s)�X u by case 1b, then u = g(u), f =F g, s�X u and finally
s (�TS ∪ �acc�X

TS)stat u. By the inner induction hypothesis, uγ is
computable. Assume now that si : σi �accv and @(v, x) : σ′i =TS
σi�TS uj . Using the fact that X ∩ Var(s) = ∅, by stability we get
siγ = si�accvγ = v and @(v, x)γ = @(v, xγ) : σ′i =TS σi�TS ujγ.
Moreover, by definition of computability, si = @(v, xγ). Therefore,
uγ = f(uγ) is computable by the outer induction hypothesis.

4. If f(s)�X
TS u by case 4b, then u = λx.v with x 6∈ Var(s) and

f(s)�X∪{x} v. By the inner induction hypothesis, v(γ∪{x 7→ w}) is
computable for an arbitrary computable w. Assuming without loss of
generality that x 6∈ Ran(γ), then v(γ ∪ {x 7→ w}) = (vγ){x 7→ w}.
Therefore, u = λx.vγ is computable by computability property (iv).

5. If f(s)�X u by Case 1c, then u = g(u) with g ∈ F ∪ {@} and
s�X u. By the inner induction hypothesis, uγ is computable. We
conclude by Lemma 5 in case g = @ and by the outer induction
hypothesis if g ∈ F . 2

4.4 Strong normalization proof

We are now ready for the strong normalization proof.

Lemma 8. Let γ be a type-preserving computable substitution and t be
an algebraic λ-term. Then tγ is computable.

14

Proof. The proof proceeds by induction on the size of t.

1. t is a variable x. Then xγ is computable by assumption.
2. t is an abstraction λx.u. By computability property (v), tγ is com-

putable if uγ{x 7→ w} is computable for every well-typed com-
putable candidate term w. Taking δ = γ ∪ {x 7→ w}, we have
uγ{x 7→ w} = u(γ∪{x 7→ w}) since x may not occur in γ. Since δ is
computable and |t| > |u|, by induction hypothesis, uδ is computable.

3. t = @(t1, t2). Then t1γ and t2γ are computable by induction hypoth-
esis, hence t is computable by Lemma 5.

4. t = f(t1, . . . , tn). Then tiγ is computable by induction hypothesis,
hence tγ is computable by computability property (vii). ut

The proof of our main theorem follows as a corollary of Lemma 8
when using the identity substitution, and of computability property (i).

5 Conclusion

An implementation of the new definition with examples is available from
the web page of the third author (http://www.lsi.upc.es/ albert/term.html).

There are still a few possible improvements that we have not yet ex-
plored, such as ordering the abstractions according to their type, increas-
ing the set of accessible terms for applications that satisfy the strict pos-
itivity restriction, and showing that the new definition is strictly more
general that the general schema when adopting the same type discipline.
A more difficult problem to be investigated then is the generalization of
this new definition to the calculus of constructions along the lines of [5].

References

1. F. Blanqui. Termination and confluence of higher-order rewrite systems. In Proc. of the 11th
International Conference on Rewriting Techniques and Applications, volume 1833 of LNCS,
2000.

2. F. Blanqui, J.-P. Jouannaud, and A. Rubio. Higher order termination: from Kruskal to com-
putability. In Proc. LPAR, Phnom Penh, Cambodgia, LNCS 4246, 2006.

3. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In
Giuseppe Longo, editor, Fourteenth Annual IEEE Symposium on Logic in Computer Science,
Trento, Italy, July 1999.

4. Jean-Pierre Jouannaud and Albert Rubio. Polymorphic higher-order recursive path orderings.
Journal of the ACM, 54(1):1–48, 2007.

5. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions. In
Proceedings of the Workshop on Logical Frameworks and Meta-languages, Santa Barbara,
California, 2000. Satellite workshop of LICS’2000.

15

