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Types, signatures and terms

e S set of sort symbols of a fixed arity,
denoted by s : " = x

e S": set of sort variables
e Types

Tsi=a | S(IP) | (Ts — T3)
foraeS"ands:«"= % €8

e Terms
T =X|(\NX:Ts.7T)|0Q(7T,7T) | F(7T,...,7T).
We will sometimes write 7 (7") for (7, 7).



Typing rules

Functions:
Variables: fio1x...Xxon=>0
X:o€el FN=ty:m ...T F th:mn
r-x:o 0=mgu(oy =7 & ... & on=1n)

M e f(ty,...,th): 06

Application:
lr'+s:01—0c TEHt:7M
6 =mgu(oy = 11)

I+ Q(s,t): 06

Abstraction:
Fru{x:o} Ft:7
N (MX:ot):o—r7




Godel's System T

N, : *

0,x : N

S : N=N

rec : Nxax(N—-a—a)=a
U ! X:N—a—a«a

rec(0,U, X) — U
rec(s(x),U,X) — O(X,x,rec(x,U, X))
Rules use first-order pattern matching



Brouwer’s ordinals

Oord, o : =

0:0Ord s :0rd — Ord lim: (N — Ord) = Ord

rec:0rd x ax (Ord - a— a) x ((N— Ord) — (N — «a) = «)
—a

x : Ord F:N— Ord
U:a X:0rd - a—« W:(N—-Ord) - (N—«a) -«

rec(0,U, X, W) — U
rec(s(x),U, X, W) —  O(X,x,rec(x,U,X,W))
rec(im(F),U,X,W) — ©(W,F,An.rec(Q(F,n),U,X,W))



Automate

strong normalization
proofs



and 's computability predicate method




e Simple type discipline
e One rewrite schema:

O(A\X.U,v) — u{X — Vv}



[o], the computability predicate of type o s.t.:

(i) computable terms are strongly normalizing;
(ii) reducts of computable terms are computable;
(i) a neutral term u is computable iff all its
reducts are computable;

(iv) u : ¢ — 7 is computable iff so is @(u, v) for
all computable v;

(v) (optionnal) Ax.u is computable iff so is

u{x — v} for all computable v.

Except (v), no explicit mention of -reduction.



Examples of computability predicates

e Basic types: there are two possibilities

s : o € [o] iff s is strongly normalizing

or

S:o€ o] iffvt:7st. s—tthent e [r]
or ...

e Functional types:
s:0—r71¢€fo—7]iff@(s,u): 71 e [r] for
every u : 0 € [4].



Main Lemma

Given term s and computable substitution -,
then s~ is computable.
By induction on the structure of terms.

Q@ s € X. sy computable by assumption.

@ s =0(u,Vv). uy and vy are computable by
induction hypothesis, hence sy = ©(u~vy,v~y)
IS computable by computability property (iv).

@ s = \x.u. By property (v), sy = Ax.uvy is
computable iff uy{x — v} =u(y U {x — Vv})
iIs computable for all computable v. We
conclude by induction hypothesis.



Recursive path ordering



Recursive path ordering: s >pot iff

@ s=f(S)withf € F,andu >t forsomeu cs
rpo

@ s=f(5)withf € F,andt = g(t) with
f>rg,and A

Q@ s=f(s)andt = g(t) withf =£ g, and A and
§ (r;'o)statff

wheres = tiffs ~tors =t
rpo rpo



and 's SN proof of RPO

Computability is defined as strong
normalization, implying all computability
properties trivially. We add a new computability
property:

(vi) Let f € F, and s be computable terms. Then
f(S) is computable.



First: proof of property (vi)

The restriction of >, to terms smaller than or
equal to the terms in S w.r.t. >, is a
well-founded ordering which we use for building
an outer induction on the pairs (f,S) ordered by

(>, (*rpo)statf Jlex -

We now show that f(S) is computable by proving
that t is computable for all t such that

f(S) >rpo t. This property is itself proved by an
inner induction on | t |, and by case analysis
upon the proof that f(S) > t.



Proof of (vi) continued

@ subterm: Ju € s such that u >y, t. By
assumption, u is computable. Reduct t too.

@ precedence: t =g(t), f >r g, and s = t.
By inner induction, t is computable. By outer
induction, g(t) = t is computable.

Q@ status: t = g(t) with f =» g € Lex,
S(>rpo)iext, @and s =rpo t. By inner induction, t
is computable. By outer induction, g(t) =t is
computable. O



Second (Main Lemma) : every term is computable.

Proof by induction on the structure of terms. If t
is a variable, done. Otherwise t = f(t).

By induction hypothesis, t is computable.
By property (vi), t is computable. Done.

The well-foundedness of >, follows by
Property (i).



General Schema



Closure and General Schema

The computability closure CC(t = f(t)), with
feF, is the set CC(t,0), s.t. CC(t, V), with
VNVar(t) =10,is the of typable
terms containing all variables in V and terms in
{ :

o ; ; ;

o letf >rg,ands € CC(t,V);
then g(s) € CC(t,V);

o . let f(S) be a term s.t. terms in

S belong to CC(t, V) and t(— 4. )stat,S; then
g(s) € CC(t,V) forevery g =# f;

o tletu € CC(t, V), and U — 4
thenv € CC(t, V).

>V



General schema | and

TCS 2001]

We say that a rewrite system R satisfies the
general schema if

R={f() =r|recci)}

We now consider computability with respect to
the rewrite relation — U— 4, and add the
computability property (vii) whose proof can be
easily adapted from the previous one. We can
then add a new case in Tait's Main Lemma, for
terms headed by an algebraic function symbol.

Conclusion: — ;U ——p is SN.



Example : System T

rec(s(x),U, X) — O(X, x,rec(x,U, X))



Higher Order Recursive Path Ordering




Higher-Order Recursive Path Ordering: Ingredients

e A type quasi-ordering >r, S.t.

(i) >7 is well-founded;

(if) Arrow preservation: 7 — o =, a iff a =
=o', 7' =7, 7and o =1, o;

(iif) Arrow decreasingness: 7 — 0 >, «
implieso >, aora=7 - o', 7' =7, 7
and o >, o’;

(iv) Arrow monotonicity: 7 >, o implies o —
T>,a—ocand T — a > 0 — a;

e A well-founded precedence > r s.t.
CQ<sfeF

o A status stat; € {Mul,Lex} for every f € F.



Definition : S >norpo iff o >7, 7 and Case

1: s =f(s) withf € FU {0}

Q@ Urpopotforucs

Q@ t=g(t)withf > gand s =norpot
Q@ t=g(t)withf =g, S =norpo t and

S (>‘horpo)statf t
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1: s =f(s) withf € FU {0}
Q@ Urpopotforucs
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Definition : S >norpo iff o >7, 7 and Case

1: s =f(s) withf € FU {0}
Q@ Urpopotforucs
Q@ t=g(t)withf > gand s =norpot
Q@ t=g(t)withf =g, S =norpo t and
S (>‘horpo)statf t
2: s =0(v,w) Vv = Xx.uand u{X — W} >norpot
3:s=X:a.uand
@ u{X — Yy} >hopot, for some freshy : o
Q@t=)\y:pVv,y¢Var(v), a =x fand
U >horpo V
Q@ u=0(v,x),x €Var(v) and vV >porpo t
where S =porpo t iff S —horpot Or' s =, t



Example: simple proof of system T

rec(s(x),U, X) — O(X, x,rec(x,U, X))



HORPO and Closure



Combining HORPO and closure

We change the subterm case:
@ s=f(s)withf e Fandu > tforues

horpo
in
s=f(S)withf e Fandu = tforu e CC(f(S))
horpo
Drawbacks:

© Decidability of HORPO is lost;
@ There are many repetitions;

@ Type checking is no much help, but a lot of
burden;

Q@ Treatment of abstractions remains weak.



New HORPO with integrated closure mechanism

Ingredients:

o

© 000O0

A set of strictly positive inductive types
inducing an accessibility relationship s >4cc V
suchthatv € u orv is accessible fromu € s

a precedence on function symbols

a congruence on types

s =* t for the main ordering
s:o-pt:rfors-*tando =7 7

| -4 r as initial call for each | —r € R



Case 1: s=f(S)withf € Fandt e X or

Qu i%t for some u such that s >,.c U

Q@ t=g(t)withf >rg e FU{@} ands~*t

Q@ t=g(t)withf =g € Fands>=*t and
§(>§S)statff

Q t = \x.u with x ¢ X and f(5) =X} u



Case 1: s=f(S)withf € Fandt e X or

Qu i%t for some u such that s >,.c U

Q@ t=g(t)withf >rg e FU{@} ands~*t

Q@ t=g(t)withf =g € Fands>=*t and
§(>§S)statff

Q t = \x.u with x ¢ X and f(5) =X} u

Case 2: s = ©(v,w) and

@ t =0(u,r)and (v,w)(>% Jmon(u,r)

Q@ v = X.uand u{x — w} =Xt



Case 1: s=f(S)withf € Fandt e X or

Qu i%t for some u such that s >,.c U

Q@ t=g(t)withf >rg e FU{@} ands~*t

Q@ t=g(t)withf =g € Fands>=*t and
§(>§S)statff

Q t = \x.u with x ¢ X and f(5) =X} u

Case 2: s = ©(v,w) and

@ t =0(u,r)and (v,w)(>% Jmon(u,r)

Q@ v = X.uand u{x — w} =Xt

Case 3: s = \x : a.u and

Q@ t=X:4V,Xx¥€X,a=7 fandu X"y

@ u=0(v,x),x ¢ Var(v)and v ="t
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Brouwer’s ordinals
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@ rec(lim(F),U, X, W) ~{"{e(F,n),U, X, W}, our remaining
aoal succeeds easilv by Cases 1?2 2ancd 4 1

)



Achievements: A quite powerful powerful
which adapts easily to higher-order rewriting
based on higher-order pattern matching. See
[Jouannaud and Rubio, RTA’2006]

Remaining problems:

e Use term interpretations instead of a
precedence on function symbols;

e Integrate AC;

e Generalization to the Calculus of Inductive
Constructions;

e Develop the tool (see our Web page).

Acknowledgments: to Mitsuhiro Okada for our
long standing collaboration on these matters.
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