
Outline
Toyama’s Modularity Theorem

New Proof of Toyama’s Theorem
Generalization to Rewriting Modulo

Modular Church-Rosser Modulo

Jean-Pierre Jouannaud
École Polytechnique

91400 Palaiseau, France

Project LogiCal, Pôle Commun de Recherche en
Informatique du Plateau de Saclay, CNRS, École

Polytechnique, INRIA, Université Paris-Sud

Joint work with Yoshihito Toyama
Tohoku University, Sendai, Japan

NII, Tokyo, december 8, 2006
Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [1mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud[2mm] Joint work with Yoshihito Toyama Tohoku University, Sendai, Japanplain



Outline
Toyama’s Modularity Theorem

New Proof of Toyama’s Theorem
Generalization to Rewriting Modulo

Outline

1 Toyama’s Modularity Theorem

2 New Proof of Toyama’s Theorem

3 Generalization to Rewriting Modulo

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [1mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud[2mm] Joint work with Yoshihito Toyama Tohoku University, Sendai, Japanplain



Confluent rewrite systems

Rewrite system:

R = {x + 0→ x , x + S(y)→ S(x + y)}

Derivation:

S(0) + S(0 + 0)−→R S(0) + S(0)
−→R S(S(0) + 0)−→R S(S(0))

Confluence:

∀s, t , u. u−→∗ s and u−→∗ t
∃v . s−→∗ v and t −→∗ v

Modularity: does R ∪ S inherit the
confluence property of R, S ?



Confluent rewrite systems

Rewrite system:

R = {x + 0→ x , x + S(y)→ S(x + y)}

Derivation:

S(0) + S(0 + 0)−→R S(0) + S(0)
−→R S(S(0) + 0)−→R S(S(0))

Confluence:

∀s, t , u. u−→∗ s and u−→∗ t
∃v . s−→∗ v and t −→∗ v

Modularity: does R ∪ S inherit the
confluence property of R, S ?



Confluent rewrite systems

Rewrite system:

R = {x + 0→ x , x + S(y)→ S(x + y)}

Derivation:

S(0) + S(0 + 0)−→R S(0) + S(0)
−→R S(S(0) + 0)−→R S(S(0))

Confluence:

∀s, t , u. u−→∗ s and u−→∗ t
∃v . s−→∗ v and t −→∗ v

Modularity: does R ∪ S inherit the
confluence property of R, S ?



Confluent rewrite systems

Rewrite system:

R = {x + 0→ x , x + S(y)→ S(x + y)}

Derivation:

S(0) + S(0 + 0)−→R S(0) + S(0)
−→R S(S(0) + 0)−→R S(S(0))

Confluence:

∀s, t , u. u−→∗ s and u−→∗ t
∃v . s−→∗ v and t −→∗ v

Modularity: does R ∪ S inherit the
confluence property of R, S ?



Toyama’s modularity theorem

Let R, S be two confluent rewrite systems

Assumptions:
(i) R and S share no function symbol
(ii) Rules have no extra variables on the right
(iii) No lefthand side of rule is a variable

Conclusion: R ∪ S is confluent



Bibliography

1 Initial proof: [Toyama, JACM 1987]
2 Improved proof: [Klop, Middledorp, Toyama,

de Vrijer, IPL 1994]
3 Shared constructor: [Ohlebusch, JSC 1995]
4 Assumption (ii) superflous:

[Ghani, Luth, Abbott, RTA 2005]
5 Modulo case: [Jouannaud, RTA 2006]
6 Modularity is constructive:

[Van Oostrom, 2006]
7 Assumption (iii) is necessary (here)
8 More general modulo case (here)



Need for assumption (iii)

Assumption (iii) is necessary:

R = {g(a)→ b} S = {x → f (x)}

Diverging computation:

g(a)−→
S

b and g(a)−→
R

g(f (a))

b−→∗ u ∈ {f n(b) | n ≥ 0}

g(f (a))−→∗ v ∈ {f m(g(f n+1(a))) | m, n ≥ 0}
{f n(b) | n ≥ 0}∩
{f m(g(f n+1(a))) | m, n ≥ 0} = ∅



Need for assumption (iii)

Assumption (iii) is necessary:

R = {g(a)→ b} S = {x → f (x)}

Diverging computation:

g(a)−→
S

b and g(a)−→
R

g(f (a))

b−→∗ u ∈ {f n(b) | n ≥ 0}

g(f (a))−→∗ v ∈ {f m(g(f n+1(a))) | m, n ≥ 0}
{f n(b) | n ≥ 0}∩
{f m(g(f n+1(a))) | m, n ≥ 0} = ∅



Need for assumption (iii)

Assumption (iii) is necessary:

R = {g(a)→ b} S = {x → f (x)}

Diverging computation:

g(a)−→
S

b and g(a)−→
R

g(f (a))

b−→∗ u ∈ {f n(b) | n ≥ 0}

g(f (a))−→∗ v ∈ {f m(g(f n+1(a))) | m, n ≥ 0}
{f n(b) | n ≥ 0}∩
{f m(g(f n+1(a))) | m, n ≥ 0} = ∅



Need for assumption (iii)

Assumption (iii) is necessary:

R = {g(a)→ b} S = {x → f (x)}

Diverging computation:

g(a)−→
S

b and g(a)−→
R

g(f (a))

b−→∗ u ∈ {f n(b) | n ≥ 0}

g(f (a))−→∗ v ∈ {f m(g(f n+1(a))) | m, n ≥ 0}
{f n(b) | n ≥ 0}∩
{f m(g(f n+1(a))) | m, n ≥ 0} = ∅



Need for assumption (iii)

Assumption (iii) is necessary:

R = {g(a)→ b} S = {x → f (x)}

Diverging computation:

g(a)−→
S

b and g(a)−→
R

g(f (a))

b−→∗ u ∈ {f n(b) | n ≥ 0}

g(f (a))−→∗ v ∈ {f m(g(f n+1(a))) | m, n ≥ 0}
{f n(b) | n ≥ 0}∩
{f m(g(f n+1(a))) | m, n ≥ 0} = ∅



Universal Tool: Caps and Aliens

A term s can be decomposed into

a topmost maximal homogeneous
cap ŝ

An alien substitution γs

such that s = ŝγs

Example:
F = {f , c, a} G = {g} X = {x}
s = c(g(c(a, a)), f (g(c(a, a))))
ŝ = c(x , f (x))
γs = {x 7→ g(c(a, a))}



Universal Tool: Caps and Aliens

A term s can be decomposed into

a topmost maximal homogeneous
cap ŝ

An alien substitution γs

such that s = ŝγs

Example:
F = {f , c, a} G = {g} X = {x}
s = c(g(c(a, a)), f (g(c(a, a))))
ŝ = c(x , f (x))
γs = {x 7→ g(c(a, a))}



Universal Tool: Caps and Aliens

A term s can be decomposed into

a topmost maximal homogeneous
cap ŝ

An alien substitution γs

such that s = ŝγs

Example:
F = {f , c, a} G = {g} X = {x}
s = c(g(c(a, a)), f (g(c(a, a))))
ŝ = c(x , f (x))
γs = {x 7→ g(c(a, a))}



Universal Tool: Caps and Aliens

A term s can be decomposed into

a topmost maximal homogeneous
cap ŝ

An alien substitution γs

such that s = ŝγs

Example:
F = {f , c, a} G = {g} X = {x}
s = c(g(c(a, a)), f (g(c(a, a))))
ŝ = c(x , f (x))
γs = {x 7→ g(c(a, a))}



Universal Tool: Caps and Aliens

A term s can be decomposed into

a topmost maximal homogeneous
cap ŝ

An alien substitution γs

such that s = ŝγs

Example:
F = {f , c, a} G = {g} X = {x}
s = c(g(c(a, a)), f (g(c(a, a))))
ŝ = c(x , f (x))
γs = {x 7→ g(c(a, a))}



Difficulties

Collapsing rules such as x + 0→ x may
decrease the rank of terms along derivations

Rules with new variables in their righthand
side such as 0→ 0× y may increase the
rank of terms along derivations

The confluence property is not general
enough for inductive proofs to go through

We use the Church-Rosser property instead of
confluence:

∀u, v . u ∗↔ v ∃s, t . u ∗−→ s = t ∗←− v



Difficulties

Collapsing rules such as x + 0→ x may
decrease the rank of terms along derivations

Rules with new variables in their righthand
side such as 0→ 0× y may increase the
rank of terms along derivations

The confluence property is not general
enough for inductive proofs to go through

We use the Church-Rosser property instead of
confluence:

∀u, v . u ∗↔ v ∃s, t . u ∗−→ s = t ∗←− v



Difficulties

Collapsing rules such as x + 0→ x may
decrease the rank of terms along derivations

Rules with new variables in their righthand
side such as 0→ 0× y may increase the
rank of terms along derivations

The confluence property is not general
enough for inductive proofs to go through

We use the Church-Rosser property instead of
confluence:

∀u, v . u ∗↔ v ∃s, t . u ∗−→ s = t ∗←− v



A naive “proof” of the CR property

Start: v↔∗R∪S w
Reasonnable Intuition:
v̂↔∗R]S ŵ and γv↔∗R∪S γw

Assumption:
v̂ −→∗R]S s = t ←−∗R]S ŵ
Induction:
γv −→∗R∪S σ = τ ←−∗R∪S γw

Conclusion:
v=v̂γv

∗−→
Ass

sγv
∗−→

Ind
sσ

=

w=ŵγw
∗−→

Ass
tγw

∗−→
Ind

tτ



A naive “proof” of the CR property

Start: v↔∗R∪S w
Reasonnable Intuition:
v̂↔∗R]S ŵ and γv↔∗R∪S γw

Assumption:
v̂ −→∗R]S s = t ←−∗R]S ŵ
Induction:
γv −→∗R∪S σ = τ ←−∗R∪S γw

Conclusion:
v=v̂γv

∗−→
Ass

sγv
∗−→

Ind
sσ

=

w=ŵγw
∗−→

Ass
tγw

∗−→
Ind

tτ



A naive “proof” of the CR property

Start: v↔∗R∪S w
Reasonnable Intuition:
v̂↔∗R]S ŵ and γv↔∗R∪S γw

Assumption:
v̂ −→∗R]S s = t ←−∗R]S ŵ
Induction:
γv −→∗R∪S σ = τ ←−∗R∪S γw

Conclusion:
v=v̂γv

∗−→
Ass

sγv
∗−→

Ind
sσ

=

w=ŵγw
∗−→

Ass
tγw

∗−→
Ind

tτ



A naive “proof” of the CR property

Start: v↔∗R∪S w
Reasonnable Intuition:
v̂↔∗R]S ŵ and γv↔∗R∪S γw

Assumption:
v̂ −→∗R]S s = t ←−∗R]S ŵ
Induction:
γv −→∗R∪S σ = τ ←−∗R∪S γw

Conclusion:
v=v̂γv

∗−→
Ass

sγv
∗−→

Ind
sσ

=

w=ŵγw
∗−→

Ass
tγw

∗−→
Ind

tτ



A naive “proof” of the CR property

Start: v↔∗R∪S w
Reasonnable Intuition:
v̂↔∗R]S ŵ and γv↔∗R∪S γw

Assumption:
v̂ −→∗R]S s = t ←−∗R]S ŵ
Induction:
γv −→∗R∪S σ = τ ←−∗R∪S γw

Conclusion:
v=v̂γv

∗−→
Ass

sγv
∗−→

Ind
sσ

=

w=ŵγw
∗−→

Ass
tγw

∗−→
Ind

tτ



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Stable Equalizers

Definition
A term is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

A substitution is an equalizer if if ∀x . xγ is
an equalizer, and ∀x , y . xγ↔∗ yγ iff x = y .

An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s ∗↔ x iff s ∗−→ x



Example

F = {f , c, +, a, b} G = {g, h} X={x}

R =
{c(x , x) → x
+(a, b) → +(b, a)}

S = {g(x)→ h(x)}

c(g(+(b, a)), f (g(+(b, a))))
is a stable R ∪ S-equalizer while

c(g(+(a, b)), h(+(b, a)))−→∗R∪S h(+(b, a))
is a cap-collapsing non-equalizer.



Reachability of stable equalizers

Lemma (Cleaning)
Let u be a term such that the set of all its
non-trivial aliens has the Church-Rosser
property with respect to R ∪ S. Then, there
exists a stable equalizer s such that u−→∗R∪S s.

Proof: By CR assumption, we assume that u is
an equalizer and proceed by induction on rank.
If u is stable, done.
Otherwise, by induction hypothesis, we stabilize
its aliens yielding v . If v is stable, done.
Otherwise, v̂ projects on one of its variables,
hence v rewrites to one of its aliens. Done.



Reachability of stable equalizers

Lemma (Cleaning)
Let u be a term such that the set of all its
non-trivial aliens has the Church-Rosser
property with respect to R ∪ S. Then, there
exists a stable equalizer s such that u−→∗R∪S s.

Proof: By CR assumption, we assume that u is
an equalizer and proceed by induction on rank.
If u is stable, done.
Otherwise, by induction hypothesis, we stabilize
its aliens yielding v . If v is stable, done.
Otherwise, v̂ projects on one of its variables,
hence v rewrites to one of its aliens. Done.



Example

F = {f , c, +, a, b} G = {g, h} X={x}

R =
{c(x , x) → x
+(a, b) → +(b, a)}

S = {g(x)→ h(x)}

c(g(+(a, b)), h(+(b, a)))−→∗R∪S h(+(b, a))



Structure Lemma



Ordered Completion

Input:
E , an arbitrary set of equations
�, a rewrite ordering total on ground terms

Ordered rewriting with E is defined as:
s−→�E t iff s↔E t and s � t

Output:
E∞, an (infinite) terminating set of equations
which is CR:

∀s ∗↔
E

t ∃u s.t. s
∗,�−→
E∞

u and t
∗,�−→
E∞

u

Note: equations s = x become rules s → x



Ordered Completion

Input:
E , an arbitrary set of equations
�, a rewrite ordering total on ground terms

Ordered rewriting with E is defined as:
s−→�E t iff s↔E t and s � t

Output:
E∞, an (infinite) terminating set of equations
which is CR:

∀s ∗↔
E

t ∃u s.t. s
∗,�−→
E∞

u and t
∗,�−→
E∞

u

Note: equations s = x become rules s → x



Ordered Completion

Input:
E , an arbitrary set of equations
�, a rewrite ordering total on ground terms

Ordered rewriting with E is defined as:
s−→�E t iff s↔E t and s � t

Output:
E∞, an (infinite) terminating set of equations
which is CR:

∀s ∗↔
E

t ∃u s.t. s
∗,�−→
E∞

u and t
∗,�−→
E∞

u

Note: equations s = x become rules s → x



Ordered Completion

Input:
E , an arbitrary set of equations
�, a rewrite ordering total on ground terms

Ordered rewriting with E is defined as:
s−→�E t iff s↔E t and s � t

Output:
E∞, an (infinite) terminating set of equations
which is CR:

∀s ∗↔
E

t ∃u s.t. s
∗,�−→
E∞

u and t
∗,�−→
E∞

u

Note: equations s = x become rules s → x



Structure

Lemma (Structure)

Let R ∪ S be a disjoint union, and v and w be
stable equalizers such that v↔∗R∪S w. Then,
there exists a variable renaming η such that

ηv̂ ∗↔
R∪S

ŵ and γv
∗↔

R∪S
ηγw

The proof relies on three simple properties of
ordered completion:

1 modularity: (R ∪ S)∞ = R∞ ∪ S∞;
2 Variables are in normal form for R∞ ∪ S∞.
3 ∀u. u ↓R∞ is a stable equalizer;



Structure

Lemma (Structure)

Let R ∪ S be a disjoint union, and v and w be
stable equalizers such that v↔∗R∪S w. Then,
there exists a variable renaming η such that

ηv̂ ∗↔
R∪S

ŵ and γv
∗↔

R∪S
ηγw

The proof relies on three simple properties of
ordered completion:

1 modularity: (R ∪ S)∞ = R∞ ∪ S∞;
2 Variables are in normal form for R∞ ∪ S∞.
3 ∀u. u ↓R∞ is a stable equalizer;



Generalization to Rewriting Modulo



Rewriting Modulo

Let R (resp. S) be a set of rewrite rules built
over F (resp. G) with F ∩ G = ∅;
Let E (resp. D) be a set of regular equations
built over F (resp. G);
Let E→ and E← (resp. D→ and D←) be the
rewrite systems obtained from E (resp. D).

Definition
=⇒R,E is CR modulo E iff

∀u, v . u↔∗R∪E v

∃s, t . u =⇒∗R,E s↔∗E t⇐=∗R,E v



Rewriting Modulo

Let R (resp. S) be a set of rewrite rules built
over F (resp. G) with F ∩ G = ∅;
Let E (resp. D) be a set of regular equations
built over F (resp. G);
Let E→ and E← (resp. D→ and D←) be the
rewrite systems obtained from E (resp. D).

Definition
=⇒R,E is CR modulo E iff

∀u, v . u↔∗R∪E v

∃s, t . u =⇒∗R,E s↔∗E t⇐=∗R,E v



Zoo of rewriting relations

Class rewriting [Lankford]

Plain rewriting modulo [Huet]

Rewriting modulo [Stickel]

Normalized rewriting [Marché]

Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Zoo of rewriting relations

Class rewriting [Lankford]

Plain rewriting modulo [Huet]

Rewriting modulo [Stickel]

Normalized rewriting [Marché]

Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Zoo of rewriting relations

Class rewriting [Lankford]

Plain rewriting modulo [Huet]

Rewriting modulo [Stickel]

Normalized rewriting [Marché]

Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Zoo of rewriting relations

Class rewriting [Lankford]

Plain rewriting modulo [Huet]

Rewriting modulo [Stickel]

Normalized rewriting [Marché]

Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Zoo of rewriting relations

Class rewriting [Lankford]

Plain rewriting modulo [Huet]

Rewriting modulo [Stickel]

Normalized rewriting [Marché]

Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Modularity of CR modulo

Theorem
Any rewrite relation =⇒R,E satisfying

(i) =⇒R,E ⊆ (↔∗E −→R↔∗E)∗

(ii) −→R ⊆ (↔∗E =⇒R,E↔∗E)∗

(iii) Variables are in normal form for =⇒R,E

(iv) E is non-collapsing

enjoys a modular Church-Rosser property.



A simple case: Class Rewriting

Since arbitrary E-equational steps are allowed
with class-rewriting

1 Plain rewriting with R ∪ E→ ∪ E← is CR if
class-rewriting with (R, E) is CR;

2 Toyama’s theorem applies to
(R ∪ E→ ∪ E←) ∪ (S ∪ D→ ∪ D←);

3 Class-rewriting with (R ∪ S, E ∪ D) is CR if
plain rewriting with
(R ∪ E→ ∪ E←) ∪ (S ∪ D→ ∪ D←) is CR.

The last step of this proof does not scale up for
other forms of rewriting modulo.



Rewriting Modulo: General Case

Lemma (Cleaning)

Let u be a term such that the set of its non-trivial
aliens has the Church-Rosser property for =⇒.
Then, there exists a stable equalizer s such that
u =⇒∗ s.

Simple induction using the cleaning Lemma for
the (confluent on aliens) rewrite relation
R ∪ E→ ∪ E← ∪ S ∪ D→ ∪ D←.



Modularity proof

Cleaning Lemma: v =⇒∗R∪S,E∪D v ′,
w =⇒∗R∪S.E∪D w ′, for stable equalizers v ′, w ′.
Assumption (ii): v ′η↔∗R∪E∪S∪D w ′.

Structure Lemma: v̂ ′η↔∗R∪E∪S∪D ŵ ′ and
γv ′↔∗R∪E∪S∪D ηγw ′.
Church-Rosser assumption:
v̂ ′η =⇒∗ s = t ⇐=∗ ŵ ′.
Induction hypothesis:
γv ′ =⇒∗ σ = τ ⇐=∗ ηγw ′.
Conclusion:
v =⇒∗ v ′ = v̂ ′γv ′ = v̂ ′ηη−1γv ′ =⇒∗ sγv ′ =⇒∗ sη−1σ

=E∪D

w =⇒∗w ′ = ŵ ′η−1ηγw ′ = tη−1γw ′⇐=∗ tη−1τ



Outline
Toyama’s Modularity Theorem

New Proof of Toyama’s Theorem
Generalization to Rewriting Modulo

Conclusion

Comprehensive proof of Toyama’s theorem

Easy generalization to rewriting modulo

easy extension to constructor-sharing case

Open problem: modulo collapsing equations

Use the proof method for similar problems:
higher-order case
unique normal form property

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [1mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud[2mm] Joint work with Yoshihito Toyama Tohoku University, Sendai, Japanplain


	Outline
	Toyama's Modularity Theorem
	New Proof of Toyama's Theorem
	Generalization to Rewriting Modulo

