
Higher-Order Termination:
from Kruskal to Computability

Fréd́eric Blanqui1, Jean-Pierre Jouannaud1?, and Albert Rubio2

1 INRIA & LORIA, BP 101, 54602 Villiers-ĺes-Nancy CEDEX, France
2 LIX, École Polytechnique, 91400 Palaiseau, France

3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

1 Introduction

Termination is a major question in both logic and computer science. In
logic, termination is at the heart of proof theory where it is usually called
strong normalization (of cut elimination). In computer science, termina-
tion has always been an important issue for showing programs correct.
In the early days of logic, strong normalization was usually shown by as-
signing ordinals to expressions in such a way that eliminating a cut would
yield an expression with a smaller ordinal. In the early days of verifica-
tion, computer scientists used similar ideas, interpreting the arguments of
a program call by a natural number, such as their size. Showing the size
of the arguments to decrease for each recursive call gives a termination
proof of the program, which is however rather weak since it can only
yield quite small ordinals. In the sixties, Tait invented a new method for
showing cut elimination of natural deduction, based on apredicateover
the set of terms, such that the membership of an expression to the pred-
icate implied the strong normalization property for that expression. The
predicate being defined by induction on types, or even as a fixpoint, this
method could yield much larger ordinals. Later generalized by Girard un-
der the name ofreducibility or computability candidates, it showed very
effective in proving the strong normalization property of typed lambda-
calculi with polymorphic types, dependent types, inductive types, and
finally a cumulative hierarchy of universes. On the programming side,
research on termination shifted from programming to executable speci-
fication languages based on rewriting, and concentrated on automatable
methods based on the construction on well-founded orderings of the set
of terms. The milestone here is Dershowitz’srecursive path ordering
(RPO), in the late seventies, whose well-foundedness proof is based on
? Project LogiCal, P̂ole Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud.

a powerfull combinatorial argument, Kruskal’s tree theorem, which also
yields rather large ordinals. While the computability predicates must be
defined for each particular case, and their properties proved by hand, the
recursive path ordering can be effectively automated.

These two methods are completely different. Computability arguments
show termination, that is, infinite decreasing sequences of expressions
e0 � e1 � . . . en � en+1 . . . do not exist. Kruskal’s based arguments
show well-orderedness: for any infinite sequence of expressions{ei}i,
there is a pairj < k such thatej � ek. It is easy to see that well-
orderedness implies termination, but the converse is not true.

In the late eighties, a new question arose: termination of a simply-
typed lambda-calculus language in which beta-reduction would be sup-
plemented with terminating first-order rewrite rules. Breazu-Tannen and
Gallier on the one hand [10], and Okada [21] on the other hand, showed
that termination was satisfied by the combination by using computability
arguments. Indeed, when rewriting operates at basic types and is gen-
erated by first-order rewrite rules, beta-reduction and rewriting do not
interfer. Their result, proved for a polymorphicλ-calculus, was later gen-
eralized to the calculus of constructions [1]. The situation becomes rad-
ically different with higher-order rewriting generated by rules operating
on arrow-types, or involving lambda-bindings or higher-order variables.
Such an example is provided by Gödel’s systemT , in which higher-order
primitive recursion for natural numbers generated by Peano’s construc-
tors0 ands is described by the following two higher-order rules :

rec(0, U, V)→ U
rec(s(X), U, V)→ @(V, X, rec(X, U, V))

whererec is a function symbol of type∀T : α.IN → T → (IN → T →
T) → T , U is a higher-order variable of typeT andV a higher-order
variable of type IN→ T → T . Jouannaud and Okada invented the so-
called general-schema [15], a powerful generalization of Gödel’s higher-
order primitive recursion od higher types. Following the path initiated
by Breazu-Tannen and Gallier on the one hand, and Okada on the other
hand, termination of calculi based on the general schema was proved by
using computability arguments as well [15, 16, 2]. The general schema
was then reformulated by Blanqui, Jouannaud and Okada [6, 7] in order
to incorporate computability arguments directly in its definition, opening
the way to new generalizations. Gödel’s systemT can be generalized in
two ways, by introducing type constructors and dependent types, yield-

2

ing the Calculus of Constructions, and by introducing strictly positive
inductive types. Both together yield the Calculus of Inductive Construc-
tions [22], the theory underlying the Coq system [13], in which rewrite
rules like strong elimination operate on types, raising new difficulties.
Blanqui gave a generalization of the general schema which includes the
Calculus of Inductive Constructions as a particular case under the name
of Calculus of Algebraic Constructions [3].

The general schema, however, is too simple to analyse complex cal-
culi defined by higher-order rewrite rules such as encodings of logics.
For that purpose, Jouannaud and Rubio generalized the recursive path or-
dering to the higher-order case, yielding the higher-order recursive path
ordering (HORPO) [17]. The RPO well-foundedness proof follows from
Kruskal’s tree theorem, but no such theorem exists in presence of a bind-
ing construct, and it is not at all clear that such a theorem may exist.
What is remarquable is that computability arguments fit with RPO’s re-
cursive structure. When applied to RPO, these arguments result in a new,
simple, well-foundedness proof of RPO. One could even argue that this is
thefirst well-foundedness proof of RPO, since Dershowitz showedmore:
well-orderedness.

Combining the general schema and the HORPO is indeed easy be-
cause their termination properties are both based on computability argu-
ments. The resulting relation, HORPO with closure, combines an order-
ing relation with a membership predicate. In this paper, we reformulate
and improve a recent idea of Blanqui [5] by defining a new version of the
HORPO with closure which integrates smoothly the idea of the general
schema into HORPO in the form of a new ordering definition.

So far, we have considered the kind of higher-order rewriting defined
by using first-order pattern matching as in the calculus of constructions.
These orderings need to containβ- andη-reductions. Showing termina-
tion of higher-order rewrite rules based on higher-order pattern match-
ing, that is, rewriting moduloβ andη now used as equalities, turns out to
require simple modifications of HORPO [18]. We will therefore concen-
trate here on higher-order orderings containingβ- andη-reductions.

We introduce higher-order algebras in Section 2. In Section 3, we re-
call the computability argument for this variation of the simply typed
lambda calculus. Using a computability argument again, we show in Sec-
tion 4 that RPO is well-founded. We introduce the general schema in sec-
tion 5, and the HORPO in Section 6 before to combine both in Section 7.
We end up with related work and open problems in the last two sections.

3

2 Higher-order algebras

The notion of a higher-order algebra given here is the monomorphic ver-
sion of the notion of polymorphic higher-order algebra defined in [19].
Polymorphism has been ruled out for simplicity.

2.1 Types, signatures and terms

Given a setS of sort symbolsof a fixed arity, denoted bys : ∗n ⇒ ∗, the
setTS of typesis generated from these sets by the arrow constructor:

TS := s(T n
S) | (TS → TS)

for s : ∗n ⇒ ∗ ∈ S
Types headed by→ arearrow typeswhile the others arebasic types. Type
declarationsare expressions of the formσ1 × . . . × σn → σ, wheren
is thearity of the type declaration, andσ1, . . . , σn, σ are types. A type
declaration isfirst-order if it uses only sorts, otherwisehigher-order.

We assume given a set of function symbols which are meant to be
algebraic operators. Each function symbolf is equipped with a type dec-
larationf : σ1× . . .×σn → σ. We useFn for the set of function symbols
of arity n. F is afirst-order signatureif all its type declarations are first-
order, and a higher-order signature otherwise.

The set ofraw termsis generated from the signatureF and a denu-
merable setX of variables according to the grammar:

T := X | (λX .T) | @(T , T) | F(T , . . . , T).

Terms generated by the first two grammar rules are calledalgebraic.
Terms of the formλx.u are calledabstractionswhile terms of the form
@(u, v) are calledapplications. The term@(u, v) is called a (partial)
left-flatteningof s = @(. . . @(@(u, v1), v2), . . . , vn), u being possibly an
application itself. Terms other than abstractions are said to beneutral.
We denote byVar(t) (BVar(t)) the set of free (bound) variables oft.
We may assume for convenience (and without further notice) that bound
variables in a term are all different, and are different from the free ones.

Terms are identified with finite labeled trees by consideringλx., for
each variablex, as a unary function symbol.Positionsare strings of pos-
itive integers, the empty stringΛ denoting the root position. Thesubterm
of t at positionp is denoted byt|p, and byt[u]p the result of replacingt|p
at positionp in t by u. We writes � u if u is a strict subterm ofs. We
uset[]p for a term with a hole, called a context. The notations will be
ambiguously used to denote a list, a multiset, or a set of termss1, . . . , sn.

4

2.2 Typing Rules

Typing rules restrict the set of terms by constraining them to follow a pre-
cise discipline. Environments are sets of pairs writtenx : σ, wherex is a
variable andσ is a type. LetDom(Γ) = {x | x : σ ∈ Γ for some typeσ}.
We assume there is a unique pair of the formx : σ for every variable
x ∈ Dom(Γ). Our typing judgements are written asΓ ` M : σ if the
termM can be proved to have the typeσ in the environmentΓ . A term
M has typeσ in the environmentΓ if Γ ` M : σ is provable in the in-
ference system of Figure 1. A termM is typable in the environmentΓ if
there exists a typeσ such thatM has typeσ in the environmentΓ . A term
M is typable if it is typable in some environmentΓ . Note that function
symbols are uncurried, hence must come along with all their arguments.

Variables:
x : σ ∈ Γ

Γ ` x : σ

Functions:
f : σ1 × . . .× σn → σ

Γ ` t1 : σ1 . . . Γ ` tn : σn

Γ ` f(t1, . . . , tn) : σ

Abstraction:
Γ ∪ {x : σ} ` t : τ

Γ ` (λx : σ.t) : σ → τ

Application:
Γ ∪ {x : σ} ` s : σ → τ Γ ` t : σ

Γ ` @(s, t) : τ

Fig. 1.Typing judgements in higher-order algebras

2.3 Higher-order rewrite rules

Substitutions are written as in{x1 : σ1 7→ (Γ1, t1), . . . , xn : σn 7→
(Γn, tn)} where, for everyi ∈ [1..n], ti is assumed different fromxi and
Γi ` ti : σi. We also assume that

⋃
i Γi is an environment. We often

write x 7→ t instead ofx : σ 7→ (Γ, t), in particular whent is ground. We
use the letterγ for substitutions and postfix notation for their application.
Substitutions behave as endomorphisms defined on free variables.

A (possibly higher-order)term rewriting systemis a set of rewrite
rulesR = {Γi ` li → ri : σi}i, whereli andri are higher-order terms
such thatli andri have the same typeσi in the environmentΓi. Given a
term rewriting systemR, a terms rewrites to a termt at positionp with
the rulel → r and the substitutionγ, writtens

p−→
l→r

t, or simplys →R t,

if s|p = lγ andt = s[rγ]p.

5

A term s such thats
p−→
R

t is calledR-reducible. The subterms|p is a

redexin s, andt is thereductof s. Irreducible terms are said to be inR-
normal form. A substitutionγ is in R-normal form ifxγ is in R-normal
form for all x. We denote by ∗−→

R
the reflexive, transitive closure of the

rewrite relation−→
R

.

Given a rewrite relation−→, a terms is strongly normalizing if there
is no infinite sequence of rewrites issuing froms. The rewrite relation
itself is strongly normalizing, or terminating, if all terms are strongly
normalizing, in which case it is called areduction.

Three particular higher-order equation schemas originate from theλ-
calculus,α-, β- andη-equality:

λx.v =α λy.v{x 7→ y} if y 6∈ BVar(v) ∪ (Var(v) \ {x})
@(λx.v, u)−→β v{x 7→ u}
λx.@(u, x) −→η u if x 6∈ Var(u)

As usual, we do not distinguishα-convertible terms.β- andη-equalities
are used as reductions, which is indicated by the long-arrow symbol in-
stead of the equality symbol. The above rule-schemas define a rewrite
system which is known to be terminating, a result proved in Section 3.

2.4 Higher-order reduction orderings

We will make intensive use of well-founded orderings, using the vocab-
ulary of rewrite systems for orderings, for proving strong normalization
properties. For our purpose, anordering, usually denoted by≥, is a re-
flexive, symmetric, transitive relation compatible withα-conversion, that
is, s =α t ≥ u =α v impliess ≥ v, whose strict part> is itself compati-
ble. We will essentially use strict orderings, and hence, the word ordering
for them too. We will also make use of order-preserving operations on re-
lations, namely multiset and lexicographic extensions, see [12].

Rewrite orderingsaremonotonicandstableorderings,reduction or-
deringsare in additionwell-founded, whilehigher-order reduction order-
ingsmust also containβ- andη-reductions. Monotonicity of> is defined
asu > v implies s[u]p > s[v]p for all contextss[]p. Stability of > is
defined asu > v implies sγ > tγ for all substitutionsγ. Higher-order
reduction orderings are used to prove termination of rewrite systems in-
cludingβ- andη-reductions by simply comparing the lefthand and right-
hand sides of the remaining rules.

6

3 Computability

Simply minded arguments do not work for showing the strong normal-
ization property of the simply typed lambda-calculus, forβ-reduction
increases the size of terms, which precludes an induction on their size,
and preserves their types, which seems to preclude an induction on types.

Tait’s idea is to generalize the strong normalization property in order
to enable an induction on types. To each typeσ, we associate a subset[[σ]]
of the set of terms, called thecomputability predicateof typeσ, or set of
computable termsof type σ. Whether[[σ]] contains only typable terms
of typeσ is not really important, although it can help intuition. What is
essential are the properties that the family of predicates should satisfy:

(i) computable terms are strongly normalizing;
(ii) reducts of computable terms are computable;
(iii) a neutral termu is computable iff all its reducts are computable;
(iv) u : σ → τ is computable iff so is@(u, v) for all computablev.
A (non-trivial) consequence of all these properties can be added to

smooth the proof of the coming Main Lemma:
(v) λx.u is computable iff so isu{x 7→ v} for all computablev.
Apart from (v), the above properties refer toβ-reduction via the no-

tions ofreductandstrong normalizationonly. Indeed, various computabil-
ity predicates found in the literature use the same definition parameter-
ized by the considered reduction relation.

There are several ways to define a computability predicate by taking
as its definition some of the properties that it should satisfy. For example,
a simple definition by induction on types is this:

s : σ ∈ [[σ]] for σ basic iffs is strongly normalizing;
s : θ → τ ∈ [[σ → τ]] iff @(s, u) : τ ∈ [[τ]] for everyu : θ ∈ [[θ]].

An alternative for the case of basic type is:
s : σ ∈ [[σ]] iff ∀t : τ . s−→ t thent ∈ [[τ]].
This formulation defines the predicate as a fixpoint of a monotonic func-
tional. Once the predicate is defined, it becomes necessary to show the
computability properties. This uses an induction on types in the first case
or an induction on the definition of the predicate in the fixpoint case.

Tait’s strong normalization proof is based on the following key lemma:

Lemma 1 (Main Lemma). Lets be an arbitrary term andγ be an arbi-
trary computable substitution. Thensγ is computable.

Proof. By induction on the structure of terms.

7

1. s is a variable:sγ is computable by assumption onγ.
2. s = @(u, v). Sinceuγ andvγ are computable by induction hypothe-

sis,sγ = @(uγ, vγ) is computable by computability property (iv).
3. s = λx.u. By computability property (v),sγ = λx.uγ is computable

iff uγ{x 7→ v} is computable for an arbitrary computablev. Let now
γ′ = γ ∪ {x 7→ v}. By definition of substitutions for abstractions,
uγ{x 7→ v} = uγ′, which is usually ensured byα-conversion. By
assumptions onγ andv, γ′ is computable, anduγ′ is therefore com-
putable by the main induction hypothesis. 2

Since an arbitrary terms can be seen as its own instance by the iden-
tity substitution, which is computable by computability property (iii), all
terms are computable by the Main Lemma, hence strongly normalizing
by computability property (i).

4 The recursive path ordering and computability

In this section, we restrict ourselves to first-order algebraic terms. As-
suming that the set of function symbols is equipped with an ordering
relation≥F , calledprecedence, and a status functionstat, writing statf
for stat(f), we recall the definition of the recursive path ordering:

Definition 1. s�rpo t iff

1. s = f(s) with f ∈ F , andu�
rpo

t for someu ∈ s

2. s = f(s) with f ∈ F , andt = g(t) with f >F g, andA
3. s = f(s) andt = g(t) with f =F g ∈ Mul, ands (�

rpo
)mul t

4. s = f(s) andt = g(t) with f =F g ∈ Lex, ands (�
rpo

)lex t andA

whereA = ∀v ∈ t. s �
rpo

v and s �
rpo

t iff s �
rpo

t or s = t

We now show the well-foundedness of�rpo by using Tait’s method.
Computability is defined here as strong normalization, implying com-
putability property (i). We prove the computability property:

(vii) Let f ∈ Fn ands be computable terms. Thenf(s) is computable.

Proof. The restriction of�rpo to terms smaller than or equal to the terms
in s w.r.t.�rpo is a well-founded ordering which we use for building an
outer induction on the pairs(f, s) ordered by(>F , (�rpo)statf)lex. This
ordering is well-founded, since it is built from well-founded orderings by
using mappings that preserve well-founded orderings.

8

We now show thatf(s) is computable by proving thatt is computable
for all t such thatf(s) �rpo t. This property is itself proved by an (inner)
induction on|t|, and by case analysis upon the proof thatf(s) �rpo t.

1. subterm case:∃u ∈ s such thatu �rpo t. By assumption,u is com-
putable, hence so is its reductt.

2. precedence case:t = g(t), f >F g, and∀v ∈ t, s �rpo v. By inner
induction,v is computable, hence so ist. By outer induction,g(t) = t
is computable.

3. multiset case:t = f(t) with f ∈ Mul, ands(�rpo)mult. By definition
of the multiset extension,∀v ∈ t, ∃u ∈ s such thatu �rpo v. Sinces
is a vector of computable terms by assumption, so ist. We conclude
by outer induction thatf(t) = t is computable.

4. lexicographic case:t = f(t) with f ∈ Lex, s(�rpo)lext, and∀v ∈
t, s �rpo v. By inner induction,t is strongly normalizing, and by
outer induction, so isf(t) = t. 2

The well-foundedness of�rpo follows from computability property (vii).

5 The general schema and computability

As in the previous section, we assume that the set of function symbols is
equipped with a precedence relation≥F and a status functionstat.

Definition 2. Thecomputability closureCC(t = f(t)), with f ∈ F , is
the setCC(t, ∅), s.t.CC(t,V), withV ∩ Var(t) = ∅, is the smallest set of
typable terms containing all variables inV and terms int, closed under:

1. subterm of basic type: lets ∈ CC(t,V), andu be a subterm ofs of
basic typeσ such thatVar(u) ⊆ Var(t); thenu ∈ CC(t,V);

2. precedence: letf >F g, ands ∈ CC(t,V); theng(s) ∈ CC(t,V);
3. recursive call: letf(s) be a term s.t. terms ins belong toCC(t,V)

andt(−→β ∪�)statf s; theng(s) ∈ CC(t,V) for everyg =F f ;
4. application: lets : σ1 → . . . → σn → σ ∈ CC(t,V) andui : σi ∈
CC(t,V) for everyi ∈ [1..n]; then@(s, u1, . . . , un) ∈ CC(t,V);

5. abstraction: lets ∈ CC(t,V ∪ {x}) for somex /∈ Var(t) ∪ V; then
λx.s ∈ CC(t,V);

6. reduction: letu ∈ CC(t,V), andu−→β∪� v; thenv ∈ CC(t,V).

We say that a rewrite systemR satisfies thegeneral schemaiff r ∈ CC(f(l))
for all f(l) → r ∈ R.

9

We now consider computability with respect to the rewrite relation
−→R ∪−→β, and add the computability property (vii) whose proof can
be easily adapted from the previous one. We can then add a new case in
Tait’s Main Lemma, for terms headed by an algebraic function symbol.
As a consequence, the relation−→β ∪−→R is strongly normalizing.

Example 1 (System T).We show the strong normalization of Gödel’s
systemT by showing that its rules satisfy the general schema. This is
clear for the first rule by the base Case of the definition. For the sec-
ond rule, we have:V ∈ CC(rec(s(X), U, V)) by base Case;s(X) ∈
CC(rec(s(X), U, V)) by base Case again, henceX ∈ CC(rec(s(X), U, V))
by Case 2, assumingrec >F s; U ∈ CC(rec(s(X), U, V)) by base Case,
hence all arguments of the recursive call are inCC(rec(s(X), U, V)).
Sinces(X) � X, rec(X, U, V) ∈ CC(rec(s(X), U, V)). Therefore,
@(V, X, rec(X, U, V)) ∈ CC(rec(s(X), U, V)) by Case 4 and we are done.

6 The higher-order recursive path ordering

6.1 The ingredients

– A quasi-ordering on types≥TS calledthe type orderingsatisfying the
following properties:
1. Well-foundedness: >TS is well-founded;
2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS

τ andσ =TS σ′;
3. Arrow decreasingness: τ → σ >TS α implies σ ≥TS α or α =

τ ′ → σ′, τ ′ =TS τ andσ >TS σ′;
4. Arrow monotonicity: τ ≥TS σ impliesα → τ ≥TS α → σ andτ →

α ≥TS σ → α;
A convenient type ordering is obtained by restricting the subterm
property for the arrow in the RPO definition.

– A quasi-ordering≥F on F , called theprecedence, such that>F is
well-founded.

– A statusstatf ∈ {Mul, Lex} for every symbolf ∈ F .

The higher-order recursive path ordering (HORPO) operates on typ-
ing judgements. To ease the reading, we will however forget the environ-
ment and type unless necessary. Let

A = ∀v ∈ t s �
horpo

v or u �
horpo

v for someu ∈ s

10

Definition 3. Given two judgementsΓ `Σ s : σ andΣ `Σ t : τ ,

s �
horpo

t iff σ ≥TS τ and

1. s = f(s) with f ∈ F , andu �
horpo

t for someu ∈ s

2. s = f(s) with f ∈ F , andt = g(t) with f >F g, andA
3. s = f(s) andt = g(t) with f =F g ∈ Mul, ands (�

horpo
)mul t

4. s = f(s) andt = g(t) with f =F g ∈ Lex, ands (�
horpo

)lex t andA

5. s = @(s1, s2), ands1 �
horpo

t or s2 �
horpo

t

6. s = λx : α.u with x 6∈ Var(t), andu �
horpo

t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA
8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands �

horpo
v

9. s = @(s1, s2), t = @(t), and{s1, s2}(�
horpo

)mul t

10. s = λx : α.u, t = λx : β.v, α =TS β, andu �
horpo

v

11. s = @(λx : α.u, v) andu{x 7→ v} �
horpo

t

12. s = λx : α.@(u, x), x 6∈ Var(u) andu �
horpo

t

Example 2 (System T).The new proof of strong normalization of System
T is even simpler. For the first rule, we apply Case 1. For the second,
we apply Case 7, and show recursively thatrec(s(X), U, V)�horpo V by
Case 1,rec(s(X), U, V)�horpo X by Case 1 applied twice, and
rec(s(X), U, V)�horpo rec(X, U, V) by Case 3, assuming a multiset sta-
tus forrec, which follows from the comparisons(X)�horpo X by Case 1.

The strong normalization proof of HORPO is in the same style as the
previous strong normalization proofs, although technically more com-
plex [19]. This proof shows that HORPO and the general schema can be
combined by replacing the membershipu ∈ s used in case 1 by the more
general membershipu ∈ CC(f(s)). It follows that the HORPO mecha-
nism is inherently more expressive than the closure mechanism.

Because of Cases 11 and 12, HORPO is not transitive. Indeed, there
are examples for which the proof ofs�+

horpo t requires guessing a middle
termu such thats�horpo u andu�horpo t. Guessing a middle term when
necessary is automated in the implementations of HORPO and HORPO
with closure available from the web page of the first two authors.

11

7 Unifying HORPO and the computability closure

A major advantage of HORPO over the general schema is its recursive
structure. In contrast, the membership to the computability closure is un-
decidable due to its Case 3, but does not involve any type comparison.
To combine the advantages of both, we now incorporate the closure con-
struction into the HORPO as an ordering. Besides, we also incorporate
the property that arguments of a type constructor are computable when
thepositivity conditionis satisfied as it is the case for inductive types in
the Calculus of Inductive Constructions [22].

s : σ �
horpo

t : τ iff

Var(t) ⊆ Var(s) and

1. s = f(s) ands
∅
�

comp
t

2. s = f(s) andσ ≥TS τ and
(a) t = g(t), f >F g andA
(b) t = g(t), f =F g,

s(�
horpo

)statf t andA

(c) t = @(t1, t2) andA
3. s = @(s1, s2), σ ≥TS τ and

(a) t = @(t1, t2) and
{s1, s2}(�

horpo
)mul{t1, t2}

(b) s1 �
horpo

t or s2 �
horpo

t

(c) s1 = λx.u and
u{x 7→ s2} �

horpo
t

4. s = λx : α.u, σ ≥TS τ and
(a) t = λx : β.v, α =TS β

andu �
horpo

v

(b) x 6∈ Var(t) andu �
horpo

t

(c) u = @(v, x), x 6∈ Var(v)
andv �

horpo
t

whereA = ∀v ∈ t :
s �

horpo
v or ∃u ∈ s : u �

horpo
v

s = f(s)
X
�

comp
t iff

1. t ∈ X

2. ∃si ∈ Acc(f(s)) : si�X
comp t

3. t = g(t), f >TS gand

∀v ∈ t : s
X
�

comp
v

4. t = g(t), f =TS g,

∀v ∈ t : s
X
�

comp
v and

Acc(s)(�
horpo

)statf λX.t

5. t = @(u, v),

s
X
�

comp
u ands

X
�

comp
v

6. t = λx : α.u and

s
X·{x:α}
�

comp
u

wheresi ∈ Acc(s = f(s)
(si is accessible ins)

iff
1. s is the lefthand side of

an ancestor goals�horpo u
2. s is the lefthand side of the

current goals�comp u, and,
eitherf : σ → σ and
σ occurs strictly positively inσi,
or σi is a basic type.

12

Example 3.We consider now the type of Brouwer’s ordinals defined
from the type IN by the equationOrd = 0] s(Ord)] lim(IN → Ord).
Note thatOrd occurs positively in the type IN→ Ord, and that IN must
be smaller or equal toOrd. The recursor for the typeOrd is defined as:

rec(0, U, V, W)→ U
rec(s(X), U, V, W)→ @(V, X, rec(X, U, V, W))

rec(lim(F), U, V, W)→ @(W, F, λn.rec(@(F, n), U, V, W))
We skip the first two rules and concentrate on the third:

1. rec(lim(F), U, V, W)�horpo @(W, F, λn.rec(@(F, n), U, V, W))
which, by Case 1 of�horpo is replaced by the new goal:
2. rec(lim(F), U, V, W)�∅

comp @(W, F, λn.rec(@(F, n), U, V, W))
By Case 5 of�comp, these three goals become:
3. rec(lim(F), U, V, W)�∅

comp W
4. rec(lim(F), U, V, W)�∅

comp F
5. rec(lim(F), U, V, W)�∅

comp λn.rec(@(F, n), U, V, W)
Sincerec(lim(F), U, V, W) originates from Goal 1,
Goal 3 disappears by Case 2, while Goal 4 becomes:
6. lim(F)�∅

comp F
which disappears by the same Case sinceF is accessible inlim(F).
thanks to the positivity condition. By Case 6, Goal 5 becomes:
7. rec(lim(F), U, V, W)�{n}

comp rec(@(F, n), U, V, W)
Case 4 applies with a lexicographic status forrec, yielding 5 goals:
8. rec(lim(F), U, V, W)�{n}

comp @(F, n)
9. rec(lim(F), U, V, W)�{n}

comp U
10. rec(lim(F), U, V, W)�{n}

comp V
11. rec(lim(F), U, V, W)�{n}

comp W
12. {lim(F), U, V, W}(�horpo)lex{λn.@(F, n), λn.U, λn.V, λn.W}
Goals 9,10,11 disappear by Case 2, while, by Case 5
Goal 8 generates (a variation of) the solved Goal 4 and the new subgoal:
13. rec(lim(F), U, V, W)�{n}

comp n
which disappears by Case 1. We are left with Goal 12, which reduces to:
14. lim(F)�horpo λn.@(F, n)
which, by Case 1 of�horpo, then 6 and 5 of�comp yields successively:
15. lim(F)�∅

comp λn.@(F, n)
16. lim(F)�{n}

comp @(F, n)
which regenerates the solved Goal 4 again and generates the last goal:
17. lim(F)�{n}

comp n
which succeeds by Case 1, ending the computation.

13

To show the strong normalization property of this new definition of
�horpo, we need a more sophisticated predicate combining the predicates
used for showing the strong normalization of HORPO [19] and CAC [3].
We have not done any proof yet, but we believe that it is well-founded.

It is worth noting that the ordering�horpo defined here is in one way
less powerful than the one defined in Section 6 using the closure defini-
tion of Section 5 because it does not accumulate computable terms for
later use anymore. Instead, it deconstructs its lefthand side as usual with
rpo, and remembers very few computable terms: the accessible ones only.
On the other hand, it is more poserful since the recursive case 4 of the
closure uses now the full power of�horpo for its last comparison instead
of simply β-reduction (see [19]). Besides, there is no more type com-
parison in Case 1 of the definition of�horpo, a key improvement which
remains to be justified formally.

8 Related work

Termination of higher-order calculi has recently attracted quite a lot of at-
tention. The area is building up, and mostly, although not entirely, based
on reducibility techniques.

The case of conditional rewriting has been recently investigated by
Blanqui [8]. His results are presented in this conference.

Giesl’s dependency pairs method has been generalized to higher-order
calculi by using reducibility techniques as described here [23]. The po-
tential of this line of work is probably important, but more work in this
direction is needed to support this claim.

Giesl [20] has achieved impressive progress for the case of combi-
nator based calculi, such as Haskell programs, by transforming all def-
initions into a first-order framework, and then proving termination by
using first-order tools. Such transformations do not accept explicit bind-
ing constructs, and therefore, do not apply to richλ-calculi such as those
considered here. On the other hand, the relationship of these results with
computability deserves investigation.

An original, interesting work is Jones’s analysis of the flux of redexes
in pure lambda-calculus [14], and its use for proving termination proper-
ties of functional programs. Whether this method can yield a direct proof
of finite developments in pureλ-calculus should be investigated. We also
believe that his method can be incorporated to the HORPO by using an

14

interpretation on terms instead of a type comparison, as mentionned in
Conclusion.

Byron Cook, Andreas Podelski and Andrey Ribalchenko [11] have
developped a quite different and impressive method based on abstract
interpretations to show termination of large imperative programs. Their
claim is that large programs are more likely to be shown terminating
by approximating them before to make an analysis. Note that the use of
a well-founded ordering can be seen as a particular analysis. Although
impressive, this work is indeed quite far from our objectives.

9 Conclusion

We give here a list of open problems which we consider important. We
are ourselves working on some of these. The higher-order recursive path
ordering should be seen as a firm step to undergo further developments
in different directions, some of which are listed below.

– Two of them have been investigated in the first order framework:
the case of associative commutative operators, and the use of inter-
pretations as a sort of elaborated precedence operating on function
symbols. The first extension has been carried out for the general
schema [4], and the second for a weak form of HORPO [9]. Both
should have an important impact for applications, hence deserve im-
mediate attention.

– Enriching the type system with dependent types, a problem consid-
ered by Walukiewicz [24] for the original version of HORPO in which
types were compared by a congruence. Replacing the congruence by
HORPO recursively called on types as done in [19] for a simpler
type discipline raises technical difficulties. The ultimate goal here is
to generalize the most recent versions of the ordering including the
present one, for applications to the Calculus of Inductive Construc-
tions.

– HORPO does not contain and is not a well-order for the subterm rela-
tionship. However, its definition shows that it satisfies a weak subterm
property, namely propertyA. It would be theoretically interesting
to investigate whether some Kruskal-like theorem holds for higher-
order terms with respect to the weak subterm property. This could
yield an alternative, more abstract way of hiding away computability
arguments.

15

References

1. F. Barbanera. Adding algebraic rewriting to the calculus of constructions: Strong normal-
ization preserved. InProc. 2nd Int. Workshop on Conditional and Typed Rewriting Systems,
Montreal, LNCS 516, 1990.

2. F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization and con-
fluence in theλ-algebraic-cube. InProc. 9th IEEE Symp. Logic in Computer Science, pages
406–415, 1994.

3. F. Blanqui. Termination and confluence of higher-order rewrite systems. InProc. of the 11th
International Conference on Rewriting Techniques and Applications, volume 1833 ofLNCS,
2000.

4. F. Blanqui. Rewriting modulo in Deduction modulo. InProc. of the 14th International
Conference on Rewriting Techniques and Applications, volume 2706 ofLNCS, 2003.

5. F. Blanqui. (HO)RPO revisited, 2006. Manuscript.
6. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions.

In Paliath Narendran and Michael Rusinowitch, editors,10th International Conference on
Rewriting Techniques and Applications, volume 1631 ofLecture Notes in Computer Science,
Trento, Italy, July 1999. Springer Verlag.

7. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-Data-Type Systems.Theoretical
Computer Science, 272(1-2):41–68, 2001.

8. F. Blanqui and C. Riba. Combining typing and size constraints for checking termination of
higher-order conditional rewriting systems. InProc. LPAR, to appear in LNAI, LNCS, 2006.

9. Cristina Borralleras and Albert Rubio. A monotonic, higher-order semantic path ordering.
In Proceedings LPAR, Lecture Notes in Computer Science. Springer Verlag, 2006.

10. Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic strong nor-
malization.Theoretical Computer Science, 1990.

11. Andreas Podelski Byron Cook and Andrey Rybalchenko. Termination proofs for systems
code, 2004. Manuscript.

12. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 243–309. North Holland,
1990.

13. G. Huet, G. Kahn, and Ch. Paulin-Mohring.TheCoq Proof Assistant - A tutorial - Version
6.3, July 1999.

14. Neil Jones and Nina Bohr. Termination analysis of the untypedλ-calculus. InRewriting
techniques and Applications, pages 1–23. Springer Verlag, 2004. LNCS 3091.

15. Jean-Pierre Jouannaud and Mitsuhiro Okada. Executable higher-order algebraic specification
languages. InProc. 6th IEEE Symp. Logic in Computer Science, Amsterdam, pages 350–361,
1991.

16. Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems.Theoretical Com-
puter Science, 173(2):349–391, February 1997.

17. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In
Giuseppe Longo, editor,Fourteenth Annual IEEE Symposium on Logic in Computer Sci-
ence, Trento, Italy, July 1999.

18. Jean-Pierre Jouannaud and Albert Rubio. Higher-order orderings for normal rewriting. In
Proc. 17th International Conference on Rewriting Techniques and Applications, Seattle,
Washington, USA, 2006.

19. Jean-Pierre Jouannaud and Albert Rubio. Polymorphic higher-order recursive path orderings.
Journal of the ACM, submitted.

20. Peter Scneider-Kamp Jürgen Giesl, Stephan Swiderski and René Thiemann. Automated ter-
mination analysis for haskell: Form term rewriting to programming languages. InRewriting
techniques and Applications, pages 297–312. Springer Verlag, 2006. LNCS 4098.

16

21. Mitsuhiro Okada. Strong normalizability for the combined system of the types lambda cal-
culus and an arbitrary convergent term rewrite system. InProc. of the 20th Int. Symp. on
Symbolic and Algebraic Computation, Portland, Oregon, USA, 1989.

22. Christine Paulin-Mohring. Inductive definitions in the system COQ. InTyped Lambda Cal-
culi and Applications, pages 328–345. Springer Verlag, 1993. LNCS 664.

23. Masahiko Sakai and Keiichirou Kusakari. On dependency pairs method for proving termi-
nation of higher-order rewrite systems.IEICE-Transactions on Information and Systems,
E88-D (3):583–593, 2005.

24. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions. In
Proceedings of the Workshop on Logical Frameworks and Meta-languages, Santa Barbara,
California, 2000. Satellite workshop of LICS’2000.

17

