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Higher-order algebras [Jouannaud, Rubio, JACM to
appear]



Types, signatures and terms

S: set of sort symbols of a fixed arity,
denoted by s : ∗n ⇒ ∗
S∀: set of sort variables

Types

TS := α | s(T n
S ) | (TS → TS)

for α ∈ S∀ and s : ∗n ⇒ ∗ ∈ S

Terms

T := X | (λX : TS .T ) | @(T , T ) | F(T , . . . , T ).

We will sometimes write T (T ) for @(T , T ).
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Typing rules

Variables:
x : σ ∈ Γ

Γ ` x : σ

Functions:

f : σ1 × . . .× σn ⇒ σ

Γ ` t1 : τ1 . . . Γ ` tn : τn

θ = mgu(σ1 = τ1 & . . . & σn = τn)

Γ ` f (t1, . . . , tn) : σθ

Abstraction:
Γ ∪ {x : σ} ` t : τ

Γ ` (λx : σ.t) : σ → τ

Application:

Γ ` s : σ1 → σ Γ ` t : τ1

θ = mgu(σ1 = τ1)

Γ ` @(s, t) : σθ



Gödel’s System T

IN, α : ∗
0, x : IN

s : IN ⇒ IN

rec : IN× α× (IN → α → α) ⇒ α

U : α X : IN → α → α

rec(0, U, X ) → U

rec(s(x), U, X ) → @(X , x , rec(x , U, X ))

Rules use first-order pattern matching



Brouwer’s ordinals

Ord , α : ∗
0 : Ord s : Ord → Ord lim : (IN → Ord) ⇒ Ord

rec : Ord × α× (Ord → α → α)× ((IN → Ord) → (IN → α) ⇒ α)

→ α

x : Ord F : IN → Ord

U : α X : Ord → α → α W : (IN → Ord) → (IN → α) → α

rec(0, U, X , W ) → U

rec(s(x), U, X , W ) → @(X , x , rec(x , U, X , W ))

rec(lim(F ), U, X , W ) → @(W , F , λn.rec(@(F , n), U, X , W ))



Goal

Automate
strong normalization

proofs



Tait and Girard’s computability predicate method



Language

Simple type discipline

One rewrite schema:

@(λx .u, v) → u{x 7→ v}



Tait

[[σ]], the computability predicate of type σ s.t.:
(i) computable terms are strongly normalizing;
(ii) reducts of computable terms are computable;
(iii) a neutral term u is computable iff all its
reducts are computable;
(iv) u : σ → τ is computable iff so is @(u, v) for
all computable v ;
(v) (optionnal) λx .u is computable iff so is
u{x 7→ v} for all computable v .

Except (v), no explicit mention of β-reduction.



Examples of computability predicates

Basic types: there are two possibilities

s : σ ∈ [[σ]] iff s is strongly normalizing
or
s : σ ∈ [[σ]] iff ∀t : τ s.t. s−→ t then t ∈ [[τ ]]
or ...

Functional types:
s : θ → τ ∈ [[σ → τ ]] iff @(s, u) : τ ∈ [[τ ]] for
every u : θ ∈ [[θ]].



Main Lemma

Given term s and computable substitution γ,
then sγ is computable.
By induction on the structure of terms.

1 s ∈ X . sγ computable by assumption.
2 s = @(u, v). uγ and vγ are computable by

induction hypothesis, hence sγ = @(uγ, vγ)
is computable by computability property (iv).

3 s = λx .u. By property (v), sγ = λx .uγ is
computable iff uγ{x 7→ v} = u(γ ∪ {x 7→ v})
is computable for all computable v . We
conclude by induction hypothesis.



Recursive path ordering



Recursive path ordering: s�rpo t iff

1 s = f (s) with f ∈ F , and u�
rpo

t for some u ∈ s

2 s = f (s) with f ∈ F , and t = g(t) with
f >F g, and A

3 s = f (s) and t = g(t) with f =F g, and A and
s (�

rpo
)statf t

where s �
rpo

t iff s �
rpo

t or s = t



Tait and Girard’s SN proof of RPO

Computability is defined as strong
normalization, implying all computability
properties trivially. We add a new computability
property:

(vi) Let f ∈ Fn and s be computable terms. Then
f (s) is computable.



First: proof of property (vi)

The restriction of �rpo to terms smaller than or
equal to the terms in s w.r.t. �rpo is a
well-founded ordering which we use for building
an outer induction on the pairs (f , s) ordered by
(>F , (�rpo)statf )lex .

We now show that f (s) is computable by proving
that t is computable for all t such that
f (s) �rpo t . This property is itself proved by an
inner induction on | t |, and by case analysis
upon the proof that f (s) �rpo t .



Proof of (vi) continued

1 subterm: ∃u ∈ s such that u �rpo t . By
assumption, u is computable. Reduct t too.

2 precedence: t = g(t), f >F g, and s �rpo t .
By inner induction, t is computable. By outer
induction, g(t) = t is computable.

3 status: t = g(t) with f =F g ∈ Lex ,
s(�rpo)lex t , and s �rpo t . By inner induction, t
is computable. By outer induction, g(t) = t is
computable. 2



Second (Main Lemma) : every term is computable.

Proof by induction on the structure of terms. If t

is a variable, done. Otherwise t = f (t).

By induction hypothesis, t is computable.
By property (vi), t is computable. Done.

The well-foundedness of �rpo follows by
Property (i).



General Schema



Closure and General Schema

The computability closure CC(t = f (t)), with
f ∈F , is the set CC(t , ∅), s.t. CC(t ,V), with
V ∩ Var(t) = ∅, is the smallest set of typable
terms containing all variables in V and terms in
t , closed under:

1 basic type subterm; application; abstraction;
2 precedence: let f >F g, and s ∈ CC(t ,V);

then g(s) ∈ CC(t ,V);
3 recursive call: let f (s) be a term s.t. terms in

s belong to CC(t ,V) and t(−→β∪�)statf s; then
g(s) ∈ CC(t ,V) for every g =F f ;

4 reduction: let u ∈ CC(t ,V), and u−→β∪� v ;
then v ∈ CC(t ,V).



General schema [Blanqui, Jouannaud and Okada,
TCS 2001]

We say that a rewrite system R satisfies the
general schema if

R = {f (l) → r | r ∈ CC(f (l))}

We now consider computability with respect to
the rewrite relation −→R ∪−→β, and add the
computability property (vii) whose proof can be
easily adapted from the previous one. We can
then add a new case in Tait’s Main Lemma, for
terms headed by an algebraic function symbol.

Conclusion: −→β ∪−→R is SN.



Example : System T

rec(s(x), U, X ) → @(X , x , rec(x , U, X ))



Higher Order Recursive Path Ordering



Higher-Order Recursive Path Ordering: Ingredients

A type quasi-ordering ≥TS s.t.
(i) >TS is well-founded;
(ii) Arrow preservation: τ → σ =TS α iff α =
τ ′ → σ′, τ ′ =TS τ and σ =TS σ′;
(iii) Arrow decreasingness: τ → σ >TS α

implies σ ≥TS α or α = τ ′ → σ′, τ ′ =TS τ

and σ >TS σ′;
(iv) Arrow monotonicity: τ ≥TS σ implies α →
τ ≥TS α → σ and τ → α ≥TS σ → α;

A well-founded precedence ≥F s.t.
@ <F f ∈ F
A status statf ∈ {Mul , Lex} for every f ∈ F .



Definition : s�horpo iff σ ≥TS τ and Case

1: s = f (s) with f ∈ F ∪ {@}
1 u�horpo t for u ∈ s
2 t = g(t) with f >F g and s�horpo t
3 t = g(t) with f =F g, s�horpo t and

s (�horpo)statf t

2: s = @(v , w) v = λx .u and u{x 7→ w}�horpo t
3: s = λx : α.u and

1 u{x 7→ y}�horpo t , for some fresh y : α
2 t = λy : β.v , y 6∈ Var(v), α =TS β and

u�horpo v
3 u = @(v , x), x 6∈ Var(v) and v �horpo t

where s�horpo t iff s�horpo t or s =α t
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Example: simple proof of system T

rec(s(x), U, X ) → @(X , x , rec(x , U, X ))



HORPO and Closure



Combining HORPO and closure

We change the subterm case:
1 s = f (s) with f ∈ F and u �

horpo
t for u ∈ s

in
s = f (s) with f ∈ F and u �

horpo
t for u ∈ CC(f (s))

Drawbacks:
1 Decidability of HORPO is lost;
2 There are many repetitions;
3 Type checking is no much help, but a lot of

burden;
4 Treatment of abstractions remains weak.



New HORPO with integrated closure mechanism

Ingredients:
1 A set of strictly positive inductive types

inducing an accessibility relationship s �acc v
such that v ∈ u or v is accessible from u ∈ s

2 a precedence on function symbols
3 a congruence on types
4 s�X t for the main ordering
5 s : σ�X

TS t : τ for s�X t and σ =TS τ

6 l �∅
TS r as initial call for each l → r ∈ R



Definition : s�X t iff

Case 1: s = f (s) with f ∈ F and t ∈ X or
1 u�X

TS t for some u such that s �acc u
2 t = g(t) with f >F g ∈ F ∪ {@} and s�X t
3 t = g(t) with f =F g ∈ F and s�X t and

s(�X
TS)statf t

4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v , w) and
1 t = @(u, r) and (v , w)(�X

TS)mon(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α =TS β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t
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Brouwer’s ordinals
lim : (IN → Ord) ⇒ Ord F : IN → Ord n : IN
rec : Or×α×(Or → α → α)×((IN → Or) → (IN → α) → α) ⇒ α

1

rec(lim(F ), U, X , W )�∅
TS @(W , F , λn.rec(@(F , n), U, X , W ))

yields 2 subgoals:
2 α =TS α which is trivially satisfied, and
3 rec(lim(F ), U, X , W )�∅{W , F , λn.rec(@(F , n), U, X , W )}

which simplifies to:
4 rec(lim(F ), U, X , W )�∅ W which succeeds by Case 1.1,
5 rec(lim(F ), U, X , W )�∅ F , which succeeds by Case 1.1,
6 rec(lim(F ), U, X , W )�∅ λn.rec(@(F , n), U, X , W ) yields
7 rec(lim(F ), U, X , W )�{n} rec(@(F , n), U, X , W ) yields
8 {lim(F ), U, X , W}(�{n}

TS )mul{@(F , n), U, X , W}, hence
9 lim(F )�{n}

TS @(F , n) whose type-check succeeds, and yields
10 lim(F )�{n} F which succeeds by Case 1.2, and
11 lim(F )�{n} n which succeeds by Case 1.
12 rec(lim(F ), U, X , W )�{n}{@(F , n), U, X , W}, our remaining

goal, succeeds easily by Cases 1.2, 1 and 1.1
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Conclusion

Achievements: A quite powerful powerful
which adapts easily to higher-order rewriting
based on higher-order pattern matching. See
[Jouannaud and Rubio, RTA’2006]

Remaining problems:
Use term interpretations instead of a
precedence on function symbols;
Integrate AC;
Generalization to the Calculus of Inductive
Constructions;
Develop the tool (see our Web page).
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