
Higher-Order Orderings for Normal Rewriting ?

Jean-Pierre Jouannaud1?? and Albert Rubio2

1 LIX, École Polytechnique, 91400 Palaiseau, France
2 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. We extend the termination proof methods based on reduction order-
ings to higher-order rewriting systems using higher-order pattern matching, and
accomodate for any use of eta, as a reduction, as an expansion or as an equation.

1 Introduction

Rewrite rules are used in logical systems to describe computations over
lambda-terms used as a suitable abstract syntax for encoding functional
objects like programs or specifications. This approach has been pionneered
in this context by Nipkow [15] and is available in Isabelle [18]. Its main
feature is the use of higher-order pattern matching for firing rules. A re-
cent generalization of Nipkow’s setting allows one for rewrite rules of
polymorphic, higher-order type [12], see also [8]. Besides, it is shown
that using the eta rule as an expansion [17] or as a reduction [12] yields
very similar confluence checks based on higher-order critical pairs.

A first contribution of this paper is a general setting for adressing ter-
mination of all variants of higher-order rewriting̀a la Nipkow, thanks to
the notion of anormal higher-order reduction ordering. While higher-
order reduction orderings actuallyincludeβη-reductions, normal higher-
order reduction orderings must be compatible withβη-equality since
higher-order rewriting operates onβη-equivalence classes of terms. This
is done by computing withβη-normal forms as inputs. We show however
that monotonicity, stability, compatibility and well-foundedness cannot
be satisfied at the same time. It becomes necessary to use higher-order re-
duction orderings enjoying a stronger stability property, and at the same
time, a slightly weaker monotonicity property for terms inβη-normal
forms. Restricting the higher-order recursive path ordering [10] to achieve
these properties is our second contribution. Finally, the obtained ordering
is used inside a powerful schema transforming an arbitrary higher-order
? This work was partly supported by the RNTL project AVERROES and France Telecom.

?? Project LogiCal, P̂ole Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
École Polytechnique, INRIA, Université Paris-Sud.

reduction ordering satisfying these monotonicity and stability properties
into a normal higher-order reduction ordering. This is our third contribu-
tion. The obtained ordering allows us to prove all standard examples of
higher-order rules processing abstract syntax. In contrast with the higher-
order recursive path ordering, there is no need here for the closure mecan-
ism developped in [10].

We describe our framework for terms in Section 2, and for higher-
order rewriting in Section 3. The schema is introduced and studied in
Section 4. The restricted higher-order recursive path ordering is given in
Section 5. Several examples are carried out in Section 6. Significance of
the results is briefly discussed in Section 7.

Readers are assumed familiar with the basics of term rewriting [7, 13]
and typed lambda calculi [4, 5]. Most ideas and results presented here
originate from [11], an unpublished preliminary draft.

2 Polymorphic Higher-Order Algebras

This section recalls our framework of polymorphic algebras [10].

2.1 Types

Given a setS of sort symbolsof a fixed arity, denoted bys : ∗n → ∗, and
a setS∀ of type variables, the setTS∀ of polymorphic typesis generated
from these sets by the constructor→ for functional types:

TS∀ := α | s(T n
S∀) | (TS∀ → TS∀)

for α ∈ S∀ ands : ∗n → ∗ ∈ S

Var(σ) denotes the set of (type) variables of the typeσ ∈ TS∀. Types
arefunctionalwhen headed by the→ symbol, anddata typeswhen they
are headed by a sort symbol.→ associates to the right.

A type substitutionis a mapping fromS∀ to TS∀ extended to an endo-
morphism ofTS∀. We writeσξ for the application of the type substitution
ξ to the typeσ. We denote byDom(σ) = {α ∈ S∀ | ασ 6= α} the do-
main ofσ ∈ TS∀, by σ|V its restriction to the domainDom(σ) ∩ V, by
Ran(σ) =

⋃
α∈Dom(σ) Var(ασ) its range. By a renaming of the typeσ

apart fromV ⊂ X , we mean a typeσξ whereξ is a type renaming such
thatDom(ξ) = Ran(σ) andRan(ξ) ∩ V = ∅.

We shall useα, β for type variables,σ, τ, ρ, θ for arbitrary types, and
ξ, ζ to denote type substitutions.

2

2.2 Signatures

We are given a set of function symbols denoted by the lettersf, g, h,
which are meant to be algebraic operators equiped with a fixed number
n of arguments (called thearity) of respective typesσ1 ∈ TS∀ , . . . , σn ∈
TS∀, and anoutput typeσ ∈ TS∀ such thatVar(σ) ⊆ ⋃

i Var(σi). Let

F =
⊎

σ1,...,σn,σ

Fσ1×...×σn→σ

be the set of all function symbols. The membership of a given function
symbolf to a setFσ1×...×σn→σ is called atype declarationand written
f : σ1× . . .×σn → σ. We assume that there is a unique type declaration
for each function symbol in the signature. Ifn = 0, the declarationf :→
σ is writtenf : σ whenσ is not a functional type. Type declarations are
not types, butσ1 → . . .→ σn → σ is a type iff : σ1× . . .×σn → σ is a
type declaration. A type declaration isfirst-orderif it uses only sorts, and
higher-order otherwise. It ispolymorphicif it uses some polymorphic
type, otherwise, it ismonomorphic. Polymorphic type declarations are
implicitely universally quantified: they can be renamed arbitrarily. Note
that type instantiation does not change the arity of a function symbol.

2.3 Terms

The setT (F ,X) of raw algebraicλ-termsis generated from the signa-
tureF and a denumerable setX of variables according to the grammar:

T := X | (λX : TS∀ .T) | @(T , T) | F(T , . . . , T).

Raw terms of the formλx : σ.u are calledabstractions. @(u, v) denotes
the application ofu to v. We may omit the typeσ in λx : σ.u as well as
the application operator, writingu(v) for @(u, v), in particular whenu is
a higher-order variable. We also writeu(v1, . . . , vn), or @(u, v1, . . . , vn)
for u(v1) . . . (vn), assumingn ≥ 1. The raw term@(u, v) is called a
(partial) left-flatteningof s = u(v1) . . . (vn), u being possibly an appli-
cation itself.Var(t) is the set of free variables oft, while BVar(t) is
its set of bound variables.s shall be ambiguously used to denote the list
〈s1 . . . sn〉, or the multiset or the set{s1 . . . sn} of raw termss1, . . . , sn.
We will use the convention that the list〈sk . . . sl〉 is empty ifl < k.

Raw terms are identified with finite labeled trees by consideringλx :
σ. , for each variablex and typeσ, as a unary function symbol taking a
raw termu as argument to construct the raw termλx : σ.u. Positionsare

3

strings of positive integers.Λ and· denote respectively the empty string
(root position) and string concatenation.Pos(t) is the set of positions in
t. t|p denotes thesubtermof t at positionp. We uset� t|p for the subterm
relationship. The result of replacingt|p at positionp in t by u is written
t[u]p. We uset[x : σ]p for a raw term with a hole of typeσ at positionp,
called a context.

Given a binary relation−→ on raw terms, a raw terms such that
s|p−→ t for some positionp ∈ Pos(s) is calledreducible. s|p is aredex

in s, ands[t]p is thereductof s. Irreducible raw terms are innormal form.
A raw term s is strongly normalizableif there is no infinite sequence
of −→-steps issuing froms. The relation−→ is strongly normalizing,
or terminatingor well-founded, if all raw terms are strongly normaliz-
able. We denote by←→ the symmetric closure of the relation−→, by
∗−→ its reflexive, transitive closure, and by∗←→ its reflexive, symmetric,

transitive closure. The relation−→ is confluent(resp.Church-Rosser) if
s−→∗ u ands−→∗ v (resp.u←→∗ v) impliesu−→∗ t andv−→∗ t for
somet.

2.4 Typing rules

Definition 1. An environmentΓ is a finite set of pairs written as{x1 :
σ1, . . . , xn : σn}, wherexi is a variable,σi is a type, andxi 6= xj for
i 6= j. Var(Γ) = {x1, . . . , xn} is the set of variables ofΓ . The size|Γ |
of the environmentΓ is the sum of the sizes of its constituants. Given two
environmentsΓ andΓ ′, their compositionis the environmentΓ · Γ ′ =
Γ ′ ∪ {x : σ ∈ Γ | x 6∈ Var(Γ ′)}. Two environmentsΓ and Γ ′ are
compatibleif Γ · Γ ′ = Γ ∪ Γ ′.

Our typing judgements are written asΓ `F s : σ. A raw terms has
typeσ in the environmentΓ if the judgementΓ `F s : σ is provable in
our inference system. Given an environmentΓ , a raw terms is typable
if there exists a typeσ such thatΓ `F s : σ, in which case it is called a
term.

Types can be seen as terms of type∗. We omit the straightforward
type system for typing types, aiming at verifying arities of sort symbols.

Some properties of our type system are instrumental in developing a
theory of higher-order rewriting:

Lemma 1. Given an environmentΓ and a typable terms, there exists a
unique typeσ such thatΓ `F s : σ.

4

Variables:
x : σ ∈ Γ

Γ F̀ x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

ξ some type substitution of domain⊆
⋃

i
Var(σi)

Γ F̀ t1 : σ1ξ . . . Γ F̀ tn : σnξ

Γ F̀ f(t1, . . . , tn) : σξ

Abstraction:
Γ · {x : σ} F̀ t : τ

Γ F̀ (λx : σ.t) : σ → τ

Application:
Γ F̀ s : σ → τ Γ F̀ t : σ

Γ F̀ @(s, t) : τ

Fig. 1.The type system for polymorphic higher-order algebras

Note that type substitutions apply to types in terms:xξ = x, (λx :
σ.s)ξ = λx : σξ.sξ, (u, v)ξ = (uξ, vξ), andf(u)ξ = f(uξ).

Lemma 2. Γ `F s : σ impliesΓξ `F sξ : σξ for anyξ.

Lemma 3. Given a signatureF , environmentΓ , terms and typeσ such
thatΓ `F s : σ, thenΓ · Γ ′ `F s : σ for all Γ ′ compatible withΓ .

Lemma 4. Given a signatureF , environmentΓ , terms and typeσ such
that Γ ` F s : σ, then for all p ∈ Dom(s), there exists a canonical
environmentΓs|p and a typeτ such thatΓs|p `F s|p : τ is a subproof of
the proof ofΓ `F s : σ. Moreover,Γs|(p·q)

= (Γs|p)(s|p)|q .

Lemma 5. Given a signatureF , an environmentΓ , two termss andv,
two typesσ and τ , and a positionp ∈ Pos(s) such thatΓ `F s : σ,
Γs|p `F s|p : τ andΓs|p `F v : τ , thenΓ `F s[v]p : σ.

Definition 2. A substitutionγ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn : σn) 7→
(Γn, tn)}, is a finite set of quadruples made of a variable symbol, a type,
an environment and a term, such that

(i) ∀i ∈ [1..n], ti 6= xi andΓi `F ti : σi,
(ii) ∀i 6= j ∈ [1..n], xi 6= xj, and
(iii) ∀i 6= j ∈ [1..n], Γi andΓj are compatible environments.

We may omit the typeσi and environmentΓi in (xi : σi) 7→ (Γi, ti).
The set of (input) variables of the substitutionγ isVar(γ) = {x1, . . . , xn},

its domainis the environmentDom(γ) = {x1 : σ1, . . . , xn : σn} while
its rangeis the environmentRan(γ) =

⋃
i∈[1..n] Γi.

We denote byγ|V the restriction of the substitutionγ to the domain
V ∩ Var(γ), and byγ\V the substitutionγ|(X\V).

Note thatRan(γ) is indeed an environment by assumption (iii).

5

Lemma 6. Givenγ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn : σn) 7→ (Γn, tn)},
thenRan(γ) `F ti : σi.

Definition 3. A substitutionγ is compatiblewith an environmentΓ if
(i) Dom(γ) is compatible withΓ ,
(ii) Ran(γ) is compatible withΓ \ Dom(γ).
We will also say thatγ is compatible with the judgementΓ `F s : σ.

Definition 4. A substitutionγ compatible with a judgementΓ `F s : σ
operates as an endomorphism ons and yields the termsγ defined as:

If s = x ∈ X andx 6∈ Var(γ) thensγ = x
If s = x ∈ X and(x : σ) 7→ (Γ, t) ∈ Γ thensγ = t
If s = @(u, v) thensγ = @(uγ, vγ)
If s = f(u1, . . . , un) thensγ = f(u1γ, . . . , unγ)
If s = λx : τ.u thensγ = λz : τ.u({x 7→ z} ∪ γ\{x}), z fresh.

Lemma 7. Given a signatureF and a substitutionγ compatible with the
judgementΓ `F s : σ, thenΓ · Ran(γ) `F sγ : σ.

When writingsγ, we make the assumption that the domain ofγ is
compatible with the judgementΓ ` F s : σ. We use the letterγ for
substitutions and postfix notation for their application.

2.5 Conversions

The following three equations originate from theλ-calculus, and are
calledα-, β- andη-equality respectively:

λx : α.u =α λy : α.u{x 7→ y} if
y 6∈ BVar(v) ∪ (Var(v) \ {x})

@(λx : α.v, w) =β v{x 7→ w}
λx : α.@(u, x) =η u if x 6∈ Var(u)

In the above equations,u, v andw stand for arbitrary terms to which
substitutions{x → y} and{x → u} apply. We considerα-convertible
terms as identical, and therefore omitα-conversions in the sequel. The
congruence generated by theβ- andη-equalities is written−→∗

βη or =βη.
An important property,subject reduction, is that typable termsu, v such
that u =βη v have the same type. Both equalities can be oriented as
rewrite rules. There are two possible choices for rewriting withη, either
as a reduction (from left to ritht) or as an expansion (from right to left), in
which case termination is ensured by restricting its use to positions other

6

than the first argument of an application. Typed lambda-calculi have all
termination and confluence properties one may need, with respect to:
βη-reductions;β-reductions andη-expansions;β-reductions moduloη-
equality. Using the notationsu−→β v for oneβ-rewrite step,u−→∗

β v
for its transitive closure,u ↓β for theβ-normal form ofu, and←→∗

η or
=η for η-equality, the Church-Rosser property ofβ-reductions modulo
η-equality for typable terms can be phrased as

s =βη t iff s↓β =η t↓β

3 Normal Higher-Order Rewriting of Higher Type

Normal higher-order rewriting [17, 15] allows defining computations over
λ-terms used as a suitable abstract syntax for encoding functional objects
like programs or specifications. Nipkow’s framework assumes that rules
are of basic type, and that lefthand sides of rules are patterns in the sense
of Miller [16], two assumptions which are useless for termination pur-
poses. We therefore do not assume them.

Nipkow’s normal higher-order rewriting usesβη-equalities in two dif-
ferent ways: given a terms to be rewritten with a setR of rules,s is
first normalized, usingη-longβ-normal forms, before to be searched for
lefthand sides of rules inR via higher-order pattern matching, that is,
matching modulo=βη. In this section, we define higher-order rewriting
so as to capture the different ways in which a term can beβη-normalized
before to pattern match a subterm with a lefthand side of rule.

Definition 5. A normal rewrite ruleis a rewrite ruleΓ ` l → r : σ
such thatl and r are higher-order terms inβ-normal form satisfying
Γ `F l : σ for some typeσ iff Γ `F r : σ. A normal term rewriting
systemis a set of normal rewrite rules.

Given a normal term rewriting systemR, an environmentΓ , two β-
normal termss andt, and a typeσ such thatΓ `F s : σ, we say thats
rewrites tot at positionp with the normal ruleΓi ` li → ri : σi, the type
substitutionξ and the term substitutionγ, written Γ ` s−→p

Rβη
t, or

s−→p
Rβη

t assuming the environmentΓ , if the following conditions hold:

(i) Dom(γ) ⊆ Γiξ (iii) s|p =βη liξγ
(ii) Γiξ · Ran(γ) ⊆ Γs|p (iv) t =η s[riξγ]p↓β

Note thatt is any term in the eta-equivalence class ofs[riξγ]p ↓β.
Higher-order rewriting is therefore defined up to eta-equivalence of target

7

terms. By providing a method for proving termination of this relation, we
do provide a termination method for all variants of higher-order rewriting
based on higher-order pattern matching. A key observation is:

Lemma 8. Let s be a term such thatΓ `F s : σ andΓ ` s →Rη
β

t.
ThenΓ `F t : σ.

Proof. By Lemma 2,Γiξ ` F liξ : σiξ. By conditions (i) and (ii) in
Definition 5, the substitutionγ is compatible with the environmentΓiξ,
and therefore, by lemma 7,Γiξ · Ran(γ) `F liξγ : σiξ. By condition
(ii) and lemma 3,Γs|p `F liξγ : σiξ, henceΓs|p `F s|p : σiξ by subject
reduction. Note that this tells us how to computeξ in practice. Similarly,
Γs|p `F riξγ : σiξ. By lemma 5, we deduce thatΓ `F s[riξγ]p : σ.
Using now condition (iv) and the subject-reduction property, we finally
conclude thatΓ `F t : σ. 2

We often consider type preserving higher-order rewriting as a relation
on terms instead of on judgements, therefore simplifying our notations.

Example 1.We present here an encoding of symbolic derivation in which
functions are represented byλ-terms of a functional type. We give two
typical rules of higher type. The free variableF stands for a function
over the reals, whilex, y stand for real values. LetS = {real}, and

F = { sin, cos : real→ real; diff : (real→ real)→ real→ real
+,× : (real→ real)→ (real→ real)→ real→ real

diff(λx. sin(@(F, x)))→ λx. cos(@(F, x))× diff(λx.@(F, x))
diff(λx.@(F, x)× λy.@(F, y))→ (diff(λx.@(F, x))× λy.@(F, y))+

(λx.@(F, x)× diff(λy.@(F, y)))

This example makes sense when using normal higher-order rewriting,
because using plain pattern matching instead would not allow to compute
the derivative of all expressions: rewriting the expressiondiff(λx.sin(x)) =β diff(λx.sin(λy.y x))
does require higher-order pattern matching. We shall give a mechanical
termination proof of both rules in Section 5.

3.1 Normal Higher-Order Reduction Orderings

We shall use well-founded relations for proving strong normalization
properties. For our purpose, these relations may not be transitive, but
their transitive closures will be well-founded orderings, justifying some

8

abuse of terminology. Reduction orderings operating on judgements turn
out to be an adequate tool for showing termination of normal rewrit-
ing. We consider two classes of reduction orderings calledhigher-order
reduction orderingwhen they includeβη-reductions andnormal higher-
order reduction orderingwhen they are compatible with=βη.

Definition 6. A binary relation� on the set of judgements is

– coherentiff for all termss, t such that(Γ `F s : σ) � (Γ `F t :
σ), and for all environmentΓ ′ such thatΓ and Γ ′ are compatible,
Γ ′ `F s : σ andΓ ′ `F t : σ, then(Γ ′ `F s : σ) � (Γ ′ `F t : σ);.

– polymorphic iff for all terms s, t and all type substitutionsξ, then
(Γ `F s) � (Γ `F t) implies(Γξ `F sξ) � (Γξ `F tξ);

– stableiff for all terms s, t such that(Γ ` F s : σ) � (Γ ` F t :
σ), and all substitutionγ whose domain is compatible withΓ , then
(Γ · Ran(γ) `F sγ : σ) � (Γ · Ran(γ) `F tγ : σ);

– monotoniciff for all termss, t and typeσ such that(Γ `F s : σ) �
(Γ F̀ t : σ), for all Γ ′ compatible withΓ and for all ground context
u[] such thatΓ ′ ` F u[x : σ] : τ , then(Γ · Γ ′ ` F u[s] : τ) �
(Γ · Γ ′ `F u[t] : τ) (note the unusual important assumption thatu[]
is ground);

– normal-monotoniciff for all termss andt such that(Γ `F s : σ) �
(Γ F̀ t : σ), for all Γ ′ compatible withΓ and for all ground context
u[] such thatΓ ′ `F u[x : σ] : τ andu[s] is in β-normal form, then
(Γ · Γ ′ `F u[s] : τ) � (Γ · Γ ′ `F u[t] : τ);

– functional iff for all terms s, t such that(Γ `F s : σ−→βη t : σ),
then(Γ `F s : σ) � (Γ `F t : σ);

– compatibleiff for all termss′, s, t, t′ such that(Γ `F s′ : σ =βη s :
σ), (Γ `F t : σ =βη t′ : σ) and(Γ `F s : σ) � (Γ `F t : σ) then
(Γ `F s′ : σ) � (Γ `F t′ : σ).

A higher-order reduction ordering� is a well-founded ordering of the
set of judgements satisfying coherence, polymorphism, stability, mono-
tonicity and functionality.

A normal higher-order reduction ordering�η
β is a well-founded order-

ing of the set of judgements satisfying coherence, polymorphism, stabil-
ity, normal-monotonicity and compatibility.

One may argue whetherη-reductions should or should not be included
into a higher-order reduction ordering, since there are two possibilities of
orientation for theη-equality. By including it, we indicate our preference

9

for usingη-reductions instead ofη-expansions. This preference does not
have any impact on the rest of this paper.

Let us show now that no ordering� can satisfy monotonicity, sta-
bility, compatibility and well-foundedness, therefore explaining the need
for the weaker notion of normal-monotonicity.

Assumes : σ � t : σ (omitting judgements), wheres : σ is in
β-normal form. Given a variableX : σ → τ , @(X, s) is in β-normal
form as well. By monotonicity,@(X, s) : τ � @(X, t) : τ . Consider the
substitutionγ = {X 7→ λy.a} wherea : τ is a constant. By stability,
@(λy.a, s) : τ � @(λy.a, t) : τ . By compatibility,a : τ � a : τ , con-
tradicting well-foundedness. This problem does not happen with normal-
monotonicity since@(λy.a, s) is not inβ-normal form.

Theorem 1. Let R = {Γi ` li → ri : σi}i be a higher-order rewrite
system and� a normal higher-order reduction ordering such that(Γi F̀ li) �
(Γi `F ri) ∀i. Then the relation−→Rβη

is strongly normalizing.

Proof. Let s be a ground normal term such thatΓ `F s
p−→

Γiξ ` liξ→riξ:σiξ
t.

By definition of normal rewriting,t is a ground normal term. It therefore
suffices to show thatΓ `F s � t, which we proceed to do now.
By assumption,Γi F̀ li � ri and by polymorphism,Γiξ F̀ liξ � riξ.
By stability, Γiξ · Ran(γ) `F liξγ � riξγ, therefore, by coherence,
Γs|p ` F liξγ � riξγ. By definition,s|p =βη liξγ, hence, by com-
patibility, Γs|p ` F s|p � riξγ. By monotonicity of� for normal
ground terms (of equal type),Γs|p · Γ `F s � s[riξγ]p. By coherence
Γ `F s � s[riξγ]p, henceΓ `F s � t by compatibility. 2

4 Building Normal Higher-Order Reduction Orderings

In this section, we explain how to systematically build normal higher-
order reduction orderings from higher-order reduction orderings satis-
fying a stronger stability property. To this end, we introduce a specific
treatment of abstractions, calledneutralization, which transforms a term
built from the signatureF into a term built from an enlarged signature
Fnew, obtained fromF by adding a function symbol⊥σ for every typeσ
and a function symbolfnew for some of the function symbols inF . We
write⊥σ for ⊥σ(). The higher-order rules we want to prove terminating
are of course built from terms inT (F ,X), not inT (Fnew,X).

10

4.1 Neutralization and Normalization

Definition 7. Theneutralization of leveli (i-neutralizationin short) of a
typable termt ∈ T (Fnew,X) with respect to the list of (typable) terms
〈u1 : θ1, . . . , un : θn〉 in T (Fnew,X), is the termNi(t, 〈u1, . . . , un〉)
defined as follows:

1. N0(t : τ, 〈u1, . . . , un〉) = t;
2. Ni+1(t : τ, 〈u1, . . . , un〉) = t if τ is a data type;
3. Ni+1(t : σ → τ, 〈u1, . . . , un〉) = Ni(@(t,⊥θ1→...→θn→σ(u1, . . . , un))).

Terms of a functional type are neutralized by applying them to the
⊥-expression of the appropriate type. For each function symbol, we will
actually control which arguments of a functional type can be neutralized:

Definition 8. To each symbolf : σ1 × . . . × σn → σ ∈ F and each
argument positionj ∈ [1..n], we associate:

– a natural numbernljf ≤ ar(σj), called neutralization levelof f at

positionj. We callneutralizedthose positionsj for whichnljf > 0.
– a subsetAj

f ⊆ [1..n] of argument positions off used to filter out the

list t of arguments off by definingtjf = 〈tk | k ∈ Aj
f〉.

We shall now neutralize terms recursively. To this end, we need adding
to the signature a new function symbolfnew : σ′1×. . .×σ′n → σ for every
declarationf : σ1× . . .×σn → σ, such thatσ′i = τq+1 → . . .→ τk → τ
if σi = τ1 → . . .→ τk → τ andnlif = q ≤ k.

Definition 9. Thefull neutralizationof a termt is the termFN (t) s.t.

1. if t ∈ X , thenFN (t) = t;
2. if t = λx.u, thenFN (t) = λx.FN (u);
3. if t = @(t1, t2), thenFN (t) = @(FN (t1),FN (t2));
4. if t = f(t1, . . . , tn) with f ∈ F , then
FN (t) = fnew(Nnl1

f
(FN (t1),FN (t

1
f)), . . . ,Nnln

f
(FN (tn),FN (t

n
f))),

whereFN (〈u1, . . . , un〉) = 〈FN (u1), . . . ,FN (un)〉.

Our definition makes sense since, in all cases,FN (t) is typable with
the same type ast. Note also that using Case 3 repeatedly yields
FN (@(t1, . . . , tn)) = @(FN (t1), . . . ,FN (tn)) for flattened applications.
Note also that the filtered list of argumentst

i
f is itself recursively neutral-

ized before using it to neutralizeti.

11

Example 1 (continued).We illustrate here the full neutralization of the
lefthand and righthand sides of the rules of Example 1. To this end, we
choose a neutralization level for each function symbol and argument po-
sition. The associated subsets of argument positions are chosen empty,
hence⊥real abbreviated as⊥ is a constant:

L1
diff = 1 L1

sin = 0 L1
cos = 0

A1
diff = {} A1

sin = {} A1
cos = {}

L1
× = 1 L2

× = 1 L1
+ = 1 L2

+ = 1
A1
× = {} A2

× = {} A1
+ = {} A2

+ = {}

We can now compute the full neutralizations of both sides of the first rule:

FN (diff (λx. sin(@(F, x))))
= diffnew (sin(@(F,⊥)))

FN (λx. cos(@(F, x)) × diff (λx.@(F, x)))
= cos(@(F,⊥)) ×new @(diffnew (@(F,⊥)) ,⊥)

and of the second rule:

FN (diff (λx.@(F, x) × λy.@(F, y)))
= diffnew (@((F,⊥) ×new @(F,⊥) ,⊥))

FN ((diff(λx.@(F, x))× λy.@(F, y))+(λx.@(F, x)× diff(λy.@(F, y)))) =
@(@(diffnew(@(F,⊥)),⊥)×new @(F,⊥),⊥)+new@(@(F,⊥)×new @(diffnew(@(F,⊥)),⊥),⊥)

4.2 Properties of neutralization

The following lemmas investigate the interactions between neutraliza-
tion, instantiation, type instantiation and normalization.

Lemma 9. Let t andu1, . . . , un be higher-order terms. Then
Ni(t, 〈u1, . . . , un〉)↓= Ni(t↓, 〈u1↓, . . . , un↓〉)↓.
Proof. Let t : τ . We proceed by induction oni. There are two cases.

1. If i = 0 or τ is a data-type, then, by definition,
Ni(t, 〈u1, . . . , un〉)↓= t↓= Ni(t↓, 〈u1↓, . . . , un↓〉).

2. Otherwisei > 0 andτ = σ → ρ. Then,
Ni(t, 〈u1, . . . , un〉)↓= Ni−1(@(t,⊥θ(u1, . . . , un)), 〈u1, . . . , un〉)↓. By
induction hypothesis, this is equal to
Ni−1(@(t,⊥θ(u1, . . . , un))↓, 〈u1↓, . . . , un↓〉)↓
= Ni−1(@(t↓,⊥θ(u1↓, . . . , un↓))↓, 〈u1, . . . , un〉)↓. By induction hy-
pothesis again, this is equal to
Ni−1(@(t↓,⊥θ(u1↓, . . . , un↓)), 〈u1↓, . . . , un↓〉)↓
= Ni(t↓, 〈u1↓, . . . , un↓〉)↓. ut

12

Lemma 10. Let t = λx1 . . . xj.u : τ be aβη-normalized term such that
0 ≤ j ≤ ar(τ) andu is not an abstraction. Then for all0 ≤ i ≤ ar(τ)
and allβη-normalized termsu1, . . . , un,

(i) if i ≤ j thenNi(t, 〈u1, . . . , un〉)↓=
λxi+1 . . . xj.u{x1 7→ ⊥θ1(u1, . . . , un), . . . , xi 7→ ⊥θi

(u1, . . . , un)};
(ii) if i > j thenNi(t, 〈u1, . . . , un〉)↓=

@(u{x1 7→ ⊥θ1(u1, . . . , un), . . . , xj 7→ ⊥θj
(u1, . . . , un)},

⊥θj+1
(u1, . . . , un), . . . ,⊥θi

(u1, . . . , un)).

Note thatt is not an abstraction ifj = 0 and has an arrow type ifi > 0.

Proof. We proceed by induction oni. Let τ = σ1 → . . .→ σj → ρ.

1. i = 0. ThenNi(t, 〈u1, . . . , un〉)↓= t↓= t.
2. i > 0. ThenNi(λx1 . . . xj.u, 〈u1, . . . , un〉)↓=

Ni−1(@(λx1 . . . xj.u,⊥θ1(u1, . . . , un)), 〈u1, . . . , un〉)↓.
By Lemma 9, since allu1, . . . , un areβη-normalized, this is equal to
Ni−1(@(λx1 . . . xj.u,⊥θ1(u1, . . . , un))↓, 〈u1, . . . , un〉)↓=
Ni−1(λx2 . . . xj.u{x1 7→ ⊥θ1(u1, . . . , un)}↓, 〈u1, . . . , un〉)↓=
Ni−1(λx2 . . . xj.u{x1 7→ ⊥θ1(u1, . . . , un)}, 〈u1, . . . , un〉)↓.
By induction hypothesis, since there arej − 1 variables inx2 . . . xj,
– if i− 1 ≤ j − 1, that is,i ≤ j, then this is equal to

λxi+1 . . . xj.u{x1 7→ ⊥θ1(u1, . . . , un), . . . , xi 7→ ⊥θi
(u1, . . . , un)};

– if i− 1 > j − 1, that is,i > j, then this is equal to
@(u{x1 7→ ⊥θ1(u1, . . . , un), . . . , xj 7→ ⊥θj

(u1, . . . , un)},
⊥θj+1

(u1, . . . , un), . . . ,⊥θi
(u1, . . . , un));

and we are done. ut

Lemma 11. Lett be aβη-normalized term.Var(FN (t)↓) = Var(t) and

1. FN (x)↓= x for x ∈ X ;
2. FN (λx.u)↓= λx.FN (u)↓;
3. FN (@(t1, t2))↓= @(FN (t1)↓,FN (t2)↓);
4. FN (f(t1, . . . , tn))↓=

fnew(Nnl1
f
(FN (t1)↓,FN (t

1
f)↓)↓, . . . ,Nnln

f
(FN (tn)↓,FN (t

n
f)↓)↓).

Proof. We proceed by induction on|t|. There are four cases:

1. Let t ∈ X . ThenFN (t)↓= t↓= t.
2. Let t = λx.u.

ThenFN (t)↓= (λx.FN (u))↓= λx.FN (u)↓. By induction hypothe-
sis,Var(FN (u)↓) = Var(u), henceVar(FN (t)↓) = Var(t).

13

3. Let t = @(t1, t2).
ThenFN (t)↓= @(FN (t1),FN (t2))↓= @(FN (t1 ↓),FN (t2 ↓))↓.
Sincet is normal,t1 cannot be an abstraction, hence, by induction hy-
pothesis,FN (t1)↓ is not an abstraction either. Therefore,FN (t)↓=
@(FN (t1↓),FN (t2↓)). Finally, sinceVar(t1) = Var(FN (t1↓)) and
Var(t2) = Var(FN (t2↓)) by induction hypothesis, we easily con-
clude thatVar(FN (t)↓) = Var(t).

4. Let t = f(t1, . . . , tn) with f ∈ F . ThenFN (t)↓=
fnew(Nnl1

f
(FN (t1),FN (t

1
f)), . . . ,Nnln

f
(FN (tn),FN (t

n
f)))↓

= fnew(Nnl1
f
(FN (t1),FN (t

1
f))↓, . . . ,Nnln

f
(FN (tn),FN (t

n
f))↓),

and by Lemma 9,FN (t)↓=
fnew(Nnl1

f
(FN (t1)↓,FN (t

1
f)↓)↓, . . . ,Nnln

f
(FN (tn)↓,FN (t

n
f)↓)↓).

On the other hand, by induction hypothesis,Var(FN (ti)↓) = Var(ti)

for all i ∈ [1..n], and, by Lemma 10,Var(Nnl1
f
(FN (ti)↓,FN (t

i
f)↓)↓) =

Var(FN (ti)↓) ∪ Var(FN (t
i
f)↓) = Var(ti) ∪ Var(FN (t

i
f)↓). Since

Var(FN (t
i
f↓) ⊆ Var(t) for all i ∈ [1..n], it follows thatVar(FN (t)↓) =

Var(t). ut

Let us now move to type instantiations:

Lemma 12. Let t : σ be a higher-order term. Thentξ↓= t↓ ξ.

Proof. The proof uses the fact thattξ →βη t′ if and only if there is some
t′′ with t→η t′′ andt′ = t′′ξ. The result follows by induction. 2

Since the neutralization levelnljf of an argument off is smaller than
or equal to the arity of its type, we have the following properties:

Lemma 13. Let t : τ andu1 : θ1, . . . , un : θn be higher-order terms and
ξ a type substitution. Then, for alli ≤ ar(τ),
Ni(tξ, 〈u1ξ, . . . , unξ〉) = Ni(t, 〈u1, . . . , un〉)ξ.

Proof. We proceed by induction oni. The are two cases.

1. If i = 0 thenN0(tξ, 〈u1ξ, . . . , unξ〉) = tξ = N0(t, 〈u1, . . . , un〉)ξ.
2. If i > 0 then, by assumptionτ = σ → ρ, hencetξ : σξ → ρξ. Then,
Ni(tξ, 〈u1ξ, . . . , unξ〉) = Ni−1(@(tξ,⊥θ1ξ→...→θnξ→σξ(u1ξ, . . . , unξ)))
= Ni−1(@(t,⊥θ1→...→θn→σ(u1, . . . , un))ξ).
Sincei− 1 ≤ ar(ρ), by induction hypothesis, this is equal to
Ni−1(@(t,⊥θ1→...→θn→σ(u1, . . . , un)))ξ = Ni(t, 〈u1, . . . , un〉)ξ. ut

14

Lemma 14. Let t : σ be a higher-order term andξ a type substitution.
ThenFN (tξ) = FN (t)ξ.

Proof. We proceed by induction on|t|. There are four cases:

1. t is a variablex. ThenFN (xξ) = xξ = FN (x)ξ.
2. t = λx.u. ThenFN (tξ) = FN (λxξ.uξ) = λxξ.FN (uξ). By induc-

tion hypothesis,FN (uξ) = FN (u)ξ, and therefore
λxξ.FN (u)ξ = (λx.FN (u))ξ = λx.FN (u)ξ = FN (λx.u)ξ =
FN (t)ξ.

3. t = @(t1, . . . , tn) : σ. ThenFN (tξ) = FN (@(t1ξ, . . . , tnξ) : σξ) =
@(FN (t1ξ), . . . ,FN (tnξ)) : σξ = @(FN (t1ξ), . . . ,FN (tnξ)) : σξ.
By induction hypothesis, this is equal to
@(FN (t1)ξ, . . . ,FN (tn)ξ) = @(FN (t1), . . . ,FN (tn))ξ = FN (@(t1, . . . , tn))ξ =
FN (t)ξ.

4. t = f(t1, . . . , tn) with f ∈ F . Then
FN (tξ) = FN (f(t1, . . . , tn)ξ) = FN (f(t1ξ, . . . , tnξ)) =

fnew(Nnl1
f
(FN (t1ξ),FN (t

1
fξ)), . . . ,Nnln

f
(FN (tnξ),FN (t

n
f ξ))).

By induction hypothesis, this is equal to
fnew(Nnl1

f
(FN (t1)ξ,FN (t

1
f)ξ)), . . . ,Nnln

f
(FN (tn)ξ,FN (t

n
f)ξ)))

= fnew(Nnl1
f
(FN (t1),FN (t

1
f))ξ, . . . ,Nnln

f
(FN (tn),FN (t

n
f))ξ),

by using lemma 13. Extracting the type substitution we get
fnew(Nnl1

f
(FN (t1,FN (t

1
f))), . . . ,Nnln

f
(FN (tn,FN (t

n
f))))ξ

= FN (f(t1, . . . , tn))ξ = FN (t)ξ. ut

We now move to properties involving instantiations:

Lemma 15. Let t : τ andu1, . . . , un be higher-order terms andγ a sub-
stitution. ThenNi(tγ, 〈u1γ, . . . , unγ〉) = Ni(t, 〈u1, . . . , un〉)γ.

Proof. We proceed by induction oni. There are two cases.

1. Assumei = 0 or τ is a data type. Then,tγ : τ , hence
Ni(tγ, 〈u1γ, . . . , unγ〉) = tγ = Ni(t, 〈u1, . . . , un〉)γ.

2. Otherwisei > 0 andτ = σ → ρ. Then,Ni(tγ, 〈u1γ, . . . , unγ〉) =
Ni−1(@(tγ,⊥θ(u1γ, . . . , unγ))) = Ni−1(@(t,⊥θ(u1, . . . , un))γ).
By induction hypothesis, this is equal to
Ni−1(@(t,⊥θ(u1, . . . , un)))γ = Ni(t, 〈u1, . . . , un〉)γ. ut

Lemma 16. Let t be a higher-order term andγ a substitution. Then
FN (tγ)↓= (FN (t)FN (γ))↓.

15

Proof. We proceed by induction on|t|. There are four cases:

1. t is a variablex. ThenFN (xγ) = xFN (γ).
2. t = λx.u. ThenFN (tγ)↓= FN (λx.uγ)↓= λx.FN (uγ)↓. By induc-

tion hypothesis,FN (uγ)↓= FN (u)FN (γ)↓, and therefore
λx.FN (uγ)↓= λx.FN (u)FN (γ)↓= λx.FN (u)FN (γ)↓=
(λx.FN (u))FN (γ)↓= FN (λx.u)FN (γ)↓= FN (t)FN (γ)↓.

3. t = @(t1, . . . , tn). ThenFN (tγ)↓= FN (@(t1γ, . . . , tnγ))↓=
@(FN (t1γ), . . . ,FN (tnγ))↓= @(FN (t1γ)↓, . . . ,FN (tnγ)↓)↓.
By induction hypothesis,
@(FN (t1)FN (γ)↓, . . . ,FN (tn)FN (γ)↓)↓=
@(FN (t1)FN (γ), . . . ,FN (tn)FN (γ))↓=
@(FN (t1), . . . ,FN (tn))FN (γ)↓=
FN (@(t1, . . . , tn)FN (γ))↓= FN (t)FN (γ)↓.

4. t = f(t1, . . . , tn) with f ∈ F . ThenFN (tγ)↓=
FN (f(t1, . . . , tn)γ)↓= FN (f(t1γ, . . . , tnγ))↓=
fnew(Nnl1

f
(FN (t1γ),FN (t

1
fγ)), . . . ,Nnln

f
(FN (tnγ),FN (t

n
fγ)))↓=

fnew(Nnl1
f
(FN (t1γ),FN (t

1
fγ))↓, . . . ,Nnln

f
(FN (tnγ),FN (t

n
fγ))↓).

By lemma 9, this is equal to
fnew(Nnl1

f
(FN (t1γ)↓,FN (t

1
fγ)↓)↓, . . . ,Nnln

f
(FN (tnγ)↓,FN (t

n
fγ)↓)↓)

and by induction hypothesis, to
fnew(Nnl1

f
(FN (t1)FN (γ)↓,FN (t

1
f)FN (γ)↓)↓, . . . ,

Nnln
f
(FN (tn)FN (γ)↓,FN (t

n
f)FN (γ)↓)↓).

By Lemma 9 used once again, this is equal to
fnew(Nnl1

f
(FN (t1)FN (γ),FN (t

1
f)FN (γ)↓)↓, . . . ,

Nnln
f
(FN (tn)FN (γ),FN (t

n
f)FN (γ)↓)↓)

= fnew(Nnl1
f
(FN (t1)FN (γ),FN (t

1
f)FN (γ)), . . . ,

Nnln
f
(FN (tn)FN (γ),FN (t

n
f)FN (γ)))↓=

fnew(Nnl1
f
(FN (t1),FN (t

1
f))FN (γ), . . . ,

Nnln
f
(FN (tn),FN (t

n
f))FN (γ))↓,

by lemma 15. Extracting the substitution, we get
fnew(Nnl1

f
(FN (t1),FN (t

1
f)), . . . ,Nnln

f
(FN (tn),FN (t

n
f)))FN (γ)↓

= FN (f(t1, . . . , tn))FN (γ)↓= FN (t)FN (γ)↓. ut

Lemma 17. Let t be a higher-order term. ThenFN (t)↓= FN (t↓)↓.

Proof. We proceed by induction on−→βη ∪� which is well-founded [7].
There are four cases:

16

1. t is a variablex. It follows from the fact thatx↓= x.
2. t = λx.u. There are two cases.

If u = @(v, x), with x /∈ Var(v) thenFN (t)↓= FN (λx.@(v, x))↓=
λx.FN (@(v, x))↓= λx.@(FN (v),FN (x))↓= λx.@(FN (v), x)↓=
FN (v)↓ sincex /∈ Var(v) = Var(FN (v)↓). By induction hypothe-
sis, we getFN (v)↓= FN (v↓)↓. SinceFN (v↓)↓= FN (λx.@(v, x)↓
)↓, we are done.
Otherwise,(λx.u)↓= λx.u↓ and thereforeFN (t)↓= FN (λx.u)↓=
(λx.FN (u)) ↓= (λx.FN (u) ↓) ↓. By induction hypothesis, this is
equal to(λx.FN (u ↓) ↓) ↓= (λx.FN (u ↓) ↓) ↓= (λx.FN (u ↓)) ↓=
FN (λx.u↓)↓= FN ((λx.u)↓)↓ by our assumption and we are done.

3. t = @(u, v). ThenFN (t)↓= FN (@(u, v))↓= @(FN (u),FN (v))↓=
@(FN (u) ↓,FN (v) ↓) ↓. By induction hypothesis, this is equal to
@(FN (u↓)↓,FN (v↓)↓)↓= FN (@(u↓, v↓))↓.
If @(u↓, v↓) is normalized thenFN (@(u↓, v↓))↓= FN (@(u, v)↓)↓
and we are done.
Otherwise,u↓= λx.w, henceFN (@(u↓, v ↓))↓=FN (@(λx.w, v ↓
)) ↓= @(λx.FN (w),FN (v ↓)) ↓= FN (w){x 7→ FN (v ↓)} ↓. By
Lemma 16, this is equal toFN (w{x 7→v↓})↓. Since@(u, v)−→+

βη w{x 7→
v↓}, by induction hypothesis, this is equal toFN (w{x 7→ v↓}↓)↓=
FN (@(u, v)↓)↓.

4. t = f(t1, . . . , tn) with f ∈ F . ThenFN (t)↓= FN (f(t1, . . . , tn))↓=
fnew(Nnl1

f
(FN (t1),FN (t

1
f)), . . . ,Nnln

f
(FN (tn),FN (t

n
f)))↓=

fnew(Nnl1
f
(FN (t1),FN (t

1
f)↓, . . . ,Nnln

f
(FN (tn),FN (t

n
f))↓).

By Lemma 9, this is equal to
fnew(Nnl1

f
(FN (t1)↓,FN (t

1
f)↓)↓, . . . ,Nnln

f
(FN (tn)↓,FN (t

n
f)↓)↓)

hence, by induction hypothesis, to
fnew(Nnl1

f
(FN (t1↓)↓,FN (t

1
f↓)↓)↓, . . . ,Nnln

f
(FN (tn↓)↓,FN (t

n
f↓)↓)↓).

By Lemma 9 again, this is equal to
= fnew(Nnl1

f
(FN (t1↓),FN (t

1
f↓))↓, . . . ,Nnln

f
(FN (tn↓),FN (t

n
f↓))↓)

= fnew(Nnl1
f
(FN (t1↓),FN (t

1
f↓)), . . . ,Nnln

f
(FN (tn↓),FN (t

n
f↓)))↓=

FN (f(t1↓, . . . , tn↓))↓= FN (f(t1, . . . , tn)↓)↓. ut

4.3 The Neutralized Ordering Schema

Definition 10. Given two termss, t and a higher-order ordering�, we
define the neutralized ordering�n as follows:

s �n t if and only ifFN (s)↓� FN (t)↓

17

We now need to show that�n is a normal, higher-order reduction
ordering. Well-foundedness follows from well-foundedness of�, while
compatibility follows from the definition. Stability and normal-monotonicity
depend upon the particular ordering� used in the construction.

Definition 11. An ordering� on higher-order terms satisfies
(i) schema-stabilityif for all βη-normal termss, t and substitutionsγ,

thens � t impliestγ−→∗
βη t′γ for some termt′ such thatsγ↓� t′γ.

(ii) schema-replacementif for all βη-normal termsλx.v : σ → ρ and
t : σ → ρ, and all sequences ofβη-normal terms〈u1, . . . , un〉,

– if t = λx.w, thenv{x 7→ ⊥σ(u1, . . . , un)} � w{x 7→ ⊥σ(u1, . . . , un)},
– otherwise,v{x 7→ ⊥σ(u1, . . . , un)} � @(t,⊥σ(u1, . . . , un)).

Theorem 2. Let � be a higher-order reduction ordering fulfiling the
schema-stability and schema-replacement properties. Then�n is a nor-
mal higher-order reduction ordering.

The result follows from Lemmas 18, 19, 21, 23 and 24.

Lemma 18. If � is coherent then�n is coherent.

For the proof to make sense, we need here to explicit the typing judge-
ments.

Proof. We prove that for all termss, t such that(Γ ` F s : σ) �n

(Γ `F t : σ), and for all environmentΓ ′ such thatΓ andΓ ′ are compat-
ible, Γ ′ `F s : σ andΓ ′ `F t : σ, then(Γ ′ `F s : σ) �n (Γ ′ `F t : σ).
By coherence of�, (Γ ` F FN (s) ↓: σ) � (Γ ` F FN (t) ↓: σ)
implies (Γ ′ ` F FN (s)↓: σ) � (Γ ′ ` F FN (t)↓: σ), and therefore
(Γ ′ `F s : σ) �n (Γ ′ `F t : σ). ut

Lemma 19. If � is polymorphic then�n is polymorphic.

Proof. Let s, t be higher-order terms andξ a type substitution. We prove
thats �n t impliessξ �n tξ. By definition,FN (s)↓� FN (t)↓ and, by
polymorphism of�, FN (s)↓ ξ � FN (t)↓ ξ. By lemma 12FN (s)↓ ξ =
FN (s)ξ↓ andFN (t)↓ ξ = FN (t)ξ↓. By lemma 14,FN (s)ξ = FN (sξ)
andFN (t)ξ = FN (tξ). Altogether, we getFN (sξ) ↓= FN (s)ξ ↓=
FN (s)↓ ξ � FN (t)↓ ξ = FN (t)ξ↓= FN (tξ)↓ which impliessξ �n tξ.

ut

Lemma 20. Let t be a higher-orderβη-normal term andγ be a βη-
normal substitution. Thentγ↓= tγ↓β.

18

Lemma 21. Assume� satisfies schema-stability and functionality. Then
�n is stable.

Proof. Let s, t be higher-order terms andγ a substitution. We prove that
s �n t impliessγ �n tγ, that is,FN (s)↓� FN (t)↓ impliesFN (sγ)↓�
FN (tγ)↓. By Lemma 16 and the confluence prop3erty ofβη-reduction,
FN (sγ)↓= (FN (s)↓ FN (γ)↓)↓= andFN (tγ)↓= (FN (t)↓ FN (γ)↓)↓.
Let s1 andt1 be theβη-normal termsFN (s)↓ andFN (t)↓ respectively,
and letγ′ be theβη-normal substitutionFN (γ)↓. By Lemma 20,s1γ

′↓=
s1γ

′↓β andt1γ
′↓= t1γ

′↓β.
Sinces1 � t1, by schema-stability of� we gets1γ

′ ↓β� t′γ′ for
some termt′ such thatt1γ′−→∗

β t′γ′. By confluence,t′γ′−→∗
β t1γ

′ ↓β.
By functionality of�, it follows that t′γ′ � t1γ

′ ↓β, and therefore, by
transitivity,s1γ

′↓= s1γ
′↓β� t1γ

′↓β= t1γ
′↓. 2

Lemma 22. Assume that� is monotonic and satisfies the schema-replacement
property. Assume further thats : τ, t : τ andu1, . . . un, v1, . . . vn, areβη-
normal terms satisfyings � t andui � vi for all i ∈ {1 . . . n}. Then,

Ni(s, 〈u1, . . . un〉)↓� Ni(t, 〈v1, . . . vn〉)↓

Proof. We proceed by induction oni. There are two cases:

1. If i = 0 or τ is a data type, thenNi(s)↓= s↓= s � t = t↓= Ni(t)↓.
2. Otherwise,i > 0 andτ = σ → ρ. Then

Ni(s, 〈u1, . . . un〉)↓=
Ni−1(@(s,⊥θ(u1, . . . un)))↓ and
Ni(t, 〈v1, . . . vn〉)↓= Ni−1(@(t,⊥θ(v1, . . . vn)))↓. By Lemma 9
Ni(s)↓= Ni−1(@(s,⊥θ(u1, . . . un))↓)↓ and
Ni(t)↓=Ni−1(@(t,⊥θ(v1, . . . vn))↓)↓.
We are left showing thats : τ � t : τ implies@(s,⊥θ(u1, . . . un))↓�
@(t,⊥θ(v1, . . . vn))↓. There are four cases:
(a) If s = λx.u andt = λx.v then@(s,⊥σ)↓= u{x 7→ ⊥θ(u1, . . . un)}

and@(t,⊥σ) ↓= v{x 7→ ⊥θ(v1, . . . vn)}. By monotonicity and
transitivity of�,⊥θ(u1, . . . un) � ⊥θ(v1, . . . vn). Hence, by schema-
replacement property,@(s,⊥θ(u1, . . . un))↓� @(t,⊥θ(v1, . . . vn))↓,

(b) If s = λx.u andt is not an abstraction, then
@(s,⊥θ(u1, . . . un))↓= u{x 7→ ⊥θ(u1, . . . un)} and
@(t,⊥θ(v1, . . . vn))↓= @(t,⊥θ(v1, . . . vn)).
By the schema replacement property as before, we get
@(s,⊥θ(u1, . . . un))↓� @(t,⊥θ(v1, . . . vn))↓.

19

(c) If s, t are not abstractions, then
@(s,⊥θ(u1, . . . un))↓= @(s,⊥θ(u1, . . . un)) and
@(t,⊥θ(v1, . . . vn))↓= @(t,⊥θ(v1, . . . vn)).
By monotonicity and transitivity we get
@(s,⊥θ(u1, . . . un))↓� @(t,⊥θ(v1, . . . vn))↓.

(d) If s is not an abstraction andt = λx.v then,
@(s,⊥θ(u1, . . . un))↓= @(s,⊥θ(u1, . . . un)) and
@(t,⊥θ(v1, . . . vn))↓= v{x 7→ ⊥θ(v1, . . . vn)}.
Now, by monotonicity, transitivity and functionality we get
@(s,⊥θ(u1, . . . un))↓= @(s,⊥θ(u1, . . . un)) �
v{x 7→ ⊥θ(v1, . . . vn)} = @(t,⊥θ(v1, . . . vn))↓.

Finally, since@(s,⊥θ(u1, . . . un))↓� @(t,⊥θ(v1, . . . vn))↓, we can
conclude by induction hypothesis:Ni(s)↓= Ni−1(@(s,⊥θ(u1, . . . un))↓
)↓�
Ni−1(@(t,⊥θ(v1, . . . vn))↓)↓= Ni(t)↓. ut

Lemma 23. Assume that� satisfies the monotonicity, functionality and
schema replacement properties. Then�n is normal-monotonic.

Proof. Let s, t be higher-order terms andu[] a ground context such that
u[s] is in βη-normal form. We prove thats �n t implies u[s] �n u[t],
that is,FN (s)↓� FN (t)↓ impliesFN (u[s])↓� FN (u[t])↓.

We proceed by induction on the|u|. If u is empty we are done. Other-
wise, there are four cases:

1. u[] = λx.u′[]. By Lemma 11,FN (u[s]) ↓= λx.FN (u′[s]) ↓ and
FN (u[t])↓= λx.FN (u′[t])↓. By induction hypothesis,FN (u′[s])↓�
FN (u′[t])↓, and, by monotonicity of�, we conclude thatFN (u[s])↓=
λx.FN (u′[s])↓� λx.FN (u′[t])↓= FN (u[t])↓.

2. u[] = @(v, u′[]). By Lemma 11,FN (u[s])↓= @(FN (v)↓,FN (u′[s])↓
) andFN (u[t])↓= @(FN (v)↓,FN (u′[t])↓). By induction hypothe-
sis,FN (u′[s])↓� FN (u′[t])↓, and, by monotonicity of�, we con-
clude that@(FN (v)↓,FN (u′[s])↓) � @(FN (v)↓,FN (u′[t])↓).

3. u[] = @(u′[], v). By Lemma 11,FN (u[s])↓= @(FN (u′[s])↓,FN (v)↓
) andFN (u[t])↓= @(FN (u′[t])↓,FN (v)↓). By induction hypothe-
sis,FN (u′[s])↓� FN (u′[t])↓, and, by monotonicity of�, we con-
clude as before.

4. u[] = f(. . . u′[] . . .). By Lemma 11,

FN (u[s]) ↓= fnew(. . .Nnlk
f
(FN (u′[s]) ↓,FN (u[s]

k

f) ↓) ↓ . . .) and

FN (u[t])↓= fnew(. . .Nnlk
f
(FN (u′[t])↓,FN (u[t]

k

f)↓)↓ . . .).

20

By induction hypothesis,FN (u′[s])↓� FN (u′[t])↓, and by Lemma 22

Nnlk
f
(FN (u′[s])↓,FN (u[s]

k

f)↓)↓� Nnlk
f
(FN (u′[t])↓,FN (u[t]

k

f)↓)↓
(note that, sincek may be inAk

f the arguments used for neutralization

in Nnlk
f
(FN (u′[s])↓,FN (u[s]

k

f)↓)↓ are, by induction, greater than or

equal to the arguments used inNnlk
f
(FN (u′[t])↓,FN (u[t]

k

f)↓)↓).
Finally, by monotonicity of�, we conclude that

fnew(. . .Nnlk
f
(FN (u′[s])↓,FN (u[s]

k

f)↓) . . .) �

fnew(. . .Nnlk
f
(FN (u′[t])↓,FN (u[t]

k

f)↓) . . .). ut

Lemma 24.�n is compatible.

Proof. Let s′, s, t, t′ be higher-order terms. Then we show thats′ =βη

s �n t =βη t′ implies s′ �n t′. By assumption,s↓= s′↓ andt↓= t′↓,
and by lemma 17
FN (s)↓= FN (s↓)↓= FN (s′↓)↓= FN (s′)↓ and
FN (t)↓= FN (t↓)↓= FN (t′↓)↓= FN (t′)↓.
Therefore,s �n t impliesFN (s′)↓= FN (s)↓� FN (t)↓= FN (t′)↓.
HenceFN (s′)↓� FN (t′)↓ and therefores′ �n t′. ut

5 The Normal Higher-Order Recursive Path Ordering

Our purpose here is to define a higher-order ordering satisfying schema-
stability and schema-replacement. The higher-order recursive path order-
ing�horpo [10] is not an appropriate answer, because it does not satisfy
schema-stability. Fortunately, a simple restriction suffices in case of an
application on left (Cases 5 and 9 of our coming definition) resulting in
therestricted higher-order recursive path ordering. We assume given:

1. a partitionMul] Lex of F ;
2. a quasi-ordering≥F on F , called theprecedence, such that>F is

well-founded;
3. a well-founded quasi-ordering≥TS on types such that for all ground

typesτ, σ, α,

τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ andσ =TS σ′

and
τ → σ >TS α impliesσ ≥TS α or α = τ ′ → σ′, τ ′ =TS τ andσ >TS σ′

Definition 12. Givens : σ andt : τ, s �
rhorpo

t iff σ≥TSτ and

21

1. s = f(s) with f ∈ F ∪ S, andu �
rhorpo

t for someu ∈ (s)

2. s = f(s) andt = g(t) with f >FS g, andA
3. s = f(s) andt = g(t) with f =FS g ∈Mul ands(�

rhorpo
)mult

4. s = f(s) andt = g(t) with f =FS g ∈ Lex ands(�
rhorpo

)lext, andA

5. s = @(s1, s2), s1 is not of the form@(X, w) with X ∈ X and
u�rhorpot for someu ∈ {s1, s2}

6. s = λx : σ.u, x 6∈ Var(t) andu �
horpo

t

7. s = f(s), @(t) is an arbitrary left-flattening oft, andA
8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands �

horpo
v

9. s = @(s1, s2), s1 is not of the form@(X, w) with X ∈ X , @(t) is an
arbitrary left-flattening oft and{s1, s2} (�rhorpo)mul t

10. s = λx : α.u, t = λx : β.v, α =
horpo

β andu �
rhorpo

v

11. s = @(λx.u, v) andu{x 7→ v} �
horpo

t

12. s = λx.@(u, x), x 6∈ Var(u) andu �
horpo

t

whereA = ∀v ∈ t s �
rhorpo

v or u �
horpo

v for someu ∈ (s)

Of course, making bound variables fit may need renaming in Case 10.
Note that we could add the definition@(X, s)�rhorpo @(X, t) if s(�rhorpo)mont
which would yield a strictly richer relation with the same properties. We
do not since this would force us defining explicitely the equivalence re-
lation to be added to the strict ordering.

Lemma 25. (�rhorpo)
∗ is a higher-order reduction ordering satisfying

schema-stability and schema-replacement.

Proof. Containement of�rhorpo into�horpo is clear, which implies well-
foundedness of�rhorpo. So are monotonicity, since contexts are assumed
ground, and polymorphism, since type instantiation does not introduce
redexes of any kind in terms. Coherence and functionality are both straith-
forward. Schema-replacement forces the use of Rule 10, for typing rea-
son. It then follows by an easy induction. We are left with schema-
stability, which implies stability. Schema-stability, i.e.,s�rhorpo t where
s, t are normal terms, impliestγ−→∗ t′γ for somet′ such thatsγ ↓
�rhorpo t′γ, is proved by induction on the definition of the ordering.

22

1. Assumes�rhorpo t by Case 1, henceu�rhorpo t for someu ∈ CC(s).
By induction hypothesis, there exists somet′ such thattγ−→∗ t′γ
anduγ↓ �rhorpo t′γ. Sinces is headed by a symbol inF ∪ S, uγ↓∈
CC(sγ↓), hencesγ↓ �rhorpo t′γ by Case 1.

2. Assumes�rhorpo t by Case 2, hences = f(s), t = g(t), f >FS g
and, for everyv ∈ t, s�rhorpo v, hence, by induction hypothesis,
there existsv′ such thatvγ−→∗ v′γ andsγ ↓ �rhorpo v′γ. Let t′ =
g(v′), hencetγ−→∗ t′γ. Sincesγ↓ is headed byf , by Case 2,sγ↓
�rhorpo t′γ.

5. Assumes�rhorpo t by Case 5. By induction hypothesis,tγ−→∗ t′γ
for somet′ anduγ↓ �rhorpo t′γ for someu ∈ {s1, s2}. Our assump-
tion ons1 ensures thatsγ↓= @(s1γ↓, s2γ↓), allowing us to conclude
by Case 5.

9. Assumes�rhorpo t by Case 9. This case is similar to case 5.
11. Assumes�rhorpo t by Case 11 or 12. These cases cannot happen

sinces is assumed in normal form.
12. All other cases are either similar to the above ones or straightforward.

2

As a consequence,

Theorem 3. (�rhorpo)
∗
n is a normal higher-order reduction ordering.

We will approximate the normal higher-order recursive path ordering
(�rhorpo)

∗
n by (�rhorpo)n in all coming examples. As can be guessed,

we need to define the precedence on the extended signature. In pratice,
we will always make⊥σ-function symbols small.

Example 1 (end).Let diffnew >F {×new,+new, cos} anddiffnew ∈ Mul.
First rule: diffnew(sin(@(F,⊥)))�rhorpo cos(@(F,⊥))×new @(diffnew(@(F,⊥)),⊥)
Applying first case 2, we recursively obtain two subgoals:
(i) diffnew(sin(@(F,⊥)))�rhorpo cos(@(F,⊥))
(ii) diffnew(sin(@(F,⊥)))�rhorpo @(diffnew(@(F,⊥)),⊥).
(i): applying Case 2 yieldsdiffnew(sin(@(F,⊥)))�rhorpo @(F,⊥) shown by Case 1 twice.
(ii): applying Case 7 generates two new subgoals
(iii) diffnew(sin(@(F,⊥)))�rhorpo diffnew(@(F,⊥)) , which holds by case 3, then case 1.
(iv) diffnew(sin(@(F,⊥)))�rhorpo⊥ , which holds by case 1 twice and then case 5.
Second rule: diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo

@(@(diffnew(@(F,⊥)),⊥)×new @(F,⊥),⊥) +new @(@(F,⊥)×new @(diffnew(@(F,⊥)),⊥),⊥)
Case 2 generates two subgoals:
(i) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo @(@(diffnew(@(F,⊥)),⊥)×new @(F,⊥),⊥)
(ii) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo @(@(F,⊥)×new @(diffnew(@(F,⊥)),⊥),⊥).
By Case 7, (i) generates two new subgoals:

23

(iii) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo @(diffnew(@(F,⊥)),⊥)×new @(F,⊥)
(iv) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo⊥.
The latter holds by case 1 and then case 5. By Case 2, (iv) yields two subgoals:
(v) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo @(diffnew(@(F,⊥)),⊥)
(vi) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo @(F,⊥).
By Case 7, (v) generates
(vii) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo diffnew(@(F,⊥))
(viii) diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo⊥ solved by Case 1 first, then 5.
Finally, (vii) is solved by Case 3, 5, and 1 successively.

6 Examples

We present here several complex examples proven terminating with the
normal higher-order vrecursive path ordering. For all of them, we give
the necessary ingredients for computing the appropriate neutralizations
and comparisons. The rules are first given in a format aiming at an easier
reading by writingF (X) for @(F, X). When it comes to the computa-
tions, we make the reverse choice, to make clear that@ is the top function
symbol of the termF (X).

As a convention, missing neutralization levels are equal to 0, in which
case the corresponding subset of argument positions will be empty. In all
examples, we use a simple type ordering≥TS equating all ground data
types, which fulfills the requirements given in Section 5. Precedence on
function symbols and statuses will be given in full.

Example 2.The coming encoding of first-order prenex normal forms is
adapted from [17], where its local confluence is proved via the com-
putation of its (higher-order) critical pairs. Formulas are represented as
λ-terms with sortform. The idea is that quantifiers are higher-order con-
structors binding a variable via the use of a functional argument.

S = {form}, F = { ∧,∨ : form× form→ form;¬ : form→ form;
∀,∃ : (form→ form)→ form}.

P ∧ ∀(λx.Q(x))→ ∀(λx.(P ∧Q(x)))
∀(λx.Q(x)) ∧ P → ∀(λx.(Q(x) ∧ P))
P ∨ ∀(λx.Q(x))→ ∀(λx.(P ∨Q(x)))
∀(λx.Q(x)) ∨ P → ∀(λx.(Q(x) ∨ P))
¬(∀(λx.Q(x)))→ ∃(λx.¬(Q(x)))

P ∧ ∃(λx.Q(x))→ ∃(λx.(P ∧Q(x)))
∃(λx.Q(x)) ∧ P → ∃(λx.(Q(x) ∧ P))
P ∨ ∃(λx.Q(x))→ ∃(λx.(P ∨Q(x)))
∃(λx.Q(x)) ∨ P → ∃(λx.(Q(x) ∨ P))
¬(∃(λx.Q(x)))→ ∀(λx.¬(Q(x)))

Ingredients for neutralization:L1
∀ = 1, L1

∃ = 1,A1
∀ = {},A1

∃ = {}.

24

Statuses:∀new,∃new ∈ Mul
Precedence:∧ >F {∀new,∃new},∨>F {∀new,∃new},¬ >F {∀new,∃new}. 2

We now carry out the proof of the first and the last rule. All others
follow the same pattern.

P ∧ ∀(λx.@(Q, x))→∀(λx.(P ∧@(Q, x))) (1)
¬(∃(λx.@(Q, x)))→∀(λx.¬(@(Q, x))) (8)

The ingredients for the proof are the following.
For neutralization we have:L1

∀ = 1, L1
∃ = 1,A1

∀ = {},A1
∃ = {}.

For the ordering we have∀new,∃new,¬ ∈ Mul and as precedence:
∧ >F {∀new,∃new}, ∨>F {∀new,∃new}, ¬ >F {∀new,∃new}.
In the following proof we abbreviate⊥form as⊥.

We start with the proof of rule (1). Let us first compute the full neu-
tralization of both sides:
FN (P ∧ ∀(λx.@(Q, x))) = P ∧ ∀new(@(Q,⊥)), and
FN (∀(λx.(P ∧@(Q, x)))) = ∀new(P ∧@(Q,⊥)).
We show thatP ∧∀new(@(Q,⊥))�rhorpo ∀new(P ∧@(Q,⊥)). By case 2
we need to showP ∧∀new(@(Q,⊥))�rhorpo P ∧@(Q,⊥), and by case 3
we need{P, ∀new(@(Q,⊥))}(�rhorpo)mul{P, @(Q,⊥)}. This requires
∀new(@(Q,⊥))�rhorpo @(Q,⊥) which holds by case 1.

Let us prove now rule (8). The full neutralization of both sides are:
FN (¬(∃(λx.@(Q, x)))) = ¬(∃new(@(Q,⊥))), and
FN (∀(λx.¬(@(Q, x))) = ∀new(¬(@(Q,⊥))).
Now we show that¬(∃new(@(Q,⊥)))�rhorpo ∀new(¬(@(Q,⊥))). By case 2
we need to show¬(∃new(@(Q,⊥)))�rhorpo ¬(@(Q,⊥)). Applying case 3
we are left with{∃new(@(Q,⊥))}(�rhorpo)mul{@(Q,⊥)}, which holds
by case 1. 2

Example 3.This example of surjective disjoint union is taken from [21].
Signature and rules are parameterized byα ∈ S = {A, B, U}:

F = {inl : A→ U ; inr : B → U ; caseα : U × (A→ α)× (B → α)→ α}.

caseα(inl(X), F, G)→ F (X)
caseα(inr(Y), F, G)→ G(Y)

caseα(Z, λx.H(inl(x)), λy.H(inr(y)))→ H(Z)

Neutralization:L2
case =1, L3

case =1,A2
case ={1},A3

case ={1}.
Statuses and Precedence: any choice will do.

25

Let us rewrite the rules with explicit applications.

caseα(inl(X), F,G)→ @(F, X) (1)
caseα(inr(Y), F,G)→ @(G, Y) (2)

caseα(Z, λx.@(H, inl(x)), λy.@(H, inr(y)))→ @(H, Z) (3)

For neutralization we have:L2
caseα

=1, L3
caseα

=1,A2
caseα

={1},A3
caseα

={1}.
For this example we can use the empty precedence.

We start with the proof of rule (1). Let us first compute the full neu-
tralization of both sides:
s = FN (caseα(inl(X), F,G)) =
casenew(inl(X), @(F,⊥U→A(inl(X))), @(G,⊥U→B(inl(X)))), and
t = FN (@(F, X)) = @(F, X).

Now we proves�rhorpo t:
casenew(inl(X), @(F,⊥U→A(inl(X))), @(G,⊥U→B(inl(X))))�rhorpo

@(F, X), by case 1, requiring@(F,⊥U→A(inl(X)))�rhorpo @(F, X).
This, by case 9, needs{F,⊥U→A(inl(X))}(�rhorpo)mul{F, X}, and thus
⊥U→A(inl(X))�rhorpo X, which holds by applying case 1 twice.

For rule (2), similarly the full neutralization of both sides is:
s = FN (caseα(inr(Y), F,G)) =
casenew(inr(Y), @(F,⊥U→A(inr(Y))), @(G,⊥U→B(inr(Y)))), and
t = FN (@(G, Y)) = @(G, Y).

Then the proof ofs�rhorpo t is exactly as the one for rule (1).

Finally we prove rule (3). The full neutralization of both sides is:
s = FN (caseα(Z, λx.@(H, inl(x)), λy.@(H, inr(y)))) =
casenew(Z, @(H, inl(⊥U→A(Z))), @(H, inr(⊥U→B(Z)))), and
t = FN (@(H, Z)) = @(H, Z).

Let us show thats�rhorpo t:
casenew(Z, @(H, inl(⊥U→A(Z))), @(H, inr(⊥U→B(Z))))�rhorpo

@(H, Z) by case 1 requiring@(H, inl(⊥U→A(Z)))�rhorpo @(H, Z). This,
by case 9, needs{H, inl(⊥U→A(Z))}(�rhorpo)mul{H, Z}, and thus
inl(⊥U→A(Z))�rhorpo Z, which holds by applying case 1 twice. 2

Example 4.Encoding of natural deduction, taken from [20].

26

Let S = {o, c : ∗ × ∗ → ∗}, andS∀ = σ, τ, ρ. The signature follows:

F = { appσ,τ : (σ → τ)× σ → τ ; absσ,τ : (σ → τ)→ (σ → τ);
Πσ,τ : σ × τ → c(σ, τ); Π0

σ,τ : c(σ, τ)→ σ; Π1
σ,τ : c(σ, τ)→ τ ;

∃+σ : o× σ → c(o, σ); ∃−σ,τ : c(o, σ)× (o→ σ → τ)→ τ }.

X = { X : σ; Y : τ ; Z : o; T : c(o, ρ), F : σ → τ ; G : o→ σ → τ,
H : o→ ρ→ (σ → τ), I : o→ ρ→ c(σ, τ), J : o→ ρ→ c(o, σ)}.

Let us now give the rules:

appσ,τ (absσ,τ (F), X)→ F (X)
Π0

σ,τ (Πσ,τ (X, Y))→ X
Π1

σ,τ (Πσ,τ (X, Y))→ Y
∃−σ,τ (∃+σ (Z,X), G)→ G(Z,X)

appσ,τ (∃−ρ,σ→τ (T,H), X)→ ∃−ρ,τ (T, λx : o y : ρ.appσ,τ (H(x, y), X))
Π0

σ,τ (∃−ρ,c(σ,τ)(T, I))→ ∃−ρ,τ (T, λx : o y : ρ.Π0
σ,τ (I(x, y)))

Π1
σ,τ (∃−ρ,c(σ,τ)(T, I))→ ∃−ρ,τ (T, λx : o y : ρ.Π1

σ,τ (I(x, y)))
∃−σ,τ (∃−ρ,c(o,σ)(T, J), G)→ ∃−ρ,τ (T, λx : o y : ρ.∃−σ,τ (J(x, y), G))

We now give the ingredients for neutralization:
Neutralization:L2

∃−σ,τ
=2 andA2

∃−σ,τ
={1} for all possible typesσ andτ .

Statuses:∃−new σ,τ ∈ Lex andappσ,τ , Π
0
σ,τ , Π

1
σ,τ ∈ Mul for all possible types

ρ σ andτ ;
Precedence:{appσ,τ , Π

0
σ,τ , Π

1
σ,τ} >F ∃−new ρ,τ and∃−new ρ,τ = ∃−new σ,τ for

all possible typesρ, σ andτ .
We start with the proof of rule (1). The full neutralization do not

change any of both sides. Then we have to prove that
appσ,τ (absσ,τ (F), X)�rhorpo @(F, X), which holds by case 7 and case 1
for showingabsσ,τ (F)�rhorpo F .

For rule (2). The full neutralization do not change any of both sides.
Then we have to prove that
Π0

σ,τ (Πσ,τ (X, Y))�rhorpo X, which holds by case 1 twice.
For rule (3) we have the same proof as for rules (2).

For rule (4). The full neutralization of both sides is:
s = FN (∃−σ,τ (∃+

σ (Z,X), G)) =
∃−new σ,τ (∃+

σ (Z,X), @(G,⊥c(o,σ)→o(∃+
σ (Z,X)),⊥c(o,σ)→σ(∃+

σ (Z,X)))),
andt = FN (@(G, Z,X)) = @(G, Z,X).
Let us proves�rhorpo t. Applying case 1 we need
@(G,⊥c(o,σ)→o(∃+

σ (Z,X)),⊥c(o,σ)→σ(∃+
σ (Z,X))))�rhorpo @(G, Z,X), and,

27

by case 9, it requires{G,⊥c(o,σ)→o(∃+
σ (Z,X)),⊥c(o,σ)→σ(∃+

σ (Z,X)))}(�rhorpo)mul{G, Z,X},
and thus,⊥c(o,σ)→o(∃+

σ (Z,X))�rhorpo Z and⊥c(o,σ)→σ(∃+
σ (Z,X))�rhorpo X

which both hold by case 1.

For rule (5). The full neutralization of both sides is:
s = FN (appσ,τ (∃−ρ,σ→τ (T, H), X)) =
appσ,τ (∃−new ρ,σ→τ (T, @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))), X), and
t = FN (∃−ρ,τ (T, λx :o y :ρ.appσ,τ (@(H, x, y), X))) =
∃−new ρ,τ (T, appσ,τ (@(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)), X)).
For the proof ofs�rhorpo t we apply case 2, with yields the subgoals
(i) appσ,τ (∃−new ρ,σ→τ (T, @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))), X)�rhorpo T ,
and (ii)appσ,τ (∃−new ρ,σ→τ (T, @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))), X)�rhorpo

appσ,τ (@(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)), X). Subgoal (i) holds by case 1
twice. For (ii), we apply case 3, which requires
{∃−new ρ,σ→τ (T, @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))), X}(�rhorpo)mul

{@(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)), X}, and thus
∃−new ρ,σ→τ (T, @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))�rhorpo @(H,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)),
which holds by case 1.

For rule (6). The full neutralization of both sides is:
s = FN (Π0

σ,τ (∃−ρ,c(σ,τ)(T, I))) =

Π0
σ,τ (∃−new ρ,c(σ,τ)(T, @(I,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))), and

t = FN (∃−ρ,τ (T, λx :o y :ρ.Π0
σ,τ (@(I, x, y)))) =

∃−new ρ,τ (T,Π0
σ,τ (@(I,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))).

Provings�rhorpo t follows the same pattern as in the rule (5). For rule
(7) the proof is the same as for rule (6).

For rule (8). The full neutralization of both sides is:
FN (∃−σ,τ (∃−ρ,c(o,σ)(T, J), G)) =

∃−new σ,τ (∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))),

@(G, ⊥c(o,σ)→o(∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))),

⊥c(o,σ)→σ(∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))))))

and,FN (∃−ρ,τ (T, λx :o y :ρ.∃−σ,τ (@(J, x, y), G))) =

∃−new ρ,τ (T,∃−new σ,τ (@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)),
@(G, ⊥c(o,σ)→o(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))),

⊥c(o,σ)→σ(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))))))
In this particular rule it can be seen that in the definition of full neutraliza-
tion the arguments are first fully neutralized and moreover the arguments
used fori-neutalization are also first fully neutralized.

28

For provings�rhorpo t we first apply case 4 this has two subgoals:
(i) ∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))�rhorpo T , and
(ii) s�rhorpo ∃−new σ,τ (@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)),

@(G, ⊥c(o,σ)→o(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))),
⊥c(o,σ)→σ(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))))

For (i) we apply case 1 twice (note that all data types are equal in the type
ordering≥TS).
For (ii) we apply case 4 again which leads us to two new subgoals:
(iii) ∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))�rhorpo

@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)), and
(iv) @(G, ⊥c(o,σ)→o(∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T)))),

⊥c(o,σ)→σ(∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))))))�rhorpo

@(G, ⊥c(o,σ)→o(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))),
⊥c(o,σ)→σ(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))))

For (iii) we apply case 1, and for (iv) we apply case 9, which leads us to
prove:
⊥c(o,σ)→o(∃−new ρ,c(o,σ)(T, @(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))))�rhorpo

⊥c(o,σ)→o(@(J,⊥c(o,ρ)→o(T),⊥c(o,ρ)→ρ(T))).
which holds by case 3 and 1. 2

Example 5.(taken from [?]) Let

S = {proc, data}
F = {+ : proc× proc→ proc, · : proc× proc→ proc, δ :→ proc,

Σ : (data→ proc)→ proc)}

Here,+ stands for the choice operator,· for sequential composition,δ
for deadlock, andΣ for the data dependent choice. The rules are the
following:

{x : proc} ` x + x→ x
{x, y, z : proc} ` (x + y) · z→ (x · z) + (y · z)
{x, y, z : proc} ` (x · y) · z→ x · (y · z)
{x : proc} ` x + δ→ x
{x : proc} ` δ · x→ δ
{x : proc} ` Σ(λd.x)→ x

{D : data, P : data→ proc} ` Σ(λd.P (d)) + P (D)→ Σ(λd.P (d))

{P, Q : data→ proc} `

Σ(λd.P (d) + Q(d))

→
Σ(λd.P (d)) + Σ(λd.Q(d))

{x : proc, P : data→ proc} ` Σ(λd.P (d)) · x→ Σ(λd.(P (d) · x))

29

We can now give the various ingredients for neutralization and carry out
the comparisons:

7 Conclusion

Proving termination properties of Nipkow’s rewriting was considered
in [21] and [3].

The former yields amethodologyneeding important user-interaction
to prove that the ordering constructed has the required properties. Here,
our method does provide with an ordering having automatically all de-
sired properties. The user has to provide with a precedence and statuses
as usual with the recursive path ordering. He or she must also provide
with neutralization levels together with filters selecting appropriate argu-
ments for each function symbols. This requires of course some expertise,
but can be implemented by searching non-deterministically for appropri-
ate neutralization levels and filters, as done by many implementations for
the precedence and statuses required by the recursive path ordering.

The latter generalizes the notion of general schema as formulated
in [2] where the notion of computability closure was introduced. How-
ever, what can be done with the schema can be done with the higher-order
recursive path ordering when using the computability closure off(t) in
the subterm case, instead of simply the set of subtermst itself. The gen-
eral definition of the normal higher-order recursive path ordering with
closure is given in [?]. It is however interesting to notice that the neutral-
ization mecanism is powerful enough so as to dispense us with using the
closure for all these complex examples taken from the literature that we
have considered here. It remains to be seen whether the closure plays in
the context of normal higher-order rewriting, a role as important as for
proving termination of recursor rules for inductive types for which plain
pattern matching is used instead of higher-order pattern matching.

We believe that there is ample room for generalization, and indeed the
higher-order recursive path ordering itself has been already generalized,
to associative-commutative terms [?], and to the calculus of construc-
tions [22].

References

1. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In
Narendran and Rusinowitch, Proc. RTA’99, 1999.

30

2. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Types.Theoretical Computer
Science, 277:. 2001.

3. F. Blanqui. Termination and Confluence of Higher-Order Rewriting Systems. In Proc.
RTA’00, 2000.

4. Henk Barendregt. Functional Programming and Lambda Calculus. In [19], pages 321–364.
5. Henk Barendregt.Handbook of Logic in Computer Science, chapter Typed lambda calculi.

Oxford Univ. Press, 1993. eds. Abramsky et al.
6. Nachum Dershowitz. Orderings for term rewriting systems.Theoretical Computer Science,

17(3):279–301, March 1982.
7. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In [19], pages 321–364.
8. Jean-Pierre Jouannaud. Higher-Order rewriting: Framework, Confluence and termination. In

Art Middeldorp, Vincent van Oostrom, Femke van Raamsdonk and Roel de Vrijer editors,
Processes, Terms and Cycles: Steps on the road to infinity. Essays Dedicated to Jan Willem
Klop on the occasion of his 60th Birthday. Springer Verlag, 2005.

9. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In
Giuseppe Longo, editor,Fourteenth Annual IEEE Symposium on Logic in Computer Sci-
ence, Trento, Italy, July 1999. IEEE Comp. Soc. Press.

10. Jean-Pierre Jouannaud and Albert Rubio. Polymorphic Higher-Order Recursive Path Order-
ings. submitted to JACM. http://www.lix.polytechnique.fr/Labo/jouannaud.

11. Jean-Pierre Jouannaud and Albert Rubio. Higher-Order Recursive Path Orderingsà la carte.
2004. http://www.lix.polytechnique.fr/Labo/jouannaud.

12. Jean-Pierre Jouannaud, Femke van Raamsdonk and Albert Rubio Higher-order rewriting
with types and arities. 2005. see http://www.lix.polytechnique.fr/Labo/jouannaud.

13. Jan Wilhelm Klop. Combinatory Reduction Relations. Mathematical Centre Tracts 127.
Mathematisch Centrum, Amsterdam, 1980.

14. Jan Wilhelm Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 2:2–116. Oxford Uni-
versity Press, 1992.

15. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.The-
oretical Computer Science, 192(1):3–29, February 1998.

16. Dale Miller. Lambda PROLOG. environ 90.
17. Tobias Nipkow. Higher-order critical pairs. In6th IEEE Symp. on Logic in Computer Sci-

ence, pages 342–349. IEEE Computer Society Press, 1991.
18. Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,Logic

and Computer Science. Academic Press, 1990.
19. J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B. North-

Holland, 1990.
20. J. van de Pol. Strict functional for termination proofs. InTyped Lambda Calculi and Appli-

cations, Edinburgh. Springer-Verlag, 1995.
21. J. Van de Pol and H. Schwichtenberg. Strict functional for termination proofs. InTyped

Lambda Calculi and Applications, Edinburgh. Springer-Verlag, 1995.
22. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions. In

Proceedings of the Workshop on Logical Frameworks and Meta-languages, Santa Barbara,
California, 2000.

31

