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1 Introduction

Rewrite rules are increasingly used in programming languages and logical systems, with two main
goals: defining functions by pattern matching; describing rule-based decision procedures. Our ambition
is to develop for the higher-order/type case the kind of semi-automated termination proof techniques that
are available for the first-order case, of which the most popular one is the recursive path ordering [4].

At LICS’99, we contributed to this program with a reduction ordering for typed higher-order terms
which conservatively extends Dershowitz’s recursive path ordering for first-order terms. In the latter, the
precedence rule allows to decrease from the term ���������	��
����
����	� to the term � ������
�����
����	� , provided
that (i) � is bigger than � in the given precedence on function symbols, and (ii) � is bigger than every��� . For typing reasons, in our ordering the latter condition becomes: (ii) for every ��� , either � is bigger
than ��� or some ��� is bigger than or equal to ��� . Indeed, we can instead allow ��� to be obtained from the
subterms of � by computability preserving operations. Here, computability refers to Tait and Girard’s
strong normalization proof technique which we have used to show that our ordering is well-founded.

A weakness of this proposal was that terms could only be compared when they had the same functional
structure. We remedy to this situation here by first comparing types before to compare the terms them-
selves. We also consider a richer type structure with type constructors. Finally, we have a richer notion
of status allowing to “neutralize” terms of an arrow type that can never be applied along a derivation.

Our ordering operates on arbitrary higher-order terms, therefore applies to higher-order rewriting
based on plain pattern matching. On the other hand, because our ordering includes � -reduction, it can
be adapted to operate on terms in � -long � -normal form, hence applying to the higher-order rewriting
“à la Nipkow” [10], and yielding an ordering much stronger than the already existing ones [9, 7], to the
exception of [3], which needs an important user interaction.

To hint at the strength of the ordering described in the present paper, let us mention that almost all
examples that we have found in the literature can be easily oriented. Let us finally mention that our
ordering is polymorphic, in the sense that it can prove with a single comparison the termination property
of all monomorphic instances of a polymorphic rewrite rule.

We refer to [5] and [8] for missing basic notions and notations.



2 Preliminaries

2.1 Types

Given a set � of sort symbols of a fixed arity, denoted by ����� ��� � , and a set ��� of type variables,
the set 	�
� of polymorphic types is generated from these sets by the constructor

�
for functional types:

	�
� � � � � 	 �
�� ������� � 	�
�� � 	�
�� �
for ����� ��� ��� � and ��� ���

Non-variable types are functional when headed by the
�

symbol, and data types otherwise.

2.2 Signatures

We are given a set of function symbols which are meant to be algebraic operators, equipped with
a fixed number � of arguments (called the arity) of respective types � ��� 	�
� 
�����
 � ��� 	�
� , and an
output type � � 	 
 � such that � �"! � � ��# $ � ���%! � � � � , written �&� � �(' ���)' � � � � and called
a type declaration. A type declaration is first-order if it uses only sorts, and higher-order otherwise;
polymorphic if it uses some non-ground type, and monomorphic otherwise. Given a type substitution * ,
we denote by +�* the signature , �-� � � * ' ���' � � * � �.* � �/� � �0' �����' � � � � � +21 . Polymorphic
signatures capture infinitely many monomorphic ones via type instantiation.

2.3 Terms

The set of raw algebraic 3 -terms is generated from the signature + and a denumerable set 4 of
variables according to the grammar rules:

	 � � 4 �	� 354 � 	 
 � � 	 ���76 � 	 
 	 �8� + � 	 
�����
 	 ���
As a matter ofg convenience, we will often omit types as well as the application operator, writing 9 �;: �
for 6 � 9 
<: � and 9 �;: ��
����
<: � � or 6 � 9 
<: ��
����
<: � � for 9 �;:	� � ����;: �	� . As usual, we do not distinguish� -convertible terms.

2.4 Typing Rules

Typing rules restrict the set of terms by constraining them to follow a precise discipline. Environments
are sets of pairs written = � � , where = is a variable and � is a type. Our typing judgements are written
as >@?BA � � if the term A can be proved to have the type � in the environment > :

Variables:= � � � >
>C?D= � �

FunctionsE � � ��' ���F' � � � � � +
* some type instantiation

>@? � �G� � � * ��� >@? ���H� � � *
>&? E � � ��
�����
���� � � �.*

Abstraction
>JIK,L= � �M1N? �G�PO

>@? � 3F= � � � � � � � � O
Application>C? ��� � � O >@? � � �
>@? 6 ��� 
�� �G�PO
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(Higher-order) substitutions are written as in ,L= � � � ���� � > ��
�� ����
�����
 = �(� � ���� � > � 
���� � 1 where, for
every

� ����� � � �	� , (i) > � is an environment such that > � ? ��� � � � , and (ii) � � is assumed different from = � .
We will often omit both the type � � and the environment > � in = �G� � �
�� � > ��
�� ��� . We use the letter � for
substitutions and postfix notation for their application.

2.5 Higher-order rewrite rules

A (possibly higher-order) term rewriting system is a set of rewrite rules � � ,> � ?� � � ! � 1 � , where
 � and ! � are higher-order terms such that  � and ! � have the same type � � in the environment > � . Given
a term rewriting system � , a term � rewrites to a term � at position � with the rule > ?� � ! and the
substitution � , written ���� ������ � , or simply � ��� � , if ��� � � �� and � � ��� !���� � .

A term � such that ���� �� � is called reducible (with respect to � ). ��� � is a redex in � , and � is the reduct

of � . Irreducible terms are said to be in � -normal form. A substitution � is in � -normal form if =�� is
in � -normal form for all = . We denote by  � �� the reflexive, transitive closure of the rewrite relation� �� , and by ! �  � its reflexive, symmetric, transitive closure. We are actually interested in the relation� � ��" � � � � I � � "

.
Given a rewrite relation � � , a term � is strongly normalizing if there is no infinite sequence of

rewrites issuing from � . The rewrite relation itself is strongly normalizing, or terminating, if all terms
are strongly normalizing, in which case it is called a reduction. It is confluent if � � �  9 and � � �  :
implies that 9 � �  � and : � �  � for some � .
Example 1 We give here the specification for Gdel’s system T. Let � � , IN 1 , �G� � , � 1 , + � ,$# �
IN 
 ��� IN

�
IN 
 !&%(' � IN 'K��' � IN � � � � � � � 1 , and 4 � ,L= � IN 
*) �F� 
�+ � IN

� � � � 1 .
Gödel’s recursor for natural numbers is defined by the following rewrite rules:

!&%(' � # 
,) 
-+ � � )
!&%(' ��� � = ��
,) 
-+ � � 6 �.+ 
 = 
 !&%(' � = 
,) 
-+ ���

Due to the use of polymorphic signatures, there is only one recursor rule, instead of inifinitely many
rules described by one rule schema as in the original presentation. /
2.6 Polymorphic Higher-Order Reduction Orderings

Definition 2.1 A higher-order reduction ordering is a well-founded, monotonic and stable ordering 0
of the set of higher-order terms, such that � � " # 0 . It is in addition polymorphic if � 0 � in a
polymorphic signature + implies � 0 � in all monomorphic instances +�* of + .

Property 2.2 Let 0 be a higher-order reduction ordering and � � ,> � ?  � � ! � 1 �2143 be a higher-
order rewrite system such that  � 0 ! � for every

� �65 . Assume further that 0 is polymorphic if so is � .
Then the relation � � �87 I � � "

is strongly normalizing in 	 � +�* 
 4 � for all type instantiations * .
We now turn to normalized higher-order rewriting, which allows to define computations over 3 -terms

in � -normal � -expanded form. In this context, we consider that function symbols have a basic output,
ruling out polymorphism. We will use the notations � � �:9; for normalized rewriting with � .
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Definition 2.3 A subrelation 0��" of 0 issaid to be � -stable if � 0��" � implies � � � " 0 � � � "
for all

normalized terms �	
 � and normalized substitutions � .

Property 2.4 Let 0 be a higher-order reduction ordering with a � -stable subrelation 0 �" , and let � �
,> � ?  � � ! � 1 � 1 3 be a higher-order rewrite system such that  � 0��" ! � for every

� � 5 . Then the relation� � � 9; is strongly normalizing.

3 The Higher-Order Recursive Path Ordering

In this section, we present a first version of our ordering, together with examples of its use.

3.1 The HORPO ordering

Our ordering on typed higher-order terms uses three basic ingredients, presented in the following three
subsections. The ordering itself is defined the fourth subsection.

3.1.1 Type ordering

We assume given two quasi-ordering on types ����� # �
�
��� which are assumed to satisfy the following

properties:

1. Well-foundedness: 0 �� � is well-founded;

2. arrow preservation: O � � � � � � implies � � O
	 � � 	 , O
	 � � � O and � � � � � 	 ;
3. arrow decrease: O � � 0�� � � implies ����� � � or � � O 	 � � 	 , O 	 � � � O and � 0�� � � 	 ;
4. Stability under type substitution: If � 0� � O , ( � � � � O , respectively) then �5* 0�� � O * for every

ground type substitution * ( �.* � � � O * , respectively);

5. Compatibility of signature declarations with type instantiations: for any function symbol � � � '
� � � � and type instantiations * 	 
 * 	 	 such that � � * 	 � � � � � * 	 	 , then �.* 	 � � � �.* 	 	 .

Notation: We denote by 	������ � �
 the non-empty set of ground data types which are not bigger than an
arrow type in the ordering ��� � .

3.1.2 Statuses and Precedence

We assume given a partition A 9 �����% = of + and a well-founded precedence �� on + such that
- �-� � � ����� � � O � O if � 0�� � O ;
- if �/� � � � � � � � O � O , then �-� �
% = iff � � ��% = and � � � � O ;
- variables are incomparable in 0�� among themselves and with other function symbols;
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3.1.3 Definition of the ordering

We can now give our definition of the higher-order recursive path ordering, which builds upon Der-
showitz’s recursive path ordering for first-order terms [4], and improves significantly over [8]. Apart
from the two new cases allowing to deal with applications on the right or left, and the monotonicity rules
for application and abstraction, the main difference with the first order recursive path ordering is that we
take care of higher-order terms in the arguments of the smaller side by having a corresponding bigger
higher-order term in the arguments of the bigger side. This idea is captured in the following proposition:

� ���5:J� � ������ � � �
: or 9 ���� � � �

: for some 9 � � � �

Definition 3.1 ��� � � ��� � � � � �PO iff ����� � O and

1. � � � � � � with �/� + , and 9	� ��� � � � � for some 9 � �

2. � � � � � � and � � � � ��� with � 0 � � , and
�

3. � � � � A 9  and � �
� ��� � � � � ��� � �
4. � � � � �
% = and � �� ��� � � � � ����� � , and

�

5. � � 6 ��� ��
������ and � � � ��� � � � � or ��� � ��� � � � �
6. � � 3�= �%� � 9 with =��� � �"! � � � and 9	� ��� � � � �
7. �-� + , 6 � � � is some partial left-flattening of � , and

�

8. � � � � � � with �/� + , � � 3�= �"� � : with =��� � �"! �;: � and ��� ��� � � � :
9. � � 6 ��� ��
������ , � ��6 � � � is a partial left-flattening of � and , � ��
���� 1 �� ��� � � � � ��� � �

10. � � 3�= � 9 , � � 3�= � : and 9 � ��� � � � :
11. � ��6 � 3�= � 9 
<: � and 9 ,L= �� : 1�� ��� � � � �
The definition is recursive, and, apart from case 11, recursive calls operate on pairs of terms which are

subterms of the starting pair. This ensures the well-foundedness of the definition, since � -reductions are
compatible with subterm, by comparing pairs of arguments in the well-founded ordering � � � " I�� 
 � � ����� .

Important observations are the following:
Comparing two terms � and � requires comparing their types beforehand. Doing otherwise would not

garantee the typability of � in general. Note that the present ordering compares terms of related types,
improving over [8], where terms of equivalent types only could be compared (the equivalence being
generated by the equality on sorts).

In Case 1, the redundancy anticipates over Section 4, in which � and � � ��� � are different sets.
When the signature is first-order, cases 1, 2, 3, and 4 together reduce to the usual recursive path

ordering for first-order terms, whose complexity is known to be in ! � � � � for an input of size � .
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Example 2 (example 1 continued) We use here for the ordering on types the equivalence generated
by the equality of the sort constants. The first rule succeeds immediately by case 1. For the second
rule, we apply case 7, and need to show recursively that (i) + � ��� � � � + , (ii) � � = � � ��� � � � = , and (iii)
!&%(' � � � = ��
 9 
-+ � � ��� � � � !&%(' � = 
 9 
-+ � . (i) is trivial. (ii) is by case 1. (iii) is by case 3, calling again
recursively for � � = � � ��� � � � = .

Note that we have proved Gödel’s polymorphic recursor, for which the output type of !&%(' is any given
type. This example was already proved in [8]. We can of course now add some defining rules for sum
and product:

=���# � #
=�� � ��� � � � � =�� � �

= ��� � ! %(' ��� 
 # 
 3�� � � ��� =��	� ���
The first two first-order rules are easily taken care of. For the third, we use the precedence � 0� !&%(' to
eliminate the !&%(' operator. But the computation fails, since there is no subterm of = �
� to take care of
the righthand side subterm 3�� � =��� . We will come back to this example in Section 4. /
Example 3 This example is partly taken from [8]. Let � � , � � ����
 IN 1 and + � ,$'��7� �H� IN ' � � ��� �
� � ���
�� �(� � � � ����' � IN �

IN � � � � ��� 1 . The rules for � �4� are:
� �4� � � �  
-+ � � � � 

� �4� � '��7� � � = 
  ��
-+ � � '��� � � 6 �.+ 
 = ��
�� �4� �  
-+ ���
Using the same ordering on types as previously, the first rule is trivially taken care of by case 1. For the
second, let � �(� � A 9  and � �(� 0 � '��7� � . Since � �(� 0 � '��7� � , applying case 2, we need to show
that � �4� � '��7� � � = 
  ��
-+ � � ��� � � � 6 � + 
 = � and � �4� � '��� � � = 
  ��
 + � � ��� � � � � �4� �  
-+ � . The latter is true by
case 3, since '��� � � = 
  � � ��� � � �  by case 1. The first is by case 7, as + is an argument of the first term
and '��� � � = 
  � � ��� � � � = by case 1.

Considering now a polymorphic version of the same example, with � � , � � ��� 1 , � � � , � 1 , and
+ � ,$'��7� � � � � � � ��� � � � ���
�� �(� � � � ��� ' � � � � � � � � ��� 1 , then the computation fails since6 � + 
 = � has now type � which cannot be compared to the sort � � ��� .

Using now the richer type discipline described in the present paper, we can reformulate this example
by using a sort constructor � � ���H�)� � � . Assuming � � ����� * � 0� � * in our ordering, the computation
goes exactly as previously. /

We finally state the main result of this section.

Theorem 3.2 � ��� � � � is a decidable relation included into a polymorphic, higher-order reduction order-
ing.

3.2 Examples

The following example gives a set of rewrite rules defining the insertion algorithm for the (ascending
or descending) sort of a list of natural numbers.

Example 4 Insertion Sort. Let � � , IN 
 � � ��� 1 and
+ � ,7� �  � � � ����� '��7� � � IN ' � � ��� � � � ������� �P= 
�� � � � IN ' IN

�
IN � � � � %�! � � IN ' � � ���'� IN ' IN

�
IN ��' � IN ' IN

�
IN � � � � ������� �! � � � � ��� ' � IN ' IN

�
IN ��' � IN ' IN

�
IN � �

� � ���� � � ' %���� � � � � �7! ��
 �8% � ' %���� � � � � �7! � � � � ��� � � � ��� 1 .
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� �P= � # 
 = � � = � �P= � = 
 # � � =
� �%= ��� � = ��
�� ��� � � � � ��� �%= � = 
�� ���

� � � � # 
 = � � # � � � � = 
 # � � #
� � � ��� � = ��
�� ��� � � � � ��� � � � = 
�� ���

We simply need the precedence � �P= 
�� � � 0�� # for these first-order rules.
� � � %�! ��� � 
 � �  
 + 
�� � � '��7� � � � 
 � �  �� � � %�! ��� � 
 '��� � ��� 
  ��
 + 
�� � �
'��� � �.+ � � 
�� ��
 � � � %�! ����� � � 
 � ��
  
-+ 
���� �

The first
� � � %�! � rule is easily taken care of by applying case 2 with the precedence

� � � %�! � 0� '��7� � , and
then case 1. For the second

� � � %�! � rule, we apply first case 2, and we recursively need to show: firstly,
that

� � � %�! ��� � 
 '��7� � ��� 
  ��
-+ 
�� � � ��� � � � 6 � + 
 � 
�� � , which follows by applying rule 2, and then case 1
recursively; and secondly that

� � � %�! ��� � 
 '��� � ��� 
  ��
 + 
�� � � ��� � � � � � � %�! ����� � � 
�� ��
  
-+ 
���� , which suc-
ceeds as well by case 4, with a right-to-left lexicographic status for

� � � %�! � , and calling recursively with� � � %�! ��� � 
 '��7� � ��� 
  ��
-+ 
���� � ��� � � � 6 ��� 
 � 
�� � , which is solved by case 9.

� �7! ��� � �  
-+ 
���� � � � � �7! ��� '��7� � � � 
  ��
-+ 
���� �
� � � %�! ��� � 
�� �7! ���  
-+ 
�� ��
-+ 
����

Again, these rules are easily oriented by � ��� � � � , by using the precedence � �! � 0�� � � � %�! � . On the
other hand, � ��� � � � fails to orient the following two seemingly easy rules.

� � ',%�� � � � � � �! ���  � �
� �7! ���  
 3F= � � � � � � = 
�� ��
 3 = � � � �P= � = 
�� ���

��% � ',%�� � � � � � �! ���  � �
� �7! ���  
 3F= � � � �P= � = 
�� ��
 3 = � � � � � � = 
�� ���

This is so, because the term 3 = � � � � � � = 
�� � occuring in the lefthand side has type IN
�

IN
�

IN, which
is not comparable to any lefthand side type. We will come back to this example in Section 4. /

This example is more tricky, since we need to build transitivity:

Example 5 Surjective disjoint union : let � � , � 
�� 
,) 1 
 � � , � 
�� 
 ) 1 
 + � , � �  � � � ) � � �.! �
�
� ) � ' � � %�� � ) ' � � � � �G' ��� � ��� � � 1 . The rules are:

' � � %�� � � �  �.+ ��
 E 
�� � � 6 � E 
-+ �
' � � %�� � � �5! ������
 E 
�� � � 6 ��� 
����

' � � %�� �
	 
 3�= ��� � � �  � = ����
 3 � ��� � � �5! ��� � ��� � 6 ��� 
�	 �

The first two rules are by case 7. For the last, we show that ' � � %� �
	 
 3�= ��� � � �  � = ����
 3 � ��� � � �.! ��� ��� � � ��� � � �6 � 3�= ��� � = ��
�	 � � ��� � � � 6 ��� 
�	 � . The first comparison is by Case 7, generating the proof obligation
3�= ��� � � �  � = � � ��� � � � 3�= ��� � = � which succeeds by first Case 10 then Case 1. The second is by Case 11.
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3.3 A uniform ordering on terms and types

The idea is to use a recursive path ordering on the type structure for �
�
� � with an appropriate restriction

for ��� � , therefore allowing us to use the same ordering structure for both terms and types. This requires
adding the new constant � in our language for typing types. We omit the corresponding type system
which is obvious. We now assume given

- a partition A 9  ����% = of + I(�2I , 6 1 such that 6 � A 9  and all function symbols are compatible;
-a well-founded ordering ��� 
 on + I � , called the precedence such that variables are incomparable

among themselves and with other symbols.

Definition 3.3 Let
� ���5:�� � � � ��� � � � : or 9	� ��� � � � : for some 9 � �

Then, ��� � � ��� � � � � �PO iff � � O � � or � ��� � O and

1. � � � � � � with �/� +�� , and 9 � ��� � � � � for some 9 � �

2. � � � � � � and � � � � ��� with � 0 � 
 � , and
�

3. � � � � A 9  and � �
� ��� � � � � ��� � �
4. � � � � �
% = and � �� ��� � � � � ����� � , and

�

5. � � 6 ��� ��
������ and � � � ��� � � � � or ��� � ��� � � � �
6. � � 3�= �%� � 9 with =��� � �"! � � � and 9	� ��� � � � �
7. �-� + , 6 � � � is some partial left-flattening of � , and

�

8. � � � � � � with �/� + , � � 3�= �"� � : with =��� � �"! �;: � and ��� ��� � � � :
9. � � 6 ��� ��
������ , � ��6 � � � is a partial left-flattening of � and , � ��
���� 1 �� ��� � � � � ��� � �

10. � � 3�= � 9 , � � 3�= � : and 9 � ��� � � � :
11. � ��6 � 3�= � 9 
<: � and 9 ,L= �� : 1�� ��� � � � �
12. � � � � � and � � ��� � � � �
13. � � � � � 
 ����� 	 � � 	 
 � � � 	 and � � ��� � � � � 	
This uniform definition opens the way for defining a recursive path ordering for terms in a dependent

type discipline, and therefore, for the full calculus of constructions. The difficulty should not be under-
estimated, though, since it will allow us to prove strong normalization of this calculus augmented with
rules at the type level, as it is done in [2].
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4 Computational Closure

The ordering is quite sensitive to innocent variations of the language, like adding (higher-order)
dummy arguments to righthand sides. We will now solve these problems by incorporating a new mecan-
ism adapted from [1] to the ordering which encompasses the computability arguments developped by
Girard to show the strong normalization of System F. First, we need introducing a restriction of the
subterm ordering:��� � ����� � � � O iff ����� � O and � � O .

Definition 4.1 Given a term � � ��� � � , we define its computable closure � � � � � as � � ����
�� � , where
� � ����
 � � , with �������%! � � � ��� , is the smallest set of well-typed terms containing all variables in �
and all terms in � , and closed under the following operations:

1. subterm: let ��� � � � ��
 � � and 9 � � be a subterm of � such that � � 	 � � � � �
 and � �"! � 9 �G# ���%! � � � ;
then 9 � � � � ��
 � � ;

2. precedence: let � such that � 0�� � , and � � � � ����
 � � ; then � � � �G� � � � ��
 � � ;
3. recursive call: let � be a sequence of terms in � � � ��
 � � such that ��� � � is well typed and���
� ��� � � � I���� � � � �
	 ��	� � ; then ��� � � � � � � ��
 � � ;
4. application: let ��� � � � ���� � � � � � � � � ����
 � � and 9 ��� � � � � � ����
 � � for every

� � ��� � � �	� ;
then 6 ��� 
 9 � 
����
 9 � ��� � � ����
 � � ;

5. abstraction: let =��� ���%! � � � I2� and ��� � � ����
 ��I-,L= 1 � ; then 3F= � ��� � � � ��
 � � ;
6. reduction: let 9 � � � � ��
 � � , and 9	� ��� � � � : ; then :J� � � � ��
 � � ;
7. weakening: let =��� ���%! � 9 
 � � I � . Then, 9 � � � � ��
 � � iff 9 � � � ����
 ��I-,L= 1 � .
As an exercise, the reader may want to prove that, given � 
 9 
 = 
�� such that ���%! � 9 � #�� and = ���� ,

then 9 � � � ���	
�� � iff 3�= � 6 � 9 
 = �H� � � ���	
�� � . The only if part uses successively Cases 7, 4 together
with the basic case and 5. The if part is more tricky, but there is a proof using Case 6 twice only.

Note that we use recursively the ordering of the previous section in order to defined the recursive case
of the closure, therefore giving extra power to the closure. On the other hand, the subterm relationship
had to be restricted to terms of decreasing types in order to ensure the well-foundedness of the union
(via a commutation principle, � ��� � � � being monotonic on terms of equivalent types).

Because of rule 6, membership to the computation closure of a term may not be decidable. On the
other hand, it becomes easily decidable if the use of the reduction rule is bounded.

We can now modify our ordering as follows:

Definition 4.2 Let
� � �5:�� � � � ��� � � � : or 9	� ��� � � � : for some 9 � � � � � � .

Then, ��� � � ��� � � � � � O iff ����� � O and

1. � � � � � � with �/� + , and 9	� ��� � � � � for some 9 � � or � � � � ��� �
2. � � � � � � and � � � � ��� with � 0 � � , and

�
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3. � � � � A 9  and � �
� ��� � � � � ��� � �
4. � � � � �
% = and � �� ��� � � � � ����� � , and

�

5. � � 6 ��� ��
������ and � � � ��� � � � � or ��� � ��� � � � �
6. � � 3�= �%� � 9 with =��� � �"! � � � and 9	� ��� � � � �
7. �-� + , 6 � � � is some partial left-flattening of � , and

�

8. � � � � � � with �/� + , � � 3�= �"� � : with =��� � �"! �;: � and ��� ��� � � � :
9. � � 6 ��� ��
������ , � ��6 � � � is a partial left-flattening of � and , � ��
���� 1 �� ��� � � � � ��� � �

10. � � 3�= � 9 , � � 3�= � : and 9 � ��� � � � :
11. � ��6 � 3�= � 9 
<: � and 9 ,L= �� : 1�� ��� � � � �
The definition is recursive, and we can show that it is well-founded by comparing pairs of terms in

the well-founded ordering �
� ��� � � � 
 � � � ��� � 	 � 	 � � ����� 	 � ����� . As previously, we have:

Theorem 4.3 � ��� � � � is included in a polymorphic higher-order reduction ordering.

This new definition is much stronger than the previous one. In addition to prove the strong normal-
ization property of the remaining rules of the sorting example, and for the same reason, we can easily
also add the following rule to the other rules of Example 1:

Example 6 � � � � !&%(' � � 
 # 
 3 � � � � � � �	� ���
This additional rule can be proved terminating with the precedence: � 0�� ,7!&%(' 
 � 
 #�1 , since 3�� � � � � � �

� � ����� � � � � � : by base case, � and � � belong to � � � � � � 
 , � ��
 � � 1 � , hence � � � � � � � � � � � 
 , � ��
 � � 1 �
by case 2 of the definition of the computational closure. Applying case 5 twice yields then the result. /
Example 7 Let � � , � �7! � 1 
 + � ,
	 � ��� �7! � � � �! � � � � � �7! � � � �! � ��� � 
�� � � � �7! � �
� �! � � � � �! � � # 
 � � � �! � � � 
%' � � �7! � ' � �! � � � �7! � 1 . The rules are:

	 � 3�= � � � 3�= � #
	 � 3�= � = � 3�= � �

	 � 3�= � � E = � � ��� = ��� � 3�= � � 	 � E � = � � � 	 ��� � = �
	 � 3�= � � E = �8' ��� = ��� � 3�= � � 	 � E � = � ' ��� = � � � E = � ' � 	 ��� � = �

We take 	 0 � ,$# 
4� 
 = 
 � 1 for precedence and assume all statuses are multiset. The interesting rule
is the derivation of products, which is done entirely by the mechanism of the closure. We will take this
opportunity to make a goal directed proof, using a stack of subgoals:
Initial goal (for sake of clarity, we rename the bound variables):
3 � � � 	 � E � � ��' ��� � � � � E � � ' � 	 ��� � � � � � � � 	 � 3�= � � E = �8' ��� = �����
By abstraction:� 	 � E � � � ' ��� � � � � E � � ' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By precedence, we obtain two subgoals:� 	 � E � � � ' ��� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
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By precedence again, we get two new subgoals, resulting in a total of three:� 	 � E � � � � � � � 	 � 3�= � � E = � ' ��� = ����
 , � 1 ���� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By application:
	 � E �G� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 �
��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 ���� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By recursive call (note that 3�= � � E = �8' ��� = ��� � ��� � E )E � � � � 	 � 3�= � � E = ��' ��� = � ��
 , � 1 �
��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 ���� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By (already proved) extensionality:
3�= � � E = ��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 �
��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 ���� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By basic case:
��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 ���� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By basic case again:��� � �G� � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
By application:
� � � � � 	 � 3�= � � E = ��' ��� = � ��
 , � 1 �
��� � � � 	 � 3�= � � E = � ' ��� = � ��
 , � 1 �� E � �G' � 	 ��� � � � � � � � 	 � 3�= � � E = ��' ��� = ����
 , � 1 �
The first subgoal disappears by using, as previously, Case 6 and basic case successively, while the second
is solved by basic case. The third is then done in the same way as the previous computation.

We now come to an interesting example, Currying, for which we can show that our ordering allows
us to chose the amount of Currying we like.

Example 8 First, to a signature + � , �����
��K� � � '����� ' � � � � � ��� � � ���� � �
� � ��
��� 1 , we associate

the signature + � � � ��� � , �����
�� � 1�� ���	� ��
 � � � ' ���.' � � � � � ��� � � ���� � �
� � ��
���� 1 , and we give the

following rewrite rules:

���� ����� ��
����
�� �� ��� � 6 � ���� ����� ��
����
�� ����
�� ��� ���
6 ��� ��� � ��
�����
���� ��
������ ��� � � ��� ��� � ��
�����
������ � �

Setting now ���� � 0�� � ��� , we show easily that the righthand side of the first rule is in the closure of
its lefthand side. Setting now � � 0�� � � ��� � , we can do the second comparison. This is a little bit more
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delicate, and we must use the middle term trick, with 6 � 3�= � � ��� ��� � ��
�����
���� 
 = ��
������ � � . The details are left
to the reader.

We end this section with an example about process algebra showing the current limits of our ordering.
Here, a quantifier ( � ) binds variables via the use of a functional argument, that is, an abstraction:

Example 9 (taken from [3]) Let � � , �F! �$' 
 �"� � � 1 , + � , � � �F! �$' ' �F! �$' � �F! �&' 
��F� �F! �&' ' �F! �$' �� ! �$' 
���� �F! �&' 
 � � � �F! �$' � �F! �$' � � �F! �&' � 1 . The rules are the following:

=���= � =� =�� � ��� � � � = � � � � ����� � �� = � � ��� � � = � ����� � �
= � � � =��� = � �

� � 3 � � = � � =
� � 3 � �	� ��� � � � � � 	 � �

� � 3 � �	� ��� � �
� � 3 � �
� ��� � ��� ��� � � �

� � 3 � �	� ��� � � �� � 3 � � � ��� ���
� � 3 � �	� ��� � ��� = �

� � 3 � �	� ��� ��� = �
All rules but the last one can be oriented. This is quite surprising, since due to the fact that no application
occurs in the example, it seems that proving its termination should be simple. We will come back to this
example in Section 5. /
5 Neutralizing abstractions

In our ordering, all arrow type terms are treated as if they could become applied and serve in a � -
reduction. This makes it difficult to prove the termination of rules whose righthand side has arrow type
subterms which do not occur as lefthand side arguments. In such a case, the use of the computable
closure may sometimes help, but Example 9 shows that this is not always the case. In this example, the
righthand side arrow type subterm 3 � �
� ��� ��� = does not receive a special treatment, although it cannot
serve creating a redex in a derivation. We will now improve our ordering by introducing a special
treatment for these terms. The idea is to equip each function symbols with a set of neutralized positions,
which can be seen as an additional status for that purpose.

Notation: In this section, we assume given two sets of variables: the set 4 and a set 4�� of variables
disjoint from 4 , s.t. =�� � � � 4 � iff = � � � + and � is a functional type or a type variable. Note, this
is important, that =�� is a variable different from = . Of course, the higher-ordre rules we want to prove
terminating are built from terms in 	 � 4 � , not in 	 � 4 I/4�� � .
Definition 5.1 The neutralization � ��� � of a term �G� 	 � + 
 4 I/4�� � is defined as:

1. if � is of the form 3F= � � � 9 then � ��� � � � � 9 ,L= �� �
� 1 � , where

�
� � � is a constant added to the

signature +�� ;
2. if � is the variable �J� � � 4 , where � is an functional type or a type variable then � � � � � � � .
3. Otherwise � � � � � � .
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We are now ready for improving our higher-order recursive path ordering once more.

Definition 5.2 To each symbol � � + , we associate a (possibly empty) set � � # � � � � �%! ��� � � of neu-
tralized positions. To each term � of the form � � ����
�����
���� � , we associate the list ��� � � � of neutralized
arguments of � in � , defined as the list � 	 � 
�����
 � 	� , where � 	� is � � ��� � if

� � � � and � � otherwise.

The computable closure needs adaptation:

Definition 5.3 Given a term � � ��� � � , we define its neutralized computable closure � � ��� � as � � � ��
�� � ,
where � � � ��
 � � , with � # 4�� ���%! ��� � , is the smallest set of well-typed terms containing all variables in
� , all constants

�
� for � � 	 
� and all terms in ��� � � � , and closed under the following operations:

1. = � � � � � ��
 � � iff = � � � � ��
 � when � is not a data type;

2. subterm of minimal type: let ��� � � � ��
 � � and 9 � � be a subterm of � such that � � 	 � � � ���
 and
���%! � 9 ��# � �"! � � � ; then 9 � � � � ��
 � � ;

3. precedence: let 9 be � � 9 � with � 0�� � , and ��� � 9 �G� � � � ��
 � � ; then 9 � � � � ��
 � � ;
4. recursive call: let 9 be ��� 9 � , with ��� � 9 ��� � � � ��
 � � and ��� � � ���� ��� � � � � � 	 � 	� ��� � 9 � ; then
9 � � � � ��
 � � ;

5. application: let ��� � � � ���� � � � � � � � � ����
 � � and 9 ��� � � � � � ����
 � � for every
� � ��� � � �	� ;

then 6 ��� 
 9 � 
����
 9 � ��� � � ����
 � � ;
6. abstraction: let =��� ���%! � � � I2� and ��� � � ����
 ��I-,L= 1 � ; then 3F= � ��� � � � ��
 � � ;
7. reduction: let 9 � � � � ��
 � � , and 9 � � " : ; then : � � � ����
 � � .
8. extensionality: let 9 � 3�= � 6 �;: 
 = � � � � ����
 � � with = �� ���%! � : � ; then : � � � ����
 � � .
Given a status and a set of neutralized positions � � for every algebraic function symbol � , the ordering

is defined as follows:

Definition 5.4 Then � � � � ��� � � � � �PO iff ������� O and

1. � � � � � � with �/� + , and
(i) ��� � ��� � � � � for some

� �� � � or (ii) � � 9 � � ��� � � � � for some 9 � � or � � � � � � �
2. � � � � � � and � � � � ��� with � 0 � � , and

�

3. � � � � A 9  and ��� � � ���� ��� � � � � ��� � ��� ��� �
4. � � � � �
% = and ��� ��� ���
� ��� � � � � ����� ��� ��� � and

�

5. � � 6 ��� ��
������ and � � � ��� � � � � or ��� � ��� � � � �
6. � � 3�= �%� � 9 with =��� � �"! � � � and 9	� ��� � � � �
7. �-� + , 6 � � � is some partial left-flattening of � , and

�
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8. � � � � � � with �/� + , � � 3�= �"� � : with =��� � �"! �;: � and ��� ��� � � � :
9. � � 6 ��� ��
������ , � ��6 � � � is a partial left-flattening of � and , � ��
���� 1 �� ��� � � � � ��� � �

10. � � 3�= � 9 , � � 3�= � : and 9 � ��� � � � :
11. � ��6 � 3�= � 9 
<: � and 9 ,L= �� : 1�� ��� � � � �

where
� ���5: � ��� ��� � ��� ��� � � � : or 9	� ��� � � � : for some 9 � � � � � � .

Note that Cases 1(i) and 1(ii) both apply to a subterm which is not at a neutralized position. On the
other hand, Cases 1(ii) only applies to subterms at a neutralized position. Again,

Theorem 5.5 � ��� � � � is included in a polymorphic higher-order reduction ordering.

We can now prove the example that was left over in the previous section. We assume for that that the
argument of � is neutralized, and we verify that the first eight rules are still oriented. The comparisons
change a bit for the last three. For the last rule, we need to add the precedence � 0� � . Then, we
apply successively Case 2, generating the subgoal � � 3 � �
� ��� ��� � = � ��� � � � � � � � � = ; Case 4 requiring
� � 3 � �
� ��� ����� = � ��� � � � � � � � , and � � 3 � �	� ��� � ��� = � ��� � � � = . Both are done easily now.

6 Normalized rewriting

Example 10 (taken from Nipkow) Let � � , � �7! � 
 � ��� 1 , + � ,�� 
�� � � �! � ' � �! � � � �! � ��� �
� �! � � � �7! � �� 
�� � � � � � � � �! � � � � �7! � 1 . The rules are the following:

� � ��� 3 = � � � = ��� � ��� 3 = � � � � � � = � ������ 3F= � � � = ��� � � � ��� 3 = � � � � = � � � ���
��� ��� 3 = � � � = ��� � ��� 3 = � � ��� � � = � ������ 3F= � � � = ����� � � ��� 3 = � � � � = ��� � ���
� � � � 3 = � � � = ��� � � � 3 = � � � � � � = � ���� � 3F= � � � = ��� � � � � � 3 = � � � � = � � � ���
��� � � 3 = � � � = ��� � � � 3 = � � ��� � � = � ���� � 3F= � � � = ����� � � � � 3 = � � � � = ��� � ���
� � ��� 3 = � � � = � ��� � � � 3 = �	� � � � = ��� �
� � � � 3 = � � � = � ��� � ��� 3 = �	� � � � = ��� �

This example makes sense in the context of normalized rewriting only. We now sketch how to restrict
the higher-order recursive path ordering from Section 5 in order to obtain a � -stable subrelation which
can then be used to show strong normalization of this example, when using higher-order pattern matching
“à la Nipkow”.

First, the subterm case in the definition of the closure must be restricted, making sure that it is not a
subterm of an application of the form 6 � = 
�
 � . Second, terms in the closure need to be normalized.

The rules above are then treated by using an appropriate precedence. The details are left to the reader.
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7 Conclusion

We have defined a powerful mecanism for defining orderings operating on higher-order terms. Based
on the notion of the computable closure of a term, we have succeeded to define a conservative extension
of Dershowitz’s recursive path ordering, which is indeed a polymorphic reduction ordering compatible
with � -reductions. To our knowledge, this is the first such ordering ever.

The idea of the computable closure is also used in a different context in [1]. The goal there is to define
a syntactic class of higher-order rewrite rules that are compatible with beta reductions and with recursors
for arbitrary positive inductive types. The language is indeed the calculus of inductive constructions
generated by a monomorphic signature. The usefulness of the notion of closure in this different context
shows the strength of this concept.
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[9] C. Lorı́a-Sáenz and J. Steinbach. Termination of combined (rewrite and 3 -calculus) systems. In
Proc. 3rd Int. Workshop on Conditional Term Rewriting Systems, Pont-à-Mousson, LNCS 656, vol-
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