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Confluent rewrite systems

e Rewrite system:
R={x+0—-x, Xx+S(y)—SKx+y)}

e Derivation:

S(0) +S(0+ 0) —x S(0) + S(0)
—r S(S(0) +0) —¢ S(S(0))

e Confluence:

Vs, t,u. u—*sandu—*t

e Modularity: does R U S inherit the
confluence property of R, S ?



Toyama’s modularity theorem

e Let R, S be two confluent rewrite systems

e Assumptions:
() R and S share no function symbol
(i) Rules have no extra variables on the right
(iif) No lefthand side of rule is a variable

e Conclusion: R U S is confluent
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@ Assumption (iii) is necessary (here)
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e Assumption (iii) is necessary:
R={g(@) ~b} S={x—f(x)
e Diverging computation:
g(a) _~bandg(a) —g(f(a))
o b—*u e {f"(b) | n>0}

o g(f(a)) —*v € {f™(g(f"*1(a))) | m,n > 0}
o {f’(b) [n>0}n
{f"(g(f"*(a))) Im,n >0} =0
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Universal Tool: Caps and Aliens

A term s can be decomposed into

o a topmost maximal homogeneous
cap s
o An alien substitution ~s
such that s = S~

Example:

f:{f,c,a} g:{g} X:{X}
s = 8 )

s = c(x,f(x))

7s = {X = g( )}
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Difficulties

e Collapsing rules such as x + 0 — x may
decrease the rank of terms along derivations

e Rules with new variables in their righthand
side such as 0 — 0 x y may increase the
rank of terms along derivations

e The confluence property is not general
enough for inductive proofs to go through

We use the Church-Rosser property instead of
confluence:

YU,v. usv
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A naive “proof” of the CR property

. *
o Start: v <5 oW N
e Reasonnable Intuition:
Vpes W and g g w
o Assumption:
A~ * . * A~
V—pRys S=1 <—pusW

o Induction:
W —Rus T =T “—Rus Ww
° Conclusiop: .
V=V — SWwW — SO
Ass Ind

AN * *
W=Wyy — tyw —17
Acc InA
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Stable Equalizers

e Aterm is an equalizer iff it is homogeneous,
or else any two equivalent aliens are
identical equalizers.

e A substitution is an equalizer if if YX. X~ is
an equalizer, and Vx,y. Xxy<*y~viffx =y.

e An equalizer is cap-stable if the cap is not
equivalent to one of its variables.

e An equalizer t is stable if it is cap-stable and
its aliens are stable.

Note: Assuming variables are in normal form,

s<ox  iff s—ox



F=1{fc,+,ab} G={g,h} X={x}

_1e(xx) — X
~ +(a,b) — +(b,a)}
S = {9(x) = h(x)}

c( H( )

is a stable R U S-equalizer while

C( ) . ) F{US
IS a cap-collapsing non-equalizer.
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Reachability of stable equalizers

Lemma (Cleaning)

Let u be a term such that the set of all its
non-trivial aliens has the Church-Rosser
property with respect to R U S. Then, there
exists a stable equalizer s such that u —% S.

v

Proof: By CR assumption, we assume that u is
an equalizer and proceed by induction on rank.
If u is stable, done.

Otherwise, by induction hypothesis, we stabilize
its aliens yielding v. If v is stable, done.
Otherwise, V projects on one of its variables,
hence v rewrites to one of its aliens. Done.



F={f.c,+,ab} G={g.h} X={x}

S = {g(x) — h(x)}



Structure Lemma
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Ordered Completion

e Input:
E, an arbitrary set of equations
>, a rewrite ordering total on ground terms

e Ordered rewriting with E is defined as:
s—¢tiffs—ctands >t

e Output:
E°, an (infinite) terminating set of equations
which is CR:

’> ’>
Vst Just s—Suandt 2Su
E Eoe Eoe

e Note: equations s = x become rules s — X



Lemma (Structure)

Let R U S be a disjoint union, and v and w be
stable equalizers such that v <} s w. Then,
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Lemma (Structure)

Let R U S be a disjoint union, and v and w be
stable equalizers such that v <} s w. Then,
there exists a variable renaming » such that

A~ % ~ *
vV — W and PN
g RUS (I RUS it

.

The proof relies on three simple properties of
ordered completion:

@ modularity: (RUS)>® = R* U S*;
@ Variables are in normal form for R* U S*°.
@ Yu. u |gr~ IS a stable equalizer;
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Rewriting Modulo

o Let R (resp. S) be a set of rewrite rules built
over F (resp. G) with F NG = 0;

e Let E (resp. D) be a set of regular equations
built over F (resp. G);

o LetE~ and E~ (resp. D~ and D) be the
rewrite systems obtained from E (resp. D).

—rg IS CR modulo E iff

*
VUu,v. U<pg eV
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Zoo of rewriting relations

e Class rewriting [Lankford]

e Plain rewriting modulo [Huet]
e Rewriting modulo [Stickel]

e Normalized rewriting [Marché]

e Normal rewriting
[Jouannaud, van Raamsdonk, Rubio]



Modularity of CR modulo

Any rewrite relation = ¢ satisfying

() =re C (o —r<E)

(i) —g C (g =re <)
(iii) Variables are in normal form for —-, ¢
(iv) E is non-collapsing

enjoys a modular Church-Rosser property.




A simple case: Class Rewriting

Since arbitrary E-equational steps are allowed
with class-rewriting

@ Plain rewritingwith RUE~ UE“ is CR if
class-rewriting with (R, E) is CR;

@ Toyama’s theorem applies to
(RUETUET)U(SUD~UD");

@ Class-rewriting with (R US,E UD) is CR if
plain rewriting with
(RUETUE“)U(SUD”uUD")isCR.

The last step of this proof does not scale up for

other forms of rewriting modulo.



Rewriting Modulo: General Case

Lemma (Cleaning)

Let u be a term such that the set of its non-trivial
aliens has the Church-Rosser property for —-.
Then, there exists a stable equalizer s such that
u—~s.

.

Simple induction using the cleaning Lemma for
the (confluent on aliens) rewrite relation
RUETUE“USUD~UD".



Modularity proof

o Cleaning Lemma: v =3 s ¢ p V',
W =% s ep W', for stable equalizers v/, w’.
e Assumption (ii): V'n <% e sp W'-
o Structure Lemma: V' —% e p W' and
W' RUEUSUD W'
° Church Rosser assumptlon
v/ n="S=1t < W/
e Induction hypothesis:
W==" 0 =T =
° Conclusmn
V="V =V = Vi Ly, =" sy =*sn" 1o
—EUD
W= W' =W Ly =ty by ="ty 17



Generalization to Rewriting Modulo

Conclusion

e Comprehensive proof of Toyama'’s theorem
e Easy generalization to rewriting modulo

e easy extension to constructor-sharing case
e Open problem: modulo collapsing equations

e Use the proof method for similar problems:
higher-order case
unique normal form property
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