The Higher-Order Recursive Path Ordering*

J.-P. Jouannaud
LRI, Batiment 490
UMR CNRS 8623
Université de Paris Sud
91405 Orsay, FRANCE
Jean- Pi erre. Jouannaud@ri . fr

Abstract

This paper extends the termination proof techniques
based on reduction orderings to a higher-order setting, by
adapting the recursive path ordering definition to terms of
a typed lambda-calculus generated by a signature of poly-
morphic higher-order function symbols. The obtained or-
dering is well-founded, compatible with 8-reductions and
with polymorphic typing, monotonic with respect to the
function symbols, and stable under substitution. It can
therefore be used to prove the strong normalization property
of higher-order calculi in which constants can be defined
by higher-order rewrite rules. For example, the polymor-
phic version of Godel’s recursor for the natural numbers
is easily oriented. And indeed, our ordering is polymor-
phic, in the sense that a single comparison allows to prove
the termination property of all monomorphic instances of a
polymorphic rewrite rule. Several other non-trivial exam-
ples are given which examplify the expressive power of the
ordering.

1 Introduction

Rewrite rules are increasingly used in programming lan-
guages and logical systems, with two main goals: defining
functions by pattern matching; describing rule-based deci-
sion procedures. ML, Alf [4] and Isabelle [17] examplify
the first use. A future version of Coq [9] will examplify
the second use [8]. In Isabelle, rules operate on terms in
B-normal, n-expanded form. In ML and Alf, they operate
on arbitrary terms. In the future version of Coq, both kinds
should coexist.

Our ambition is to develop for the higher-order case the

*Thiswork was partly supported by the ESPRIT Basic Research Action
CCL-II, ref. WG # 22457. and the CICYT project HEMOSS ref. TIC98-
0949-C02-01

A. Rubio
Dep. LSI
Univ. Politécnica de Catalunya
Modul C6, Jordi Girona 1
08034, Barcelona, SPAIN
rubi o@ si . upc. es

kind of semi-automated termination proof techniques that
are available for the first-order case, of which the most pop-
ular one is the recursive path ordering [6].

Our contribution to this program is a reduction ordering
for typed higher-order terms which conservatively extends
Dershowitz’s recursive path ordering for first-order terms.
In the latter, the precedence rule allows to decrease from the
terms = f(s1,-..,8n) to the term g(¢4, ..., ¢,), provided
that (i) f is bigger than g in the given precedence on func-
tion symbols, and (ii) s is bigger than every ¢;. For typing
reasons, in our ordering the latter condition becomes: (ii)
for every t;, either s is bigger than ¢; or some s; is bigger
than or equal to ¢;. Indeed, we can instead allow ¢; to be ob-
tained from the subterms of s by computability preserving
operations. Here, computability refers to Tait and Girard’s
strong normalization proof technique which we have used
to show that our ordering is well-founded and compatible
with B-reductions.

In the litterature, one can find several attempts at design-
ing methods for proving strong normalization of higher-
order rewrite rules based on ordering comparisons. These
orderings are either quite weak [13, 11], or need an impor-
tant user interaction [5]. Besides, they operate on terms in
n-long B-normal form, hence apply only to the higher-order
rewriting “a la Nipkow” [15], based on higher-order pattern
matching modulo Bn. To our knowledge, our ordering is
the first to operate on arbitrary higher-order terms, there-
fore applying to the other kind of rewriting, based on plain
pattern matching. And indeed we want to stress four impor-
tant features of our approach. First, it can be seen as a way
to lift an ordinal notation operating on a first-order language
(here, the set of labelled trees ordered by the recursive path
ordering) to an ordinal notation of higher type operating on
a set of well-typed A-expressions built over the first-order
language. Secondly, the analysis of our ordering, based on
Tait and Girard’s computability predicate proof technique,
leads to hiding this technique away, by allowing one to carry

out future meta-theoretical investigations based on ordering
comparisons rather than by a direct use of the computabil-
ity predicate technique. Thirdly, we obtain as a biproduct
a new proof of well-foundedness of Dershowitz’s recursive
path ordering which does not use Kruskal’s tree theorem
anymore. Fourthly, our ordering can be adapted to oper-
ate on terms in 5-long S-normal form, yielding an ordering
stronger than the already existing ones [12].

To hint at the strength of the ordering described in the
present paper, let us mention that the polymorphic version
of Godel’s recursor for the natural numbers is easily ori-
ented. And indeed, our ordering can prove at once the ter-
mination property of all monomorphic instances of a poly-
morphic rewrite rule. Many other examples are given which
examplify the expressive power of the ordering.

The framework we use is described in Section 2. The
ordering is defined and studied in Section 3, where several
examples are also given. The notion of computable closure
used to boost the expressivity of the ordering is introduced
and studied in Section 4. The discussion of the potential
improvements and extensions of our work is carried out in
Section 5. Some related work is mentionned in conclusion.
The reader is expected to be familiar with the basics of term
rewriting systems [7] and typed lambda calculi [1, 2].

2 Prdiminaries
2.1 Types

Given a set S of sort constants and a set SY of type vari-
ables, the set 7gv of polymorphic types is generated from
these sets by the constructor — for functional types:

Tov :=8 |87 | (Tev = Tav)

We will denote by 75 the set of ground types. By a basic
type, we mean a sort or a type variable. Other types are
arrow types.

Let = be the congruence on types generated by equating
all sorts in S. Note that two types are equivalent iff they
have the same arrow squeleton for all type instantiations.

In the following, we use o, 7 and p to denote types. Type
declarations are expressions of the form o, X ... x 0, — 0,
where o1, ...,0n,,0 are types. Types occurring before the
arrow are called input types, while the type occurring after
the arrow is called the output type. A type declaration is
first-order if it uses only sorts, and higher-order otherwise.
It is polymorphic if it uses some non-ground type, other-
wise, it is monomorphic. Type declarations are not types,
although they are used for typing purposes.

2.2 Signatures

We are given a set of function symbols which are meant
to be algebraic operators, equipped with a fixed number n of

arguments (called the arity) of respective types o1, ...,0n,
and an output type o
F=]:0'1><...><0'n—>0'

O15:249y0n 0

F is called a first-order signature if all its type declarations
are first-order, and a higher-order signature otherwise. It
is called a polymorphic signature if some type declaration
is polymorphic, and a monomorphic signature otherwise.
Given a type substitution £ extending to types a mapping
from S¥ to T, we denote by F¢ the monomorphic signa-
ture {f : s1& > 826 > ... > 8,6 | fi81 — 82 >
... = sy € F}. Polymorphic signatures capture infinitely
many monomorphic ones via type instantiation.

2.3 Terms

The set of untyped algebraic A-terms is generated from
the signature F and a denumerable set X of variables ac-
cording to the grammar:

T=X|AXT)|T(T)|FT,...,T).

u(v) denotes the application of « to v. We will usually
write the application operator explicitly, as in @(u,v). As
a matter of convenience, we may write u(vy,...,vy), OF
Q(u,v1,--.,vn) for u(vy) ... (vy), assumingn > 1. The
term @Q(u,v) is called a (partial) left-flattening of s =
u(v1) ... (vn), u being possibly an application itself.

We denote by Var(t) the set of free variables of t. We
may assume for convenience (and without further notice)
that bound variables in a term are all different, and are dif-
ferent from the free ones.

Terms are identified with finite labeled trees by consid-
ering Azx., for each variable z, as a unary function symbol.
By |t| we denote de size of ¢, i.e. the number of symbols
occurring in ¢, and by |¢|,,, the size of ¢ without counting the
variables. Positions are strings of positive integers. A and -
denote respectively the empty string (root position) and the
concatenation of strings. The latter may sometimes be omit-
ted. The subterm of ¢ at position p is denoted by ¢|,,, and we
write ¢ > ¢|,. The result of replacing ¢|, at position p in ¢
by w is denoted by t[u],. We use t[u] to indicate that u is
a subterm of ¢, and simply ¢[],, for a term with a hole, also
called a context. The notation 5 will be ambiguously used
to denote a list, or a multiset, or a set of terms s1, ..., sp.

Substitutions are written as in {z1 — t1,...,2, = t}
where, for every i € [1..n], t; is assumed different from z;.
We use the letter ~ for substitutions and postfix notation for
their application. Substitutions behave as endomorphisms
defined on free variables (avoiding captures).

2.4 Typing Rules

Typing rules restrict the set of terms by constraining
them to follow a precise discipline. Environments are sets
of pairs written z : o, where 2 is a variable and o is a type.
Our typing judgements are writtenasI" + M : o if the term
M can be proved to have the type o in the environment I

Variables:
z:0€l

'z:0

Functions:
F:o1X...x0, >0 €F
''kFtiiop...T F t,:0n

Pk F(t,...,ty) : 0

Abstraction:
Fu{z:o} Ft:7
P (M:0t):c—>T

Application:
Fru{z:o} Fs:o—=7 Tk t:o
'k s(t):r

Type Congruence:
'k s:o

'k s:7

The last rule allows us to type terms that are usually con-
sidered as ill-typed because sort names do not match. On
the other hand, strong normalisation of typed A-calculus is
clearly preserved for such terms, since it amounts to col-
lapse all sorts into a single one. Typing these terms allows
for smoother technical developments.

Aterm M hastype o inthe environmentT'ifI' - M : o
is provable in the above inference system. A term M is ty-
pable in the environment I" if there exists a type ¢ such that
M has type o in the environment I'. A term M is typable
if it is typable in some environment I'. Note that function
symbols are uncurried, hence must come along with all their
arguments.

ifo=T

2.5 Conversion rules

Three particular equations originate from the A-calculus,
a-, 5- and n-equality:
(Az.w)(u) =5 v{zw— u}

Azau(z) =, wu if z € Var(u)
v =, Myw{z—y} ifyd&BVar(v)U
(Var(v) \ {z})

As usual, we do not distinguish a-convertible terms. We
* .
use <7> for the congruence generated by the 3-equality,

and —g for the 3-reduction rule:

(Az.v)(u)

The simply typed A-calculus is confluent and terminat-
ing (or strongly normalizing in the lambda-calculus jargon)
with respect to 3-reductions.

We could order as well n-equality as a reduction and
carry it along to the price of some easy extra technical com-
plications. We did not think it was worth doing it, since
1 makes more sense in the context of higher-order pattern
matching modulo g7, a kind of higher-order rewriting that
we do not consider in the present paper, as explained next.

— v{z—u}

2.6 Higher-order rewrite rules

A (possibly higher-order) term rewriting system is a set
of rewrite rules R = {T'; + I; = r; : 0y };, where ; and r;
are higher-order terms such that /; and r; have the same type
o; in the environment I';. Given a term rewriting system R,
aterm s rewrites to a term ¢ at position p with therulel — r
and the substitution , written s :pz t,orsimply s =g t, if

slp = lyand t = s[rvylp.
A term s such that s %nf is called reducible (with re-

spect to R). s|, is a redex in s, and ¢ is the reduct of s.
Irreducible terms are said to be in R-normal form. A sub-
stitution ~y is in R-normal form if z is in R-normal form
for all z. We denote by % the reflexive, transitive closure

of the rewrite relation ?, and by <—7, its reflexive, sym-

metric, transitive closure. We are actually interested in the
relation — 5 = —p U —4.

Given a rewrite relation —», a term s is strongly normal-
izing if there is no infinite sequence of rewrites issuing from
s. The rewrite relation itself is strongly normalizing, or ter-
minating, if all terms are strongly normalizing, in which
case it is called a reduction. It is confluent if s —* « and
s —* v implies that u —* ¢ and v —* ¢ for some .

Several examples of higher-order rewrite systems are de-
velopped in section 3.

2.7 Polymorphic Reduction Orderings

We will make intensive use of well-founded orderings
for proving strong normalization properties. We will use
the vocabulary of rewrite systems for orderings. For our
purpose, a strict ordering, usually denoted by >, is an ir-
reflexive and transitive relation, and an ordering, usually de-
noted by >, is the union of its strict part with a-conversion.
We will essentially use strict orderings, and hence, we will
use the word ordering for them too. Rewrite orderings are
monotonic and stable orderings, and reduction orderings
are in addition well-founded. Monotonicity of > is defined
asu > v implies s[u], > s[v], for all contexts s[],,. Stabil-
ity of > is defined as u > v implies sy > #y for all substitu-
tions . Reduction orderings are used to prove termination

of rewrite systems by simply comparing the left and right-
hand sides of rules. The following results will play a key
role, see [7]:

Assume >1,..., >, are well-founded orderings on sets
S1,...38n. Then (>1,. .., >n)iee is @ well-founded order-
ingon Sy x...x.S,. We write >, if all sets and orderings
are equal.

Assume > is a well-founded ordering on a set S. Then
> 1S @ Well-founded ordering on the set of multisets of
elements of S. It is defined as the transitive closure of the
following relation >> on multisets (using U for multiset
union):

MU{s} >> MU{ti,...,ta}
ifs:o>t;:0Vie[l.n]

We end up with the definition of a polymorphic reduc-
tion ordering operating on higher-order terms, and allowing
one’s to show that the relation —» U — 5 is well-founded
by simply comparing the lefthand and righthand sides of the
(polymorphic) rules in R:

Definition 2.1 An ordering > is polymorphicif s > tina
polymorphic signature F implies s > ¢ in all monomorphic
instances F¢ of F.

A polymorphic higher-order reduction ordering is a
monotonic and stable polymorphic ordering > of the set of
higher-order terms, such that > U — 5 is well-founded.

3 The Higher-Order Recursive Path Order-
ing

From now on, the application operator is written explic-
itly. Let Mul W Lex be a partition of F, s.t. all symbols
in Lex have a fixed arity, and > x be a well-founded or-
dering on F, called the precedence. As usual, variables will
be considered as constants incomparable among themselves
and with other function symbols.

3.1 Definition of the ordering

The following higher-order recursive path ordering
(HORPO) is essentially the same as Dershowitz’s recursive
path ordering for first-order terms. The only difference is
that we take care of higher-order arguments on the smaller
side by having a corresponding bigger higher-order argu-
ment on the bigger side.

Definition 3.1 s : 0 >porpot : Tiff o = 7 and
1. s= f(3)with f € F,and s; = pppo t fOr some s; € 3.

2. f,geF, f>rgandt=g(t)andVt; €t
8 >horpo ti OF 8§ &= horpo ti fOr SOME 55 €3

3. f =g€ Mul and g(}horpo)m’uli

4. f =g € Lex and 5(> horpo)iext, and Vi; € ©
8 >horpo ti O 8§ = horpo ti TOr SOME 55 € 5

5. f € F, Q(%) is some partial left-flattening of ¢, and
Vt; €t S >horpoti OF Sj = porpo ti fOr some s; € 5

6. s = Q(s1,82),t = Q(t1,t2) and
{317S2}(>horpo)mul{t1;t2}

7. s =M., t = .wand u > porpo v

Important observations are the following:

Our ordering can only compare terms with equivalent
types.

When the signature is first-order, cases 1, 2, 3, and 4
reduce to the usual recursive path ordering for first-order
terms.

Case 7 compares two abstractions. No other case applies
to an abstraction on the bigger side. Case 1 may compare a
term headed by a function symbol on the bigger side with
an abstraction on the smaller side.

In Case 6, type considerations show that the first argu-
ments are compared together as well as the second’s. On the
other hand, Case 5 compares a term s headed by a function
symbol with an application on the smaller side, for which
an appropriate (partial) left-flattening has to be chosen non-
deterministically. This non-deterministic choice is essen-
tial for stability. Type considerations may help finding one
quickly.

In cases 2, 4, and 5, the non-deterministic or comparison
can be replaced by the equivalent deterministic one:
ift; : p=7thens>porpo t;

Otherwise s; > porpo ti fOr some s; : p € ssuchthatp = o

Examplel LetS = {IN},S" ={a}and F={0: N, s:
N— N, rec: Nxax(N—a—a) > a}. Godel’s
recursor for natural numbers is defined by the following
rewrite rules:
rec(0,u, X) — u
rec(s(z),u,X) — Q(X,z,rec(z,u,X))

The first rule succeeds immediately by case 1. For the
second rule, we apply case 5, and need to show recur-
sively that (i) X >porpo X, (ii) s(z) >horpo x, and (iii)
rec(s(z),u, X) =norpo rec(z,u, X). (i) is trivial. (ii) is
by case 1. (iii) is by case 3, calling again recursively for
$(2) > horpo Z-

Note that we have proved Gddel’s polymorphic recursor,
for which the output type of rec is any given type. This
is because we do not care about types in our comparisons,
provided two compared terms are typable with equivalent
types, hence of the same functionnal structure.

We can of course now add some defining rules for sum
and product:

z+0 — 0
z+s@y) — s(z+y)
xxy — rec(y,0,\z122.¢ + 22)

The first two first-order rules are easily taken care of. For
the third, we use the precedence x >z rec to eliminate the
rec operator. But the computation fails, since there is no
higher-order subterm of 2 * y to take care of the righthand
side subterm Xz.z + z. We will come back to this example
in Section 4.

Example 2 Let S = {List,N} and F = {cons : IN x
List — List, map : List x (N — IN) — List}. The
rules for map are:
map(nil, X)
map(cons(z,1), X)

— nil
— cons(Q(X, z), map(l, X))

The first rule is trivially taken care of by case 1.
For the second, let map € Mwul and map >F
cons. Since map >z cons, applying case 2, we
need to show that map(cons(z,1), X) > horpo @(X,) and
map(cons(z,1), X) >porpo map(l, X). The latter is true
by case 3, since cons(,1) =porpo I Dy case 1. The first is
by case 5 (note the use of the equivalence on sorts), as X
is an argument of the first term and cons(z,1) > horpo by
case 1.

Considering now a polymorphic version of the same ex-
ample, with S = {List}, S¥ = {a}, and F = {cons :
a — List — List, map : List x (o =) — List}, then
the computation fails since X (z) has now type a which
cannot be compared to the sort List. Note, however, that
we could deal with all type instantiations replacing « by an
arbitrary sort. We will discuss this example further in Sec-
tion 5. 4.

3.2 Properties of the higher-order recursive path
ordering

Theorem 3.2 >, is @ decidable, polymorphic, higher-
order reduction ordering.

Monotonicity, stability under substitutions and polymor-
phism are proved by induction on the size of terms. Al-
though the proofs are slightly more difficult technically than
the usual proofs for the recusive path ordering, they follow
the same kind of pattern (polymorphism was actually never
considered before). This contrasts with the proof of well-
foundedness and compatibility with 8-reductions, for which
we need to show that the relation — = >porpo U —g is
strongly normalizing.

The well-foundedness of the recursive path ordering is
usually proved by using the fact that it contains the embed-
ding relation which is a well-order by Kruskal’s tree theo-
rem. Since we do not know of any non-trivial extension of
Kruskal’s tree theorem for higher-order terms that includes

(B-reductions, we will adopt a completely different method,
the computability predicate proof method due to Tait and
Girard. As a bi-product, we obtain a new proof of well-
foundedness for the recursive path ordering on first-order
terms. Indeed, this proof method will also suggest improve-
ments of our ordering, that will be discussed in Section 4.
We give no more than the necessary details for the under-
standing of the reader.

Our definition of computability for typed terms is stan-
dard:

Definition 3.3 An algebraic A-term s is computable iff

(i) s is a variable, or

(ii) s has a basic type and s is strongly normalizable, or
else

(i) s has an arrow type ¢ — 7 and Q(s,t) is com-
putable for every computable term ¢ of type o.
A term is neutral if it is not an abstraction. A vector 5 of
terms is computable iff so are all its components.

We first recall the properties of the computability predi-
cate.

Property 3.4 (Computability Properties)

(i) Every computable term is strongly normalizable.

(ii) Assume that ¢ is computable and t — s. Then s is
computable.

(iii) A neutral term ¢ is computable iff s is computable
for all s such that t — s.

(iv) Let # be a vector of at least two computable terms.
Then @(%) is computable.

(V) Az : o.u is computable iff u{z — w} is computable
for every computable term w : o.

(vi) Let ¢ be a term of sort type. Then, ¢ is computable iff
it is strongly normalizable.

Proof: All proofs are standard, but the one of (v). The
only if part is Property 3.4 (ii). For the converse, we prove
that @(\z.u,w) is computable for an arbitrary term w : o
if u{z — w} and w are computable.

Since variables are computable, u = u{z — =z} is
computable by assumption. By property (i), » and w
are strongly normalizable. We prove that Q(\x.u, w) is
computable by induction on the set {u,w} ordered by
(—>)mul-

By (iii), the neutral term @(\z.u,w) is computable iff v
is computable for all v such that @(\x.u, w) — v. There
are several cases to be considered.

1. Letv = Q(A\z.u',w) with u — u'. Then, u{z —
w} — u'{z — w}. Hence, by assumption and (ii),
u'{z — w} is computable for every computable w : o.
Since {u, w}{(—)mw{u', w}, by induction hypothe-
sis, v is computable.

2. Let v = @(aw,w') with w—,zw'. Then
{u, w}(—)mw{u, w'}, and by induction hypothesis,
v is computable.

3. v = u{z — w} is computable by assumption.

4. Lett = Q(Mz.u,w) > porpo v = Q(v',w') by case 6.
For typing reasons, w > poppe w' aNd AL > poppo v’
Hence, w' is computable by (ii). On the other hand, by
property of the ordering, v’ = Ax.u' with w >0 u'.
Now, since u{z + w} is computable for every com-
putable w : o by assumption, v'{z — w} is com-
putable for every computable w : ¢ by (ii). Hence
Az.u' is computable, and therefore v is computable. O

The following lemma and proof are both essential:

Property 3.5 Let f € F and let £ be a set of terms. If £ is
computable, then f(%) is computable.

Proof: Let ¢; : 7; and f() : 7. Since terms in % are
computable, by Property 3.4 (i), they are strongly normal-
izable. We use this remark to build our induction argu-
ment: we prove that f (%) is computable by induction on the
pair {f,) ordered lexicographically by (>x, (—) stat)iee
where stat is either mul or lex, depending on the symbol
I

Since f(t) is neutral, by Property 3.4 (iii), it is com-
putable iff every s such that f(f) — s is computable,
which we prove by an inner induction on the size of s.

Let us assume first that s = f(t1,...,t;,...,tn), With
t; — gt;. By Property 3.4 (i), t; is computable, and since
t(—) stas3 for any status stat, s is computable by appli-
cation of the outer induction hypothesis. We are left with
the cases corresponding to the application of > porp, t0 the
term s.

1. Let f(f) >horpo s by case 1, hence t; >=p,pp0 s for
some t; € t. Since t; is computable, s is computable
by Property 3.4 (ii).

2. Lett = f(t) >horpos by case 2. Then s = ¢(3),
f >7 g and for every s; € 3 either ¢t >porpo 84, IN
which case s; is computable by the inner induction
hypothesis, or ¢; >, si for some ¢; € t and s; is
computable by Property 3.4 (ii). Therefore, 5 is com-
putable, and since f >x g, s is computable by the
outer induction hypothesis.

For the following two cases, s = f(3), with s; : 7.

3. If f(t) > horpo s by case 3, then t(>phorpo)mws. BY
definition of the multiset comparison, for every s; € §
there is some t; € ¢, S.t. t; > p0rpo i, heNCe, by Prop-
erty 3.4 (ii), s; is computable. This allows us to con-
clude by the outer induction hypothesis that s is com-
putable.

4. If f(%) >horpo s Dy case 4, then t(>porpo)iez S and for
BVery s; € 5 OF tj >porpo S; TOr sOMe t; € t. As
in the precedence case, this implies that 5 is com-
putable. Then, since t(>porpo)iexs, S IS computable
by the outer induction hypothesis.

5. If f() >horpo s Dy case 5, let Q(sq,...,s,) be the
partial left-flattening of s used in that proof. By the
same token as in case 2, every term in 3 is computable,
hence s is computable by Property 3.4 (iv). O

Lemma 3.6 Let~ be a computable substitution and ¢ be an
algebraic A-term. Then ¢y is computable.

Proof: The proof proceeds by induction on |¢],.

1. ¢t is a variable . Then z~ is computable by assump-
tion.

2. t is an abstraction Ax.u. By Property 3.4 (v), tvy is
computable if uy{z — w} is computable for every
well-typed computable term w. Taking d = yU {z —
w}, we have uy{z — w} = u(yU {z — w}) since z
may not occur in . Since § is computable, and |¢], >
||y, by induction hypothesis, ud is computable.

3.t = Q(ty,t2) Or t = f(t1,...,tn), and some ¢; is not
a variable. Let s = f(z1,...,2,) Or s = Q(z1, z3)
and § = {z; —» t; | 1 <4 < n}. By induction
hypothesis ¢;7v is computable for all 7, hence § is com-
putable. Since not all ¢; are variables, |¢|, > |s|, and,
by induction hypothesis sd is computable.

4. t = Q(zq1,2z2). Then tvy is computable by Property 3.4
(iv).

5 t = f(#1,...,2,). Then tvy is computable by Prop-
erty 3.5. O

We can now easily conclude the proof of well-foundedness
and compatibility with g-reductions needed for our main
theorem, by showing that every term is strongly normaliz-
able with respect to —». Given an arbitrary term ¢, let
be the identity substitution. Since «y is computable, t = ¢y
is computable by Lemma 3.6, and strongly normalizable by
Property 3.4 (i).

The following example gives a set of rewrite rules defin-
ing the insertion algorithm for the (ascending or descend-
ing) sort of a list of natural numbers.

Example 3 Insertion Sort. Let S = {IN, List} and

F = {nil : List;cons : N x List — List;maz,min :
INx N — IN;insert : IN x List x (INx N — IN) x (IN x
IN — IN) — List; sort : Listx (INxN — IN)x (INxIN —
IN) — List;ascending_sort,descending_sort : List —
List}.

maz(0,2) — x mazx(z,0) — x
maz(s(z), 5(y)) = s(maz(z,y))
min(0,z) — 0 min(z,0) — 0

min(s(z),s(y)) = s(min(z,y))

We simply need the precedence max, min >z 0 for these
first-order rules.

insert(n,nil, X,Y) — cons(n,nil)
insert(n,cons(m,l),X,Y) —
cons(X (n,m),insert(Y (n,m),1,X,Y))

The first insert rule is easily taken care of by apply-
ing case 2 with the precedence insert >x cons, and
then case 1. For the second insert rule, we apply first
case 2, and we recursively need to show: firstly, that
insert(n,cons(m,1), X,Y) =phorpo @(X,n,m), which
follows by applying rule 2, and then case 1 recursively;
and secondly that insert(n,cons(m,l),X,Y) >norpo
insert(Y (n,m), [, X,Y), which succeeds as
well by case 4, with a right-to-left lexicographic
status for i4nsert, and calling recursively with
insert(n,cons(m,1), X,Y) >porpo @Y, n,m), which is
solved by case 6.

sort(nil, X,Y) — nil
sort(cons(n,l), X, Y) —
insert(n, sort(l, X,Y), X,Y)

Again, these rules are easily oriented by > porpo, Dy US-
ing the precedence sort >z insert. On the other hand,
>horpo Tails to orient the following two seemingly easy
rules.

ascending_sort(l) —
sort(l, \zy.min(z,y), \xy.maz(z,y))

descending_sort(l) —
sort(l, \zy.maz(x,y), Azy.min(z,y))

This is so, because the term Azy.min(z,y) occuring in
the lefthand side has type N — IN — IN, which is not
comparable to any lefthand side type. We will come back
to this example in Section 4.

4 Computational Closure

The ordering is quite sensitive to innocent variations of
the language, like adding (higher-order) dummy arguments
to righthand sides, or n-converting expressions. We will
now solve these problems by improving our definition in the
light of the strong normalization proof. In that proof, it was
crucial to show the computability of the righthand side sub-
terms by using the lefthand side subterms. In our definition,
we actually require that for each righthand side subterm v,
there exists a lefthand side subterm v such that « > p,,p, v.

Assuming v is computable, then v is computable by Prop-
erty 3.4 (ii). But any computability preserving operation
applied to the lefthand side subterms in order to construct a
term of the appropriate type would do as well. For exam-
ple, the higher-order variable X is computable if and only
if &x.X () is computable. Therefore, both forms may co-
exist. This discussion is formalized below with the notion
of a computational closure adapted from [3].

Definition 4.1 Given a term ¢ = f(t), we define its com-
putable closure CC(t) as CC(t, (), where CC(t,V), with
VN Var(t) = B, is the smallest set of well-typed terms con-
taining all variables in V and all terms in z, as well as their
subterms w : 7 such that 7 is a sort and Var(u) C Var(t),
and closed under the following operations:

1. precedence: let g suchthat f > g,ands € CC(t, V);
then g(3) € CC(t,V);

2. recursive call: let 5 be a sequence of terms in CC(¢, V)
such that f(3) is well typed, Var(s) C Var(t) and
t(— 5 UD)stat, 5; then f(3) € CC(E,V);

3. application: lets: 0y = ... = 0, = 0 € CC(t,V)
and u; : o; € CC(t,V) for every i € [1..n]; then
Q(s,u1,--.,u,) € CC(E,V);

4. abstraction: letz ¢ Var(t) UV and s € CC(¢t,V U
{z}); then Az.s € CC(t, V);

5. reduction: letu € CC(t,V), and u — 5 v; then v €
CC(t, V).

Note the conditions Var(u) C Var(¢) in the basic case,
and Var(s) C Var(t) in case 2. These two conditions are
one of the main weaknesses of our definition.

Apart from the reduction rule, membership to the com-
putation closure of a term may not be decidable. On the
other hand, it becomes easily decidable if the use of the re-
duction rule is bounded.

The following property can easily be shown by induction
on the definition of the computable closure:

Lemma 4.2 Assume that u € CC(¢t). Then, uy € CC(t)
for every substitution ~.

We can now modify our ordering as follows:
Definition 4.3 s: 0 >porpot : Tiff o = 7 and
1. s= f(3) with f € F, and s; >p,p, t fOr some s; € 5.

2. f,ge F, f>Fgandt = g(t) and
Vt; € t either s>porpoti OF Sj = porpoti fOr SOMe
sj €50rt; € CC(s)

3. f =gc Mul and §(>‘hm-po)m'u.lE

4. f =g € Lex and 5(> horpo)iex t, and
Vt; € teither s > porpo t; OF S5 = porpo ti fOr some s; €
sort; € CC(s)

5. f € F, Q(t) is some partial left-flattening of ¢, and
Vt; € t either s >porpoti OF Sj = porpo ti fOr some
sj €50rt; € CC(s)

6. s = @(81,32), t= @(tl,tz) and
{31; 32}(>‘h07‘p0)mul{t1; t2}

7. s=X.wandt = dx.w and u >porpo U

As previously, the or occuring in the clause
8 >horpo ti OF 8 = porpo ti TOr some s; € s0rt; € CC(s)
is non-deterministic. Again, we can make it deterministic
by approriately ordering the clauses.

The following lemma is easy to prove:

Lemma 4.4 >porp0o 1S monotonic, stable, and polymor-
phic.

We now show that terms in the computable closure of
a term are computable under the appropriate hypotheses for
its use. For this, we first remark that the computability prop-
erties are still valid, without any change in the proofs.

Property 4.5 Assume % : 7 is computable, as well as every
term ¢(3) with 5 computable and g(s) smaller than ¢t =
f(t) inthe ordering (>, (—> UI>)44¢) Operating on pairs
(f,t) where stat is the status of f. Then, every term in
CC(t) is computable.

The precise formulation of this statement arises from its
forthcoming use inside the proof of Lemma 4.6. Note that
we have increased the ordering (—) szq¢ Used in the proof
of lemma 3.5 by adding strict subterm, yielding the ordering
(— Up)stat- This is possible, because the latter is well-
founded on a given set of terms when so is the former, since
— has just be shown to be monotonic, see [7] for the ar-
gument.

Proof: We prove that u~y is computable for every com-
putable substitution v of domain V and every u € CC(t,V)
such that V N Var(t) = 0. We obtain the result by taking
VY = . The proof is by induction on the definition of the
computational closure. For the basic case: if u € ¢, we
conclude by assumption that Z is computable since uy = u
by assumption on V; if u € V), then u~y is computable by
assumption on +; otherwise, u is a subterm of type a sort
of some v € t. As before, vy = v is computable, hence is
strongly normalizable by Property 3.4 (i). By definition of
the closure, uy = u, therefore, since vy is strongly normal-
izable, by monotonicity, u~y is also strongly normalizable,
and hence computable by Property 3.4 (vi). We now dis-
cuss the successive operations to form the closure.

1. case 1: u = g(u) where w € CC(t,V). By induc-
tion hypothesis, -~y is computable, and, by assumption,
since f > x g, uy is computable.

2. case 2: u = f(u) wherew € CC(t,V) and Var(u) C
Var(t). By induction hypothesis, wy = @ is com-
putable, and, by assumption, since £(— 5 U>)stat , T,
u = wy is computable.

3. case 3: by induction and Property 3.4 (iv).

4. case 4: letu = Mx.swithz & Var(t) UV andu €
CC(t,V U {z}). By induction hypothesis, s(y U {z —
w}) is computable for an arbitrary computable w, and
by Property 3.4 (v), (Az.s)~ is computable.

5. case 5. By Property 3.4 (ii). O

We now restate Property 3.5 and show in one case how
the proof makes use of Property 4.5.

Property 4.6 Let f € F and let £ be a set of terms. If # is
computable, then f(%) is computable.

Proof: We prove that f(%) is computable by an outer in-
duction on the pair (f,) ordered lexicographically by the
ordering (> £, (— UD>)stat)1 INtroduced in Property 4.5,
and an inner induction on the size of the reducts of ¢. Since
the proof is similar to the proof of Property 3.5, we do only
case 2.

2. Lett = f(t) >horpo shycase 2. Thens = g¢(3), f >#
g and forevery s; € 5eithert >porpo 8 Or tj = porpo Si
for some ¢; € t and s; is computable as in the proof
of Property 3.5, or s; € CC(t), and then, by induction
hypothesis, we can apply Property 4.5 and conclude
that s; is computable. O

Theorem 4.7 >porpo 18 included in a polymorphic higher-
order reduction ordering.

Proof: Thanks to Property 4.5, the strong normalization
proof of this improved ordering is exactly the same as pre-
viously. Then by Lemma 4.4 we conclude that the transitive
closure of >p,rp, is @ higher-order polymorphic reduction
ordering. O

This new definition is much stronger than the previous
one. Inaddition to prove the strong normalization property
of the remaining rules of the sorting example, and for the
same reason, we can easily also add the following rule to
the other rules of Example 1:

Example 4 nxm — rec(n,0,A\z120.m + 22)

This additional rule can be proved terminating with the
precedence: * >z {rec,+,0}, since Azize.m + 25 €
CS(n * m): by base case, m and z, belong to CC(n *
m, {z1,22}), hence m+zy € CC(nxm, {z1,22}) by case 1
of the definition of the computational closure. Applying
case 4 twice yields then the result.

We end this section with two examples showing the cur-
rent limits of our ordering. The first one is an example about
process algebra, in which a quantifier (X) binds variables
via the use of a functional argument, that is, an abstraction:

Example 5 (taken from [5]) Let S = {proc, data}, F =
{+ : proc x proc — proc,- : proc X proc — proc,d :
proc, Y. : (proc — proc) — proc)}. The rules are the
following:

r+zx — x
(z+y)-z = (z-2)+(y-2)
(-y)-z = z-(y-2)
r+d — =x
d-x — 0
Yyx) - z
SOu.P@W) + P(D) — S0y.P(y)
SOuPW) + QW) — T0uPy) + S0v.Q)
SOuPW) o - S(y.Ply) o)

All rules but the last one can be oriented. This is quite sur-
prising, since due to the fact that no application occurs in
the example, it seems that proving its termination should be
simple. We will come back to this example in Section 5. 3.

Example 6 (inspired by [13]) Let S = {List}, S¥ = {a},
F = {nil : List,cons : a x List — List, fcons :
(o = a) — List,dapply : a x (a = o) X (@ = a) =
a, lapply : o x List — a}. The rules are the following:

dapply(z, F,G) — F(G(z))
lapply(z,nil) — =z
lapply(z,cons(F, L)) — F(lapply(z,L))

We can easily prove the first two rules, which do not even
need the closure. For the third, we face the problem that F
is not in the closure of the lefthand side, as a higher-order
variable occuring inside a strict subterm of a lefthand side
argument. This is important, as shown in [10], where a non-
terminating example is constructed by using such a deep
variable. We will come back to this problem in Section 5. 4.

5 Discussion

Our definition of the higher-order recursive path order-
ing can be improved again in several different ways that we
discuss in turn.

1. By replacing the condition s; >, t; for some s; €
s ort; € CC(s) in cases 2 and 4 of the definition of
the improved higher-order recursive path ordering by
the weaker condition u >,,,.,,, t; for some u € CC(s).
This extension does not complicate the proofs, but
seems of little practical value while increasing the
complexity of the computation.

2. By replacing the condition u — ;v in case 5 of the

definition of the computable closure, by the weaker
condition u — 5 U>horpo V- This variant will result
in important complications in the proofs, since, with
this modification, the ordering and the computational
closure become mutually inductive definitions. We
plan to study it for two reasons. Firstly, because it may
yield a transitive relation; transitivity is essentially a
matter of aesthetics, of course, since well-foundedness
does not rely on transitivity. Secondly, and this sec-
ond reason is more important, because of the potential
practical improvement that it may provide.

. In our ordering, all arrow type terms are treated as if

they could become applied and serve in a 3-reduction.
This makes it difficult to prove the termination of rules
whose righthand side has arrow type subterms which
do not occur as lefthand side arguments. In such a case,
the use of the computable closure may sometimes help,
but Example 5 shows that this is not always the case.
In this example, the righthand side arrow type subterm
Xy.P(y) - z is treated as if it could be applied, but it
will never be. We have already studied a solution to
this problem that will be part of a full version of this
paper. The idea is to split the set of function symbols
in two subsets: those for which case 6 can be used
(that is, which are greater than application) and all the
others. For the first subset, the same condition as now
for its arrow type subterms must be required, since by
applying case 6 this subterms can occur as first argu-
ment of an application; for the second subset, however,
this will never occur and hence the conditions can be
relaxed.

. The set of types is generated from a set of sort con-

stants. We plan to use an algebra of sort terms instead,
allowing us to have sort constructors, resulting in poly-
morphic data structures such as lists of elements of
an arbitrary type. This should allow us to extend the
computable closure of a term ¢ whose type is a sort
term s, by taking any immediate subterm «» whose type
is a subterm of s. For an example, the higher-order
variable F' of example 6 would be in the closure of
lapply(x, cons(F, L)). We even believe that any sub-
term of ¢ whose type is a subterm of s would do, but
this has to be checked.

. As important, is the development of an ordering able to

compare terms of the calculus of constructions. Such
an ordering is easily obtained by adding a new clause
ensuring monotonicity of dependent products, in the
same way as case 7 for abstractions. The difficulty
then is to show the compatibility of the ordering with
the reduction relation of the calculus, because the ob-

tained extension of the calculus of constructions be-
comes dependent on the ordering via its conversion
rule. As a consequence, it becomes impossible to sep-
arate strong normalization, confluence and subject re-
duction. Since similar problems have been encoun-
tered in the past when investigating other extensions of
the calculus of constructions, such an extension should
not be out of hands.

6. Another important question is whether these tech-
niques apply for proving termination of rules operating
on higher-order terms in n-long B-normal form. We
have already studied the question, and the answer is
affirmative. As an aplication of the present work, we
have obtained such an ordering which significantly im-
proves the few attempts that we know of [13, 14, 11].
In particular, none of them was able to order automat-
ically the recursor for natural numbers, which we can
do easily. On the other hand, the obtained ordering
is not fully polymorphic as the one described here, and
we are still working on an improved fully polymorphic
version.

7. Finally, we plan to apply the same technique to other
orderings operating on first-order terms, either to vari-
ants of the recursive path ordering such as its associa-
tive commutative versions [19], or to stronger ordinal
notations, such as quasi ordinal diagrams [16]. We be-
lieve that the first extension should not be too difficult.
The second is likely to work as well, since we do not
rely on the subterm property for the strong normaliza-
tion proof.

6 Conclusion

We have defined a powerful mecanism for defining or-
derings operating on higher-order terms. Based on the no-
tion of the computable closure of a term, we have succeeded
to define a conservative extension of Dershowitz’s recursive
path ordering, which is indeed a polymorphic reduction or-
dering compatible with S-reductions. To our knowledge,
this is the first such ordering ever.

The idea of the computable closure is also used in a dif-
ferent context in [3]. The goal there is to define a syntactic
class of higher-order rewrite rules that are compatible with
beta reductions and with recursors for arbitrary positive in-
ductive types. The language is indeed the calculus of induc-
tive constructions generated by a monomorphic signature.
The usefulness of the notion of closure in this different con-
text shows the strength of this concept.

Acknowledgments: We thank the referees and our close
colleagues whose questions prompted us to making our
main definition more understandable.

References

[1] H. Barendregt. Handbook of Theoretical Computer Science,
volume B, chapter Functional Programming and Lambda Cal-
culus, pages 321-364. North-Holland, 1990. J. van Leeuwen
ed.

[2] H. Barendregt. Handbook of Logic in Computer Science,
chapter Typed lambda calculi. Oxford Univ. Press, 1993. Eds.
Abramsky et al.

[3] F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus
of Algebraic Constructions. In Tenth Int. Conf. on Rewrit-
ing Techniques and Applications. Trento, 1999. To appear in
LNCS, Springer-Verlag.

[4] T. Coquand, B. Nordstr'éom, J. M. Smith and B. von Sydow.
Type Theory and Programming. In EATCS Bulletin, pages
203-228, 1994.

[5] J. Van de Pol and H. Schwichtenberg. Strict functionals for
termination proofs. In Typed Lambda Calculi and Applica-
tions. Edinburgh, 1995. LNCS 902, Springer-Verlag.

[6] N. Dershowitz. Orderings for term rewriting systems. Theo-
retical Computer Science, 17(3):279-301, 1982.

[7]1 N.Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, pages 243-309. North-Holland, 1990.

[8] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving
modulo, 1998. Rapport de recherche INRIA 3400.

[9] G.Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring,
and B. Werner. The coq proof assistant user’s guide version
5.6. INRIA Rocquencourt and ENS Lyon.

[10] J.-P. Jouannaud and M. Okada. Abstract data type systems.
Theoretical Computer Science, 173(2):349-391, 1997.

[11] J.-P. Jouannaud and A. Rubio. Rewrite orderings for higher-
order terms in n-long B-normal form and the recursive path
ordering. Theoretical Computer Science, 208(1-2):3-31,
1998.

[12] J.-P. Jouannaud and A. Rubio. A Recursive Path Ordering
for Higher-Order Terms in n-Long S-Normal Form, 1999.
[13] C. Loria-Saenz and J. Steinbach. Termination of combined
(rewrite and A-calculus) systems. In Proc. 3rd Int. Workshop
on Conditional Term Rewriting Systems, Pont-a-Mousson,

LNCS 656, pages 143-147. Springer-Verlag, 1992.

[14] O.Lysne and J. Piris. A termination ordering for higher order
rewrite systems. In Proc. 6th Rewriting Techniques and Appli-
cations, Kaiserslautern, LNCS 914, Kaiserslautern, Germany,
1995.

[15] R. Mayr and T. Nipkow. Higher-order rewrite systems and
their confluence. Theoretical Computer Science, 192(1):3-29,
1998.

[16] M. Okada and G. Takeuti. On the theory of quasi ordinal
diagrams. In S. G. Simpson, editor, Logic and Combinatorics.
American Mathematical Society, 1986.

[17] L. C. Paulson. Isabelle: the next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science. Academic
Press, 1990.

[18] F. Pfenning. EIf: A language for logic definition and veri-
fied meta-programming. In Proc. 4th IEEE Symp. Logic in
Computer Science, pages 313-322, 1989.

[19] A. Rubio. A fully syntactic AC-RPO. In Tenth Int. Conf.
on Rewriting Techniques and Applications. Trento, 1999. To
appear in LNCS, Springer-Verlag.

