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Abstract. In [12], Toyama proved that the union of two confluent term-rewriting
systems that share absolutely no function symbols or constants is likewise con-
fluent, a property called modularity. The proof of this beautiful modularity result,
technically based on slicing terms into an homogeneous cap and a so called alien,
possibly heterogeneous substitution, was later substantially simplified in [5, 11].
In this paper we present a further simplification of the proof of Toyama’s result
for confluence, which shows that the crux of the problem lies in two different
properties: a cleaning lemma, whose goal is to anticipate the application of col-
lapsing reductions; a modularity property of ordered completion, that allows to
pairwise match the caps and alien substitutions of two equivalent terms.
We then show that Toyama’s modularity result scales up to rewriting modulo
equations in all considered cases.

1 Introduction

Let R and S be two rewrite systems over disjoint signatures. Our goal
is to prove that confluence is a modular property of their disjoint union,
that is that R ∪ S inherits the confluence properties of R and S, a result
known as Toyama’s theorem. In the case of rewriting modulo an equa-
tionnal theory also considered in this paper, confluence must be gener-
alized as a Church-Rosser property. Toyama apparently anticipated this
generalization by using the word Church-Rosser in his title.

A first contribution of this paper is a new comprehensive proof of
Toyama’s theorem, obtained by reducing modularity of the confluence
property to modularity of ordered completion, the latter being a simple
property of disjoint unions. It is organized around the notion of stable
equalizers, which are heterogeneous terms in which collapsing reduc-
tions have been anticipated with respect to the rewrite system R∞ ∪ S∞

obtained by (modular) ordered completion of R ∪ S. Confluence of
R∞ ∪ S∞ implies that equivalent terms have the same stable equaliz-
ers, made of a homogeneous cap which cannot collapse, and an alien
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stable substitution. This makes it possible to prove Toyama’s theorem by
induction on the structure of stable equalizers.

A second contribution is a study of modularity of the Church-Rosser
property when rewriting with a set of rules R modulo a set of equations
E. We prove that all rewrite relations introduced in the litterature, class
rewriting, plain rewriting modulo, rewriting modulo, normal rewriting
and normalized rewriting enjoy a modular Church-Roser property. We
indeed show a more general generic result which covers all these cases.
The proof is again obtained by applying selected results of the previous
contribution to the rewrite system R ∪ E→ ∪ E←, obtained by orienting
the equations in E both ways, which results in a confluent system when
the original rewrite relation is conluent.

We introduce terms in Section 2, and recall the basic notions of caps
and aliens in Section 3. The new proof of Toyama’s theorem is carried
out in Section 4. Modularity of rewriting modulo is adressed in Section 5.
Concluding remarks come in Section 6. We assume familiarity with the
basic concepts and notations of term rewriting systems and refer to [1,
11] for supplementary definitions and examples.

2 Preliminaries

Given a signature F of function symbols, and a set X of variables,
T (F ,X ) denotes the set of terms built up from F and X .

Terms are identified with finite labelled trees as usual. Positions are
strings of positive integers, identifying the empty string Λ with the root
position. We use Pos(t) (resp. FPos(t)) to denote the set of positions
(resp. non-variable positions) of t, t(p) for the symbol at position p in t,
t|p for the subterm of t at position p, and t[u]p for the result of replacing
t|p with u at position p in t. We may sometimes omit the position p,
writing t[u] for simplicity. Var(t) is the set of variables occuring in t.

Substitutions are sets of pairs (x, t) where x is a variable and t is a
term. The domain of a substitution σ is the set Dom(σ) = {x ∈ X |
σ(x) 6= x}. A substitution of finite domain {x1, . . . , xn} is written as
in σ = {x1 7→ t1, . . . , xn 7→ tn}. A substitution is ground if σ(x) is a
ground term for all x ∈ X . We use greek letters for substitutions and
postfix notation for their application to terms. Composition is denoted by
juxtaposition. Bijective substitutions are called variable renamings.

Given two terms s, t, computing the substitution σ whenever it exists
such that t = sσ is called matching, and s is then said to be more general
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than t. This quasi-ordering is naturally extended to substitutions. Given to
terms s, t their most general unifier whenever it exists is the most general
substitution σ (unique up to variable renaming) such that sσ = tσ.

A (plain) rewrite rule is a pair of terms, written l → r, such that
l 6∈ X and Var(r) ⊆ Var(l). Plain rewriting uses plain pattern-matching
for firing rules: a term t rewrites to a term u at position p with the rule
l → r ∈ R and the substitution σ, written t−→p

l→r u if t|p = lσ and
u = t[rσ]p. A (plain) term rewriting system is a set of rewrite rules R =
{li → ri}i. An equation is a rule which can be used both ways. An
equation x = s with x ∈ X is collapsing. We use AC for associativity
and commutativity, and↔E for rewriting with a set E of equations.

The reflexive transitive closure of a relation →, denoted by →∗, is
called derivation, while its symmetric, reflexive, transitive closure is de-
noted by ↔∗, or ↔∗R or =R when the relation is generated by a rewrite
system R. A term rewriting system R is confluent (resp. Church-Rosser)
if t →∗ u and t →∗ v (resp. u↔∗ v) implies u →∗ s and v →∗ s for
some s. The Church-Rosser property shall sometimes be used for some
subset T ⊂ T (F ,X ), in which case u, v are assumed to belong to T .

An ordering � on terms is monotonic if s � t implies u[s] � u[t] for
all terms u, and stable if s � t implies sσ � tσ for all substitutions σ. A
rewrite ordering is a well-founded, monotonic, stable ordering on terms.

Given a set of equations E and a rewrite ordering � total on ground
terms, ordered rewriting with the pair (E,�) is defined as plain rewriting
with the infinite system R = {lσ → rσ | l = r ∈ E, γ ground and lγ �
rγ}. When R is not confluent, the pair (E,�) can be completed into a
pair (E∞,�) such that the associated rewrite system R∞ is confluent,
a process called ordered completion: given two equations g = d ∈ E,
l = r ∈ E such that (i) the substitution σ is the most general unifier of
the equation g = l|p and (ii) gσγ � dσγ and lσγ � rσγ for some ground
substitution γ, then, the so-called ordered critical pair l[dσ]p = rσ is
added to E if it is not already confluent.

Given two sets of equations E and S sharing absolutely no function
symbol, a key observation is that (E ∪ S)∞ = E∞ ∪ S∞ for any rewrite
ordering � total on ground terms. Because, if the signatures are disjoint,
there are no critical pairs between E and S. Therefore, ordered comple-
tion is modular for disjoint unions. Note that the result of completion is
not changed by adding an arbitrary set of free variables provided the or-
dering is extended so as to remain a total rewrite ordering for terms in the
extended signature, which is possible with the recursive path ordering.
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3 Caps and Aliens

Following Toyama, our main assumption throughout this paper is that we
are given two disjoint vocabularies FR and FS , that is, such that

FR ∩ FS = ∅.
We also assume without loss of generality a fixed bijective mapping ξ
from a denumerable set of variables Y disjoint from X , to the set of
terms T (FR ∪ FS,X ).

We proceed by slicing terms into homogeneous subparts:

Definition 1. A term in the union T (FR ∪ FS,X ) is heterogeneous if it
uses symbols of both FR and FS , otherwise it is homogeneous.

A heterogeneous term can be decomposed into a topmost maximal ho-
mogeneous part, its cap, and a multiset of remaining subterms, its aliens.
Thanks to our assumption, there is only one way of slicing a term by
separating its homogeneous cap from its aliens rooted by symbols of the
other signature.

Definition 2 (Cap and alien positions). Given a term t, a position
(i) q ∈ Dom(t) is a cap position if and only if ∀p ≤ q t(p) ∈ FR ∪ X

iff t(Λ) ∈ FR ∪ X . In particular, Λ is a cap position;
(ii) q ∈ Dom(t) \ {Λ} is an alien position, and the subterm t|q is an

alien if and only if t(q) ∈ FS (resp. FR) iff ∀p < q, t(p) ∈ FR (resp.
FS).

We use CPos(t) for the set of cap positions in t, APos(t) for its set
of alien positions, and Aliens(t) for the multiset of aliens in t.
A term is its own (trivial) alien at level 0. (Non-trivial) aliens at level
i > 0 in t are the aliens of the aliens at level i− 1. The rank of a term is
the maximal level of its aliens.

Definition 3 (Cap term and alien substitution). Given a term t, its cap
t̂ and alien substitution γt are defined as follows:

(i) Pos(t̂) = CPos(t) ∪ APos(t);
(ii) ∀p ∈ CPos(t) t̂(p) = t(p);
(iii) ∀q ∈ APos(t) t̂(q) = ξ−1(t|q)
(iv) γt is the restriction of ξ to the variables in Var(t̂) ∩ Y .

We will often use ξ instead of γt. The following result is straithforward:

Lemma 1. Given a term t, its hat t̂ and alien substitution γt are uniquely
defined and satisfy t = t̂γt. Moreover APos(t) = ∅ and t̂ = t if t is
homogeneous.
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4 Plain rewriting

Let R and S be two rewrite systems operating on sets of terms defined
over the respective vocabularies FR ∪ X and FS ∪ X . We will often
write s−→∗ t for s−→∗R∪S t operating on sets of terms defined over the
vocabulary FR ∪ FS ∪ X .

4.1 Cap reduction, Alien reductions, and Equalizers

The notion of an equalizer is the key original notion of this paper, which
allows us to perform reductions in the cap independently of reductions
in the aliens (even if the rewrite rules are not left-linear) by anticipating
reductions in the aliens.

Definition 4 (Equalizer). A term t is an equalizer if for any two non-
trivial aliens u at level i and v at level j in t, u↔∗R∪S v iff u = v.

A substitution γ is an equalizer substitution if ∀x ∈ Dom(γ), γ(x) is
an equalizer, and ∀x, y ∈ Dom(γ), x = y iff γ(x)↔∗R∪S γ(y).

Example 1. Let FR = {f, c, +, a, b},FS = {g, h}, R =
{+(a, b) → +(b, a)} and S = {g(x) → h(x)}. The term
c(f(g(+(b, a))), g(+(b, a))) is an R ∪ S-equalizer, while the term
c(f(g(+(a, b))), h(+(b, a))) is not.

Definition 5. We define a cap reduction s−→C t if s
p−→

R∪S
t with p ∈

CPos(s), and an alien reduction s−→A t if s
p−→

R∪S
t with p 6∈ CPos(s).

Alien reductions take place inside an alien term, not necessarily at an
alien position.

Lemma 2. Let s−→A t. Then t̂(p) = ŝ(p) for all p ∈ CPos(s) while
Aliens(s)(−→)mulAliens(t).

Proof. Since the reduction takes place in the aliens, CPos(s) ⊆ CPos(t)
and t̂(p) = t(p) = s(p) = ŝ(p) for all p ∈ CPos(s). 2

Note that Dom(t̂) and Dom(ŝ) become different in case the rule has
collapsed the cap of an alien of s to a subterm in the other signature,
hence enlarging the cap of the whole term.

Lemma 3. Let s−→p
C t with rule l→ r ∈ R and substitution σ. Then,

(i) ŝ
p−→

l→r
t̂ ∈ T (FR,Y) \ Y; or

(ii) ŝ
p−→

l→r
y ∈ Y , r ∈ Var(l) and t = ξ(y) is an alien of s.

In both cases t is an equalizer if s is an equalizer.
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Note that ŝ and t̂ belong to the same signature and s and t have the
same rank in the first case, while they do not in the second case and the
rank has decreased strictly from s to t.

Proof. Since s = ŝγs by lemma 1, p ∈ CPos(s) and rules are ho-
mogeneous, σ = δγs for some homogeneous substitution δ. There-
fore, s = s[s|p]p = ŝγs[lδγs]p = (ŝ[lδ]p)γs since p ∈ FPos(ŝ), and
t = (ŝ[rδ]p)γs. Assuming that s is an equalizer, then γs is an equalizer
substitution and t is an equalizer as well.

Case (i) ŝ[rδ]p 6∈ Y , that is, ŝ[rδ]p ∈ T (FR,Y)\Y . Then, ŝ−→l→r t̂ =
ŝ[rδ]p and t = t̂γs.

Case (ii) ŝ[rδ]p ∈ Y . Necessarily, rδ = y ∈ Var(ŝ), r ∈ Var(l), and
t = yγs = yξ. 2

4.2 Stable Equalizers

Due to the possible action of collapsing reductions, the cap and the aliens
may grow or change signature along derivations. In particular, the cap
may change signature if the term is equivalent to one of its aliens. Before
introducing a stronger notion of equalizer, let us consider an example:

Example 2. Let R = {f(x, x)→ x, h(x)→ x} and S = {a→ b}.
Then, f(h(a), b)−→ f(h(b), b)−→ f(b, b)−→ b.

Collapsing the cap here needs rewriting first an alien in order to trans-
form the starting term into an equalizer, before applying the non-linear
collapsing rules according to Lemma 3 (ii). Starting from the equalizer
directly would not need any alien rewrite step. This suggests a stronger
notion of equalizer.

Definition 6 (Stability). A rewrite step s−→ t is cap-stable if ŝ and t̂
belong to the same signature. A cap-stable derivation is a sequence of
cap-stable rewrite steps. An equalizer s is cap-collapsing if there exists a
cap-stable derivation s−→∗C t and an alien u of t such that t−→C u.

An equalizer s is cap-stable if it is not cap-collapsing, stable if it is
cap-stable and its aliens are themselves stable, and alien-stable if its
aliens are stable.

According to Lemma 2, alien rewrite steps are cap-stable. We proceed
with a thorough investigation of the properties of stable equalizers, of
which the first is straightforward.
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Lemma 4. Any alien of a stable equalizer is a stable equalizer.

Lemma 5. Assume that s is a stable equalizer such that s−→C t. Then
s and t have their cap in the same signature and t is a stable equalizer.

Proof. By stability assumption of s, the rewrite step s−→C t must satisfy
Lemma 3 case (i). It is therefore a cap-stable step, and ŝ, t̂ are built from
the same signature. By Lemma 3 (i) again, every alien u of t is an alien of
s, hence is a stable equalizer, and therefore t is an alien-stable equalizer.
We are left to show that t is cap-stable.

If it were not, then t−→∗C u for some cap-stable derivation and
u−→C v for some alien v of u. The derivation s−→C t−→∗C u−→C v
now contradicts the stability assumption of s. 2

Lemma 6. Given an alien-stable equalizer s such that s−→∗A t, there
exists a substitution θ from Var(t̂) ∩ Y to Var(ŝ) ∩ Y such that ŝ = t̂θ
and θγs−→∗ γt. Moreover, θ is a bijection if t is an equalizer.

Proof. By Lemma 2, ŝ and t̂ are in the same signature, and by Lemma 5
t is alien-stable. Hence, CPos(s) = CPos(t), and ∀p ∈ CPos(s) s(p) =
t(p), and ŝ and t̂ may only differ by the names of their variables in Y .
Let p, q ∈ APos(t) such that t̂|p = t̂|q ∈ Y . Then t|p = t|q, therefore
s|p↔∗ s|q since s−→∗A t. Hence s|p = s|q since s is an equalizer. There-
fore ŝ|p = ŝ|q, and ŝ = t̂θ for some θ from Var(t̂) ∩ Y to Var(ŝ) ∩ Y .
Also θγs−→∗ γt since s−→∗A t.

If t is an equalizer, then ŝ|p = ŝ|q ∈ Y implies t|p = t|q, hence
t̂|p = t̂|q, and θ is bijective. 2

Lemma 7. Let s be an alien-stable equalizer such that s−→∗A u−→C v.
Then there exists a term t such that s−→C t.

Proof. By Lemma 6, û = ŝσ for some substitution σ. By Lemma 3, û is
rewritable, and therefore ŝ−→w for some w, hence s−→C wγs = t. 2

Lemma 8. Let e be an alien-stable equalizer. Then, e is cap-collapsing
iff ê−→∗ y for some variable y ∈ Y .

Proof. The if part is clear, we show the converse. Assume that e−→∗C u
is a cap-stable derivation and that u−→C v for some alien v of u. Since
all rewrite steps from e to u are cap-stable cap-rewrite steps, they satisfy
Lemma 3(i), and therefore ê−→∗ û. Since v is an alien of u, their caps
are not in the same signature, hence the rewrite step from u to v is not
cap-stable. It therefore satisfies Lemma 3(ii), and û−→l→x y ∈ Y . It
follows that ŝ−→∗ y ∈ Y . 2
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4.3 Structure Lemma

The goal of this section is to show that equivalence proofs between non-
homogenous stable terms can be decomposed into a proof between their
caps, and a proof between their aliens.

Lemma 9 (Cleaning). Let t be a term such that the set of all its non-
trivial aliens has the Church-Rosser property with respect to R∪S. Then,
there exists a stable equalizer e such that t−→∗R∪S e.

Proof. By induction on the rank of t = t̂γt. By confluence assumption on
the aliens, γt−→∗ γ′ such that γt(x)↔∗R∪S γt(y) iff γ′(x) = γ′(y). Let
Dom(γ′) = {x1, . . . , xm} and y ∈ Dom(γ′). By induction hypothesis,
yγ′−→∗R∪S yγ′′, a stable equalizer. Let s = t̂γ′′, hence t−→∗A s. We now
compute ŝ and γs, show that γs is a stable equalizer substitution, and that
s rewrites to a stable equalizer e.

From Lemma 2,Pos(t̂) ⊆ Pos(ŝ). Let y ∈ Var(t̂)\Var(t) occurring
at position p in t̂ and θ(y) = ŝ|p. By construction, ŝ = t̂θ and γ′′ = θγs.
Since γ′′ is a stable equalizer substitution, so is γs by Lemma 4, hence s is
an alien-stable equalizer. If s is not cap-collapsing, it is a stable equalizer
and we are done. Otherwise, ŝ−→∗ y by Lemma 8, hence s−→∗ yγs,
which is a stable equalizer as already shown and we are done again. 2

By property of ordered completion, let R∞∪S∞ be a confluent rewrite
system such that ↔∗R∪S = ↔∗R∞∪S∞ . By definition, both presentations
define the same notions of equalizers.

Lemma 10. Let u be a stable equalizer with respect to R∪S. Then, it is
a stable equalizer with respect to R∞ ∪ S∞. 2

Proof. Since R ∪ S and R∞ ∪ S∞ define the same equationnal theory,
they enjoy the same set of equalizers. We now prove that u is stable with
respect to R∞ ∪ S∞ by induction on the rank. By induction hypothesis,
u is alien-stable. We are left to show that it is cap-stable.

Assume it does not hold. By Lemma 8, û−→∗R∞∪S∞ y for some vari-
able y ∈ Y , and therefore û↔∗R∪S y. Since û is homogeneous, by conflu-
ence of R∪S on homogeneous terms, û−→∗R∪S y. Lemma 8 now yields
a contradiction. 2

The fact that R∞ ∪ S∞ and R ∪ S define the same notions of stable
equalizers is crucial in the coming structural property of equalizers.
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Lemma 11 (Structure). Let R ∪ S be a disjoint union, and v and w
be stable equalizers such that v↔∗R∪S w. Then, there exists a variable
renaming η such that (i) v̂↔∗R∪S ŵη and (ii) γv↔∗R∪S η−1γw.

Proof. By assumption, v and w are stable equalizers with respect to R ∪
S, hence to R∞ ∪ S∞ by Lemma 10. Let v′ and w′ be their respective
normal forms with respect to cap-rewrites with R∞ ∪ S∞. By lemma 5
(applied repeatedly), v′ and w′ are stable equalizers with respect to R∞∪
S∞.

Therefore, v′↔∗R∞∪S∞ w′, v′−→∗R∞∪S∞ s and w′−→∗R∞∪S∞ s for
some s. Now, since v′ and w′ are in normal form for cap-rewrites, all
rewrites from v′ to s and w′ to s must occur in the aliens by Lemma 7.
Since R∞∪S∞ is confluent, equivalent aliens of s are joinable, and there-
fore, we can assume without loss of generality than s is an equalizer.

Since v and w are stable, Lemma 3(i) shows that v̂−→∗ v̂′ and
ŵ−→∗ ŵ′ and therefore Var(v̂′) ⊆ Var(v̂) and Var(ŵ′) ⊆ Var(ŵ).
Since v′−→∗A s and w′−→∗A s, Lemma 6 shows that v̂′ = ŝµ and ŵ′ = ŝν
for some bijection µ from Var(ŝ) ∩ Y to Var(v̂′) ∩ Y and ν from
Var(ŝ) ∩ Y to Var(ŵ′) ∩ Y . Therefore, v̂′ = ŵ′ν−1µ, and v̂↔∗R∪S ŵη

where η = µ−1ν is a bijection from Var(v̂′) ∩ Y to Var(ŵ′) ∩ Y .
Using now Lemmas 3(i) and 6 to relate the alien substitutions of

u, v, s, we get γv = γv′ and µγv′ −→∗R∞∪S∞ γs, hence µγv↔∗ γs. Simi-
larly νγw↔∗ γs, and therefore, µγv↔∗ νγw yielding (ii). 2

4.4 Modularity

Theorem 1. The union of two Church-Rosser rewrite systems R,S over
disjoint signatures is Church-Rosser.

Proof. We show the Church-Rosser property for terms v, w: v↔∗R∪S w
iff v−→∗R∪S←−∗R∪S w. The if direction is straightforward. The proof of
the converse proceeds by induction on the maximum of the ranks of v, w.
By induction hypothesis, the Church-Rosser property is therefore satis-
fied for the aliens of v, w.
1. By the cleaning Lemma 9, v−→∗R∪S v′, w−→∗R∪S w′, v′ and w′ being
stable equalizers.
2. By the structure Lemma 11, v̂′↔∗R∪S ŵ′η and γv′↔∗R∪S η−1γw′ .
3. By the Church-Rosser assumption for homogeneous terms,
v̂′−→∗ s = t ←−∗ ŵ′η.
4. By the induction hypothesis applied to γv′ and η−1γw′ whose ranks are
strictly smaller than those of v, w, γv′ −→∗ σ = τ ←−∗ η−1γw′ .
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5. Conclusion:

v−→∗ v′ = v̂′γv′ −→∗ sγv′ −→∗ sσ
=

w−→∗w′ = ŵ′γw′ = ŵ′ηη−1γw′ = tη−1γw′←−∗ tτ
2

This new proof of Toyama’s theorem appears to be much simpler and
shorter than previous ones. We will see next that it is the key to our
generalization to rewriting modulo.

5 Rewriting modulo equations

We assume now given a set R of rewrite rules and a set E of equations
used for equational reasoning, both built over the signatureFR. Orienting
the equations of E from left-to-right and right-to-left respectively, we
denote by E→ and E← the obtained rewrite systems. the notation E←

implies the assumption that no equation x = t with x ∈ X can be in E.
Note that↔∗E = −→∗E→∪E← , and that E→∪E← is trivially confluent.
Similarly, we are also given a set S of rewrite rules and a set D of

equations built over the signature FS .

5.1 The Zoo of rewrite relations modulo equations

We will consider five different rewrite relations in the case of rewriting
with the pair (R,E):

1. Class rewriting [6], defined as u−→RE t if ∃s such that u↔∗E s−→∗R t;
2. Plain rewriting modulo [2], defined as plain rewriting −→R;
3. Rewriting modulo [10, 3], assuming that E-matching is decidable,

defined as u−→p
RE

t if u|p =E lσ and t = u[rσ]p for some l → r ∈
R;

4. Normal rewriting [4], assuming E-matching is decidable and E ad-
mits normal forms (a modular property [9]), writing u↓E for the nor-
mal form of u, defined as u−→∗E u↓E −→∗RE

t;
5. Normalized rewriting [7], for which E = S ∪ AC and S is AC-

Church-Rosser in the sense of rewriting modulo defined at case 3,
defined as u−→∗SAC

u↓SAC
−→RAC

t.

One step class-rewriting requires searching the equivalence class of u
until an equivalent term s is found that contains a redex for plain rewrit-
ing. Being the least efficient, class-rewriting has been replaced by the
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other more effective definitions. Normal rewriting has been introduced
for modelling higher-order rewriting (using higher-order pattern match-
ing). But our results do not apply directly to the case of higher-order
rewriting in the sense of Nipkow [8] and its generalizations [4], since the
E-equational part is then shared.

5.2 Modularity of Class rewriting

Modularity of class-rewriting reduces easily to modularity of plain
rewriting by using the fact that R∪E→∪E← and S∪D→∪D← are con-
fluent rewrite systems over disjoint signatures whenever class-rewriting
with (E, R) and (S, D) are confluent.

Theorem 2. The Church-Rosser property is modular for class rewriting.

Proof. Class rewriting relates to plain rewriting with R ∪ E→ ∪ E←

as follows: u−→RE w iff u↔∗E v−→R w iff u−→∗E→∪E← v−→R w,
and therefore u−→∗RE↔∗E w iff u−→∗R∪E→∪E← w. As a consequence,
class rewriting with (R,E) is Church-Rosser iff plain rewriting with
−→∗R∪E→∪E← is Church-Rosser. Since the former is modular by
Toyama’s theorem, so is the latter. 2

This proof does not scale up to the other relations for rewriting mod-
ulo, unfortunately.

5.3 Modularity of rewriting modulo equations

In order to show the modularity property of all these relations at once, we
adopt an abstract approach using a generic notation =⇒R,E for rewriting
modulo with the pair (R,E). More precisely, we prove that any rewrite
relation =⇒R,E satisfying

(i)−→R ⊆ (=⇒R,E↔∗E)∗

(ii) =⇒R,E ⊆ (↔∗E −→R↔∗E)∗

(iii) Variables are in normal form for =⇒R,E

(iv) E does not admit collapsing equations

enjoys a modular Church-Rosser property defined as

∀s, t s.t. s
∗↔

R∪E
t ∃v, w s.t. s

∗
=⇒
R,E

v, t
∗

=⇒
R,E

w and v
∗↔
E

w

Note that all concrete rewriting modulo relations considered in Sec-
tion 5.1 satisfy conditions (i,ii), including of course class-rewriting, and
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moreover that any rewriting modulo relation should satisfy these condi-
tions to make sense, since (i,ii) imply soundeness

(=⇒
R,E
∪⇐=

R,E
∪↔

E
)∗ = (−→

R
∪←−

R
∪↔

E
)∗

For all these relations, one =⇒R step suffices in the righthand side of
(i), while for (ii), one −→R step suffices in the righthand side with no
↔E step on its right. For rewriting modulo, no ↔E steps are needed
in (i). They are needed on the left of −→R in (ii) for modulo, normal
and normalized rewriting. Finally, note that (iv) implies (iii) for all our
relations, but is a much stronger assumption.

Our coming generalization of Toyama’s theorem makes an essential
use of the rewrite system R ∪ E→ ∪ E←. We therefore first need to
precisely relate the rewrite relation =⇒R,E to the relation −→R∪E→∪E←

when the former is Church-Rosser.

Lemma 12. Assume =⇒R,E is Church-Rosser. Then, plain rewriting
with R ∪ E→ ∪ E← is Church-Rosser.

Proof. Straightforward consequence of (ii). 2

Form now on, we consider two sets of pairs (R,E) and (S, D), and
assume that the corresponding generic relations for rewriting modulo,
=⇒R,E and =⇒S,D, are both Church-Rosser. We shall use the abbrevia-
tion =⇒ for =⇒R∪S,E∪D.

Our proof that the generic relation =⇒ is Church-Rosser for terms
in T (FR ∪ FS,X ) is essentially based on the structure Lemma 11 for
the rewrite systems R ∪ E→ ∪ E← and S ∪ D→ ∪ D←. By Lemma 12,
both are Church-Rosser under our assumption that =⇒R,E and =⇒S,D,
are Church-Rosser.

To this end, we first need generalizing the cleaning lemma:

Lemma 13 (Cleaning). Let t be a term such that the set of its non-trivial
aliens has the Church-Rosser property for =⇒. Then, there exists a stable
equalizer e such that t =⇒∗ e.

The proof uses the cleaning Lemma 9 for the rewrite relation R ∪
E→ ∪ E← ∪ S ∪ D→ ∪ D←, which is Church-Rosser for the aliens of
t by lemma 12, in order to dispense us with showing all intermediate
properties needed in a direct proof of the lemma. This is possible since
a stable equalizer does not depend upon the rewrite relation in use, but
upon the equational theory itself.

12



Proof. The proof is by induction on the rank. By our assumptions,
Lemmas 12 and 9 (we actually need a more precise statement ex-
tracted from its proof), there exists an alien-stable equalizer s = t̂γ
such that γt−→∗R∪E→∪E←∪S∪D→∪D← γ (hence, by induction hypothesis,
γt =⇒∗ γ), and an equalizer e such that

1. either s is cap-stable, in which case e = ŝγ is stable and t =⇒∗ e,
2. or s is cap-collapsing, in which case ŝ−→∗R∪E→∪E←∪S∪D→∪D← x for

some variable x and e = xγ. By the Church-Rosser property of =⇒
for homogeneous terms and assumption (iii), ŝ =⇒∗ x, hence s =⇒∗ e
again. 2

We now obtain our main new result:

Theorem 3. The Church-Rosser property is modular for any rewriting
modulo relation satisfying assumptions (i,ii,iii,iv).

Proof. The proof mimics the proof of Theorem 1. Let v, w satisfying
v↔∗R∪E∪S∪D w. The proof is by induction on the maximum rank of v, w.
By induction hypothesis, the Church-Rosser property is therefore satis-
fied for the aliens of v, w.
1. By the cleaning Lemma 13, v =⇒∗ v′, w =⇒∗w′, v′ and w′ being stable
equalizers for the theory generated by R ∪ E ∪ S ∪D.
2. By assumptions (i) and (ii), v′↔∗R∪E∪S∪D w′.
3. By the structure Lemma 11, v̂′↔∗R∪E∪S∪D ŵ′η and
γv′↔∗R∪E∪S∪D η−1γw′ .
4. By the Church-Rosser assumption for homogeneous terms,
v̂′=⇒∗ s =E∪D t ⇐=∗ ŵ′η. Note that E ∪ D applies here to an ho-
mogeneous term, that is, we do not know which of E or D is used to
relate s and t.
5. By the induction hypothesis applied to γv′ and η−1γw′ whose ranks are
strictly smaller than those of v, w, γv′ =⇒∗ σ =E∪D τ ⇐=∗ η−1γw′ .
6. Conclusion:

v =⇒∗ v′ = v̂′γv′ =⇒∗ sγv′ =⇒∗ sσ
=E∪D

w =⇒∗w′ = ŵ′γw′ = ŵ′ηη−1γw′ = tη−1γw′⇐=∗ tτ
2

We have not investigated whether this result extends to a theory E
that does not satisfy assumption (iv). We suspect it does when assump-
tion (iii) is satisfied, by generalizing the notion of collapsing reduction to
s−→R =E t for some alien t of s, but have not tried.
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6 Conclusion

We have given a comprehensive treatment of Toyama’s theorem which
should ease its understanding. Moreover, we have generalized Toyama’s
theorem to rewriting modulo equations for all rewriting relations consid-
ered in the litterature (and for those not yet considered as well, if any,
since they should satisfy our conditions to make sense), under the as-
sumption that the equations are non-collapsing.

The question arises whether our proof method scales up to the con-
structor sharing case. This requires extending the modularity of ordered
completion to cope with constructor sharing. We have tried without suc-
ces, except for the trivial case where constructors cannot occur on top
of righthand sides of rules (a rule violating this assumption is called
constructor lifting in the litterature). This implies that the modularity of
the Church-Rosser property of higher-order rewriting cannot be derived
from our results, except when the higher-order rewrite rules do not have
a binder or an application at the root of their righthand sides. This shows
that extending our method to the constructor sharing case is an important
direction for further research.

On the other hand, we think that our proof method should yield a
simpler proof of other modularity results, in particular for the existence
of a normal form. We have not tried this direction.

Acknowledgments: The author thanks Nachum Dershowitz and
Maribel Fernandez for numerous discussions about modularity and
Yoshito Toyama for suggesting the trick of orienting equations both ways
instead of repeating the basic proof. An anonymous referee suggested a
potential further simplification by stabilizing terms before equalization.
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