Higher-Order Orderings for Normal Rewriting *

Jean-Pierre Jouanndud and Albert Rubid

1 LIX, Ecole Polytechnique, 91400 Palaiseau, France
2 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. We extend the termination proof methods based on reduction order-
ings to higher-order rewriting systems using higher-order pattern matching, and
accomodate for any use of eta, as a reduction, as an expansion or as an equation.

1 Introduction

Rewrite rules are used in logical systems to describe computations over
lambda-terms used as a suitable abstract syntax for encoding functional
objects like programs or specifications. This approach has been pionneered
in this context by Nipkow [15] and is available in Isabelle [18]. Its main
feature is the use of higher-order pattern matching for firing rules. A re-
cent generalization of Nipkow’s setting allows one for rewrite rules of
polymorphic, higher-order type [12], see also [8]. Besides, it is shown
that using the eta rule as an expansion [17] or as a reduction [12] yields
very similar confluence checks based on higher-order critical pairs.

A first contribution of this paper is a general setting for adressing ter-
mination of all variants of higher-order rewritirigla Nipkow, thanks to
the notion of anormal higher-order reduction orderingVhile higher-
order reduction orderings actuallyclude5n-reductions, normal higher-
order reduction orderings must be compatible withrequality since
higher-order rewriting operates giy-equivalence classes of terms. This
is done by computing witl¥n-normal forms as inputs. We show however
that monotonicity, stability, compatibility and well-foundedness cannot
be satisfied at the same time. It becomes necessary to use higher-order re-
duction orderings enjoying a stronger stability property, and at the same
time, a slightly weaker monotonicity property for termsn-normal
forms. Restricting the higher-order recursive path ordering [10] to achieve
these properties is our second contribution. Finally, the obtained ordering
is used inside a powerful schema transforming an arbitrary higher-order

* This work was partly supported by the RNTL project AVERROES and France Telecom.
** Project LogiCal, Ble Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
Ecole Polytechnique, INRIA, Univerg&itParis-Sud.

reduction ordering satisfying these monotonicity and stability properties
into a normal higher-order reduction ordering. This is our third contribu-
tion. The obtained ordering allows us to prove all standard examples of
higher-order rules processing abstract syntax. In contrast with the higher-
order recursive path ordering, there is no need here for the closure mecan-
ism developped in [10].

We describe our framework for terms in Section 2, and for higher-
order rewriting in Section 3. The schema is introduced and studied in
Section 4. The restricted higher-order recursive path ordering is given in
Section 5. Several examples are carried out in Section 6. Significance of
the results is briefly discussed in Section 7.

Readers are assumed familiar with the basics of term rewriting [7, 13]
and typed lambda calculi [4,5]. Most ideas and results presented here
originate from [11], an unpublished preliminary draft.

2 Polymorphic Higher-Order Algebras

This section recalls our framework of polymorphic algebras [10].

2.1 Types

Given a setS of sort symbol®f a fixed arity, denoted by : x” — %, and
a setS” of type variablesthe set7gv of polymorphic typess generated
from these sets by the constructerfor functional types

Too = a|s(T) | (Tow — Tv)
forae S¥ands: «* — % €S

Var(o) denotes the set of (type) variables of the type 7sv. Types
arefunctionalwhen headed by the: symbol, anddata typesvhen they
are headed by a sort symbek. associates to the right.

A type substitutioms a mapping fron" to 75w extended to an endo-
morphism of75+. We writec ¢ for the application of the type substitution
¢ to the types. We denote byDom(c) = {a € 8" | ac # a} the do-
main ofo € 7gv, by |y its restriction to the domai®om(c) NV, by
Ran(o) = Usepom(s) Yar(ao) its range By a renaming of the type
apart fromV C X, we mean a type& wheref is a type renaming such
thatDom(¢) = Ran(o) andRan(&) NV = 0.

We shall usev, (for type variablesg, 7, p, 6 for arbitrary types, and
¢, ¢ to denote type substitutions.

2.2 Signatures

We are given a set of function symbols denoted by the lettegsh,
which are meant to be algebraic operators equiped with a fixed number
n of arguments (called tharity) of respective types; € Zgv,...,0, €

7sv, and amoutput typer € Tgv such thalar(o) C U; Var(o;). Let

F = L'ﬂ fo’1><...><0'n—>0'

be the set of all function symbols. The membership of a given function
symbol f to a setF,, «. x., o IS called atype declaratiorand written

f o1 x...x0, — 0. We assume that there is a unique type declaration
for each function symbol in the signaturenlt= 0, the declaratiorf : —

o is written f : o wheno is not a functional type. Type declarations are
nottypes, but; — ... — 0, — oisatypeiff :o; x...x0, — oisa
type declaration. A type declarationfisst-orderif it uses only sorts, and
higher-order otherwise. It ipolymorphicif it uses some polymorphic
type, otherwise, it isnonomorphic Polymorphic type declarations are
implicitely universally quantified: they can be renamed arbitrarily. Note
that type instantiation does not change the arity of a function symbol.

2.3 Terms

The set7 (F, X) of raw algebraicA-termsis generated from the signa-
ture 7 and a denumerable sé&tof variables according to the grammar:

T:=X|(O\X: Te.T) | QT,T) | F(T,....T).

Raw terms of the form\x : 0.u are calledabstractions@(w, v) denotes
the application of: to v. We may omit the type in Ax : o.u as well as
the application operator, writing(v) for Q(u, v), in particular when is
a higher-order variable. We also writ€v,, . .., v,), or Q(u, vy, ..., v,)
for u(vq) ... (v,), @assuminge: > 1. The raw termQ(u,v) is called a
(partial) left-flatteningof s = w(vy) ... (v,), u being possibly an appli-
cation itself.Var(t) is the set of free variables @f while BVar(t) is
its set of bound variables.shall be ambiguously used to denote the list
(s1...8y,), Or the multiset or the sdfts; ... s, } of raw termss,, ..., s,.
We will use the convention that the lit; . . . s;) is empty ifl < k.

Raw terms are identified with finite labeled trees by consideking
o._, for each variable: and types, as a unary function symbol taking a
raw termu as argument to construct the raw tekm: o.u. Positionsare

3

strings of positive integerst and- denote respectively the empty string
(root position) and string concatenatidPos(t) is the set of positions in
t. t|, denotes theubternof ¢ at positionp. We use > |, for the subterm
relationship. The result of replacirg, at positionp in ¢ by u is written
tlu],. We usef[x : o], for a raw term with a hole of type at positionp,
called a context.

Given a binary relation— on raw terms, a raw term such that
s|, — t for some positiorp € Pos(s) is calledreducible s|, is aredex

in s, andst], is thereductof s. Irreducible raw terms are imormal form
A raw term s is strongly normalizablef there is no infinite sequence
of —-steps issuing from. The relation— is strongly normalizing
or terminatingor well-founded if all raw terms are strongly normaliz-
able. We denote by— the symmetric closure of the relatioa—, by

. its reflexive, transitive closure, and ly— its reflexive, symmetric,
transitive closure. The relation— is confluent(resp.Church-Rossérif
s—*u ands —* v (resp.u «—*v) impliesu —*t andv —* ¢ for
somet.

2.4 Typing rules

Definition 1. An environmentl” is a finite set of pairs written a§z; :
o1,...,T, 0y}, Wherez; is a variable,o; is a type, andr; # z; for

i # 7. Var(I') = {x1,...,z,} is the set of variables aof. The size |

of the environment’ is the sum of the sizes of its constituants. Given two
environmentd” and [, their compositionis the environment™ - [=
I'u{z : 0 € I' | * & Var(I")}. Two environmentg” and I are
compatiblef I"- " =T"U I".

Our typing judgements are written &5 - s : o. A raw terms has
typeo in the environmeni” if the judgement” +x s : o is provable in
our inference system. Given an environméhta raw terms is typable
if there exists a type such thatl” +~r s : o, in which case itis called a
term

Types can be seen as terms of typeNe omit the straightforward
type system for typing types, aiming at verifying arities of sort symbols.

Some properties of our type system are instrumental in developing a
theory of higher-order rewriting:

Lemma 1. Given an environment’ and a typable terms, there exists a
unique typer such thatl” Fr s : o.

Functions:

Variables: froix...Xxon 20€F
z:o€l ¢ some type substitution of domain | J, Var ()
I'brx:o I'Frti:o1& ... I Frtn:oné

I' br f(t1,... tn) : €

Abstraction: Application:
I' {z:0} brt:7 I'trs:o—717 I'brt:o
I''tr(Az:ot):0—7 I' brQ(s,t): 7

Fig. 1. The type system for polymorphic higher-order algebras

Note that type substitutions apply to types in terms:= z, (A :
0.5)§ = A : 0€.5, (u,0)§ = (u§, vE), and f(w)§ = f(uf).

Lemma?2. " Fxs:oimpliesl’¢ Fx s : o for anyé.

Lemma 3. Given a signature~, environment’, terms and types such
that!” Frs:o,thenl’- I" Fx s : o forall I” compatible withl".

Lemma 4. Given a signatureF, environment’, terms and types such

that " + s : o, then for allp € Dom(s), there exists a canonical
environment’,, and a typer such thatl’,, - s|, : 7 is a subproof of
the proof of[" Fx s : 0. Moreover,[l’,

lp

oy = Lsl) sl

Lemma 5. Given a signatureF, an environmenf’, two termss andv,
two typess and 7, and a positiorp € Pos(s) such thatl” £ s : o,
Iy, Frslp:mandly, Frv:7,thenl” £ s, : 0.

lp

Definition 2. A substitutiony = {(z1 : 1) — (I1,t1), ..., (Tn : 0p) —
(I, t,)}, is afinite set of quadruples made of a variable symbol, a type,
an environment and a term, such that

(l) Vi € [1”], tl 7& Z; and[;' l_]: tz L0y,

(i) Vi # j € [1..n], z; # z;, and

(iii) Vi # j € [1..n], I; and I’; are compatible environments.
We may omit the type; and environment; in (x; : ;) — (I3, t;).

The set of (input) variables of the substitutiois Var(y) = {x1, ..., z,},
its domainis the environmenbDom(y) = {z; : o1,...,2, : 0,} while
its rangeis the environmeriRan(y) = Uiepr.n [i-

We denote by, the restriction of the substitution to the domain
V' N Var(y), and byy, the substitutiony x\v,.

Note thatRan(v) is indeed an environment by assumption (iii).

5

Lemma 6. Giveny = {(z1 : 01) — (I, t1), ..., (xn 2 0n) = (Ln,ta) }
thenRan(y) Frt;: o;.

Definition 3. A substitutiony is compatiblewith an environment” if
(i) Dom(~) is compatible with’”,
(i) Ran(v) is compatible with/" \ Dom(~).
We will also say that is compatible with the judgement -~ s : o.

Definition 4. A substitutiony compatible with a judgement Fr s : o
operates as an endomorphism oand yields the term~ defined as:

If s =2z € Xandz &€ Var(y) thensy = x

Ifs=xeXand(x:0)— ([,t) € ['thensy =t

If s = Q(u,v) thensy = Q(uy, vy)

If s = flug,... u,) thensy = f(u1y, ..., u,Yy)

Ifs=Mo:7u thensy = Az : ru({x — 2} Uny), 2 fresh.

Lemma 7. Given a signature” and a substitutiony compatible with the
judgement” Fx s: o, thenl” - Ran(vy) bz sy:o.

When writing sy, we make the assumption that the domainyas
compatible with the judgement + r s : 0. We use the lettery for
substitutions and postfix notation for their application.

2.5 Conversions

The following three equations originate from thecalculus, and are
calleda-, 5- andn-equality respectively:

Ar =4 Ay au{xr — y}if
y & BVar(v) U(Var(v) \ {z})

Q(A\z : av,w) =g v{z — w} _
Az . Q(u,) =, u if v & Var(u)

In the above equations, v andw stand for arbitrary terms to which
substitutions{z — y} and{x — u} apply. We considew-convertible
terms as identical, and therefore omiconversions in the sequel. The
congruence generated by theandr-equalities is written—7, or =g,

An important propertysubject reductionis that typable terms, v such
thatu =g, v have the same type. Both equalities can be oriented as
rewrite rules. There are two possible choices for rewriting wijthither

as a reduction (from left to ritht) or as an expansion (from right to left), in
which case termination is ensured by restricting its use to positions other

6

than the first argument of an application. Typed lambda-calculi have all
termination and confluence properties one may need, with respect to:
fGn-reductions;s-reductions andy-expansionsg-reductions modula)-
equality. Using the notationgs — ;v for one 3-rewrite stepu —jv

for its transitive closurey | for the 3-normal form ofu, and«— or

=, for n-equality, the Church-Rosser property @feductions modulo
n-equality for typable terms can be phrased as

S =pn t Iff Slﬁ =n tlﬁ

3 Normal Higher-Order Rewriting of Higher Type

Normal higher-order rewriting [17, 15] allows defining computations over
A-terms used as a suitable abstract syntax for encoding functional objects
like programs or specifications. Nipkow’s framework assumes that rules
are of basic type, and that lefthand sides of rules are patterns in the sense
of Miller [16], two assumptions which are useless for termination pur-
poses. We therefore do not assume them.

Nipkow’s normal higher-order rewriting usgg-equalities in two dif-
ferent ways: given a term to be rewritten with a sef? of rules, s is
first normalized, using-long 5-normal forms, before to be searched for
lefthand sides of rules ik via higher-order pattern matching, that is,
matching modulo=g,. In this section, we define higher-order rewriting
S0 as to capture the different ways in which a term caf/paormalized
before to pattern match a subterm with a lefthand side of rule.

Definition 5. A normal rewrite rules a rewrite rulel” - | — r : o
such that/ and r are higher-order terms inj-normal form satisfying
I' Fx1:oforsometyper iff ' Fxr : 0. Anormal term rewriting
systemis a set of normal rewrite rules.

Given a normal term rewriting system, an environmenf’, two [3-
normal termss andt, and a typer such thatl” +r s : o, we say thak
rewrites tot at positionp with the normal rulel’; - I; — r; : 0y, the type
substitution{ and the term substitution, written I" = s —% ¢, or

s —g,, t assuming the environmefit if the following conditions hold:

(i) Dom(y) € I'¢ (i) |, =5, L€y
(i) ;¢ - Ran(y) € Iy, (V) t =, s[ri&ylpls
Note thatt is any term in the eta-equivalence classspf{v], | .
Higher-order rewriting is therefore defined up to eta-equivalence of target

terms. By providing a method for proving termination of this relation, we
do provide a termination method for all variants of higher-order rewriting
based on higher-order pattern matching. A key observation is:

Lemma 8. Lets beatermsuchthat’ -rs:candl” + s — Ry t.
Thenl" Frt: 0.

Proof. By Lemma 2,1 F [, : 0;£. By conditions (i) and (ii) in
Definition 5, the substitutiory is compatible with the environment¢,

and therefore, by lemma 7;¢ - Ran(y) £ Li£y : 0,£. By condition

(i) and lemma 3], Fx £y : 0:&, hencely, 7 s|, : 0, by subject
reduction. Note that this tells us how to compgta practice. Similarly,
Iy, Frr&y: o Bylemma5, we deduce thdt +r s[ri7], : o.
Using now condition (iv) and the subject-reduction property, we finally
conclude that” Frt: o. O

We often consider type preserving higher-order rewriting as a relation
on terms instead of on judgements, therefore simplifying our notations.

Example 1.We present here an encoding of symbolic derivation in which
functions are represented byterms of a functional type. We give two
typical rules of higher type. The free variahté stands for a function
over the reals, while, y stand for real values. L&t = {real}, and

F = {sin, cos : real — real; diff : (real — real) — real — real
+, % : (real — real) — (real — real) — real — real

diff (Ax. sin(@Q(F,x))) — Ax. cos(@Q(F,x)) x diff(Ax.@Q(F, x))
diff(Ax.@Q(F, x) x A\y.Q(F,y)) — (diff(Ax.@Q(F,x)) x A\y.@Q(F,y))+
(Ax.@Q(F, x) x diff(Ay.@Q(F,y)))

This example makes sense when using normal higher-order rewriting,

because using plain pattern matching instead would not allow to compute

the derivative of all expressions: rewriting the expressliffit \x.sin(x)) =g diff(Ax.sin(\y.y X))
does require higher-order pattern matching. We shall give a mechanical

termination proof of both rules in Section 5.

3.1 Normal Higher-Order Reduction Orderings

We shall use well-founded relations for proving strong normalization
properties. For our purpose, these relations may not be transitive, but
their transitive closures will be well-founded orderings, justifying some

8

abuse of terminology. Reduction orderings operating on judgements turn
out to be an adequate tool for showing termination of normal rewrit-
ing. We consider two classes of reduction orderings cdilgter-order
reduction orderingvhen they includein-reductions andgiormal higher-
order reduction orderingvhen they are compatible withg,,.

Definition 6. A binary relation> on the set of judgements is

— cohereniff for all terms s, ¢ such that(I” Frs:0) = (I" Fxt:
o), and for all environmenf” such that/” and " are compatible,
I'" Frs:ocandl” Frt:o,then(I” Frs:o) = (I Fgt:o);.

— polymorphiciff for all terms s, ¢ and all type substitutiong, then

— stableiff for all termss,t such that(” Fxs: o) = (I Fxt:
o), and all substitutiony whose domain is compatible with, then
(I"-Ran(y) Frsy:0) = (I Ran(y) Fgty:o);

— monotoniciff for all termss, t and types such that(I” Fz s : o) >
(" Fxt: o), forall I" compatible with/” and for all ground context
u[] such thatl” + z u[z : o] : 7, then(I" - I Fxuls] : 7) >
(I"- I'" k5 uft] - 7) (note the unusual important assumption thgt
is ground);

— normal-monotonidff for all termss andt such that(I” Fxs: o) >
(I' F£t: o), forall I” compatible with/” and for all ground context
u[] such thatl” +z ulz : o] : 7 andu[s] is in S-normal form, then
(- I" Fruls]:7) = (- I" Frult]: 7);

— functionaliff for all terms s, ¢ such that(I” Frs: 0—p,t: 0),
then(I" Frs:o) = (I Frt:o);

— compatibleiff for all terms s’, s, ¢, ¢’ such that(I” Fx s’ : 0 =g, s :
o), Frt:o=p,t :0)and(l’ Frs:0) > (I' Fxt:o)then
(I'Frs' o)== (I Bt :0).

A higher-order reduction ordering is a well-founded ordering of the
set of judgements satisfying coherence, polymorphism, stability, mono-
tonicity and functionality.

Anormal higher-order reduction ordering, is a well-founded order-
ing of the set of judgements satisfying coherence, polymorphism, stabil-
ity, normal-monotonicity and compatibility.

One may argue whethefreductions should or should not be included
into a higher-order reduction ordering, since there are two possibilities of
orientation for thej-equality. By including it, we indicate our preference

9

for usingn-reductions instead of-expansions. This preference does not
have any impact on the rest of this paper.

Let us show now that no ordering can satisfy monotonicity, sta-
bility, compatibility and well-foundedness, therefore explaining the need
for the weaker notion of normal-monotonicity.

Assumes : o = t : o (omitting judgements), where : ¢ is in
B-normal form. Given a variabl& : ¢ — 7, Q(X,s) is in g-normal
form as well. By monotonicity@(X, s) : 7 = @Q(X,t) : 7. Consider the
substitutiony = {X — X\y.a} wherea : 7 is a constant. By stability,
Q(Ny.a,s) : 7 > Q(Ny.a,t) : 7. By compatibility,a : 7 > a : 7, con-
tradicting well-foundedness. This problem does not happen with normal-
monotonicity sinced()\y.a, s) is not in 5-normal form.

Theorem 1.LetR = {I; + [, — r; : 0;}; be a higher-order rewrite
system and- a normal higher-order reduction ordering such thdt ;) >
(I; F#r;) Vi. Then the reIation—>Rﬂn is strongly normalizing.

Proof. Let s be a ground normal term such thattr s ret l£—> . vgt.

By definition of normal rewriting¢ is a ground normal term. It therefore
suffices to show that’ - s >~ t, which we proceed to do now.

By assumption]; Fx1; > r;and by polymorphism[;¢ Fx ;£ > ré.
By stability, I;¢ - Ran(vy) Fx L;E&y = 1€y, therefore, by coherence,
Iy, Fxl&y = r&y. By definition,s|, =gz, [;{y, hence, by com-
patibility, Iy, F r sp > r&y. By monotonicity of>~ for normal
ground terms (of equal type),, - I -7 s > s[ri{v],. By coherence
I' brs = s[ri&y],, hencel” s > t by compatibility. O

4 Building Normal Higher-Order Reduction Orderings

In this section, we explain how to systematically build normal higher-
order reduction orderings from higher-order reduction orderings satis-
fying a stronger stability property. To this end, we introduce a specific
treatment of abstractions, calledutralization which transforms a term
built from the signatureF into a term built from an enlarged signature
Frew, Obtained fromF by adding a function symbal , for every types

and a function symbof,,.., for some of the function symbols iA. We
write L, for L,(). The higher-order rules we want to prove terminating
are of course built from terms i (F, X'), notin7 (Few, X).

10

4.1 Neutralization and Normalization

Definition 7. Theneutralization of level (i-neutralizationn short) of a
typable termt € 7 (F,..,, X') with respect to the list of (typable) terms
(up @ 01, upn : 6,) In T (Frew, X), is the termN;(¢, (uq, ..., uy))
defined as follows:

1 No(t: 7, (ug, ..y u,)) =18

2. Nipa(t 2 71, (uq, ... ,up)) = tif 7is a data type;
BNt :o—= 7, (uy, ... un)) = Ni(Qt, Lo, g, o (Ut oy uy))).

Terms of a functional type are neutralized by applying them to the
1 -expression of the appropriate type. For each function symbol, we will
actually control which arguments of a functional type can be neutralized:

Definition 8. To each symbof : o, X ... X 0, — 0 € F and each
argument position € [1..n|, we associate:

— a natural numbemlj; < ar(oy), called neutralization levebf f at
position;. We callneutralizedhose positiong for whichnl} > 0.

— asubsetd} C [1..n] of argument positions of used to filter out the
list of arguments of by definingt} = (t; | k € A}).

We shall now neutralize terms recursively. To this end, we need adding
to the signature a new function symbl,, : o] x...x o, — o for every
declarationf : o4 x ... X 0, — U,ISUCh that, = 7,41 — ... = 7, — T
ifo,=7 —...> 7 —7randnl} =q < k.

Definition 9. Thefull neutralizationof a termt is the termFN/ (¢) s.t.

1. ift € X, thenFN(t) = ¢;
2. ift = Av.u, thenFN (t) = e FN (u);
3. ift = Q(ty,t2), thenFN (t) = Q(FN (t1), FN (t2));
4. ift = f(t1,...,t,) With f € F, then
fN(t) = fnew(an}(FN(tl)a"TN(%}))v T ,an?(fN(tn>,FN(%?))),

whereFN ((uy, ..., uy)) = (FN (uy), ..., FN (uy)).

Our definition makes sense since, in all case¥(¢) is typable with
the same type as Note also that using Case 3 repeatedly yields
FN(Q(ty, ..., t,)) = Q(FN(t1),...,FN(t,)) for flattened applications.
Note also that the filtered list of argumeﬁ}sis itself recursively neutral-
ized before using it to neutralize

11

Example 1 (continued)\Ve illustrate here the full neutralization of the
lefthand and righthand sides of the rules of Example 1. To this end, we
choose a neutralization level for each function symbol and argument po-
sition. The associated subsets of argument positions are chosen empty,
hencel,., abbreviated ag is a constant:

’Cdlffil ‘Cl =0 ’Cc%osi0

sin

dlfF_{} sm_{}A(l:os_{}
LL=1 [£2=1 |[LL=1 [£Z=1

Aiz{} Ai:{} A=A =0
We can now compute the full neutralizations of both sides of the first rule:
FN(diff (Ax.sin(@Q(F,x))))
= diffiew (sin(@Q(F, 1)))
FN(Mx.cos(@Q(F,x)) x diff (AXx.@Q(F,x)))
= cos(Q(F, 1)) Xpew @Q(diffiew (@Q(F, L)), 1)
and of the second rule:
FN(diff (M&xQ(F,x) x My.@Q(F,y)))
= diﬂ;ew (@((F>J-) Xnew @(FaJ—) 7J-))

FN((diff(Ax.Q(F, x)) x Ay.@(F,y))+(Ax.Q(F,x) x diff(Ay.@Q(F,y)))
@Q(Q(diffren (Q(F, 1)), L) Xnew Q(F, L), L) +new@(Q(F, L) Xnew Q(diffrey (@ (F

) =
;). 1), 1)

4.2 Properties of neutralization

The following lemmas investigate the interactions between neutraliza-
tion, instantiation, type instantiation and normalization.

Lemma 9. Lett andus, ..., u, be higher-order terms. Then
M(tv <'U,1, s 7un>)l«: M(tla <U1l, s 7unl>>l

Proof. Lett : 7. We proceed by induction an There are two cases.

1. If i = 0 or 7 is a data-type, then, by definition,
M(ta <U1, s 7un>)l: tl«: M(tl, <ull7 s Junl>)
2. Otherwise > 0 andT = 0 — p. Then,
Nilt, (g, un)) = Nioy (@t Lo(ur, .., un)), (. up))L. By
induction hypothesis, this is equal to
N (@(t J—@(ulw‘ un))la<u1l77unl>)l
= N;_1(Q(¢], J_g(ull,...,unl))l, {ug,...,u,))]. By induction hy-
pothesis again, this is equal to
M—l(@(tla J—H(ulla ce 7unl))7 <ull7 te 7unl>)l
= Ni(t], (uil, ... ual))L 0

12

Lemma 10. Lett = Az, ...z;.u : 7 be agn-normalized term such that
0 < j < ar(r) andw is not an abstraction. Then for all < i < ar(r7)

and all Gn-normalized terms., . . . , u,,
(i) if i < jthenN;(t, (uy,...,u,))l=

At ... xju{zy — Lo (U1, ... up), ..., 2 — Lo (ur, ... ,un)};
(ii) if ¢ > jthenN;(¢, (u1, ..., uy))|l=

Qu{zy — Loy (U1, ... un), ..., 25— Lo (ur,... u,)},

Loy (ury ooy un), ooy Lo (U, up)).

Note thatt is not an abstraction if = 0 and has an arrow typef> 0.
Proof. We proceed by inductiononLetr =0y — ... — 0; — p.

1.:=0. ThenNi(t, <U1, . ,un>)L: tl=t.

2.1>0.ThenN;(Azy ... zju, (uy, ..., uy))]l=
Ni1(QAzy .. ozju, Lo, (ug, ooy uy)), (U, - o un)) L
By Lemma 9, since all, . . . , u,, aregn-normalized, this is equal to
Ni1(QAzy ..oz, Loy (ur, oy un))], (U,)=
Nioi(Azg .. xjou{zy — Lo (ur, ... un)], (ur, ... up))|=
Ni1(Azg .. xju{zy — Lo (w, ..o un)}, (ur, oo up))l.
By induction hypothesis, since there gre 1 variables inz; . . . z;,

—ifi—1<j—1,thatis,; < j, then this is equal to

At ... xju{ry — Lo (ur, ... up), ..,z — Lo (ur, ... un)};
—ifi—1>j—1,thatis,i > 7, then this is equal to
Qu{zy = Loy (U1, ..., up), ., 25— Lo (ur, ..., up)},
Loy (ury oo yun), oy Lo (s - up));
and we are done. O

Lemma 11. Lett be afn-normalized termVar(FN (t)|) = Var(t) and

1. FN(z)]= zforx € X;
2. FN (Mx.u)|= Xe.FN (u)l;
3. FN(Q(ty,t2)) = Q(FN (t1)], FN (t2)]);
4. FN(f(t1,...,tn))l=
fnew(-/\/’nl} (FN(h)l) FN(E}N)L PN ,an? (FN(tn)la fN(i}L)l)l)

Proof. We proceed by induction op|. There are four cases:

1. Lett € X. ThenFN (t)|=t|=t.

2. Lett = \r.u.
ThenFN (t)|= (Az.FN (u))|= \z.FN (u)]. By induction hypothe-
sis,Var(FN (u)]) = Var(u), henceVar(FN (t)]) = Var(t).

13

3. Lett - @(t]_,tQ).
Sincet is normal,t; cannot be an abstraction, hence, by induction hy-
pothesis,FN/ (t1)| is not an abstraction either. Therefof@\/ (¢) |=
Q(FN(t1]), FN (t21)). Finally, sinc&ar(t;) = Var(FN(t1])) and
Var(ts) = Var(FN (t2])) by induction hypothesis, we easily con-
clude thatar(FN(t)]) = Var(t).

4. Lett = f(t1,...,t,) with f € F. ThenFN (t)]|=
fnew(an}(fN(h)?fN(%}))? Tt >an?(FN(tn)>FN(?;)))l
= fnew(an}(fN(tl)’FN(E}))L s 7an?<FN(tn)7fN(z?))l)’
and by Lemma 97N (t)|=
fnew(an}(fN(tl) la f./\[(%}) l) la cee ,an}l(f'/\/’(tn) ia FN(?;) l) l)
On the other hand, by induction hypothe3iay (FN (¢;)]) = Var(t;)
foralli € [1..n], and, by Lemma 102@70(/\/"[} (FN(ta)], FN (7)) =

Var(FN (t;)]) U Var(.?’:/\/(fic)l) = Var(t;) U Var(}"/\/(f})l). Since
Var(FN(t;l) € Var(t)foralli € [1..n], itfollows thatVar (FN (t)]) =
Var(t). O
Let us now move to type instantiations:

Lemma 12. Lett : o be a higher-order term. Thetg|= ¢| &.

Proof. The proof uses the fact theg — 3, ¢’ if and only if there is some
t" with ¢t —,, t” andt’ = t"£. The result follows by induction. O

Since the neutralization Ievallj; of an argument of is smaller than
or equal to the arity of its type, we have the following properties:

Lemma 13. Lett : 7 anduy : 04, ..., u, : 6, be higher-order terms and
¢ a type substitution. Then, for all< ar(7),

M(t€7 <U1§7 cee aun£>) = M(t7 <U1, s 7un>)£
Proof. We proceed by induction o The are two cases.

1. If i = 0 thenNy(tE, (wi&, . .., un)) = t& = No(t, (uq, ..., un))E.

2. If i > 0 then, by assumption = o — p, hencelf : 0§ — p&. Then,
M<t£7 <u1€7 SR 7un€>) = Mfl(@(tgv J-Qlﬁﬂmﬁgnfﬂdf(ul’gv SR 7un€)))
= Mfl(@(t, J_.glﬂmﬂgnﬂgutl, e ,Un))g)

Sincei — 1 < ar(p), by induction hypothesis, this is equal to
N1(Q(t, Ly, g o (ur, o un)))E = Nt (ug, .. un))é O

14

Lemma 14. Lett : o be a higher-order term and a type substitution.
ThenFN (t§) = FN(t)€.

Proof. We proceed by induction op|. There are four cases:

1. t is a variabler. ThenFN (z€) = z§ = FN (x)¢.
2.t = \v.u. ThenZN (t€) =]—7\/ (Ow€.uf) = Av€.FN (uf). By induc-

tion hypothesisFN (u€) = FN (u)€, and therefore
MEIN () = (M FN () = . FN () = FN(au)§ =
FN(t)E.

3.t=Q(ty,...,t,) : 0. ThenFN (&) = FN(Q (tlf S té) i of) =

QN (11E), ... FN(1a6)) : 0€ = QEN(HE), ..., FN(£,)) : €.

By induction hypothesis, this is equal to

QFEN (H)E, ..., FN(t)E) = Q(FN (1), ..., FN(t,))€ = FN(Q(ty, ... t,))E =

FN (t)E.

4.1 = f(tl,...,tn) with f € F. Then

FN(tE) = FN(f(tr, ... 1,)8) = FN(f(ig, - - -, 1a8)) =

Frew Ntz (FN (01€), FN(T1)) -+, Ny (FN (12€), EN (£7€))).

By |nduct|on hypothesis, this is equal to

FrewNo (FN (0)€, FN (F1)E)), - N (FN ()€, FN (F7)€)))
fnew(nl1 (f'/\/'(tl) fN<tf))€ .. an"(fN() fN@f))é)

by using Iemma 13. Extractlng the type substitution we get

Frew(nll(fj\/(tl,f/\f(tf))) . ann(fj\/(tn,fj\/(tf))))g

_f/\/(f(tl,..., 2))E = FN(t)E. 0

We now move to properties involving instantiations:

Lemma 15. Lett : 7 andu., ..., u, be higher-order terms andg a sub-
stitution. ThenV; (¢, (w17, . .., uny)) = Ni(t, (u, - . ., un))7y-

Proof. We proceed by induction oh There are two cases.

1. Assume = 0 or 7 is a data type. Thery : 7, hence
M(t’}/, <u1777un’7>) ty = N(<U1,,Un>)’)/

2. Otherwise > 0 andr = o — p. ThenN;(ty, (uyy, . . Un’Y>) =
M,1<@(t’}/, J—e(u177 <. 7un7))) = ./\/;,1(@@, J—G(ula .))’Y)
By induction hypothesis, this is equal to
-/\/;71<@<t7 J_@(Ul, e 7un)))7 = '/\[Z<t7 <u17 soe ,Un>)’}/ U

Lemma 16. Let ¢t be a higher-order term and a substitution. Then
FN (ty)l= (FN () FN (7))].-

15

Proof. We proceed by induction op|. There are four cases:

1. t is a variabler. ThenFN (z7y) = 2 FN (7).

2.t = Mx.u. ThenFN (ty)]= FN (\z.uy) = e.FN (uy)]. By induc-
tion hypothesisFN (uvy)]= FN (u)FN (v)], and therefore
M FN (uy)| = Ao FN (u) FN (7) 1= dx. FN (u) FN ()| =
(Axf/\f())F ()= fN(M‘U)fN()= FN(t)FN (7).
N N SN AL
By induction hypothesis,
QN (L) FN (V)L - FN (8) FN (7))l =
Q(FN(t1)FN (7)), - fN()N (7))1=
Q(FN (1), - f/\/(n))FN (7)==
fN(@(tl,--- W) FN (7)1 = FN () FN (7)].

4.t = f(ty,...,t)Wlth feF. Thenfj\/(ty)i
fne’w(nl1 (fN(t17> FN(tf’y)) nl"((n’.}/)?f'/v‘(?;’y)))l:
fnew(nl1 (f'/\/-(tfw fN(tf’y))la s nl (:FN< n7)7fN(f7;7))l>

By Iemma 9, this is equal to '
Frew NansN () LEN G DL - Noag N (1)L FN (7))L
and by |nduct|on hypothesis, to
Frew N (FN (8) FN ()] fN(i})fN (VDL
ann (FN () FN ()], FN (&) FN (7))
By Lemma 9 used once again, this is equal to
fnew(nl1 (fN(tl)fN() "T-N(%f)‘/c:/\/(,)/)l)la SRR

ann (FN () FN (7), FN (£) FN (v)1)1)
fnew(nl1 (FN(tl)FN<) fN(g})fN(’y))a SRR

ann(FN(W) FN(7), FN(tf)fM)=
FrewNoit (FN (1), FN (8)) FN (),
an(FN(n)s FN () FN (v))l
by Iemma 15. Extractlng the substitution, we get
Frew Nt (FN(01), FN(7)) -+« N (FN (1), FN (7)) FN (7)1
— AN (f(ts, ..., t))FN (7)1 = FN (TN (). O

Lemma 17. Lett be a higher-order term. TheRN (t)|= FN(t])].

Proof. We proceed by induction or— ;, Ur> which is well-founded [7].
There are four cases:

16

1. ¢t is a variabler. It follows from the fact that:|= «.

2. t = \r.u. There are two cases.
If u=Q(v,x), withz ¢ Var(v) then}“/\/()= FN(Mx.Q(v,x))|=
Ao FN(Q(v, 2)) | = Ae.Q(FN (v), FN(2)) |= Az.Q(FN (v), z) |=
FN (v)] sincex ¢ Var(v) = Var(FN (v)]). By induction hypothe-
sis, we getFN (v)|= FN (v])]. SinceFN (v])|= FN (\z.Q(v, z)|
)|, we are done.
Otherwise,(A\r.u) |= \r.u| and therefore” N (t) |= FN (\x.u)|=
(M. FN (u)) |= (M.FN(u) |) |. By induction hypothesis, this is
equal to(\e.FN (u |) 1) 1= e FN(u]) 1) |= (N (u])) |=
FN (Mx.ul)]= FN((Ax.u)])] by our assumption and we are done.

3.t = @Q(u,v). ThenFN (t)|= FN(Q(u,v))|= Q(FN (u), FN (v))]|=
Q(FN (u) |, FN(v) |) |. By induction hypothesis, this is equal to
Q(EN (ul)], FN (W) [) = FN (@(ul, v]))].

@(ul,v]) is normalized the N (Q(ul,v]))|= FN(Q(u,v)])]

and we are done.
Otherwise,u |= M\x.w, henceFN (Q(u |, v])) |=FN(Q(\z.w,v |
) 1= @O FN (w), FN (v |)) |= FN(w){z — FN(v)} |. By
Lemma 16, this is equal tB\V (w{z—wv|})|. SinceQ(u, v) —} w{z—
v]}, by induction hypothesis, this is equal&/ (w{z —v|}])|=
FN(Q(u,v)])].

4.t = f(t1,...,t,) with f € F. ThenFN (t)|= FN(f(t1,...,t,))l=
Jnew(nll(fN(t1> fN(tf» - ann(]:N(n), FN (7))l =
fnew(nll(fN(t1> fN(tf>l7 (fN<) fN(ﬁ))l)

By Lemma 9, this'is equal to
FrewNo (FN (0L, FNER) D)L - N (FN () L, FN (8 1))
hence, bylnductlon hypotheS|s to

FrewNos FN () LIN L) DL - Not FN (8 LEN (F7L)1)1)-
By Lemma 9 again, this is equal to

= frew N (FN (811, N (@)L - Noag (FN (81), FN(T71))1)
= fnew(it (FN (1), FN(T51), - Ny (7'7\/(nd) FN(#71))) 1=
FN (], tal))]= fN(f(tl,m,t)l)l- O

4.3 The Neutralized Ordering Schema

Definition 10. Given two terms;, t and a higher-order ordering-, we
define the neutralized ordering,, as follows:

s = tifand only if FN (s)| >~ FN(t)]

17

We now need to show that,, is a normal, higher-order reduction
ordering. Well-foundedness follows from well-foundedness-pfvhile
compatibility follows from the definition. Stability and normal-monotonicity
depend upon the particular orderirgused in the construction.

Definition 11. An ordering> on higher-order terms satisfies

(i) schema-stabilityf for all 5n-normal termss, ¢t and substitutions,
thens - ¢ impliesty —7, t'y for some ternt’ such thatsy| >~ .

(i) schema-replacemeititfor all 5n-normal terms\z.v : 0 — p and
t : 0 — p, and all sequences afy-normal terms(u,, . .., u,),

—ift = e.w, thenv{z — L, (uy,...,u,)} = w{z — L,(uy,...,u,)},
— otherwisep{z — L, (uq,...,u,)} = Q(t, Ly(u, ..., uy)).

Theorem 2. Let > be a higher-order reduction ordering fulfiling the
schema-stability and schema-replacement properties. Heis a nor-
mal higher-order reduction ordering.

The result follows from Lemmas 18, 19, 21, 23 and 24.
Lemma 18. If = is coherent then-,, is coherent.

For the proof to make sense, we need here to explicit the typing judge-
ments.

Proof. We prove that for all terms,t such that(” + s : o) >,
(I' Fxt:0),and for all environment” such that” and/” are compat-
ible, " Frs:ocandl” Fxt:o,then(I” Frs:o) =, (I" Frt:o).
By coherence of-, (I" F » FN(s)l]: o) = (I'" Fx FN(t)]: o)
implies (I" =z FN(s)]: o) = (I" + 7 FN(t)|: o), and therefore
(I" Frs:o) =, (I" Fxt:o).]

Lemma 19. If > is polymorphic then-,, is polymorphic.

Proof. Let s, ¢t be higher-order terms argda type substitution. We prove
thats >, t impliess¢ >, t£. By definition, FA/ (s) |~ FN(t)] and, by
polymorphism of-, FN (s)| € = FN(t)] & By lemma 127N (s)| £ =
FN (s)€] andFN (t)] € = FN(t)¢]. By lemma 14,FN (s)€ = FN (s€)
and FN (t)¢ = FN(t€). Altogether, we getFN (sf) |= FN(s)€ |=
FN(s)] € = FN(t)| &€ = FN(t)¢]= FN(t€)| which impliess¢ >, €.

O

Lemma 20. Let ¢ be a higher-ordersn-normal term andy be a gn-
normal substitution. Thetwy|= tv| 3.

18

Lemma 21. Assume- satisfies schema-stability and functionality. Then
-, IS stable.

Proof. Let s, t be higher-order terms anda substitution. We prove that
s >n t impliessy >, tv, thatis,FN (s)| >~ FN (t)| implies FN (svy)] >
FN (tv)]. By Lemma 16 and the confluence prop3ertysgfreduction,
FN (s7)= (FN(s)| FN(7)1)l= andFN (t) = (FN (1)} FN'(7)])].
Let s; andt; be thegn-normal termsFN (s)| and N (t)| respectively,
and lety’ be then-normal substitutio#N (v)|. By Lemma 20,7/ =
s17'lg andty'|= 17| 5.

Sinces; > t;, by schema-stability of- we gets;y’ [z~ '+ for
some term¢’ such thatt;y —5t'y/. By confluencet'y' —75 117" | 5.
By functionality of >, it follows that¢'+" >~ ¢, |5, and therefore, by
transitivity, s;7'|= s17'| s> t17'| s= t17/]. O

Lemma 22. Assume that is monotonic and satisfies the schema-replacement
property. Assume further that: 7, ¢ : 7 anduy, . . . u,, vy, . .. v,, are4n-
normal terms satisfying > ¢ andu; = v; forall i € {1...n}. Then,

Ni(s, (ug, ... up)) L= Ni(t, (v1,...05))]
Proof. We proceed by induction oh There are two cases:

1. Ifi = 0orrisadatatype, thel;(s)|=s|l=s =t =t|= N;(t)].
2. Otherwisej > 0 andT = o — p. Then

Ni(s, (uq,...up))l=

Ni_l(@(87 Lg(Ul, c. Un)))l and

Nz<t, <’U1, ce Un>)l: Ni_1<@(t, J_g(’Ul, o Un)))l By Lemma 9

Ni(s)l= N;_1(Q(s, Lg(ug,...uy,))l)l and

Nl<t)l:Nl_1(@(t, J_g(’Ul, ce ’l}n))l)l

We are left showing that: 7 = ¢ : 7 implies@(s, Lg(uq,...u,))|>

Q(t, Lg(vy,...v,))]. There are four cases:

(@) If s = Mr.wandt = Ar.wthen@(s, L,)= u{x — Lg(u,...u,)}
and@(t, 1,) |= v{x — Ly(vy,...v,)}. By monotonicity and
transitivity of -, Ly(u1,...u,) = Lo(vq,...v,). Hence, by schema-
replacement propert@(s, Lo(us, ... u,))l= Q(t, Lo(vy,...v,))],

(b) If s = \z.u andt is not an abstraction, then
Q(s, Lo(uq,...up))l=u{r — Lg(uy,...u,)} and
Q(t, Lg(vy,...v,))l=Q(t, Lo(vy,...v5)).

By the schema replacement property as before, we get
Q(s, Lo(ur,...up))l= Q(t, Lo(vy,...vn))].

19

(c) If s,t are not abstractions, then
Q(s, Lo(uq,...up))l=Q(s, Lo(us,...u,)) and
Q(t, Lo(v1,...vn)) L= Q(t, Lg(vy,...0,)).

By monotonicity and transitivity we get
Q(s, Lo(uy,...uy))l>= Q(t, Lo(vy,...v,))].

(d) If sis not an abstraction and= \z.v then,
Q(s, Lg(ug,...uy))l=Q(s, Lo(uy,...u,))and
Q(t, Lo(v1,...vn))l=v{x — Lo(v1,...05)}.
Now, by monotonicity, transitivity and functionality we get
Q(s, Lo(uq,...up))l=Q(s, Lo(u,...uy,)) =
v{x — Lg(vy,...v,)} = Q(t, Lo(vy,...00))].

Finally, since@(s, Lg(uy,...uy,)) > Q(t, Ly(vy,...v,)) |, We can
conclude by induction hypothesi;(s)|= N;_1(Q(s, J_g(ul,...un))l
)L~

N;—1(Q(t, Lo(vy,...v)))l= Ni(t)]. 0

Lemma 23. Assume that satisfies the monotonicity, functionality and
schema replacement properties. Thenis normal-monotonic.

Proof. Let s, ¢ be higher-order terms and| a ground context such that
u[s] is in fn-normal form. We prove that -, t impliesu[s] >, u[t],
that is,FN (s)| = FN(t)| implies FN (u[s])| > FN (u[t])].

We proceed by induction on the|. If u is empty we are done. Other-
wise, there are four cases:

1. uf] = Ma/[]. By Lemma 11,FN (us]) |= \x.FN(«'[s]) | and

FN (ult])l= Xe.FN (v/[t])]. By induction hypothesisFN (u/[s])] >

FN (v'[t])|, and, by monotonicity of-, we conclude that\ (u[s])|=
ArFN (u[s)d o TN (w'[t]) | = FN (uft])L.

2. u[] = Q(v,u'[]). By Lemma 117N (us])| = Q(FN (v)], FN (u'[s])]
) and]-“/\/(u[t])lz Q(FN (v)], FN(«/[t])]). By induction hypothe-
sis, FN (v/[s]) = FN(«[t]) |, and, by monotonicity of-, we con-
clude thatQ(FN (v)|, FN ('[s])]) = Q(FN (v)|, FN ('[t])]).

3. uf] = Q(«'[],v). By Lemma 117N (u[s])| = Q(FN (u'[s])|, FN (v)]
) and FN (uft]) = Q(FN («'[t])], FN (v)]). By induction hypothe-
sis, FN (v/[s]) |~ FN(«[t]) |, and, by monotonicity of-, we con-
clude as before.

4. u[] = f(...d/[]...). By Lemma 11,

([]) l— fnew(: nlk(fN([]) l,f/\/(@l;) l)l) and
FN @II= Fenl- nzkw(()], FN]))] -).

20

By induction hypothesiFN (u'[s])| - FN (v/[t])|, and by Lemma 22
N (N (o [s]) L, N (ulsT))L N (N (/ H]) L, N (ule]) L)L
(note that, sincé may be in.A’} the arguments used for neutralization
in N (]—"N(u’[s])i,f/\/(@];)l)l are, by induction, greater than or

equal to the arguments used/\'f,yl? (FN (W'[t])], f/\/’(@fﬁ)l)l).

Finally, by monotonicity of-, we conclude that

Fuew(- N (FN (/ [)) L, EN (u[s[)L))

Frew (- Noug PN @ [t]) 1, EN (ufTp)L)). 0
Lemma 24. >, is compatible.

Proof. Let s, s,t,t' be higher-order terms. Then we show that=g,
s >=nt =g, t implies s >, t'. By assumptions|= s'| andt|=t'|,
and by lemma 17

FN(s)l=FN(s])|=FN(s'])|= FN(s')] and

FN ()= FN(t])]=FN (¥)= FN(¥')].

Therefore,s >, t implies FN(s') |[= FN(s) |~ FN(t)|= FN(')].
HenceZFN (s')] >~ FN(t')| and thereforg’ -, t'. 0

5 The Normal Higher-Order Recursive Path Ordering

Our purpose here is to define a higher-order ordering satisfying schema-
stability and schema-replacement. The higher-order recursive path order-
INg >horpo [10] iS NOt @an appropriate answer, because it does not satisfy
schema-stability. Fortunately, a simple restriction suffices in case of an
application on left (Cases 5 and 9 of our coming definition) resulting in
therestricted higher-order recursive path ordering/e assume given:

1. a partitionMul & Lex of F;

2. a quasi-ordering>+ on F, called theprecedencesuch that>r is
well-founded,;

3. a well-founded quasi-ordering, on types such that for all ground
typesr, o, o,

T—o=paiffa=7 -0 7 =7 7ando =7, o
and

T — 0 >, aimpliese >z, aora=17"— o', 7' =7, Tando >4, o’

Definition 12. Givens : c andt : 7, s > tiff o>, 7 and

rhorpo

21

1. s = f(3) with f € FUS, andu = tfor someu € (s)
rhm"po
2. s = f(s) andt = g(t) with f >xs g, and A
3. s = f(s) andt = g(t) with f =x5 g € Mul ands(ke Jmuit
rhorpo
4. s = f(3) andt = g(t) with f =z5 g € Lex ands(e)iext, and A
rhorpo
5.5 = Q(sq,s9), s1 is not of the form@(X,w) with X € X and
U= horpot fOr SOMeEu € {s1, 50}
6. s=X:owu,x & Var(t)andu > t
horpo
7. s = f(3), Q(¢) is an arbitrary left-flattening of, and A
8.s=f(5)with f € F,t = M\ : avwithz & Var(v) ands = v
horpo
9. s = Q(sy, $2), 51 is not of the forma (X, w) with X € X, Q(7) is an

arbitrary left-flattening oft and{s1, s2} (> horpo)mut t
10.s= X r:au, t =Xr: [fuv,a = fandu > v

horpo rhorpo
11. s = Q(\r.u,v) andu{z — v} = t
horpo
12. s = M.Q(u, z), v ¢ Var(u) andu > t
horpo

whereA =Vv €t s = wvoru >= vforsomeu € (s)
rhorpo horpo

Of course, making bound variables fit may need renaming in Case 10.
Note that we could add the definiti@(X, 5) >, 1,0rp0 Q(X, 2) if (=1 horpo)mont
which would yield a strictly richer relation with the same properties. We
do not since this would force us defining explicitely the equivalence re-
lation to be added to the strict ordering.

Lemma 25. (>,10rp0)* iS @ higher-order reduction ordering satisfying
schema-stability and schema-replacement.

Proof. Containement of-,,,,, INtO >, IS Clear, which implies well-
foundedness of,,.,.- SO are monotonicity, since contexts are assumed
ground, and polymorphism, since type instantiation does not introduce
redexes of any kind in terms. Coherence and functionality are both straith-
forward. Schema-replacement forces the use of Rule 10, for typing rea-
son. It then follows by an easy induction. We are left with schema-
stability, which implies stability. Schema-stability, i.€%,10p0 t Where

s,t are normal terms, impliesy —*t'y for somet’ such thatsy |

>~ rhorpo t' 7Y, 1S proved by induction on the definition of the ordering.

22

1. ASSUMES =400 t DY Case 1, hence >, 1,0 t for someu € CC(s).
By induction hypothesis, there exists somesuch thatty —* 'y
anduy| >,norpo t'y. Sinces is headed by a symbol A U S, uy|e
CC(svl]), hencesy| >, porpo t'y by Case 1.
2. Assumes >4, t Dy Case 2, hence = f(5),t = g(f), f >zs ¢
and, for everyv € t, s >0 v, h€Nce, by induction hypothesis,
there exists’ such thatvy —*v'y and sy | >, porpo v'7y. Lett' =
g(v'), hencety —*t'~. Sincesy| is headed byf, by Case 257
>'r‘horpo t,’Y
5. Assumes >,,.po t Dy Case 5. By induction hypothesig, —* '~
for somet’ anduy| >, porpo t'y fOr someuw € {sq, so}. Our assump-
tion ons; ensures thaty|= Q(s;7], s27|), allowing us to conclude
by Case 5.
9. AsSsSumes >, t by Case 9. This case is similar to case 5.
11. Assumes >0t Dy Case 11 or 12. These cases cannot happen
sinces is assumed in normal form.
12. All other cases are either similar to the above ones or straightforward.
O

As a consequence,
Theorem 3. (>, 10rp0) 5 IS @ Nnormal higher-order reduction ordering.

We will approximate the normal higher-order recursive path ordering
(> rhorpo)s BY (>rhorpo)n N all coming examples. As can be guessed,
we need to define the precedence on the extended signature. In pratice,
we will always makel ,-function symbols small.

Example 1 (end)Letdiff.ew ># {Xnew, tnew, cos} anddiff,e,, € Mul.

First rule: diffew (sin(Q(F, L))) > rhorpo COS(Q(F, L)) Xnew @(diffiew (Q(F, L)), L)

Applying first case 2, we recursively obtain two subgoals:

(i) diffew (sin(Q(F, 1))) > rhorpo cos(Q(F, 1))

(ii) diffaew (sin(Q(F, L)) > rhorpo @(diffiew (Q(F, L)), L).

(i): applying Case 2 yieldsiff,ew (sin(Q(F, L))) >rhorpo @(F, L) shown by Case 1 twice.

(ii): applying Case 7 generates two new subgoals

(iii) diffew (sin(Q(F, L))) > rhorpo diffiew (Q(F, L)) , which holds by case 3, then case 1.

(iv) diffew (sin(@(F, L))) >rmorpo -L , Which holds by case 1 twice and then case 5.
Second rule: diffiew (Q(Q(F, L) Xpew @(F, L), L)) >rhorpo

Q(Q(diffrew (Q(F, L)), L) Xnew Q(F, L), L) +new @(Q(F, L) Xnew @(diffiew(Q(F, L)), L), L)
Case 2 generates two subgoals:

(i) diffew (Q(Q(F, L) Xnew @(F, L), L)) >rhorpo @(Q(diffiew (Q(F, L)), L) Xnew @(F, L), L)
(i1) diffew (Q(Q(F, L) Xnew Q(F, L), L)) >rhorpo @(Q(F, L) Xnew Q(diffew (Q(F, L)), L), L).
By Case 7, (i) generates two new subgoals:

23

(iii) diffew (Q(Q(F, L) Xnew @(F, L), L)) >rhorpo Q(diffrew (Q(F, L)), L) Xnew @(F, L)
(iv) diffiew (Q(Q(F, L) Xnew @(F, L), L)) >thorpo -L-

The latter holds by case 1 and then case 5. By Case 2, (iv) yields two subgoals:
(V) diffiew (Q(Q(F, L) Xnew Q(F, L), L)) >rhorpo Q(diffrew (@(F, L)), L)

(Vi) diffew (Q(Q(F, L) Xnew @(F, L), L)) >rhorpo Q(F, L).

By Case 7, (v) generates

(vii) diffiew (Q(Q(F, L) Xnew @(F, L), L)) >rhorpo diffrew (Q(F, L))

(viii) diffiew (Q(Q(F, L) Xnew @Q(F, L), L)) >rnorpo L SOlved by Case 1 first, then 5.
Finally, (vii) is solved by Case 3, 5, and 1 successively.

6 Examples

We present here several complex examples proven terminating with the
normal higher-order vrecursive path ordering. For all of them, we give
the necessary ingredients for computing the appropriate neutralizations
and comparisons. The rules are first given in a format aiming at an easier
reading by writingZ’(X) for @(F, X'). When it comes to the computa-
tions, we make the reverse choice, to make cleard@hathe top function
symbol of the term#'(X).

As a convention, missing neutralization levels are equal to O, in which
case the corresponding subset of argument positions will be empty. In all
examples, we use a simple type ordering, equating all ground data
types, which fulfills the requirements given in Section 5. Precedence on
function symbols and statuses will be given in full.

Example 2.The coming encoding of first-order prenex normal forms is
adapted from [17], where its local confluence is proved via the com-
putation of its (higher-order) critical pairs. Formulas are represented as
A-terms with sortform. The idea is that quantifiers are higher-order con-
structors binding a variable via the use of a functional argument.

S={form}, F={AV:formx form — form;—: form — form;
V,3: (form — form) — form}.

PAV(Az.Q(x)) — V(Az.(P A Q(x))) P AIO2.Q(x)) — F(Az.(P AQ(x)))
V(Az.Q(z)) AN P = Y(Az.(Q(x) A P)) I Az.Q(x)) A P — I(Ax.(Q(x) A P))
PvV(Az.Q(x)) — V(Az.(PV Q(x))) Pv3IAz.Q(z)) — IAz.(PV Q(x)))
V(Az.Q(z)) VP — V(Ax.(Q(z) V P)) F(Az.Q(x)) VP — I A\x.(Q(z) V P))
(Y. Q(x))) — 0= (Q() ~(E0.Q(x))) — YO (Q()

Ingredients for neutralizatior?!, = 1, £ =1, AL = {}, AL = {}.

24

StatusesVew, hew € Mul
Precedence: >F {vnewa Elnew}; V>r {vnewa Elnew}; >F {vnewa EL1ew}- 0

We now carry out the proof of the first and the last rule. All others
follow the same pattern.

PAV(A2.Q(Q,z)) = V(A\z.(PANQ(Q,x))) (1)
~(B3(Az.0(Q, x))) = V(Az.~(Q(Q, z))) (8)

The ingredients for the proof are the following.
For neutralization we havell = 1, £ =1, AL = {}, AL = {}.
For the ordering we havé..,, 3..w, 7 € Mul and as precedence:

A >F {vnewa EL1ew}1 \/>]-‘ {vnewa EL1e:w}1 o >F {vneW7 EL1ew}-
In the following proof we abbreviate ,,,,, as_L.

We start with the proof of rule (1). Let us first compute the full neu-

tralization of both sides:
FN(P AV A2.Q(Q, 1)) = P A Ve (@Q(Q, 1)), and
FN(V(Az.(PAQ(Q, 7)) = Vnew(P N Q(Q, L)).
We show thatP? A Ve, (Q(Q, L)) > rhorpo Ynew(P A Q(Q, L)). By case 2
we need to show? /\vmw(@(1)) > rhorpe PAQ(Q, L), and by case 3
We e P, Ve (A(Q, 1)) }omrhorpo)mur{ P, 4(Q, 1)} This requires

Voew (Q(Q, L)) ™ rhorpo @(Q, L) which holds by case 1.

Let us prove now rule (8). The full neutralization of both sides are:
FN(=(3(A2.0(Q, 7)))) = ~(Fuew(@(Q, 1)), and

IN (V(Az.~(Q(Q, 7)) = Vnew(—(Q(Q, 1))).
Now we show that:(J,c., (Q(Q, L)) =rhorpo Ynew (—(Q(Q, L))). By case 2

we need to Show (3., (Q(Q, L)) > rhorpo ~(Q(Q, L)). Applylng case 3
we are left with{3,..,,(Q(Q, L))} (> rhorpo)mu{@(Q, L)}, which holds
by case 1. O

Example 3.This example of surjective disjoint union is taken from [21].
Signature and rules are parameterizedvby S = {A, B, U }:

F={inl: A—-Usinr: B— U;case, : U x (A — a) x (B — a) — a}.
caseq(inl(X), F,G) — F(X)
caseq(inr(Y), F,G) — G(Y)

caseq(Z, . H(inl(x)), . H (inr(y))) — H(Z)

Neutralization:£2, . =1, £3 . =1, A% .= {1} A2 . ={1}.
Statuses and Precedence: any choice will do.

25

Let us rewrite the rules with explicit applications.

caseq(inl(X), F,G) — Q(F, X) (1)
casey(inr(Y), F,G) — Q(G,Y) (2)
caseq(Z, e.Q(H,inl(x)), xy.Q(H,inr(y))) — Q(H, Z) (3)

=1, A2 ={1}, A3, ={1}.

caseq caseq caseq

For neutralization we have®?._ =1, .2

caseq

For this example we can use the empty precedence.

We start with the proof of rule (1). Let us first compute the full neu-
tralization of both sides:
s = FN (case,(inl(X), F,Q)) =
CaS€ne (1Nl (X)), Q(F, Ly_4(inl(X))), Q(G, Ly_p(inl(X)))), and
t=FN(Q(F, X)) =Q(F, X).

NOW We Proves >, porpo t:

€aSeney (1nl(X), Q(F, Ly_a(inl(X))), Q(G, Ly_pg(inl(X)))) > rhorpo
Q(F, X), by case 1, requiring(F, Ly a(inl(X))) >rhorpo Q(F, X).
This, by case 9, needs$", Ly, 4(inl(X)) } (> rhorpo)mu{ F, X }, @and thus
Ly a(inl(X)) =rhorpo X, Which holds by applying case 1 twice.

For rule (2), similarly the full neutralization of both sides is:
s = FN (casey(inr(Y), F,G)) =
caSenen (inr(Y), Q(F, Ly_a(inr(Y))), Q(G, Ly_p(inr(Y)))), and
t=FN(Q(G,Y)) =Q(G,Y).

Then the proof o .., t is exactly as the one for rule (1).

Finally we prove rule (3). The full neutralization of both sides is:
s = FN (caseo(Z, \v.Q(H, inl(x)), y.Q(H, inr(y)))) =
casenen(Z,Q(H,inl(Ly_a(2))),Q(H,inr(Ly_p(Z)))), and
t=FN(Q(H,Z))=Q(H,Z).

Let us show that >, 0,0 t:
caSenen (2, Q(H,inl(Ly_a(2))), Q(H,inr(Ly—5(Z)))) =rhorpo
Q(H, Z) by case 1 requirin@(H, inl(Ly_a(2))) =rhorpo Q(H, Z). This,
by case 9, needs”, inl(Ly—a(Z))} (>rhorpo)mu{H, Z}, and thus
inl(Ly—a(Z)) >rhorpo Z, Which holds by applying case 1 twice. O

Example 4.Encoding of natural deduction, taken from [20].

26

LetS = {o, c: *x x * — x}, andS" = o, 7, p. The signature follows:

F=A{appor: (0 > 7) X0 —=7T; abser:(0c = 7T)— (60— T);
Hyr:0x1—clo,T); 1D, :clo,7) — o3 1] 2 c(o,T) — 7
I :oxo0—clo,0); 3,,:clo,0)x(0—0—7T)—>T }L

o,T

X={X:o;Y:1;Z:0,T:¢(0,p), F:o—7;G:0—0—T,
H:o—p—(oc—71)I:0—p—clo,7),J:0—p—cloo)}

Let us now give the rules:

apPo.r (35 or (T,H), X

)
.3, . (T.0)
12, G, oy (T, 1)

)

p,c(o,T)

3,3, (T, J),G

p,c(0,0)

We now give the ingredients for neutralization:
NeutrallzatlonL‘%;,T:2 andAgg,Tz{l}for all possible types andr.
Statusesd,,,, , . € Lexandapp,.-, M9, M € Mulfor all possible types
p o andr;

Precedencefapp,,r, Iy -, 15 .} >7 Fiew pr @NAT 0y 0 = Ty o fOT
all possible typep, o andr.

We start with the proof of rule (1). The full neutralization do not
change any of both sides. Then we have to prove that
apper(absy - (F), X) =rhorpo Q(F, X'), which holds by case 7 and case 1
for showingabs, - (F) > rhorpo F'-

For rule (2). The full neutralization do not change any of both sides.
Then we have to prove that
HgT(HU,T(X, Y)) > rnorpo X, Which holds by case 1 twice.
For rule (3) we have the same proof as for rules (2).

For rule (4). The full neutralization of both sides is:
§= fN(3;7—<3¢j(Zv X), G)) =
El'r;w U,T(H:Ir(Z7 X)v @<Ga J—c(o,a)—m(ai(za X))7 Lc(o,U)—w(El;r(Z» X)))),
andt = FN(Q(G, Z, X)) = Q(G, Z, X).
Let us proves >4, t. Applying case 1 we need
@(G, J_C(O’U)HO(H:(Z, X)), J_C(OJ)HU(H;’-(Z, X)))) > rhorpo @(G, Z, X), and,

27

by case 9, itrequirefa, L .(o.0)—o(35(Z, X)), Le(o,o)—o (35 (Z, X))} (rhorpo)mu{ G, Z, X },
and thUSJ—c(o,o)—m(H;(Z, X)) > rhorpo A andJ—c(o,o)—w(Elj(Za X)) > rhorpo X
which both hold by case 1.
For rule (5). The full neutralization of both sides is:
s = f‘N(appUT<E| U—>T(T H) X))
appUT(Elnew P, O'HT(T @(H J— OP)—>0<T) c(o,p) —’P<T))7 X)’ and
t=FN 3, (T, \x:0y:p.apps.(Q(H, x,y),X))) =
Frew p,T(T appgT(@(H Leo, p)—>0(T) J—C(O,p)—>p(T)) X)).
For the proof ofs .., t We apply case 2, with yields the subgoals
(I) apPe, T(Hr;u) p,0—T (Ta @(H7 J—c(o,p)—>o(ir>7 J—c(o,p)—»p(T»)a X) > rhorpo T,
and (”) appUT(Elnew P,0—T (T @(H J—c(o p)—o (T) J—c(o p)—p (T))) X) > rhorpo
apPo,-(Q(H, Leo,p)—o(T), Leto,p)—p(T)), X). Subgoal (i) holds by case 1
twice. For (ii), we apply case 3, which requires
{Eln_ew 0,0—T (T7 @(H7 J_C(O,P)—"J (T>7 J‘C(O,P)—W (T)))7 X}(>‘rho¢po)mul
{Q(H, Leo,p)—o(T), Letop)—p(T)), X}, and thus
iz_ew p7U*>T<T7 @(H7 J—c(o,p)—>0 (T)7 J—c(o,p)—>p (T>)) > rhorpo @(H7 J—c(o,p)—»o(,—r>> J—c(o,p)—»p(,—r»s
which holds by case 1.

For rule (6). The full neutralization of both sides is:
s =INUIZ (3, on(T. 1)) =
Hg’f'(ﬂr;wpc(o'r (T @(I J‘ OP)"O(T) J_ (p)HP(T))))’ and
t=IN @3, (T, x:oy:pdI) (Q(I,2,y)))) =
Elnepr(T HO <@(I 1 (Op)—>0(T) c(o,p)— (T))))
Proving s hhmﬂpot follows the same pattern as in the rule (5). For rule
(7) the proof is the same as for rule (6).

For rule (8). The full neutralization of both sides is:
‘FN(H;T(pc oa)(T J) G))

(G, lc(o,cr)eo(i;w pe(o.) (L @, Le(o,p)=0(T), Lefo,)—p(T))))),

J‘C(O o)— G(Eln_ew p,c(0,0) (T7 @(J7 J_C(O,P)—W (T)7 J_C(O:P)—V)(T))))))
and,FN (3, (T, A\z:0y:p.3, (Q(J,2,y),G))) =
Elnew p,T(T Elnew 0,7—((‘] L Op)—>O(T> J—C(O p)—>p(T>)a

UG, Letoo)-o(A(, Letop)—o(T), Letop)—p(T)));
_)) J—c(ocf (@(J J— c(o,p) —>0<T) J—c(o,p)—m(T))))))_

In this particular rule it can be seen that in the definition of full neutraliza-
tion the arguments are first fully neutralized and moreover the arguments
used fori-neutalization are also first fully neutralized.

28

For provings >,1.rp0 t We first apply case 4 this has two subgoals:
) Fcws petoo) (1> Qs Letop)=o(T), Le(o,p)—p(T))) >rhorpo T, @N
(i) s 7 rhorpo Frew a,T(@(Jv LC(Ovp)_)O (T)v J—C(Oaﬂ)—’ﬂ (T))>

QG, Le(o.0)—o(QS; Letop)=o(T), Le(o,p)—p(T))),

| Lefoo)o(Q(, Leto)-olT), Leto)—o(T))
For (i) we apply case 1 twice (note that all data types are equal in the type
ordering>r,).
For (ii) we apply case 4 again which leads us to two new subgoals:
(i) 3o petorr) (Ts QT Le(op)—o(T)s Letop)=p(T))) =rhorpo
Q(J, Leo,p)—o(T), Lefo—p(T)), and

(v) Q(G, J— c(o, U)—’O(Elnewpc(oa (T, Q(J, Leo,p)—o(T); Le(op)—p(1)))),
Leto)=0(Frew pet00) (T QT Leto,p)0(T)s Leto,p)p(T)))))) =rhorpo
(G, i <o am((, Le(op) Ho() Leop)—p(1))),
—(Q(J, Leo,p)—o(T); Letop)—p(T)))) _
For (iii) we apply case 1, and for (iv) we apply case 9, which leads us to
prove:
Letor-0Few peor) (T2 @, Letop)—o(T); Leo,0—o(T)))) =rhorpo
Le(0,0)—0(Q(J, Le(o,0)—0(T); Le(o,p)—p(1)))-
which holds by case 3 and 1. O

Example 5.(taken from P]) Let

S = {proc,data}
F = {+ : proc X proc — proc, - : proc X proc — proc,d :— proc,
XY : (data — proc) — proc)}

Here,+ stands for the choice operatoerfor sequential compositior,
for deadlock, and¥ for the data dependent choice. The rules are the
following:

{z : proc} - rT+r—x
{z,y,2: proc} - (@+y)- 2= (z-2)+(y-2)
{z,y,z : proc} - (x-y)-z—x-(y-2)
{z : proc} = T+0—x
{z : proc} = d-x—0
{z : proc} = Y(Md.x)—x
{D :data, P :data — proc} t+ X(Ad.P(d))+ P(D)— X(\d.P(d))

Y(Md.P(d) 4+ Q(d))
{P,Q : data — proc} - —
S(Ad.P(d)) + Z(A.Q(d))
{z : proc, P :data — proc} + Y(Ad.P(d)) -z — X(Ad.(P(d) - x))

29

We can now give the various ingredients for neutralization and carry out
the comparisons:

7 Conclusion

Proving termination properties of Nipkow’s rewriting was considered
in [21] and [3].

The former yields anethodologyheeding important user-interaction
to prove that the ordering constructed has the required properties. Here,
our method does provide with an ordering having automatically all de-
sired properties. The user has to provide with a precedence and statuses
as usual with the recursive path ordering. He or she must also provide
with neutralization levels together with filters selecting appropriate argu-
ments for each function symbols. This requires of course some expertise,
but can be implemented by searching non-deterministically for appropri-
ate neutralization levels and filters, as done by many implementations for
the precedence and statuses required by the recursive path ordering.

The latter generalizes the notion of general schema as formulated
in [2] where the notion of computability closure was introduced. How-
ever, what can be done with the schema can be done with the higher-order
recursive path ordering when using the computability closurg(ofin
the subterm case, instead of simply the set of subtéiitsslf. The gen-
eral definition of the normal higher-order recursive path ordering with
closure is given in7]. It is however interesting to notice that the neutral-
ization mecanism is powerful enough so as to dispense us with using the
closure for all these complex examples taken from the literature that we
have considered here. It remains to be seen whether the closure plays in
the context of normal higher-order rewriting, a role as important as for
proving termination of recursor rules for inductive types for which plain
pattern matching is used instead of higher-order pattern matching.

We believe that there is ample room for generalization, and indeed the
higher-order recursive path ordering itself has been already generalized,
to associative-commutative termg],[and to the calculus of construc-
tions [22].

References

1. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In
Narendran and Rusinowitch, Proc. RTA'99, 1999.

30

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Typesoretical Computer

Science277:. 2001.

. F. Blanqui. Termination and Confluence of Higher-Order Rewriting Systems. In Proc.

RTAQO, 2000.

. Henk Barendregt. Functional Programming and Lambda Calculus. In [19], pages 321-364.
. Henk BarendregtHandbook of Logic in Computer Scien@hapter Typed lambda calculi.

Oxford Univ. Press, 1993. eds. Abramsky et al.

. Nachum Dershowitz. Orderings for term rewriting systeiffseoretical Computer Science

17(3):279-301, March 1982.

. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In [19], pages 321-364.
. Jean-Pierre Jouannaud. Higher-Order rewriting: Framework, Confluence and termination. In

Art Middeldorp, Vincent van Oostrom, Femke van Raamsdonk and Roel de Vrijer editors,
Processes, Terms and Cycles: Steps on the road to inflafiyays Dedicated to Jan Willem
Klop on the occasion of his 60th Birthday. Springer Verlag, 2005.

. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path ordering. In

Giuseppe Longo, editoFourteenth Annual IEEE Symposium on Logic in Computer Sci-
ence Trento, Italy, July 1999. IEEE Comp. Soc. Press.

Jean-Pierre Jouannaud and Albert Rubio. Polymorphic Higher-Order Recursive Path Order-
ings. submitted to JACM. http://www.lix.polytechnique.fr/Labo/jouannaud.

Jean-Pierre Jouannaud and Albert Rubio. Higher-Order Recursive Path Orddarngste.

2004. http://www.lix.polytechnigque.fr/Labo/jouannaud.

Jean-Pierre Jouannaud, Femke van Raamsdonk and Albert Rubio Higher-order rewriting
with types and arities. 2005. see http://www.lix.polytechnique.fr/Labo/jouannaud.

Jan Wilhelm Klop. Combinatory Reduction Relations. Mathematical Centre Tracts 127.
Mathematisch Centrum, Amsterdam, 1980.

Jan Wilhelm Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editorsHandbook of Logic in Computer Sciene®lume 2:2-116. Oxford Uni-
versity Press, 1992.

Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluEnee.
oretical Computer Scienc&92(1):3-29, February 1998.

Dale Miller. Lambda PROLOG. environ 90.

Tobias Nipkow. Higher-order critical pairs. @th IEEE Symp. on Logic in Computer Sci-
ence pages 342—-349. IEEE Computer Society Press, 1991.

Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, leatjior,

and Computer SciencAcademic Press, 1990.

J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B. North-
Holland, 1990.

J. van de Pol. Strict functional for termination proofs.Typed Lambda Calculi and Appli-
cations, EdinburghSpringer-Verlag, 1995.

J. Van de Pol and H. Schwichtenberg. Strict functional for termination proof3yped
Lambda Calculi and Applications, Edinburg8pringer-Verlag, 1995.

Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Constructions. In
Proceedings of the Workshop on Logical Frameworks and Meta-languages, Santa Barbara,
California, 2000.

31

