Higher-Order Recursive Path Orderings

ala carte*
Jean-Pierre Jouannaud Albert Rubio
LIX, Ecole Polytechnique Technical University of Catalonia
91400 Palaiseau, FRANCE Pau Gargallo 5

Email: jouannaud@lix.polytechnique.fr 08028 Barcelona, SPAIN
http://www.lix.polytechnique.fr/“jouannaud Email: rubio@Isi.upc.es

Abstract

This paper extends the termination proof techniques baseéduction orderings to a higher-order
setting, by defining a family of recursive path orderingstéoms of a typed lambda-calculus generated
by a signature of polymorphic higher-order function synsbol'hese relations can be generated from
two given well-founded orderings, on the function symbals$ @an the type constructors. The obtained
orderings on terms are well-founded, includegeductions, are monotonic for terms of equal type, and
stable under substitution. They can be used to prove thegtmormalization property of the various
existing kinds of higher-order calculi in which constangde defined by higher-order rewrite rules,
regardless of whether these calculi use first-order or highreler pattern matching. For example, the
polymorphic version of @del’s recursor for the natural numbers is easily orientgkhd indeed, our
ordering is polymorphic, in the sense that a single compmarigllows to prove the termination property
of all monomorphic instances of a polymorphic rewrite rilMany non-trivial examples are given which
examplify the expressive power of these orderings.

This paper is an extended and improved version of [22]. Pohphic algebras have been made
more expressive than in our previous framework. The notibpslymorphic higher-order ordering and
polymorphic normalized higher-order ordering are new. Theering itself has been made much more
powerful by replacing the congruence on types used therenliyr@dering on types. This yields a very
elegant presentation of the whole machinery by integratioth orderings into a single one operating
on terms and types as well. This presentation should in tercdnsidered as the key missing stone
on the way towards the definition of a recursive path ordeforgdependent type calculi. Finally, the
normalized higher-order recursive path ordering is new a&tlw

*This work was partly supported by the RNRT project CALIFE #mel CICYT project HEMOSS, ref. TIC98-0949-C02-01.

1 Introduction

Rewrite rules are increasingly used in programming langsi@nd logical systems, with two main
goals: defining functions by pattern matching; describulg-based decision procedures. ML, Alf [8]
and Isabelle [32] examplify the first use. A future versioiCof [18] will examplify the second use [14].
In Isabelle, rules operate on terms #anormal, n-expanded form. In ML and Alf, they operate on
arbitrary terms. In a future version of Coq, both kinds sdadexist.

The use of rules in logical systems is subjected to three mmata-theoretic properties : subject
reduction, local confluence, and strong normalization. fiilsé two are usually easy. The last one is
difficult, requiring the use of sophisticated proof techugg based, for example, on Tait and Girard’s
computability predicate technique. Our ambition is to rdgn® this situation by developping for the
higher-order case the kind of semi-automated terminatroofptechniques that are available for the
first-order case, of which the most popular one is the receifsath ordering [12].

Our contribution to this program is a reduction ordering tigned higher-order terms following a
typing discipline including polymorphic sort construcprvhich conservatively extendsreductions
for higher-order terms on the one hand, and on the other hamdhbwitz's recursive path ordering
for first-order unisorted terms. In the latter, the precedemnle allows to decrease from the tesm=
f(s1,...,s,) to the termg(ty,...,t,), provided that (i)f is bigger thang in the given precedence
on function symbols, and (ii§ is bigger than every;. For typing reasons, in our ordering the latter
condition becomes: (ii) for every, eithers is bigger thar¢; or somes; is bigger than or equal to
t;. Indeed, we can instead alloiwto be obtained from the subterms ©by computability preserving
operations. Here, computability refers to Tait and Gimustrong normalization proof technique which
we have used to show that our ordering is well-founded. Awegéa the restriction of our proof to the
first-order sublanguage yields a new, simple proof of walifdedness of Dershowitz’s recursive path
ordering. This proof does not use Kruskal’s tree theorem aicourse, does not show that the recursive
path ordering is a well-ordering. It appears therefore finaving the property of well-foundedness of
the recursive path ordering is quite easy -to a point thatmeders why this proof was not discovered
before- while proving the slightly stronger propertry oflla@deredness becomes quite difficult.

In a preliminary version of this work presented at the Fetderhogic Conference in Trento, our order-
ing could only compare terms of equal types (after identiysorts such as Nat or List). In the present
version, our ordering is capable of ordering termslecreasing typeshe ordering on types being sim-
ply a slightly weakened form of Dershowitz’s recursive pattiering. Several other improvements have
been made, which allow to prove a great variety of practigahgples. To hint at the strength of our
ordering, let us mention that the polymorphic version otiéis recursor for the natural numbers is eas-
ily oriented. And indeed, our ordering can prove at once émmination property of all monomorphic
instances of a polymorphic rewrite rule. Many other example given which examplify the expressive
power of the ordering.

In the litterature, one can find several attempts at desigmi@thods for proving strong normalization
of higher-order rewrite rules based on ordering compagsdhese orderings are either quite weak [26,
21], or need an important user interaction [10]. Besidesy thperate on terms in-long S-normal
form, hence apply only to the higher-order rewriting “a lppkbw” [27], based on higher-order pattern
matching modulgsn. To our knowledge, our ordering is the first to operate onteatyi higher-order
terms, therefore applying to the other kind of rewritingséa on plain pattern matching. And indeed we
want to stress several important features of our approacdtlyi-it can be seen as a way to lift an ordinal
notation operating on a first-order language (here, thefdabelled trees ordered by the recursive path
ordering) to an ordinal notation of higher type operatingaaset of well-typed\-expressions built over

the first-order language. Secondly, the analysis of ourrarggbased on Tait and Girard’s computability
predicate proof technique, leads to hiding this techniguayaby allowing one to carry out future meta-
theoretical investigations based on ordering comparisathgr than by a direct use of the computability
predicate technique. Thirdly, a very elegant presentatiothe whole ordering machinery obtained
by integrating both orderings on terms and types into a singlke operating on both kinds shows that
this presentation can in turn be the basis for generaliziegotdering to dependent type calculi. Last
but not least, a very simple modification of the ordering carubed to prove strong normalization of
higher-order rewrite rules operating on termsjitong g-normal form, and this is indeed true of any
higher-order rewrite ordering containimgreductions.

The framework we use is described in Section 2. This framkwwludes several novel aspects,
among which two important notions of polymorphic highedarrewriting and of polymorphic higher-
order rewrite orderings (both allowing on demand for higbeter pattern matching). The basic version
of our ordering is defined and studied in Section 3, whererakegamples are also given. The notion of
computable closure used to boost the expressivity of theromglis introduced and studied in Section 4.
Section 6 introduces another enhencement, whose role mspimve the treatment of bound variables.
The latter ordering is then adapted to rewriting on termg-long 5-normal form in Section 5. We
discuss several other improvements of our method in Sectidfinally, further potential extensions of
our work as well as some related work are discussed in Se8tiohl examples which can be found
in [30, 27, 10] are solved with our method but one which resistll attacks.

The reader is expected to be familiar with the basics of tewriting systems [13, 24] and typed
lambda calculi [1, 2].

2 Polymorphic Higher-Order Algebras

This section describes our framework of polymorphic higheter algebras, together with higher-
order rewriting and rewrite orderings. Polymorphic higbeder algebras enjoy the property that typable
terms have a unique type in a given environment, which edse$otlowing developments. Several
definitions of (polymorphic) higher-order rewriting arensidered, and the associated (polymorphic)
rewrite orderings are then introduced. Types will therefplay a central role in this paper, but the
reader should be aware that the paper is by no means aboutqmgllyic typing : it is about polymorphic
higher-order orderings.

2.1 Types

Given a setS of sort symbol®f a fixed arity, denoted by : *» — %, and a setS” of type variables
the setZsv of polymorphic typess generated from these sets by the construetdor functional types

To = s(T3) | a | (Ts — Tev)
fors:«" — % € Sanda € SY

We denote byar(o) the set of type variables of the typec 75+, and by7Zs the set ofmonomorphic
or groundtypes, whose set of type variables is empty.

Types ardunctionalwhen they are headed by the symbol, anddata typesvhen they are headed by
a sort symbol. As usual> associates to the right. We will often explicit the func@bstructure of an
arbitrary typer by writing it in thecanonical formp; — ... — o0, — o, withn > 0, whereo is a data

type or a type variable callezhnonical output typef = denoted by?o, andn is thefunctional levelor
arity) of 7 denoted byur(7).

Following [3], we could have also considered inductive typeour framework, without having to
face new difficulties. We choosed not to do so in the presemémwork, which, we think, is already
quite powerful and complex. We will come back on this questroSection 7.

A type substitutios a mapping fronS¥ to 75+ extended to an endomorphismZfy. Type variable
renamingsare bijective type substitutions. We writ¢ for the application of the type substitutigrto
the types. We denote byDom (o) = {a € 8" | ao # a} the domain ot € 7gv, by o]y, its restriction
to the domairDom (o) NV, by Ran(o) = Usepom(s) Var(ao) its range and by~ the equivalence of
types under type renaming. By a renaming of the ty@part froml” C X', we mean a type& where
¢ is a type renaming such th&om(§) = Ran(o) andRan(&) NV = 0.

In the following, we usey, § for type variablesg, 7, p, 6 for arbitrary types, and, ¢ to denote type
substitutions.

2.2 Signatures

We are given a set of function symbols denoted by the lefteysh, which are meant to be algebraic
operators equipped with a fixed numberof arguments (called tharity) of respective types,; €
Tsv,...,0, € Tgv, andoutput typer € 7gv such thabar(o) C U; Var(o;). Let

F= H’J folx...xan—m
O1yeeey On,O

be the set of all function symbols. The membership of a giverction symbolf to a setF,, «. xo, —0
is called atype declaratiorand writtenf : oy x ... X 0,, — 0. In casen = 0, the declaration becomes
f :— oorsimply f : ¢ wheno is not a functional type. Type declarations are not typekpalgh they
are used for typing purposes. Note howeverthat- ... — 0, — oisatypeiff : oy x... X0, — 0lS
a type declaration. A type declaratiorfiist-orderif it uses only sorts, and higher-order otherwise. It is
polymorphidf it uses some polymorphic type, otherwise, im®nomorphicThe intended meaning of a
polymorphic type declaration is the set of all its type insi@ions, that is, polymorphic type declarations
are implicitely universally quantified, or, equivalenttgn be renamed by an arbitrary type renaming.

F is called dirst-order signaturef all its type declarations are first-order, and a highetesisignature
otherwise. It is gpolymorphic signaturé some type declaration is polymorphic, and a monomorphic
signature otherwise. Type instantiation does not changetity of a function symbol. Polymorphic
signatures capture infinitely many monomorphic (and polyhic) ones via type instantiation.

A function symbol having several type declarations in a gigggnature is said to beverloaded
Overloading is quite useful, but it complicates typing wsléhe following property is satisfied :

Definition 2.1 A (possibly polymorphic) signatut& is regularif for any two type declarationg :
op—...— 0o, —ocandf 0, — ... — o, — o whereU,; Var(o;) NU; Var(c}) = 0, the equational
problem(A\ o; = o/) A o # ¢’ has no solution.

i=1

Regular signatures are important because they providendeistic typing, as we will see in Sec-
tion 2.4. A non-overloaded signature is of course regulasteNhat regularity is decidable, since the
existence of a ground solution (for the type variables) eoahove formula is decidable [6].

It is worth noting that regularity implies the condition tha a given type declaration, all type vari-
ables occuring in an output type already occur in one of thatitypes. As a consequence, polymorphic
constants are not allowed. Although regularity should eexesl for constants in order to ease specifica-
tions, as we will see later in several examples, we will assitthroughout the paper, unless explicitely
mentionned otherwise.

2.3 Terms

The set7 (F, X) of raw algebraicA-termsis generated from the signatuféand a denumerable set
X of variables according to the grammar rules:

T =X|(\X:Te.T)| QT,T) | F(T,...,T).

Terms of the form\z : o.u are calledabstractionswhile the other terms are said to beutral @Q(u, v)
denotes the application af to v. We may sometimes omit the typein Az : o.u as well as the
application operator, writing(v) for @Q(u, v), in particular when: is a higher-order variable (which do
not have arity in the present framework). As a matter of corerece, we may write:(vy, ..., v,), Or
Q(u, vy, ...,v,) foru(vy) ... (v,), assuming: > 1. The termQ(u, v) is called a (partial)eft-flattening
of s = u(vq) ... (v,), u being possibly an application itself (hence the word “fadit}i

Terms are identified with finite labeled trees by consideng o._, for each variable: and typeo,
as a unary function symbol taking a teimas argument to construct the tepm : o.u. We denote the
set of free variables of the tertrby Var(t), its set of bound variables b§Var(t), its size (the number
of symbols occurring i) by |¢|.

Positionsare strings of positive integers.and- denote respectively the empty string (root position)
and the concatenation of strings. We (es(t) for the set of positions ih Thesubternof ¢ at position
p is denoted byt|,, and we writet > ¢|, for the subterm relationship. The result of replacthgat
positionp in ¢ by u is denoted by [u],. We sometimes usgz : o], for a term with a (unique) hole of
typeo at positionp, also called a context.

The notatiors will be ambiguously used to denote a list, or a multiset, cgtao$termssy, . . ., s,,.

2.4 Typing Rules

Typing rules restrict the set of terms by constraining therfoliow a precise discipline.

Definition 2.2 An environment is a finite set of pairs written a&z; : o4, ..., 2, : 0,}, Wherex; is a
variable,o; is a type, and; # x; for i # j. Var(I') = {z1,...,z,} is the set of variables df. The
size|l"| of the environment is the sum of the sizes of its constituants. Given two enviemnsl” and
I, their compositionis the environment - IV =TI U {z : 0 € ' | € Var(I")}. Two environmentE
andI” arecompatiblef ' - I" =T U T".

Our typing judgements are written Bsl- s : o, and read § has types in the environment”. They
are displayed at Figure 1.

A term s has types in the environment” if the judgement” Fx s : o is provable in our inference
system. Given an environmenf a terms is typableif there exists a type such thal® Fr s: o.

An example of signature together with typable terms is gaegxample 2.

We now prove the main properties of our type system whichrasgumental, in our view, to develop
a theory of higher-order rewriting.

Lemma 2.3 AssumeF is regular. Then, the problem, given an environmeand a terms, wether there
exists a typer such thatl' F » s : o is decidable in linear time in the sum of the sized adnd s.
Moreover,o is unigue whenever it exists.

Proof: We prove unicity and linear time complexity togethgrinduction on the size dfl’, s).
If sis avariable, both properties follow from set membership.

Variables:
rz:o€el

I'ktrax:0o

Functions:
fio1x...x0op, m>0€EF
& some type substitution of domain | J, Var(o;)
Tr l_]:fl 10’15 ... T l_ftnidng

T I—ff(tl,...,tn):aﬁ

Abstraction:
F{z:0} bt
F'tr(Az:ot):o—T

Application:
I'trs:o—7 T'brt:o

I' Fr@Q(s,t) : 7

Figure 1. The type system for polymorphic higher-order alge bras

If s = @Q(u,v), we apply the induction hypothesis to bdth «) and(I", v) and check the inference
step in constant time, yielding unicity and linear time coexgy.

If s = A\ : 7.u, we reason by induction ofi" - {z : 7}, u), since|l'| + |z : 7.u| > |T'-{x : 7}| + |ul.
Both properties follow directly.

If s = f(s1,...,s,), we first apply the induction hypothesis (b, s,), ..., (', s,). By regularity
assumption, for each declaratign: o x ... x 0, — o € F, if any, such that the types obtained for
s1, ..., S, match the typesy, ..., 0,, the output type obtained farin case of success is the same. The
inference step is again done in constant time, therefondpyeur second claim. O

The existence of a unique type for a term in a given envirorimaih be important in the sequel.
Polymorphic constants violate our regularity assumptiut,unique typing is nevertheless maintained
for them by our typing rules (the type variables occuringhe type declaration of a polymorphic con-
stanta cannot be renamed, though, unlessccurs as a subterm in a bigger term). This will be used in
section 6, where possibly polymorphic constants are infted to replace some bound variables. And
indeed, we could have given a more powerful type system indifferent ways in order to cope with
function declarations for which the output type has extnaakdes. In both cases, the ruiinctions
is modified. In the first case, by allowing farconversion of these variables, yielding type uniqueness
up toa-conversion. In the second case, by replacing pattern nmat¢for computing’) by unification.
Type uniqgueness would be lost, but this type system woulkgausenjoy the principal typing property,
which would be enough for our purpose.

Type substitutions apply to types in terms; = x, (\r : 0.5) = \v : 0€.5E, (u,v)€ = (ué,v€), and
f@)¢ = f(ug). Awhole judgement can indeed be instantiated:

Lemma 2.4 Assume that the signatufé is regular. Then[' Fz s : o impliesI'¢ Fx s : o for anyé.

Proof: By induction on the type derivation efand by case upon the last rule applied.

If sis a variable or an application, the result is cleas # Mz : 7.u, then, the last rule applied in the
typing derivation isAbstraction, and thereforer = 7 — pandl’ - {z : 7} F# u : p. By induction
hypothesisI'¢ - {z : &} Fxu€ @ p&, and by usingAbstaction, I'S £ Ax : 76.ué : 76 — pg, that

i5,1¢ Fxrs&:oé Ifs= f(sy,...,s,) with f : 0y X ... X 0, — 0o, then, the last rule applied in the
typing derivation if~unctions, and thereforer = 7¢ for some type substitutiohandl” Fx s; : 0;€ for

€ [1..n]. By induction hypothesi<,(Fr s; : (0:£)¢ = 04(£C), hencel'¢ Fx f(s1,...,8,) : T(£C) =
(1€)¢ = o¢, and we are done. O

Lemma 2.5 Assume given a regular signatufg and environmenk', a terms and a types such that
I' b7 s:oholds. Then]' - 1" k£ s: o for all I compatible with".

Proof: By induction on the proof of the judgemént-r s : o, and by case upon the last rule applied.

There is subtlety with the cageéstraction, for which there is a type suchthal’- {z : 0} Fru: 7.
We then apply our induction hypothesis to the judgenménfz : ¢} +x u : 7 and the environment
I {z : o} which is easily shown compatible with- {z : ¢}, since so aré& andI”, yielding (" - {x :
o})- I {x:0}) Fru:7.BUt(l'-{x:0}) - (I"-{x:0}) = (I'- 1) - {z : o}, and therefore we can
applyAbstraction to get the result.

Other cases are straightforward. O

Lemma 2.6 Assume given a regular signatufg, an environment’, a terms and a types such that
I' ks :0holds. Then, for alp € Dom(s), there exists a canonical environmdng, and a type
7 such thatl'y, + = s|, : 7 is a subproof of the proof of the judgemdnt - » s : 0. Moreover,

Lsia = (Dot (sl -

Proof: By induction on the length of. If p = a, the result is trivial, withs|, = s, T
7 = 0. Otherwise, we discuss by case according to the top funstiorbol of s.

If s = Q(sy,80) @andp =i -q(withi = 1,2),0rs = f(sy,...,s,) andp = i - ¢ (with i € [1..n]),
then, byApplication or Functions, there is a type; such that® Fx s|; : o;. We apply the induction
hypothesis to the judgemelit £ s|; : 0; and the subternis|;)|, = s|(.q) Of s|; at positiong, yelding a
canonical environmerit; , ; such that the proof of the judgemery, , =t~ S|(i.q) : T fOr somer is a
subproof of the proof of the judgemenitl-« s|; : o;, hence o’ Fx s : o, showing this case.

If s =Mz :puandp =1-q, bytheAbstraction rule,I" - {z : p} Fx u : 0 for somed, a judgement
whose proof is a subproof of the proof bf -~ s : 0. Now, s|, = u|,, and by induction hypothesis,
there exists a canonical environméht- {x : p}),, suchthall' - {z : p}),, Fr ul,: 7 is a subproof
of the proof of the judgement - {z : p} Fx wu: 0, hence of the proof of the judgemdntt-x s : 0. We
takel'y, = (I'- {x : 7}),, and we are done.

Finaly, the property’y| , = = (T's|,) (s1,),, follows directly from our construction. O

N I' and

Lemma 2.7 Assume given a regular signatufg, an environment’, two termss and v, two typeso
andr, and a positiorp € Pos(s) suchthatl' Fxs: 0, Fzs|,: 7andly, Frv: 7. Then,
I' Fx s, : 0.

Proof: By induction on the length @f The basic case is trivial, with,, =T, 7 = o, ands[v], = v.

If s = Q(sy,80) @andp =i -q(withi = 1,2),0rs = f(sy,...,s,) andp = i - ¢ (with i € [1..n]),
then, byApplication or Functions, there is a typer; such thafl’,, = I' £ s|; : 0;. Noting that, by
lemma 2.6, = (I's,)), F7 8lp = (sli)lq : 7andly, = (Typ,)(s)l, Fr v @ 7, we can apply the
induction hypothesis to the judgeméntt# s|; : o; and the position of s|;. The result then follows by
using the ruléApplication or Functions.

If s =\ : puandp = 1-q, by theAbstraction rule,I';, = I'- {z : p} F7ru : 0 for somed. By
lemma 2.6, = (I'- {z : p})y,, and thereforgI" - {x : p}),, Frv : 7. By induction hypothesis,
I'-{x:p} Frulv],: 0, and the result follows by applyingbstraction. O

We now introduce substitutions:

Definition 2.8 Aterm substitutionor simplysubstitutioris a finite sety = {(z1 : 01) — (I'1, t1), ..., (T, :
on) — (I, t,) }, whose elements are quadruples made of a variable symbgieaan environment and
a term, such that

(|) Vi € [ln], t; # Z; andFZ’ l_]: t; 0,

(i) Vi # j € [1..n], x; # z;, and

(iii) Vi # j € [1..n], I; andI'; are compatible environments.
We sometimes omit the parentheses, the déyp@d the environment; in (z; : o;) — (T, t;).

The set of (input) variables of the substitutipms Var(y) = {1, ..., x,}, itsdomainis the environ-
mentDom(y) = {x1 : 01, ..., 7, : 0,} While itsrangeis the environmerRan(y) = U;ep._, Li-

We denote by, the restriction of the substitutiof to the domainV’ N Var(v), and by~ the
substitutiom‘(;{\v).

Note that the seRan(y) is indeed an environment by our compatibility assumptiah (i

Lemma 2.9 Assume given a substitution= {(z; : 1) — (I'1,t1), ..., (zn : 0,) — (T, t,)}. Then,
Ran(y) Frt; : o;.

Proof: By condition (iii) of Definition 2.8]"; C Ran(vy) = U;ep1.., I'i» Which implies by Lemma 2.5
thatRan(y) Fxt; : o;.

Definition 2.10 A substitutiony is said to becompatiblewith an environment' if
(i) Dom(~) is compatible witH",
(i) Ran(y) is compatible witl \ Dom/(~).
We will also say that is compatible with the judgemehitt« s : o.

Definition 2.11 A substitutiony compatible with a judgemeiit - s : o operates as an endomorphism
on s (keeping its bound variables unchanged) and yields a termlefined as follows:

If s=x¢cXandz ¢ Var(y) then sy==x

If s=xeXand(x:0)— (I',t) el then sy=t

If s=Q(u,v) then sy = Q(uy,vy)

If s= fluy,...,up) then sy = f(ury,...,uyYy)
If s=X:7u then sy = Xz : T.uy(z)

Lemma 2.12 Assume given a regular signatufé and a substitution, compatible with the judgement
I' Frs:o. ThenD' - Ran(y) Frsvy:o.

Proof: By induction on the derivation of the judgemént-~ s : o.

Assumethat = = ¢ Var(y). By Definition 2.11, it follows thaty = x. ThereforeRan(y) trx :
o by compatibility assumption dRan(~) with I' C Dom(v) and Lemma 2.5.

Assume that = = € Var(v). Then, by compatibility assumption @om(v) with ', there exist
somel” and¢ such that(z : o) — (I,t) € v. Then,sy = t by Definition 2.11,Ran(y) Fxt: o by
Lemma 2.9, and' - Ran(y) Frt: o by Lemma 2.5.

Assume that = Q(u,v). Then,sy = Q(uy,vy) by Definition 2.11, and” Fu : 7 — ¢ and
I' kv : 7 for some typer by the ruleApplication. By induction hypothesid, Fz uy : 7 — o and
I' £z vy : 7, and thereforel’ Fx sy : o by the ruleApplication.

The case = f(s1,...,,) IS similar.

Assume finally thatt = Mz : 7.u. By the ruleAbstraction, I"- {z : 7} Fru : 7 — 0. Since
v compatible with the environmedt, Dom(v) andI’ are compatible, and thereforBom(y\ ;) and

I'-{x : 7} are compatible. SimilarlyRan(v) andI'\ Dom(v) are compatible, and therefoRun(\ (»})
andl' - {z : 7} \ Dom(y(s}) are compatible, showing that the substitutign,, is compatible with the
environment - {x : 7}. Therefore, by induction hypothesis; {z : 7} Fz uy) : 7 — o, and by the
rule Abstraction, it follows thatl' -z Av.7 : (uy\(2}) : 7 — 0. We conclude with Definition 2.11. O

When writing sy, we will always make the assumption that the domairy & compatible with the
judgement” £ s : 0. We will use the lettety for substitutions and postfix notation for their applicatio
We will sometimes use the notatiohy whereA is a set of terms, ang a substitution, for the set of the
instantiated terms ofl.

2.5 Plain higher-order rewriting [20]

We now come to the definition of higher-order rewriting. Angatie three possible variations by
Klop [24], Jouannaud and Okada [20], and Nipkow [30], we dd&shere the last two which differ
significantly, while the first one can be easily encoded veadther two. Based on using plain pattern
matching for firing rules, plain higher-order rewriting feetfirst of these two.

Definition 2.13 Given a regular signature”, a rewrite ruleis a quadruple writted™ ~ [— r : o,
wherel andr are higher-order terms such that

(i) Var(r) C Var(l),

(i) Frel:ocandl Fgr:o.

The rewrite rule is said to bpolymorphicif ¢ is a polymorphic type. Alain term rewriting system
or simplyterm rewriting systenis a set of rewrite rules.

We will often omit the typer or even the environmertin the rulel’ Fx 1 — r : o.

Examples of polymorphic rules are given later in this sectiblere is an example of a triple which
is not a rewrite rule because its lefthand and righthandssildenot have the same type: IEt= {f :
a— a,g: 0 — (,0: N}, Tgv = {«, 5}, and consider the tripléz : o} + f(z) — ¢(0). We
have{z : a} F£ f(z) : a,{z : a} F£g(0): N,anda # N. On the other hand, the type instance
{z:N} F f(z) — ¢(0) : Nis arule, as well as the term instange: o} + f(0) — ¢(0) : N.

The following property follows easily from the definitionelmma 2.4 and Lemma 2.12:

Lemma 2.14 Assume thall' - [— r : o is arewrite rule. Then, for every type substitutioand every
term substitutiony compatible with'¢, the quadruplé’{ - Ran(y) F &y — r&y : o€ is a rewrite rule.

We are now ready for defining the rewrite relation :

Definition 2.15 Given a plain higher-order rewriting systef and an environmenit, a terms such
thatl' Fr s : o rewrites to a termt at positionp with the rulel’; + [; — r; : 0;, the type substitutiof
and the term substitution, writtenT" - S %_m t,orsimplyl’ = s —g t, or evens —p t assuming
the environment, if the following conditions are satisfied :

(i) Dom(y) C T,

(ii) i€ - Ran(y) € Ty,

(iii) s|, = l:£y,

(iv) t = s[ri{y],.

These conditions mean that the rule used for rewritingpositiornp is the instanc&’ ;¢ + [, — ;£ :
o;& of the polymorphic ruld’; + [; — r; : o; by the type substitutiof, which maps the types of the
variables in; with the type of the terms by which these variables are replablote that condition (iii)

9

implies that variables which are bound in the rule do not oéae in~, therefore avoiding capturing
variables when rewriting.

Example 1 LetS = {oy, 03, 03, 04}, S ={a: %, B:*},andF ={f:ax B3 —a,g:ax 3 — [}.
LetD' = {z1 : 01, T2 : 09, T3 : 03, T4: 04}, aNds = g(f(z1,x2) + f(x3,74)). We havel' £ s : 0s.
Lety = {z1 : 01 — ({x1 : 02, g : 01},9(x1,76)), 3 : 03 — ({2 : 09, x5 : 03}, g(x2,75)), g :

09 — ({1 : 09, T5: 03}, f(x1,25)) }.

Dom(y) = {x1 : 01, T3 : 03, T : 02}, aNdRan(y) = {1 : 09,2 : 02, x5 : 03, T : 01}.
sv = g(f(9(x1,26), 22), f(9(2, 25), 24)).

['-Ran(vy) = {x1: 02, To: 09, T3: 03, Ty: 04, T5: 03, Tg: 01}.

['-Ran(y) bz sv: os.

Typechecking the rewritten term is not necessary, thanksetgo-calledSubject reductioproperty:
Lemma 2.16 Assumethal +rs:oandl' -+ s -z t. Thenl' Fxt: 0.

Proof: By Lemma 2.41",¢ F£ ;£ : 0;£. By conditions (i) and (ii) in Definition 2.15, the substin
~ is compatible with the environment¢, and therefore, by lemma 2.1R;¢ - Ran(vy) Fx [,£y @ 0,€.
By condition (ii) and lemma 2.9, ;{7 : 0;¢, and therefore, by condition (iii),, Fr s|, : 0:&.
Note that this tells us how to compugen practice. Similarlyl';, Fx £y : 0;£. By lemma 2.7), we
deduce thal' tx s[r;{v], : 0:£. Using now condition (iv), we finally conclude thBttx ¢ : o. O

Plain rewriting uses plain pattern matching: givem, p andl;, r;, 0;, the propertyl’ Fx s|, : 05§
allows to compute the type substitutiom linear time. Now, computing the substitutignif any, such
that!/|, = ;¢ can be done in linear time as well. Overall, plain patternamiag in our formalism is
linear. Note that it follows from condition (ii) thaRan(y) C Iy,

Example 2 We give here the specification for Godel's system T.&et {N}, S” = {a}, F = {0 :—
N,s:N—=N, +:NxN—=N, rec: N xax (N —a—a) — a}. Godel'srecursor for natural
numbers is defined by the following rewrite rules:
{U:a, X N—a—a} F rec(0,U,X) — U
{z:N,U:a, X:N—-a—a} + res(x),UX) — QX x, rec(z,U, X))
Lets = rec(S(0),0,rec(0, Az : Ny : N. + (z,y), Az : Ny : N —- N — N z: N.y(+(z, 2)))),
which typechecks by instantiating the type declarationeofwith the type substitution§a — N} and

{a— N — N — N}. We can rewrite this term with the (corresponding type ins&s of the) rule for
recursors. Using a call-by-value stategy, we obtain:

rec(S(0),0,rec(0, Az :Ny:N.+ (z,y), Az : Ny:N —-N — N z: N.y(+(z,2))))
—>?U:a, X:IN=a—a} + rec(0,U,X)—U TGC(S(O), 0, Az N y- N.+ (.Cl],y))
_iz:IN, Vi, X:Naa} b ree(S().U.X) U QAz:Ny:N.+ (z,9),0,7ec(0,0, Az : Ny : N. + (z,9)))
—5 @Ay :N.+(0,y),rec(0,0, Az : Ny : N.+ (z,9))) =5 +(0,7ec(0,0, Az : Ny : N. + (7,y)))
_y 1(0,0)
0

2
—>{U:a, X:|N~>a~>a} F rec(0,U,X)
_>€
{z:IN} + +(z,0)—z

As a general benefit, the use of polymorphic signatures allosvto have only one recursor rule,
instead of inifinitely many rules described by one rule schasin Godel’s original presentation. O

10

Several other examples of higher-order rewrite systemdarelopped in section 3.

Because plain higher-order rewriting is type preserving, may often omit the environmeint in
which a terms is typechecked as well as its type, and consider the sequémhesns originating frons
by reduction from a given se&t of higher-order rules. In other words, we will often considawriting
as a relation operating directly on terms. This will allowtasometimes simplify our notations in the
rest of the paper.

A term s such thats - ¢ is calledreducible(with respect taR). s|, is aredexin s, andt is thereduct

R
of s. Irreducible terms are said to be Rrnormal form A substitutiony is in R-normal form ifz~ is
in R-normal form for allx. We denote by% the reflexive, transitive closure of the rewrite relation

— and by, its reflexive, symmetric, transitive closure. We are adyuaterested in the relation
—R3 = "R UJ—a.

Given a rewrite relation—, a terms is strongly normalizablef there is no infinite sequence of
rewrites issuing froms. The rewrite relation itself istrongly normalizingor terminating if all terms
are strongly normalizable, in which case it is callegduction It is confluent ifs —* u ands —* v
implies thatu —* ¢t andv —* ¢ for somet.

2.6 Conversionrules

Equations are rewrite rules which can be used in both dowesti These three particular equations
originate from the\-calculus, and are called, 3- andzn-equality:

{u:a,v: 6} F QAz:awv,u) =5 v{zrw— u} .
{u:a— B} Arv:aQu,z) =, u if © & Var(u)
{v:p} F Ar:ioav =, Ay :av{z—y} ifydgBVar(v) U Var(v)\ {z})

The above equations are indeed equation schemas : all ences of, andv stand for arbitrary terms
to which the substitution§z — «} and{x — y} apply. Of course, it must be shown that the lefthand
and righthand sides of rules are typable with the same tyfieeinenvironment, thanks to Lemma 2.12.
As already said, this justifies an abuse of notation, by fbirggethe environment of the equations. As
usual, we also do not distinguishiconvertible terms.

We use% for the congruence generated by thequality, and— ; for the 3-reduction rule:

{ura, v:iB} Fr@QAr:av,u) —5 v{iz— u}
Sincen-expansion may not terminate, its use is restricted by isygedlut in which context it applies:

{u:00— ... =0, — 0} Frsfu, % SIATL o, Ty 0. QU T, X))

o is a canonical output type

Ty .., Ty & Var(u)

u IS not an abstraction

s|, is not an application in cage= ¢ - 1

The last condition means that the first argument of an agmitaannot be recursively expanded on top,
therefore preventing non-termination. We could of coutk®eany finite n-expansion of these terms.

It is well-known that the simply typed-calculus is confluent (modute-conversions) and terminating
with respect tg3-reductions and either the above notionpeéxpansions, or the more usual notion of
n-reduction. We writes | 5, (s | for short) for the uniquei-normal formof the terms, s17 (s T for

11

short), for the unique (up ta-equivalence)-long formof s wrt. n-expansions |, for the unique (up
to a-equivalence)-normal form ofs wrt. n-reduction, and: |3, (u | for short) for its unique (up to
a-equivalence) normal form with respect flereductions and-expansions, also calleglong normal

form (terms inn-long normal form are calledormalized. We may sometimes annotate the arrow with

the set of positions at which rewriting is allowed or diselén, as in%, T, or (%A)T. These definitions

extend to substitutions in a natural way. We allow ourseteesormalize sets of terms, writing |,
for the set of normalized terms of the sét These normal forms satisfy the following well-known
properties:

Lemma2.17u [=u [T=uT].

Lemma 2.18 Normalized terms are of the following two forms:

(i) \T : p.Q(X, vy,...,v,), forsomer : p, X : 7y — ... — 7, — 7 € X wherep > 0 andr is a data
type or a type variable, and normalized terms. . ., v,, omitting@() whenp = 0;

(i) AT : p.Q(F(u1,...,up),v1,...,0,), FOr SOMET : b, F € Fy . xons(ri—..smyr) WhETET IS @
data type or a type variable, and normalized terms. . . , u,, vy, . . ., v,, OMItting@() whenp = 0 and
the other two parentheses when-= 0.

In normalized terms, the first argument of an applicatiomecame inn-long form. The following
definition aims at characterizing classes of possiblyormal terms which are not fully-expanded.

Definition 2.19 A termt is tail expandedresp.tail norma) if it is of the following form:

(i)t e X,

(i) t = f(uq,...,u,), anduy, ..., u, are inn-long form (resp. normalized),

(iii) t = Q(uy, ..., u,),u is tail expanded (resp. tail normal and is not an abstractiandus, . . ., u,
are inn-long normal form (resp. normalized),

(iv) t = \z : 0.u, u is tail expanded (resp. tail normal) and not of the foenw, x) with x & Var(v).

Every normalized term of types contains a tail normal term of the same typas a subterm, which is
a proper subterm i# is functional, and the termitself otherwise.

We denote byt 1#A (resp. ¢t]7%) the unique tail expanded (resp. tail normal) term-equivalent
(6n-equivalent) ta.

Expansion and tail expansion are indeed mutually recuraiv@xamplified by the following proper-
ties rephrasing definition 2.19, that will be used withounti@ning when needed:

(Aru)T#A = Mr.(ul#A) providedu # Q(v, x)

Ot = Ae(ul)
f@1= = f(a1)
f@1 = (fm)r=s) 1"
Q(up, Ugy .., Uy) T#A = Q(ug 128, ue T, .., upn T)

Q@1 = (Q@)1) 1"

These easy properties can be regarded as an algorithm fputom then-expansion and tail-expansion
of a term.
Important properties of normal terms carry over to tail narberms :

Lemma 2.20 u]7 = u 1#A|.

12

Lemma 2.21 Let s be tail normal, andt is a type substitution. Theif[7*= s¢ 1#A.

Lemma 2.22 Let s be a tail normal term¢ be a tail normal neutral term, ang € Pos(s) such thats|,,
andt have the same type. Thejt], is tail normal.

Lemma 2.23 Lets g, L. Thens andt have the same tail normal form.

We can see that tail normal terms enjoy properties similtrdee of normalized terms. Being simpler
is an argument for their use.

2.7 Normalized higher-order rewriting [30, 27]

The idea of normalized higher-order rewriting is to definmpaoitations ovek-terms used as a suitable
abstract syntax for encoding functional objects like paogs or specifications. It uses higher-order
pattern matching for firing rules. We do not assume here thgtud types of function declarations or
variables are data types, a quite restrictive assumptiwaya made in the litterature : output types may
be functionnal or even polymorphic. Because our rules wltibfined as pairs of tail normal terms, they
will not be n-expanded at the top as one might have expected, and wilitestail normal subterms.

Definition 2.24 A normalized rewrite rulés a rewrite rulel’ + [— r : ¢ such thatl andr are tall
normal terms. Aormalized term rewriting systeim a set of normalized rewrite rules.

Given a normalized term rewriting systelhand an environmeni, a tail normal terms such that
I' s : orewrites to a termt at positionp with the tail normal rulel’; + [; — r; : o0;, the type

substitution¢ and the term substitution, writtenT" + S et % N 5t, or simplylI' - s —p ¢, Or

evens —p t assuming the environmenit if the following conditions are satisfied :
(i) Dom(v) € T'€,
(i) I'i§ - Ran(y) € Ly,
(iii) s, is tail normal ands|, —%, 1;£ 177 7,

(iv) ¢ = (s[ri{ 122 v Laly) Ls.

Note that it is not a restriction to assume thigtis tail normal, since we can always chgstuilfilling
this property.

As previously, we can show thBY|, - s, : 0;¢, allowing to compute the type substitutiom linear
time by first-order pattern matching. Then, normalized rémg uses higher-order pattern matching to
compute the substitution, if any, such that|, <7, ;{ 1" . Higher-order pattern matching is an
open problem for order strictly bigger than 4, but is decidabith a linear complexity again, when the
lefthand sides of rules are patterns in the sense of Millg}. [& key observation is the following:

Lemma 2.25LetI" £ s : o for some tail normal terms andI” - s —x t. Thenl' F£t: o andtis
tail normal.

Proof: Normalization ot is by definition and Lemma 2.22. For the typing judgement,gieof is
similar to that of Lemma 2.14, by using in addition conflueatgr reductions in order to show thai,
and/; have the same type, sinGereductions ana-reductions are type preserving. O

We can adopt a more efficient definitionfof s[r;{ 1" v | 4], in case the output type of a function
symbol is a data type, an assumption frequently met in m@adiut not required here. In the general
case, it is enough to climb up the term from the positido the root as long as the symbol on the path
is an application operator. This makes it easy to implemétht &n appropriate data structure for terms.

13

Example 3 This encoding of first-order prenex normal forms is adaptethf{30], where its local con-
fluence is proved via the computation of its (higher-order)aal pairs. Formulas are represented as
A-terms with sortform. The idea is that quantifiers bind variables via the use ohatfanal argument.

LetS = {form}, F = {A,V : form x form — form;— : form — form;¥,3 : (form —
form) — form}. The rules are the following:

PAV(Az.Q(z)) — V(Az.(PAQ(x)))
V(Az.Q(x)) NP — Y(Az.(Q(z) A P))
PVvV(Az.Q(z)) — V(Az.(PVQ(x)))
V(Az.Q(x)) VP — Y(Az.(Q(x)V P))
PAIAz.Q(x)) — Iz (PAQ(x)))
I Az.Q(x)) AP — F(A\z.(Q(z) A P))
PVv3IAz.Q(z)) — Iz (PVQ(x)))
I Az.Q(x)) VP — Iz (Q(z)V P))
SVOwQ@) — 0w ~(Q))
SEOQE) — YOw Q)

We give later a termination proof of these rules based oniitierimg we develop in the paper. a

This example makes sense in the context of normalized higitukar rewriting, that is, when rewriting
moduloSn, simply because using plain pattern matching instead didrigrder pattern matching would
not allow to pull out quantifiers for all terms. For examplee formulap A V(\z.z V z) does not match
with the lefthand side of the first rule if plain pattern matghis used while it does with higher-order
pattern matching.

2.8 Higher-Order Reduction Orderings

We will make intensive use of well-founded relations for\yny strong normalization properties,
using the vocabulary of rewrite systems for these relatiéns our purpose, these relations may not be
transitive, hence are not necessarily orderings, althahgin transitive closures will be well-founded
orderings, which justifies to sometimes call them orderimgabuse of terminology.

For our purpose, atrict orderingis an irreflexive and transitive relation, and @eringis the union
of its strict part witha-conversion. The following results will play a key role, &8]:

Assume-, 1, ..., ~, are relations on setg 51, ..., 5,. Let

- (>1, .-+, >n)mon DE the relation o] x ... x S,, defined agsy, ..., 5,) (1, =)mon(t1, - -, tn)
iff 51 =1 t1,...,8, =n tn;

- (>1,---,>n)iee b€ the relation oy} x ... x S, defined agsy,...,$,) (1, -, =n)tex(ti, -, tn)
iff 51 = t1,...,8-1=1=1;_1 andSi =it for somei € [1”],

- =mu D€ the relation on the set of multisets of elements§ diefined as
M U{z} =mu NU{yr, ...,y }iff M =,y N andVi € [1.n] x = y;.

It is well known that these operations preserve the welhttedness of the relations >+, ..., =,.

As already stressed, we are going to define non-transitied;faunded relations on higher-order
terms. In addition, these relations will be monotonic fonte of equivalent type, for some given quasi-
ordering>7, on types. Therefore, the union of these relations with tsstibterm may not be well-
founded in general. However, it will be for an adequate retsdn of the subterm relation:

Definition 2.26 Let >7, be a type ordering. The (strictype-decreasing subterm relatjatenoted by
>, isdefinedas: oo, t:7iff s>t 0 >75 7andVar(s) C Var(t).

14

Lemma 2.27 Let > be a well-founded relation of a sét of terms which is monotonic for terms of
equivalent types (ig=7,). Then,> U is well-founded.

Proof: Since>7, is well-founded, it is enough to show the property for terrhegquivalent type. This
follows from the fact thal>>7 and> commute for such terms by the monotonicity property-of O

We end up this section by defining the notion of reduction vnds operating on higher-order terms,
which allow one’s to show that the rewrite relations> , U — 5 or — are well-founded by simply

comparing the lefthand and righthand sides of the (polymigjpules |nR

Definition 2.28 A higher-order reduction ordering is a well-founded ordering of the set of judgements
such that:

(i) = ismonotoni¢i.e.,(I' Frs: o) = (I' Fxrt: o) impliesVl” tx ufz : o] : 7 such thaf® andI”
are compatible, thefl" - T7 Fr ufs] : 7) = (T - TV bz ult] : 7);

(i) = isstablei.e.,(I' Frs:0) = (I' k£t : o) implies that for all substitutiony whose domain is
compatible withl", then(T" - Ran(y) Fr sy :0) = (I'- Ran(y) Frty: o),

(iii) > iscompatiblei.e.,(I' Frs: o) = (I' Frt:o)implies(I" Fxrs:0) = (I" Fgt: o) for
every environmerit’ such that” andI” are compatible]” Fr s: o andl” k£t : o;

(iv) = isfunctional i.e.,(I" Fr s :0——4t:0)implies(I' Frs:0) = (I' Fxt:0).
Besides- is said to bepolymorphicif (I' Fxs:0) = (' F£t: o) implies(I'§ Fg s€ : gf) =
(T¢ Fx t€ = of) for all type substitutions.

Polymorphism can be seen as a monotonicity property of 8ybBte application operator of a term to
atype : the need for stating polymorphism arises from thed&type quantification and type application
in our formalism.

Since rewrite rules of a higher-order term rewriting systemre type-preserving in any environment
where they can be used, we will often abuse notations byngrii' - s : ¢ > ¢ : o) instead of
(I' Frs:o) = (I Fxt:o)when comparing two termsandt such thal® Fr s — ¢. This amounts
to view the ordering as a relation on typed terms instead @lation on judgements. We may even
sometimes omit types and/or environments, consideringrthering as operating directly on terms, and
writeI' = s>=t,s:0=1:7,0rs > t.

Theorem 2.29Let = be a polymorphic, higher-order reduction ordering aRd= {I'; Fx l; — 7;}ier
be a higher-order rewrite system such thatr-z I; = r; for everyi € I. Then the relation—, U —
is strongly normalizing.

Proof: Assume thal' s : o andl’ +# sry5 . éﬁg_oft. By definition of higher-order rewrit-
ing, L'y, F 7 sl © 0§, Dom(y) C T, Ti€ - Ran(y) C Ty, s, = Li{y, andt = s[r;{y],. B
assumptionI'; + [, = r; : o;,. By polymorphism,I;¢ + r ;¢ = r€ : 0;6. By stability,
¢ - Ran(y) Frli&y = ri&y : 0;¢. By compatibility, Iy, +x L;{y = r:&y : 0;§. By mono-
tonicity of > for terms of equal typd,|, - I' Fx s[l;{y] = s >~ s[ri{y] =t : 0. By compatibility again,

I' ks = t. Finally, the case of @-reduction is similar. O

The polymorphic property of higher-order reduction ordgs allows to show termination in all
monomorphic instances of the signature by means of a sioghgparison for each polymorphic rewrite
rule. Polymorphic higher-order reduction orderings aexdfore an appropriate tool in order to make
termination proofs of polymorphic plain higher-order rée/systems. In case of a monomorphic rewrite
system, there is of course no need for a polymorphic ordeewen if the signature itself is polymorphic.

15

2.9 Normalized Higher-Order Reduction Orderings

Higher-order reduction orderings turn out to be adequas@dwv termination of normalized rewriting.

Definition 2.30 A higher-order normalized reduction orderirgs a well-founded ordering of the set of
judgements such that:

(i) > istail monotonidor tail expanded terms : for all tail-expanded termand¢ such thaf{l" s :
o) = (I Fgt:o), thenVl” Fxulx : o] : 7 such thatl andI” are compatible, and[s] andu[t] are
tail expanded(I" - I Frufs] : 7) = (T - TV Frult] : 7);

(ii) = is stable

(iii) > is compatiblefor tail expanded terms;

(iv) > is tail functional: for all tail expanded terms andt such that(I' ~x s : 0 — 4t : o), then
(' Frs:o)= (I Frt:o).

Restricting functionality and monotonicity to tail expattkerms will be important in Section 6 where
such a normalized ordering is exhibited which does notfydisctionality and monotonicity for arbi-
trary terms.

Definition 2.31 A subrelation~7; of a higher-order normalized reduction orderingis said to be

(i) 5-stablein which case-} is said to be anormalized higher-order reduction orderjifgT" - s) =
(I' Fxt) implies(I"- Ran(y) Fz sylg) = (I'- Ran(y) Fr tyls) for all tail normal termss, ¢ and tail
normal substitutiony compatible with™;

(i) n-polymorphic(or simplypolymorphiq if (I' Fz s) =3 (I' Fx£t) implies(I' Fx s& T#4) =]
(D¢ Fg£tg1#A) for all tail normal termss, ¢ and all type substitutiog.

Theorem 2.32 Assume that- is a higher-order normalized reduction ordering and thd}is a 5-stable
andn-polymorphic subrelation of. LetR = {I'; + [; — r; : 0;}ic; be a higher-order rewrite system
such that(l'; Fx l;) =} (I'; Fx ;) for everyi € I. Then the reIation—>Rg is strongly normalizing.

Proof: Lets be a tail normal term such that + - St érf_oft. Sinces|,, is tail normal, and
s|p <%, Li£ T#A ~v by definition of rewriting, we get|, = [, 1#A « | 5 by the confluence property of
reductions together with tail expansions. Sindtself is tail normal, it follows that = s[l;£ 1#A v | 5],
By assumptionl’; + £ 1; =3 7. By p-polymorphism,I6 =z ;£ T#0 =) ri& 1#A. By (-
stability, I';§ - Ran(y) F 7 (L 1#0)y lg > For (r:€ 7#0)y |s. By compatibility, we get
Ly, Fr @ET#A v) 1g = (r£1#2)y 5. By monotonicity of- for tail normal terms of equal type,
Ly, - T FrsiE 12 v lglp = s = sl T#A v |g],. By compatibility againl' Fz s[l;£ T#2 v |4
lp =5 = s[ri&1#2 v 5], By tail functionnality,I’ Fx s[r,£ 1#A v | g, > t. Finally, by transitivity,
I' - s = t, implying strong normalization as claimed. O

We are left constructing polymorphic (normalized) higbeder reduction orderings.

16

3 The Higher-Order Recursive Path Ordering

In this section, we present a first version of our higher-ordeursive path ordering, together with
examples of its use. We will give more elaborated versionkersubsequent sections. Some proofs will
be omitted in this section, to avoid duplications.

3.1 The HORPO ordering

The higher-order recursive path ordering on typed highdeioterms is generated from three basic
ingredients, presented first. The relation itself is defiimetthe fourth subsection.
3.1.1 Type ordering

We assume given two (intimately related) quasi-orderingtypes>7; and>7. such that the following
properties are satisfied :

1. containement >1:C>7 and:TS::;S;
2. Well-foundedness>7. is well-founded (this is no restriction for finite signatsyg
3. Arrow subterm property 7 — o >7. 7 andr — o >7. 0;
4. Functional preservatiofi), we also say that, is arrow preserving
T o= aiffa=7 -0, 7 =7 7ando =1, o';

5. Functional preservatiofii), we also say that-7, is arrow decreasing

T — 0 >7, aimpliesoc >, aora =7 — o', 7' =7, 7 ando >z, o’;
The ordering>7, will be used in the definition of the higher-order recursiattpordering, while the

ordering>7 will be used to build up induction arguments for which thetsaim property is necessary.
The next two properties have to do with polymorphic signegur

6. Stability(under substitution): I& >7, 7, (0 =7, 7, respectively) then¢ >7. 7¢ for every ground
type substitutiorg (c& =7, 7&, respectively);

7. Compatibilityof signature declarations with type instantiations: foy &mction symbolf : o; x
... X 0, — o and type instantiations, ¢” such that/i € [1..n] 0;{' =7, 0:", theno¢’ =1, 0.

Operating on type expressions, this ordering is an ordenmiiyst-order unisorted terms. We will see
later how the recursive path ordering can be restricted $o m®et the above properties.

Lemma 3.1 Assume that =7, « ando is a data type, then is a data type as well.

Preservation of data types follows from the preservatioarodws and stability (which is needed to
avoid having a type variable equal to a data type). Preservat functional and data types will play a
key role in our proofs.

We denote by72""" the set of ground types which are minimal with respectig.

Lemma 3.2 Assuming thaf # (), thenZZ"™ is a non-empty set of data types.

Proof: Because-7, is well-founded and arrow types cannot be minimakig . O

17

3.1.2 Statuses

We assume given a partitidlul & Lex of F and we say thaf € Mul (resp.f € Lex) has amultiset
(resp.lexicographig status.

3.1.3 Precedence

We assume given a quasi-orderirg on F, called theprecedencesuch that
1.iff:d—0=rg:T—7,thenc =z, Tandf € Lex iff (9 € Lex anda (=15)monT);
2. >z is well-founded;

3. free variables are considered as constants incomparablg among themselves and with other
function symbols, coming therefore together with a typdatation.

3.1.4 Definition of the higher-order recursive path orderirg

We can now give our definition of the higher-order recursiaghpordering (HORPO), which builds
upon Dershowitz’s recursive path ordering for first-ordents [12], and improves quite significantly
over [22].

In contrast to the usual first-order case, it is not possibleansider the terms to be compared as
ground, since the property is not closed by taking subtemuguan abstraction. We will therefore
define HORPO for non-ground terms, by considering, as in teedrder case, the free variables of the
typing environement as new constant symbols which are ipeoable among themselves and with other
function symbols. It therefore makes sense to compare@ypidgements” - s:cand¥ + ¢: 7
rather than terms.

Following the tradition, we implicitely consider equivaltze classes of terms moduleconversion,
using the syntactic equality symbselfor the equivalence-,, and define our ordering,,,, by means
of a set of rules, writing-,,,,, for >, U =. In contrast, the recursive path ordering [13] contains a
non-trivial equivalence allowing to freely permute subtsrbelow multiset function symbols. Although
one may argue about the practical relevance of this feaweayill adress the question in Section 7.

The ordering definition starts with 4 rules reproducing Dexgitz’s recursive path ordering for first-
order terms, with one main difference when higher-ordenseare compared: the rules can also take
care of higher-order terms in the arguments of the smaltierlsy having a corresponding bigger higher-
order term in the arguments of the bigger side (this is redahébr first-order terms because of the
subterm property). This idea is captured in the followinggmsition:

A=Ywet (T kFgs:o) = (X Frv:p)or(T Fru:6) = (X Frv:p)forsomeu €3

horpo horpo

The definition we give below operates on judgements. Howewewill quickly forget the judgement
version and adopt a more easily readable term version.

Definition 3.3 Given two judementS r s:ocandX Fxt: T,

(C'Frs:io) = (X Fgt:7)iffc >7, Tand

horpo

1l.s=fGE)withf e F,and(I' Fru:0) = (X Fxt:7)forsomeu €3

horpo

18

2. s = f(3) with f € F, andt = ¢(¢) with f > g, and A
3.5= f(g) andt = g(f) with f =rgc Mul, and(F Frs: E) (—)mul (E I—ff : F)

horpo

4. s= f(s)andt = g(t) with f =r g € Lex,and(T Fx35:7) (>)iz (X Fxt:7)andA

horpo
5.5=Q(sy,8),and(l’ Frsy:p—o0) = (X Frt:m)or ([Frse:ip) = (X Frt:7)
horpo horpo
6. s =M :auwithe € Var(t),and(I' - {z:a} Fru:0) = (X Fgt:7)

horpo
7. s = f(3) with f € F,t = Q(%) is a partial left-flattening of, and A
8.s=f(S)withf € F,t =M :avwithz & Var(v)and(I' Frs:o0) = (X Frov:p)

horpo

9.0=a—0,t=XM:pv,a=g fand(l’ Fr Q(s,x)) :9h> (X Frv:p)
orpo
10. s = Q(sy, 52), t = Q(7) is a partial left-flattening of, and
{T trs1:0—0),(T Frssy: 0)}(h>— Y (X2 Frt:7T)

orpo

l.s= :au, t=M:fuv,a=r f,and(l'-{z:a} Fru:0) = (X-{x:08} Frv:p)

horpo

12. s = Q(\x : awu,v) and (I Fru{z — v} : a)hi (X Frt:T)
orpo

The definition is recursive, and, apart from case 12, reeersalls operate on judgements whose
terms which are subterms of the term in the starting judgémhis ensures the well-foundedness
of the definition, since the union gi-reduction with subterm is well-founded, by comparing paif
argument terms in the well-founded compatible relaﬁen»ﬁ U, I>)e.. This will actually be used as
an inductive argument in many proofs to cdme

From now on, we will forget about judgements when compamngs, leaving implicit the environ-
ment and the type used in their typing judgements.

Example 4 (example 1 continued) We use here the ordering on types giexaoy the properties of the
type ordering introduced in Section 3.1.1, and assume asaufitatus forec. The first rule succeeds
immediately by case 1. For the second rule, we apply cased’need to show recursively that (i)
X " horpo X, (i) $(x) > horpo z, @nd (iii) rec(s(z), u, X) =porpo rec(x, u, X). (i) is trivial. (i) is by case 1.
(iii) is by case 3, calling again recursively fofz) > opo 2.

Note that we have proved Godel’s polymorphic recursormfioich the output type ofec is any given
type. This is because we do not care about types in our cosapes;i provided two compared terms are
typable with related types. This example was already prav§zP].

We can of course now add some defining rules for sum and prgoenitting environments):

z+0 — 0
v+s(y) — s@+y)
rxy — rec(y,0, \z120.2 + 29)

1In [36] and related articles, it is argued that the recurgia¢h ordering is not an inductive definition, but a fixpoinfioiion, making then very
complicated everything that had been considered very sifpglore. To remedy this misunderstanding, it must be gtgetbgmt multiset and lexicographic
extensions are defined for arbitrary relations and preseriefoundedness of arbitrary (well-founded) relatiosed Section 2.8). They also preserve
orderings, of course, but defining multiset and lexicogiraptitensions for orderings only is simply not appropriate.

19

The first two rules are easy work. For the third, we use thequtelecer >~ rec to eliminate therec
operator. But the computation fails, since there is no subtd = * y to take care of the righthand side
subterm\z; zy.x + 2. We will come back to this example later, after having bodshe ordering. O

Example 5 This example is partly taken from [22]. Lét= {List, N} andF = {nil :— List, cons :
N x List — List, map : List x (N — N) — List}. The rules fomap are:
{X:a—a} = map(nil, X) — nil
{z:a,l: List, X :a—a} + map(cons(z,l),X) — cons(Q(X,x), map(l, X))

Using the ordering on types generated as previously by tbpepties of the type ordering and the
equality of the two sort constants IN aridst, the first rule is trivially taken care of by case 1. For the
second, letnap € Mul andmap >z cons. Sincemap >z cons, applying case 2, we need to show
thatmap(cons(z,1), X) = phorpo Q(X,) andmap(cons(z, 1), X) =norpo map(l, X). The latter is true by
case 3, sinceons(x,l) =nopo ! Dy case 1. The first is by case 7, 8sis an argument of the first term
andcons(z, 1) > porpo © Dy case 1.
Let us now consider a polymorphic version of the same exampte S = {List}, S* = {«a}, and
F = {nil :— List, cons : a X List — List, map : List X (&« — «a) — List}, then the computation
fails since@(X, x) has now typer which cannot be compared to the sbitt.
We now reformulate the specification of polymorphic liststaiing advantage of our richer type
discipline with overloading. LeS = {Nlist : x, List : ¥ — x}, 8" = {a}, andF = {nil :—
N List, cons : o X NList — List(a), cons : a x List(a) — List(a), map : NList X (¢ — a) —
N List, map : List(a) X (¢ — «) — List(«)}. The rules for map become:
{X:a—a} H map(nil, X) — nil
{z:a,l:NList, X :a—a} F map(cons(z,l),X) — cons(Q(X,x),map(l, X))
{z:a,l: List(a), X :a— a} F map(cons(z,l),X) — cons(Q(X,z), map(l, X))

The need for duplicating the secondip rule comes from the regularity assumption which should be
weakened for constants, allowing to declaté: List(a). Note the two uses of the firstap declaration

in the first rule and in the righthand side of the second ruhg the three uses of the second:p
declaration for the other occurrencesmdip. Letting againmap € Mul andmap >z cons, the first
rule is taken care of by case 1 as previously. For the secordheed to sefist(«) >z, NList

for the recursive comparisomnap(cons(x, 1), X) >porpo map(l, X), and List(a) >z, « for the other
comparisonmnap(cons(x,1), X) =norpo @(X,). Both are possible (see section 3.5). The computation
goes then as previously, and is similar for the third rule. O

Important observations are the following:

Comparing two terms andt requires comparing their types, the type ordering beingd uséhe con-
struction of interpretations for the strong normalizatpyoof. Note that the present ordering compares
terms of related types, improving over [22], where termsapfigalent types only could be compared
(the equivalence on types being generated there by theiggoalsorts). Without type comparisons
based on a type ordering, we could never allow a subterm caserins headed by an application or by
an abstraction. Note that the type of the lefthand side otarséve comparison may have increased in
cases 1 and 5.

When the signature is first-order, Cases 1, 2, 3 and 4 of thaitiefi of >-,,,,, together reduce to
the usual recursive path ordering for first-order terms, sehcomplexity is known to be i®(n?) for
an input of sizen. Accordingly, we conjecture that a polynomial complexifylawv degree is again
obtained when dropping Case 12 (we have not investigat@dinn yet).

20

Variables:
x:0€l o =10

I''bra:ico’

Functions:
fio1x...x0p m0EF
& some type substitution of domain | J, Var(o;)
Fl_j:tlicdlg...rl_]:ﬁnlca'né- T:TSO'E
T b f(t1,... tn) :c o€

Abstraction:
' {z:o} brticT =150
F'br(Az:ot):(c—71

Application:
I'trsico—71 I'Frtico

I brQ(s,t) :c T

Figure 2. Candidate judgements

All other cases deal with applications and abstractionge ttee following points: there is no prece-
dence case for applications against abstractions; |éfefiamg is used in the righthand sides only, that
is, in Cases 7 and 10, and indeed, our strong normalizatmof ploes not go through if it is also used in
the lefthand sides.

Note the tradeoff between the increase of types and the alexi@ size when using left-flattening
in Case 10: moving fron®(Q(a, b), c)) to Q(a, b, ¢) replaces the subterm(a, b) by the two smaller
subtermsu, b, buta has a bigger type thaa(a, b). Type considerations may therefore be used to drive
the choice of the amount of flattening. We think it is also jussto use a lexicographic comparison,
although we did not check this alternative yet.

Another remark to ease the implementation of the orderitiggithe non-deterministic or comparison
of propositionA used in cases 2, 4, and 7, can be replaced by the equivalenteistic one:

Yo:petif p<g, 7 thens > votherwiseu > wvforsomeu: 6 € ssuchthat >, p

horpo horpo
We now state the main result of this section, whose proo&stibject of the coming two subsections:

Theorem 3.4 >, is decidable, and included into a polymorphic, higher-orbzluction ordering.

3.1.5 Candidate Terms

The use of equivalent types leads naturally to the definimioan extended set of typable terms. These
terms will be the basis for using Tait and Girard’s redudipitechnique. In fact, we will not use the
smallest possible set of terms for which our proof technigpglies, but the largest one that we were
able to characterize via the extended type system desaridgdure 2.

Definition 3.5 Terms typable in the type system of Figure 2 are catkeadidate terms

We first show that every candidate term has a unique type (equivalence) in a given environment:

21

Lemma 3.6 Assumé’ Fr s:co. Thenl' Frs:c7iff o =7, 7.

Proof: By induction on the type derivation, and by case onabgudgement applied, using functional
preservation for arrow type¥ariables is trivial. For Functions, the if direction results easily from the
transitivity of =7, but the only if one is a bit more delicate : tet. . . . , o, be the types ofy, . . ., t,, with
¢ the associated type substitution in the first type derivagmdo?, . . ., o/, be the types ofy, . . ., ¢, with
¢’ the associated type substitution in the second type demvaBy induction hypothesis;; =, o;,
henceo;¢’ =7, 0,6 and thereforer¢’ =7, o& by compatibility of signature declarations with type
instantiations. We conclude then easily by transitivity=gf,. For Abstraction, since a type equivalent
to o — 7 is of the formo’ — 7/ with ¢’ =7, o and7’ =7, 7, we use the fact that, by induction
hypothesist : 7' iff 7/ =7, 7. For Application, we use the induction hypothesis oto haver’ =7, 7
and the induction hypothesis ario ajust the type for the application rule to make sense. O

This will allow us to talk abouthe type(up to equivalence) of a candidate term.

Note finally three easy, but important properties of the §etadidate terms:

1. Becausei-reduction is type preserving, the set of candidate termbgged undep-reductions;

2. Becauses-reduction is strongly normalizing for a typedcalculus with arbitrary constants, the
set of candidate terms is well-founded with respegt4@ductions (consider a signature in which
f:oy x...x0, — o € Fprovidedf : 0y X ... X 0, — 0 € F with ¢/ =7, o; for every
i € [l.n] ando’ =1, o;

3. HORPO applies to candidate terms as well, by keeping tine skefinition.

Candidate terms are used throughout Subsections 3.2 and 3.3
3.2 Ordering properties of HORPO

From now on, we will mostly compare terms, forgetting abtwetwhole judgements which can be in
general inferred from the context. This is made easier byabethat the typing environment and the
type itself do not change along a derivation.

A weakness of our definition is that the relatien,,.,, does not satisfy transitivity. This is not a
theoretical problem, however, because we will show thatwell-founded, hence its transitive closure is
a well-founded ordering. On the practical side, the use®frdnsitive closure of ;,,,, may sometimes
be necessary, as we will see later.

All properties studied in this section refer to candidatente

Lemma 3.7 (Monotonicity) >, iS monotonic for candidate terms of equivalent types.
Proof: Assume that :c 0 >p0p0 t :c T With 0 =7, 7. We have to consider three possible cases.

eletf:...xax...— 6Dbea function symbol such thatt =, ¢ =7, 7, for some type
instantiations. If f € Mul, thenf(...s...) ¢ 08 =horpo f(...t...) ¢ O fOllows by case 3.
Otherwise, iff € Lex, then{...s...}(>norpo)iez{.--t...} @and, for everyy € {...¢...}, there
existsu € {...s...} such that =, v. Therefore f(...s...) =hompo f(...1...) by case 4.

e If s, ¢ andu have appropriate types, thér(s, u) =porpo Q(¢, 1) aNdQ(u, s) > porpo @(u, t) follow
by case 10.

e Similarly, Az.s > porpo Az.t follows by case 11.

22

Finally, we can conclude[s] :c p > phorpo u[t] :c p for all termsu :¢ p, by induction on the size af. O

This of course implies the monotonicity of the quasi-ordegtt .., for candidate terms of equivalent
types.

A key usual consequence of monotonicity is that every sabtéra strongly normalizing term is itself
strongly normalizing. This is true for type preserving gations, but false in a context like here where
ordering derivations may decrease the type of terms, sifpessibly type decreasing) rewriting of a
subterm cannot be lifted to a rewriting of the whole term. sTdifficulty, however, cannot happen if
the type of the subterm is minimal. So, the strong normabnagproperty of a term implies the strong
normalization property of its subterms of minimal type. property will be used later.

Lemma 3.8 (Stability) >, IS stable.

Proof: We prove thal' F £ s :c 0 >pnorpot :c 7 iMmpliesT' - Ran(vy) bz sv :c 0 =horpoty ic T
for all substitutiony, by induction or(—>ﬁ U,)., Since term substitutions do not affect the typing
judgments, in order to simplify the proof we will only consrdthe term comparisons of the ordering
and will omit any reference to types and judgements. Thexseweral cases according to the definition.

1. If s >phorpot Dy case 1, ther; =;,,,, t, and by induction hypothesisy =, ty, and therefore,
57 > horpo t7y DY Case 1.

2. If s >porpo t Dy case 2, then = f(3),t = g(f), f > g andfor allt; :c p € t eithers >y, t; OF
S; horpo ti fOr somes; :¢ p' € 5. By induction hypothesis, for atly :¢ p € &y eithersy =m0 ti7y
OF $;7Y = horpo iy fOr SOMeEs;y ¢ p' € 57. Thereforesy = f(57) =norpo g(t7) = ty by case 2.

3. If s>horpot Dy case 3, thes = f(3),t = g(t), f =5 g, f,9g € Mul and3(>porpo)mut- BY
induction hypothesisy (> 1orpo)muty, @nd hence~y =, ty by case 3.

4. If s >=porpot Dy case 4, thes = f(3),t = g(t), f =7 g, f,9 € Lex, S(>horpo)iest, and for
all t; :c p € teithers>pompot; OF 5; =horpo t; fOr SOMes; ¢ p' € 5. By induction hypothesis
57> horpo)1exty, @Nd as in the precedence case, by induction hypothes) foy : p € ¢y either
57 > horpo Li"Y OF 87 = horpo tiy fOr SOMes;y :c p' € 5. Thereforesy >, ty Dy case 4.

5. If s >porpo t DY Case 5, the reasonning is similar to Case 1.

6. If s >=p0rp0 t Dy Case 6, them = \x.w andu >, t. Lety a substitution of domaiar(s)UVar(t),
hencex ¢ Dom(y) by assumption orx. By induction hypothesisiy >, ty, hencesy =
AL.UY = horpo ty DY CaSE 6.

7. 1f s =horpot = Q(%) by case 7, then for everyy :c p € 1, eithers —pomp0 ti, ANA Sy = porpo Ly
by induction hypothesis, of; >, t; for somes; :c p' € 5, ands;y >popo t;y Dy induction
hypothesis. Therefore, sincgtv) is a partial left-flattening ofy, sy > 1., ty by case 7.

8. If s >phorpot Dy Case 8, them = Mz.v with x ¢ Var(v) ands >, v. By induction hypothe-
SIS, s > horpo vy fOr evey substitutiony of domainVar(v) \ {z} such thatr ¢ Var(vvy), hence
$Y > horpo ty = Az.v7y Dy Case 8.

9. If s = Q(sy,$2) =herpot = Q(f) by case 10, then the proof goes as in case 2, allowing us to
conclude by case 10.

10. If s >porpot Dy case 11, them = \z.w andt = Az.v andu >, v. Therefore, by induction
hypothesisuy > porpo 7. Assuming thate ¢ Dom(vy), thensy = Az.uy >porpo A0y = ty Dy
case 11.

23

11. If s = >p0rp0 t DY Ccase 12, then the property holds by stabilitysefeduction. O
Lemma 3.9 >,,,, iS compatible.
The proof is left to the reader. Now we prove thal,,,, is polymorphic.
Lemma 3.10 (Polymorphism) >, is polymorphic.

Proof: Here, it is enough to consider terms instead of caditerms. LetF be a polymorphic
signature,s : o andt : 7 be two terms such thdt + r s : 0 >pupot : 7. We need to show that
[¢ Fr s 08 =homot : 0 for all type substitutions, and proceed by induction da— ; U, >)ic,.-

First, by stability under substitutions of the type ordgrin >z, 7 impliesc¢ >z, 7£. Now we
consider several cases according to the definition. As pusly, we omit the environment, showing that
S10 >horpol : TIMPliESS 1 0 = porpot & TE.

1. Ifs: 0>popot : 7 by case 1, them = f(5) with f € Fandu : p>=pepot : 7, fOr someu € 5
and typep. Then by induction hypothesis: p =0t : 7, and therefores : 0§ =jop0t : 7E DY
case 1.

2. If s : 0 >phorpot : T Dy case 2, ther = f(3), t = g() f >7 g and for allt; : p € t either
S 0 >horpoli 1 pOrs;:p >,Wpo : p for somes; : p' € 5. By induction hypothesis, for all
t; o p€ € teithers : o€ =porpoti + PEOrS; 1 P& = pompoti = p& fOr somes; : p'¢ € 5. Therefore,
s:08 = f(3) =horpo g(t) =t : TE by case 2.

3. Ifs:0>hupot : Thycase 3,then = f(35),t = g(t), f =7 g, [, 9 € Mul ands : T(>horpo)mutl :
7. By induction hypothesis : (> norpo)mut : 7E, @and hence : o€ >0t : 7€ by case 3.

4. If s 1 0 =porpot : T Dy case 4, ther = f(3),t = g(_) f=7r9,f,9 € Lex,5 : T(>nhorpo)iexl : T,
andforallt; : p € teithers : o >porpots 1 POrs; 1 p' =porpo ti + pfOrsomes; : p’ € 5. By induction
hypothesis : 7€ (= nomo)izt : 7E, @and as in the precedence case, by induction hypothesiall for
t; o p§ € teithers : o€ =popoli + PEOrS; 1 p'& =pompoti = p& fOr somes; : p'¢ € 5. Therefore
5:0& =horpot : TE DY Case 4.

5. If s: 0 >nepot : T Dy Ccase 5, the reasonning is similar as in case 1.

6. If s : 0 >porpot : T Dy Ccase 6, thes = \x.u andu : p=p,,t : 7. By induction hypothesis,
Uz € Zhorpot 1 TE, NENCES 1 0§ = AUt 0 0& = porpo t : TE DY CaSE 6.

7. If D 0 = horpot = Q(%) : T by case 7, then for eveny p € t, eithers : o >popot; : p, @and
0 o0& =horpo ti + P& Dy induction hypothesis, of; : p' >0t © p for somes; : p' € 5, and
D P'E = horpo i+ p€ DY induction hypothesis. Therefore sw@(at) 7€ is a partial left-flattening

oft 7E, 8 1 0 = horpo t © TE DY CaSE 7.

8. If s: 0 >phorpot : 7 Dy Case 8, then = \x.v with x & Var(v) ands : o >0 v : p. By induction
hypothesiss : 0€ =m0 v : p€, @nd hence : o€ =porpot : 76 = Mv.v : 7€ by Case 8.

9. If s = Q(s1,82) : 0 >harpot = Q(t) : 7 by case 10, then by induction we can conclude again by
case 10.

10. If s : 0 >phorpot : 7 by case 11, thes = M\r.u andt = \r.v andu : p >0 v : p'. Therefore, by
induction hypothesis : p€ >0 v : p'E. Thens : 0 = Mr.uy >porpo Az.v =t : 7E Dy Ccase 11.

24

11. If s = >40rp0 t DY case 12, then the property holds by polymorphism-ogéduction. O

Although the above proofs are slightly more difficult teatally than the usual proofs for the recu-
sive path ordering, they follow the same kind of pattern yparphism was actually never considered
before). This contrasts with the proof of strong normail@ato come.

3.3 Strong Normalization

For the recursive path ordering, strong normalizationofel from the fact that it contains the em-
bedding relation which is a well-order by Kruskal’s treedram. Since we do not know of any non-
trivial extension of Kruskal’s tree theorem for higher-erderms that includes-reductions (and wasted
much of our time in looking for an appropriate one), we wilbatla completely different method, the
computability predicate proof method due to Tait and Girartlis proof method will also suggest an
important improvement of our ordering, discussed in Secfio

Note that, as a bi-product, we obtain a proof of well-founuess for the recursive path ordering on
first-order terms which does not rely on Kruskal’s theoretnshiould be pointed out here that, in the
first-order case, a very simple part of Tait's method is usette there is no need of the computability
predicate. What is used is the technique based on the facgilian an arbitrary strongly normalizing
substitutiony, one can then build an induction argument to prove that,ri@rhitrary ternt, the termé~y
is strongly normalizing. The identity substitution beinigiglly strongly normalizable, we then conclude
for t. This proof technique had previously been used in a firstrazdetext in [15].

Since there is no type application in our calculus, our (Weakion of polymorphism does not interfer
with rewriting, hence with strong normalization. It is te@re sufficient to prove the strong normaliza-
tion property of the calculus for a monomorphic signatutgtdoed by decorating each monomorphic
instance of a function symbol by its type declaration, yirgdda possibly infinite signature) which we
start doing now.

We give no more than the necessary details for the undeistantithe reader, assuming some famil-
iarity with the computability (also called reducibilityandidates method of Tait and Girard [16].

3.3.1 Candidate interpretation of ground types

Again, this section refers to candidate terms, rather tbarahdidate judgements. Our definition of

computability for candidate terms of a ground type is stathdbut we make sure that computability

is compatible with the equivalencer, on types. Technically, we denote ljy] the computability

predicate of the type, which, by construction, will be equal to the predici¢ for any typea =7 o.
Without loss of generality, we assume a global environmentériables.

Definition 3.11 The family ofcandidate interpretation§o|},c7, is the family of subsets of the set of
candidates whose elements are the least sets satisfyiglh&ing properties:

(i) If o is a data type, ther ;¢ o € [o] iff t € [7] Vt :c 7 such thats >0t

(i) If s:c 0 =7 — pthens € [o] if Q(s,t) € [p] for everyt € [];

A candidate terms of ground types is said to becomputablef s € [o]. A vectors of terms is
computable iff so are all its components.

The above definition is based on a lexicographic combinatioain induction on the well-founded
type ordering>7., and a fixpoint computation for data types. The existenceedist fixpoint is ensured
by the monotonicity of the underlying family (indexed by thet of data types) of functionals with

25

respect to set inclusion. By an "induction on the definitidrthee candidate interpretations”, we mean
an outer induction on the type ordering:, followed by an inner induction on the fixpoint computation.
The following important property is a straightforward cegaence of the definition, Lemma 3.6 and
functional preservation:

Lemma 3.12 Assumer =, 7. Then[o] = [7].
The next lemma follows easily as well, by induction:on

Lemma3.13Leto = 0y — ... — 0, — 7, Wheren > 0. Thens € [o] iff Q(s,1y,...,t,) € [r] for
all t; € [[Ulﬂ,...,tn € [[O'n]]

In the sequel, we will always assume that functional typesiraicanonical form and that > 0 in
O=0]— ... 0p —T.

We first recall the properties of the interpretations.

Property 3.14 (Computability Properties)
(i) Every computable term is strongly normalizable;
(i) Assuming thak is computable and -, t, thent is computable;
(iii) A neutral terms is computable iff is computable for everysuch thats >, t;
(iv) If ¢ be a vector of computable terms such that) is a candidate term, the@(¢) is computable;
(V) Az : o.u is computable ifi.{z — w} is computable for every computable tetm. o;
(vi) Lets :¢c o € 7", Thens is computable iff it is strongly normalizable.

Note that variables are not asumed to be computable. Vasaifla data type are of course com-
putable by definition since they have no reduct. But vargblea functional type will be computable
by Property 3.14 (iii). This will actually forbid us to prowbe computability properties (i), (ii) and
(iii) separately. A possible alternative would be modifg tefinition of the computability predicates by
adding the property that variables of a functional type amputable. This would make the properties
(1), (ii) and (iii) independant to the price of other comg@limons.

Proof:

e Property (iv). Straigtforward induction on the lengthiof

e Properties (i), (ii), (iii).
Note first that the only if part of property (iii) is property)(We are left with (i), (ii) and the if
part of (iii) which we now spell out as follows:

Given a typer, aterms :¢ o € [o], atermt ;¢ 7 such thats >, ¢, and a neutral term :¢ o
such thatw :¢ 0 € [0] for everyw such that: >, w, we prove by induction on the definition of
[o] that (i) s is strongly normalizable, (ii) is computable, and (iiix is computable.

1. Assume first that is a data type.

(i) All reducts ofs are computable by definition of the interpretations, hemgly normal-
izable by induction hypothesis, and therefore, sa is

(i) By definition of the candidate interpretations.
(i) By definition of the candidate interpretations.

2. Assume that is a functional type.

26

(i) Let s :c 0 = Oy >horpo 51 :C 01 - >horpo Sn :C On >horpo - - - D€ @ derivation issuing from
s. Note thats,, € [6,] by assumption forn = 0 and repeated applications of induction
property (ii) otherwise. Such derivations are of the foliogvtwo kinds:

(@) o >7, 0, for somen, in which cases,, is strongly normalizable by induction hypothe-
sis, hence the derivation issuing fronms finite;
(b) 6, =1, o for all n, in which case, the sequence of ter@és,,,y ¢ 01) ¢ 03 —
..o, — 1 is well-typed, and strictly decreasing by monotonicity lLramn3.7. Since
o >7. 01,y ¢ 01 is computable by induction hypothesis (iii), hence, by deén,
Q(s,,y) is computable. By induction hypothesis (i), the above segeés again finite.

(i) Let 0 = 6 — p. By arrow preservation and arrow decreasing propertiesetare two
cases:

(@) p >7, 7. Sinces is computable@(s, u) is computable for every € [0]. Lety :¢ 6.
By induction hypothesis (iii)y € [0], henceQ(u,y) is computable. Sinc@(s,y) :¢
P >norpo t :c T Dy case 5 of the definition, we conclude by induction hypath@s that
t is computable.

(b) 7 =0 — o/, with =z, ¢ andp >7, p'. Sinces is computable, given € [¢], then
Q(s,u) € [p], hence, by induction hypothesis (ii)(¢, u) € [p']. Since[d] = [¢'] by
Lemma 3.12¢ € [r] by definition of the interpretations.

(i) Let 0 = 0y — ... — 0, — 7, Wheren > 0 andr is a data type. By Lemma 3.18js

computable iffQ(¢, uq, . . ., u,,) is computable for arbitrary termsg € [o1], ..., u, € [0,]
which are strongly nor malizable by Property 3.14 (i). By digion, as is a data type,
Q(t,us, . ..,u,) is computable iff so are all its reducts.

We prove by induction on the multiset of computable terfus, ..., u,} ordered by
(= horpo)mu the property (H) stating that terms strictly smaller thar@(¢, u,, ..., u;) in
>~ nhorpo @re computable. Taking= n yields the desired property. if= 0, terms strictly
smaller thant are computable by assumption. For the general ¢asel) < n, we need
to consider all termsv strictly smaller thar@(Q(¢, uy, ..., u;), u;+1). Sincet is neutral,
hence is not an abstraction, there are two possible cases:

(@) Q(Q(t,ug, ..., u;), uit1) >norpo w by Case 5. There are again two possibilities:

— Q(t,u1, . .., W) Zhorpo w, @and therefor@(t, uy, . . ., u;) >norpo w fOr type reason since
w is also a reduct ofd(¢, uq, ..., u;y1). We then conclude by induction hypothesis
(H).

— Uit1 Zhorpo W. We conclude by assumption and induction property (ii).

(b) @(Q(t, u, ..., u), wit1) =norpo w Dy Case 10, hence = Q(w). By definition of the
multiset extension and for type reasons, there are theAolptwo possibilities:

—for all v € @, eitherQ(¢,uy, ..., u;) =horpo v, @aNd v iS computable by induction
hypothesis (H), 0tt; 11 =h0p0 v, IN Which casev is computable by assumption and
induction property (ii). It follows thatv is computable by Property 3.14 (iv).

—wy = Q(t,uy,...,u;) and w1 =nerpo wo, iMplying thatw, is computable by as-
sumption and induction property (ii). By induction propefit!), all reducts ofw are
computable. Since) andt¢ have the same (data) type,is therefore computable by
induction property (iii).

As a consequence, all reducts@ft, u4, . .., u,) are computable and we are done. O

e Property (v).

27

The only if part is property (ii) together with the definitiah computability. For the if part, as-
suming that.{x — s} is computable for an arbitrary computaBlewe prove thatt(\z.u, w) is
computable for an arbitrary computahie

Since variables are computable by property (iii}= u{x — x} is computable by assumption. By
property (i),u andw are strongly normalizable. Sinée.u > ,,,,, v impliesu =,y,p, v Orv = Az.u’
andu =, v/, an easy induction on shows that\z.u is strongly normalizable as well. We will
prove that@(\z.u,w) is computable by induction on the pdiAz.u, w} ordered bY(>1orp0)iez-
By property (iii), the neutral term@(\z.u, w) is computable iffv is computable for all such that
Q(M\r.u, w) >norpo v- There are several cases to be considered.

1. If the comparison is by case 5, there are two cases:
- if w = p,0rp0 v, We conclude by property (ii).
- if Av.u>=porpo v, there are two cases. if-,,.,,v by case 6, we conclude by property
(i) again. Otherwisep = X\z.w’ andu >porp0 v/, henceu{z — w} >poprpo v'{x — w} by
Lemma 3.8. By assumption and property (itJ{z — w} is therefore computable. Hence,
@Q(v,w) is computable by induction hypothesis applied to the pai= \z.u/,w). We then
conclude by definition of the interpretations thds computable.

2. If the comparison is by case 10, ther- @Q(7) and all terms i@} are smaller thaw or Az.u.
There are two cases:
-v; = Av.w andw =0 v; for i > 1. Thenwv; is computable by property (ii) and, since
u{x — v} is computable by the main assumption(v,,v5) is computable by induction
hypothesis. Iy = @(vy, v9), we are done, and we conclude by Lemma 3.13 otherwise.
- For all other cases, terms ihare reducts ohx.u andw. Reducts ofw and reducts ohz.u
which are themselves reductswfire computable by property (ii). If all termsinare such
reductsp is computable by Lemma 3.13.
Otherwise, for typing reasony is a reduct of\z.u of the form Az.u" with w >, v/, and
all other terms inv are reducts of the previous kind. By the main assumptidn, — v"}
is computable. Besides{z — v"} >4, t'{z +— v"} by stability property of the ordering.
Thereforeu'{x — v"} is computable by Property (ii). By induction hypothesigy,, v,) is
again computable. if = @Q(v;, v9), we are done, otherwiseis computable by Lemma 3.13.

3. Otherwise@(\z.u, w) =porpo v DY Ccase 12, then{z — w} >,.,, v. By assumptiony{z —
w} is computable, and heneds computable by property (ii).

e Property (vi).

The only if direction is property (i). For the if directiorgtls be a strongly normalizable term of
typeos € 74", We prove thak is computable by induction or ... Sincec is a data types
must be neutral. Let oW, ¢ :c 7, hences >z, 7. By definition of 7", + =1, o, hence,
by Lemma 3.17 is a data type, and sineeis minimal, so isr, hencer € 72"". By assumption on
s, t must be strongly normalizable, and by induction hypothéssis therefore computable. Since
this is true of all reducts of, by definitions is computable. O

The following lemma and proof are both essential:

Lemma3.15Letf : 7 — 7 € F ands :¢ o be a vector of computable terms. Th&) is computable.

28

Proof: Since terms i@ are computable, by Property 3.14 (i), they are strongly dizable. We use
this remark to build our induction argument: we prove th@) is computable by induction on the pair
(f,5) ordered lexicographically b =, (=horpo)stat;)iea-

Since f(5) is neutral, by Property 3.14 (iii), it is computable iff eyer such thatf (5) =m0 t IS
computable, which we prove by an inner induction on the size We discuss according to the possible
cases of the definition of ;...

1. Let f(3) >=horpo t Dy case 1, hence, =, t for somes; € 5. Sinces; is computablef is com-
putable by Property 3.14 (ii).

2. Lets = f(35) =norpot Dy case 2. Then = g(t), f >x g and for everyv € ¢ eithers >jupo v, in
which casev is computable by the inner induction hypothesisy.of,,,, v for someu € 5 andv
is computable by Property 3.14 (ii). Thereforés computable, and singé> r g, t is computable
by the outer induction hypothesis.

3. If f(3) =horpo t Dy case 3, then = ¢(t), f = g, aNAS(>rorpo)muit. By definition of the multiset
comparison, for every; € ¢ there is some; € 5, S.t.s; =1, ti» hence, by Property 3.14 (ii), is
computable. This allows us to conclude by the outer indadtigpothesis thatis computable.

4. If f(3) =horpot Dy case 4, thert = g¢(7), f =5 ¢, S(>norpo)iet @nd for everyv € t either
T (3) =horpo ¥ OF U =100 v fOr someu € 5. As in the precedence case, this implies thistcom-
putable. Then, SINC&(>1,0p0) et t IS COMputable by the outer induction hypothesis.

5. If £(3) »norpot Dy Case 7, lei(ty, ..., t,) be the partial left-flattening afused in that proof. By
the same token as in case 2, every terrhimmcomputable, henceis computable by Property 3.14

(iv).

6. If f(5) =horpot Dy case 8, them = lr.u with x ¢ Var(u), and f(3) =norpo u. By the inner
induction hypothesisy is computable. Hence,{z — w} = w is computable for any computable
w, and therefore, = \x.u is computable by Property 3.14 (v). O

3.3.2 Strong normalization proof

Lemma 3.16 Let~ be a computable substitution antbe an algebraic\-term. Thent~y is computable.

Proof: The proof proceeds by induction on the size. of
1. tis a variabler. Thenzy is computable by assumption.

2. t is an abstractionr.u. By Property 3.14 (v){v is computable ifuy{z — w} is computable for
every well-typed computable candidate termTakingd = v U {z — w}, we haveuy{z — w} =
u(y U{z — w}) sincex may not occur iny. Sinced is computable an¢t| > |u|, by induction
hypothesisy.d is computable.

3.t = Q(ty,t2). Thent;y andtyy are computable by induction hypothesis, hehisecomputable by
Property 3.14 (iv).

4.t = f(t,...,t,). Thent;y is computable by induction hypothesis, herigeis computable by
Lemma 3.15. O

29

We can now easily conclude the proof of well-foundednesg@@éor our main theorem, by showing
that every term is strongly normalizable with respectig, ..

Proof: Given an arbitrary term let v be the identity substitution. Sinegis computablet = ¢ is
computable by Lemma 3.16, and strongly normalizable by &tg(3.14 (i). O

3.4 Examples

The following classical example gives a set of rewrite ruefining the insertion algorithm for the
(ascending or descending) sort of a list of natural numbers.

Example 6 Insertion Sort. LetS = {N, List} and

F = {nil :— List;cons : N x List — List;max,min : N x N — N;insert : N x List x
(INXxN — N)x (NxN — N) — List;sort : List x INXxN — N)x (NxN — N) —
List; ascending_sort, descending_sort : List — List}.

mazx(0,z) — x maz(z,0) — ©
maz(s(z),s(y)) — s(max(z,y))
min(0,z) — 0 min(x,0) — 0

min(s(z),s(y)) — s(min(z,y))
We simply need the precedence:x, min > 0 for these first-order rules.

insert(n,nil, X,Y) — cons(n,nil)
insert(n,cons(m,l), X,Y) —
cons(X (n,m),insert(Y (n,m),l, X,Y))

The firstinsert rule is easily taken care of by applying case 2 with the preceéinsert > cons, and
then case 1. For the seconkert rule, we apply first case 2, and we recursively need to shostiyfir
thatinsert(n, cons(m,1), X,Y) >nopo @(X, n, m), which follows by applying rule 2, and then case 1
recursively; and secondly thatsert(n, cons(m, 1), X, Y) =porpo insert(Y (n,m), 1, X,Y’), which suc-
ceeds as well by case 4, with a right-to-left lexicographkadiss forinsert, and calling recursively with
insert(n, cons(m, 1), X,Y) =norpo @Y, n, m), which is solved by case 10.

sort(nil, X,Y) — nil
sort(cons(n,l), X,Y) —
insert(n, sort(l, X,Y), X,Y)

Again, these rules are easily orientedsby,,,,, by using the precedengert > » insert.
On the other hands . fails to orient the following two seemingly easy rules.

ascending_sort(l) —
sort(l, \xy.min(z,y), \xy.maz(x,y))

descending_sort(l) —
sort(l, \xy.maz(x,y), Azy.min(z,y))

This is so, because the tetmy.min(x, y) occuring in the lefthand side has type-N N — N, which
is not comparable to any lefthand side type. We will come lackis example in Section 7. O

We now come to a more tricky example, where we will need thasitare closure of the ordering to
show termination of a rule, that is, we will need to inverrhaldle terms such that >0 S > horpo T
for some rulg — r.

30

Example 7 (Surjective Disjoint Union, taken from [10]) Le8 = {A,B,U}, a« € {A,B,U}, F =
{inl : A— Usinr: B — U;case, : U x (A — a) x (B — a) — «a}. The rules are the following:

case,(inl(X), F,G) — Q(F,X)
cases(inr(Y), F,G) — Q(G,Y)
casey(Z, Xx.H(inl(z)), xy.H(inr(y))) — Q(H,Z)

The first two rules are taken care of by Case 7. For the lasthaw that

caseq(Z, de. H(inl(x)), Xy.H (inr(y))) =horpo Q. H(x), Z) > porpo Q(H, Z).

The first comparison is again done by Case 7, generating ooé gbligation\z. H (inl(x)) > porpo Az H (),
which suceeds by applying successively Cases 11 and 1. thedeomparison is by Case 12. O

3.5 The ordering on types

Given a partitionM ul W Lex of S called astatus and a partial quasi-orderings on sort construc-
tors called gorecedenceuch that equal constructors béx status have the same arity, we define the
following rpo-like quasi ordering on types:

LetA=YveTo = v
horpo

Definition 3.17 o >, 7 iff

1. 0 = ¢(v) ando; >, 7 for somes; €
.o=a— f,andf > 7
.o =c(o)andt = d(7) withc >s d, and A

.c=d e Mul anda(>15)muT

aa b~ W N

.c=d € Lexr anda(>7y)7, and A
6.co=a—f,7=d — [anda =7, o/ andj >,

where>7, and=y, are respectively the strict ordering and the equivalencsagmted with> ..
We will also write>,,,, for the full recursive path ordering on types generated lgydiven precedence
and statuses o8.

Note that, because of the subtem property for sort symBols, 7 o > ,orp0 v OF U =, v fOr SOMeEU €
o and A are equivalent propositions. We will later use this remark.

Definition 3.18 A function symbo¥f : o x ... X 0, — o € F is compatibleif V¢ € Var(o), 37 €
{o1,...,0,} such thatr|, = £ for somep € Dom(7), andVq < p, 7(q) € Lex.

Compatibility can of course always be ensured by giving éixé&cbgraphic status to all sort symbols.

Proposition 3.19 > is atype ordering satisfying containement (with respect,tp), well-foundedness
and arrow-subterm property of,.,,, functional preservation, stability under type substant and sig-
nature compatibility iff all function symbols are compéib

31

Proof: The first three properties follow from the fact that, U >_, is included in the recursive
path ordering generated by the precedence on the type gotsB. Functionnal preservation is easy
to verify. For stability, the if part is easy. For the conwerg is enough to show a counterexample to
signature compatibility when a function symbol is not cotifga. This is left to the reader. O

All examples given so far can use the above type orderingjigeed the appropriate precedence on
type constructors is given by the user.

3.6 A uniform ordering on terms and their types

Assuming we chose the above ordering as our type orderin@rev@ow going to reformulate the
entire ordering by taking advantage of the facts that typesraleed first-order terms, that the above
type ordering is a restriction of Dershowitz’s recursivéhpardering, and that the higher-order recursive
path ordering restricts to the recursive path orderingterdase of first-order terms. This will enable us
to have a single definition for ordering terms and types.

For making uniformity possible, we add a new constant in anglages, such that all types have
themselves type. We omit the straightforward type system for typing typebicki only aims at verify-
ing arities of sorts symbols. will therefore be the only non-typable term in the language.

3.6.1 Statuses and Precedence

We assume given
- a partitionMul W Lex of FUS U {@} such thatd € Ml and all function symbols are compatible.
- a well-founded quasi-ordering s on F U S, called theprecedencesuch that
1.iff:0—0=rsg:T— 7,thenc =z, Tandf € Lex iff g € Lex anda(=zs)monT;

2. variables are considered as constants incomparable dramong themselves and with other func-
tion symbols.

3.6.2 Definition of the ordering

To ease the reading (as well as the writing!), we omit envirents in this new definition.
Definition 3.20

Givens:candt:7, s > tiffo=7=x%o0rc = 7and
horpo horpo

1. s = f(5) with f € S, andu > ¢ for someu € 3
horpo

2. s = f(s)andt = g(t) with f >zs g, and A
3. s = f(35) andt = g(t) with f =xs g € Mul ands(>)t

horpo

4. s = f(5) andt = g(t) with f =xs g € Lex ands(>)..t, andA

horpo

5. s = Q(sy,82) andu = ¢ for someu € {sq, s2}
horpo

6. s =X\ :owu, ¢ Var(t)andu = t

horpo

32

7. s = f(3), Q(%) is an arbitrary left-flattening of, and A
8.s=fE)with f € F,t = M : avwithz & Var(v) ands = v

horpo

9. s = Q(sy, $2), Q(¢) is an arbitrary left-flattening of and { s, 32}(h> Ymult
orpo

10.s=Xr:au, t=XMr: fBv,a=Fandu = v

horpo
11. s = Q(\r.u,v) andu{z — v} = t
horpo
12.s=a — f,and > t
horpo
183.s=a— 0, t=ad — F,a = o andg =
horpo horpo

whereA =Vov € ¢ s = vor uhi v for someu € 3
orpo orpo

This uniform formulation of the higher-order recursive lpatrdering opens the way to its general-
ization to dependent type calculi such as the calculus o$troations. Indeed, the formulation of the
ordering for the calculus of constructions should by nowlbardor the cognitive reader. Our conjecture
is that such an ordering should be well-founded as well,ipbssnposing some extra conditions on big
variables as in [38].

In the rest of this paper, we will consider the previous, nggeeral formulation of the higher-order
recursive path ordering in which the ordering on types isgefiseparately from the ordering on terms.

4 Computational Closure

The ordering is quite sensitive to innocent variations & tnguage, like adding (higher-order)
dummy arguments to righthand sidesreexpanding higher-order variables. We will solve thesépro
lems by improving our definition in the light of the strong n@lization proof. In that proof, it was
crucial to show the computability of the righthand side sulnis from the assumed computability prop-
erty of the lefthand side subterms. In our definition, we altyurequire that for each righthand side
subtermw, there exists a lefthand side subtezrsuch that: =, v. Assumingu is computable, then
is computable by Property 3.14 (ii). But any computabilitggerving operation applied to the lefthand
side subterms in order to construct a term of the approptyae would do as well. For example, the
higher-order variableX is computable if and only ifx. X (z) is computable. Therefore, both forms
may coexist. This discussion is formalized in subsectidnmth the notion of a computational closure
borrowed from [3], with a slightly enhanced formulation.

4.1 The Computational Closure

Definition 4.1 Given a termt = f(7) with f € F, we define iteomputable closuréC(t) asCC(t,),
whereCC(t, V), withV N Var(t) = 0, is the smallest set of well-typed terms containing all ables in
VY, all terms in¢, and closed under the following operations:

1. subterm of minimal type: let € CC(¢,V), andu : o be a subterm of such thatr € 7" and
Var(u) C Var(t); thenu € CC(t, V);

33

2. precedence: lej such thatf > g, ands € CC(t,V); theng(s) € CC(¢,V);

3. recursive call: lets be a sequence of terms @t (¢, V) such that the terny(s) is well typed and
t(> horpo U>>Ts)smtf§; theng(s) € CC(t, V) for everyg = f;

4. application: lets : 0y — ... — 0, — 0 € CC(t,V) andu, : o, € CC(t,V) for everyi € [1..n];
then@(s, uy, ..., u,) € CC(t,V);

5. abstraction: letr ¢ Var(t) UV ands € CC(t,V U {z}); then\z.s € CC(t,V);
6. reduction: letu € CC(t, V), andu =, v; thenv € CC(t, V);
7. weakening: let & Var(u,t) UV. Thenu € CC(t,V U {z}) iff u € CC(t, V).

As a simple illustration of the use of the definition, let uswthow to derive the following extension-
ality property: assuming ¢ Var(u)UV, then\z.@Q(u,) € CC(t, V) iff u € CC(t, V). Letus prove first
the if direction. Assuming without loss of generality tha¢ Var(t), by weakeningu € CC(t, VU{z}).

By basic casex € CC(t,V U {z}), hence, by application®(u,z) € CC(t,V U {z}), and by ab-
straction, we get\r.@Q(u,z) € CC(t,V). For the converse, starting frot.Q(u,z) € CC(t,V),
we get\r.u € CC(t,V) by reduction becaus@(u, x) =,.,, u by Case 5 of definition 3.3 and hence
Xr.Q(u,) =porpo Ar.u Dy Case 11 of definition 3.3, and there CC(t¢, V) by reduction again, because
AT U = porpo w DY Case 6 of definition 3.3.

Similarly, we can easily show that the abstraction rule degd an equivalence, by using weakening,
application and reduction.

Note that we use-,,,, instead ofs-reduction as in [22] in Case 6. The derivation of the extemsi
ality rule shows the usefulness of rule 6. On the other handakes the membership of a term to the
computational closure undecidable. But it becomes detsdaits use is bounded. In pratice, we can of
course restrict the use &f;,,,,,, by allowing a single step only, which is enough for all exaesgb come
(it is enough for the extensionality property as well, byngsan alternative proof). A similar remark
applies to the recursive call case.

The rules we have given are meant to be used in a goal-oriemigdJsing them in a forward chaining
way makes essential use of weakening, but weakening is ddeddackward chaining also, as seen
from our coming examples. Note that the definition of the cotaponal closure is easily extendable
when new closure properties are established, since it isetkby a set of Horn clauses.

An important remark is that we use the previously defined mmde-,,,,,., in Case 6 and the relation
> horpo D> > in Case 3 of the closure definition instead of simglyeductions angi U >-reductions
respectively as in [22]. And indeed, we will consequentlg us,,,, and > horpo U~ @S induction
arguments in our proofs.

The following property of the computable closure can edas#dyghown by induction on the definition:

Lemma 4.2 Assume that, € CC(t). Thenuy € CC(tv) for every substitutiony.

Proof: We prove that itz € CC(¢,V) with V C X\ (Var(t) U Var(ty) U Dom(y)), thenuy €
CC(tv,V). We proceed by induction on the definition@ (¢, V). Note that the property ov depends
ont and~, but not onu. It will therefore be trivially satisfied in all cases but &astion and weakening.
And indeed, this is the only cases in the proof which is noting) hence we do them in detail as well
as Case 1 to show its simplicity.

34

Case l:lets = f(s) : ¢ € CC(t,V) with f € F andu : 7 be a subterm of with o € 7" and
Var(u) C Var(t). By induction hypothesissy € CC(tvy,V). By assumption o, uy : 7is a
subterm ofsy : o andVar(uy) C Var(ty). Thereforeuy € CC(tv,V) by Case 1.

Case 5: letu = Az.s withx € X'\ (VU Var(t)) ands € CC(t,V U {x}). To the price of renaming the
variablez in s if necessary, we can assume in addition that Var(ty) U Dom(v), and therefore
VU{z} C X\ (Var(t) UVar(ty) UDom(y)). By induction hypothesisyy € CC(tvy,V U {z}).
Sincex ¢ Var(ty) UV, by Case 5 of the definitiohx.sy € CC(tv, V) and, sincer ¢ Dom(v),
we haveuy = \z.sv.

Case 7: let’ = V U {z}. By definition,u € CC(t,V’), with x & Var(u,t) UV. By induction hypothesis
we haveuy € CC(tv,V’), and, sincer & Var(uv,tvy) UV, by Case 7, we havey € CC(tv, V).

Case 6: lets € CC(t, V), andu >4, v; thenv € CC(t, V); O
Lemma 4.3 Assume that : o € CC(t : 7). Thenué : o€ € CC(t& : 7€) for every type substitutioh

Proof: We prove thatif. : 0 € CC(t : 7, V) with V C X \ Var(t), thenué : o€ € CC(t : 7€, VE). By
V¢, we mean that the types of the variabled/iare instantiated by. We proceed by induction on the
definition of CC(t, Vxi).

If v : oisinV¢ orinté it holds directly. Otherwise there are several cases aowptd the definition.

Case 1: let = f(5) : o/ € CC(t,V) with f € F andu : o be a subterm of with o € 72" (which implies
that o is ground) andVar(u) C Var(t). By induction hypothesissé : o'¢ € CC(t : 7€, V¢).
Therefore, since = of € 7" andué : of is a subterm of : ¢/¢, we haveu : o € CC(t :
7€, V¢€) by Case 1.

Case 2: leu = g(u) : o with g such thatf >» g, andw : @ € CC(¢ : 7,V). Then, by induction hypothesis,
we haveus : 7€ € CC(t : 7€, V€) and hencel = g(ug) : o€ € CC(t€ : 7€, VE) by Case 2.

Case 3: let = g(u) : candt = f(¢) : Twith f =7 g, w: TINCC(t : 7, V) and? : T(=porpo U7)stat, U :
@. Then, by polymorphism of;,,,,, and>>78 (the latter due to the stability under type substutions
of the type ordering), we have: T¢(>horpo U= 1,)star, T = 7. Since, by induction hypothesis,
ué 1 7€ in CC(t€ : 7€, VE), we can concludeé = g(ué) : o€ € CC(t€ : &, VE) by Case 3.

Case 4: letw = Q(s,uy,...,u,) : owiths : 0y — ... > 0, — 0 € CC(t : 7,V) andu; : 0; €
CC(t : 1,V) for everyi € [1..n]. Then, by induction hypothesis, we hav¢ : 0:{ — ... —
on§ — o0& € CC(t€ = 7€, V¢) andu& : 0, € CC(t€ = 7€, VE) for everyi € [1..n]. Therefore
u = Q(s&,ui€, ..., ug) : o€ € CC(t€ : 7€, VE) by Case 4.

Case 5: lett = Az.s : 07 — oy Withz € X'\ (VU Var(t)) ands : 0o € CC(t : 7,V U {x}). By induction
hypothesissé : 096 € CC(t€ : 7€, VE U {x : 01&}), and hence\z.s§ : 01§ — 096 € CC(t€ -
7€, Vzi) by Case 5 of the definition.

Case6: lets : p € CC(t : 7,V) with s : p>p,pou : 0. By polymorphism of-,,.,,, we haves :
P€ = horpo e 0§ @nd, by induction hypothesis, we have : p§ € CC(t§ : 7€, VE). Therefore,
u : o€ € CC(t€ = 7€, VE); by Case 6.

Case 7: leV’ = VU{x}. By definition,u : o € CC(t,V’), withx & Var(u, t)U)’. By induction hypothesis
we haveu¢ : o€ € CC(t€ : 7€, V'€), and hence, by Case 7, we haxe: o& € CC(t€ : 7€, V¢€). O

35

4.2 The Higher-Order Recursive Path Ordering with Closure

From now on, both orderings;,.,. and> ..., Will coexist. We first give a more general formulation
of the propositionA:

A=Yvets = voru = vforsomeu € CC(s)

chorpo chorpo

Definition 4.4

s:o > t:7iffo >z, 7and

chorpo

1. s = f(5)with f € F,and (i))u > tforsomeu € sor (i) t € CC(s)

chorpo
2. s = f(3) with f € Fandt = g(¢) with f > g, and A
3. s= f(3)andt = g(t) with f, g € Mul, f =r g,ands (>)pu t

chorpo

4. s = f(s)andt = g(t) with f, g € Lex, f =r g, ands (>)., t and A

chorpo

5.5=Q(sy,89),ands; = torsy > t

chorpo chorpo

6. s = M\ : awwithz € Var(t),andu = ¢

chorpo
7. s = f(3) with f € F,t = Q(%) is a partial left-flattening of, and A
8.s=f(E)with f € F,t = M\ : v withz & Var(v) ands = v

chorpo

9. s = Q(sy, 82), t = Q(1) is a partial left-flattening of and { sy, 32}(Ch0> Ymu{t}

PO

10. s=X :au, t =Xv: B, a=7g f,andu > v

chorpo

11. s = Q(\x : av.u,v) andu{z — v} hi t
chorpo

The definition is recursive, and we can show that it is wellfided by comparing pairs of terms in
the well-founded ordering>1o,po, ™) right—to—ie ft—ica-

As an easy consequence of Case 1, we obtainsthatf (5) : 0 =cporpot : TWith f € Fif 0 =7
andt € CC(s). This shows that the technique based on the general schesentially based on the
closure mecanism introduced by Blanqui, Jouannaud and &K&dis a very particular case of the
present method. This does not necessarily mean that tiee dattperforms the former. It could be that
the ordering mecanism is kind of redundant with the closueeanism. We do not think so, however,
since we were able to prove many examples that the geneathsctould not. Besides, this new method
inherits all the advantages of the recursive path orderagget methods, in particular it is possible to
combine it with interpretations based techniques [35].

The proofs of Lemmas 3.7, 3.8 and 3.10 are easy to adapt (nsimd.emma 4.2 for the proof of the
new version of Lemma 3.8 and Lemma 4.3 for Lemma 3.10) to tlerorg with closure:

Lemma 4.5 >4, iS monotonic for terms of equivalent types, stable, andmotphic.

36

4.3 Strong Normalization

We first show that terms in the computable closure of a terncamgputable under the appropriate
hypotheses for their use in a comparison.

First, the computability predicate is of course now definathwespect to> ;... TO show that
the computability properties remain valid, we simply obsahat there is no change whatsoever in the
proofs, since the rules applying to application-headeshsedid not change. For this, it is crucial to
respect the given formulation of Case 5, avoiding the ushe€losure as in Case 1. Actually, we could
have defined a specific, weaker closure for terms headed bymication, to the price of doing again
the two most complex proofs of the computability propertd®e did not think it was worth the trouble.

Second, we are still using the previous ordering,,,, in the definition of the new ordering .;,orpo,
via the closure definition in particular. We will thereforeead to prove that-,,.p0 C > chorpo IN Order
to apply the induction arguments based on the well-founesslof>,,.,, 0N some appropriate set of
terms. The following lemma is important for the proof of Pedy 4.7:

Lemma 4.6 >'horpo C >'chorpo-

The importance of this lemma comes from the computabilitypprties. By the above inclusion,
any term smaller than a computable term in the ordesing,, will therefore be computable by Prop-
erty 3.14 (ii).

We come to the main property of terms in the computable ciysuhich justifies its name:

Property 4.7 Assume : 7 is computable, as well as every teg¥) with s computable ang(s) smaller
thant = f (1) in the ordering(>z, (= norpo U7,)stat, 1e OPETating on pairg f, 7). Then every termin
CC(t) is computable.

The precise formulation of this statement arises from itthfloming use inside the proof of Lemma4.8.
Proof: We prove thaty : o is computable for every computable substitutioof domain)’ and every
u € CC(t, V) such that’ N Var(t) = (). We obtain the result by taking = (). We proceed by induction
on the definition o€CC(t, V).
For the basic case: if € V, thenuy is computable by the assumption onif v € ¢, we conclude
by the assumption thatis computable, sincey = u by the assumption that N Var(t) = (); and ifu
is a subterm off (¢), we again remark that acts as the identity on such terms, and therefore, they are
computable by assumption.
For the induction step, we discuss the successive opesatidorm the closure:

case 1:u is a subterm of type if"™ of somev € CC(t,V). By induction hypothesis;y is computable,
hence strongly normalizable by Property 3.14 (i). By monatity of >, for terms of equiva-
lent typesu~y is also strongly normalizable, and hence computable byd?tpB.14 (vi).

case 2:u = g(u) whereu € CC(t,V). By induction hypothesig;y is computable. Sincg¢ > 7 g, uvy is

computable by our assumption that terms smaller th@anare computable.

case 3:u = g(u) wheref = g, w € CC(t,V) andVar(u) C Var(t). By induction hypothesis;y is

computable. By assumption, and monotonicity of reductions- ;..o U,)stat WY~ Therefore
uwy = g(uy) is computable by our assumption that terms smaller {{anare computable.

case 4: by induction and Property 3.14 (iv).

37

case 5: lety = Az.s with z ¢ V ands € CC(t,V U {z}). To the price of possibly renaming we can
assume without loss of generality thatz Dom(v) U Var(t). As a first consequenc®,U {z} N
Var(t) = (; as a second, given an arbitrary computable term’ = vU{z — w} is a computable
substitution of domai U {z}. By induction hypothesissy’ is therefore computable, and by
Property 3.14 (v)(\x.s)v is computable.

case 6: by Property 3.14 (ii).
case 7: by induction hypothesis. O
We now restate Property 3.15 and show in one case how the mrac#s use of Property 4.7.
Lemma 4.8 Let f € F and lett be a set of terms. Kis computable, therf(¢) is computable.

Proof: We prove thaf (¢) is computable if terms ihare computable by an outer induction on the pair
(f,t) ordered lexicographically by the orderifig =, (> crorpo U)stat)iezs @Nd @N inner induction on
the size of the reducts of Since terms im are computable by assumption, they are strongly normaéizab
by Property 3.15(ii), hence, by Lemma 2.27 the ordefing, ((>chorpo U 7)stat)1ez 1S Well founded
on the pairs satisfying the assumptions.

By Lemma 4.6, the set of pairs smaller than the pAir) for the ordering > =, (> chorpo U 7)stat) lex
contains the set of pairs that are smaller than that paihtotdering > £, (> orpo U)stat)iez- THIS
key remark allows us to use Property 4.7.

The proof is actually similar to the proof of Property 3.1%cept for case 1 and for the cases using
propertyA. We therefore do Cases 1 and 2, the latter using property

case 1: letf () >cnorpo S DY Case 1, hencg >=;,,,, s for somet; € t ors € CC(t). In the former case, since
t; is computables is computable by Property 3.14 (ii); in the latter case, eirts smaller than
f(t) with respect to(> 7, (= 1orpo)stat)1z @r€ computable by induction hypothesis and the above
key remark, hence is computable by Property 4.7.

case 2: let = f(f) >chorpo s Dy case 2. Ther = ¢(5), f ># g and for everys; € 5 eithert = jorp0 Si, IN
which cases; is computable by the inner induction hypothesisy &f,,,,,., s; for somev € CC(t),
in which casev is computable by Property 4.7 and henges computable by Property 3.14 (ii).
We then conclude thatis computable the by outer induction hypothesis sificer g. O

Theorem 4.9 > ;.- IS included in a polymorphic higher-order reduction ordegi

Proof: Thanks to Property 4.7, the strong normalizatioropad this improved ordering is exactly
the same as previously, using of course Lemma 4.8 instea@mina 3.15. Using now Lemma 4.5,
we therefore conclude that the transitive closure-of,,,, is a higher-order polymorphic reduction
ordering. O

4.4 Examples

This new definition is much stronger than the previous one.addition to allowing us proving the
strong normalization property of the remaining rules of $beting example, and for the same reason,
the following rule can be added to the other rules of Example 2

Example 8 nxm — rec(n,0,Az120.m + 23)

This additional rule can be proved terminating with the poemcex > {rec, +,0}, since\z; zo.m+
2y € C'S(nx*m): by base casep andz, belong taCC(nx*m, {z1, 22}), hencen+z, € CC(nxm, {z1, 22})
by case 2 of the definition of the computational closure. Ajmg case 5 twice yields then the result.

38

The coming example is quite classical too.

Example 9 LetS = {NList : %, List : x — x}, 8" = {a}, F = {0,1 :— a;+ : a X a — a;nil :—
N List;cons : a x NList — List(a);cons : o X List(a) — List(a); foldl : (¢ — o — a) X a X
NList — a; foldl : (¢ — o —) X a x List(a) — a; sum : List(a) — a;+°: a0 — a — a}.

The rules are the following:

{z:a, F:a— a—a} H foldl(F,x,nil) —
{z,y:a, F:a—a—a,l:NList} F foldl(F,x,cons(y,l)) —
{z,y:a, F:a—a—a,l: List(a)} F foldl(F,x,cons(y,l)) — foldl(F,(F xy),l)
+¢ — Alyax+y
{l: List(a)} = sum(l) — foldl(+¢,0,1)

T

foldl(F, (F x y),l)
l

The first rule is by subterm case. For the second, we set atoghkft lexicographic status fofoldl,
and, applying rule 4, we recursively have to show thats(y, [) > om0 [, Which succeeds by subterm,
and I on the righthand side being taken care of Byon the lefthand one, we are left to show that
foldl(F,x,cons(y,1)) =chorpo Q(F, z,y), Wwhich succeeds easily by rule 7.

For the third, we show thatzy.x + y is in the closure of+-¢, provided+°¢ > +.

For the last, we need the precedenree: > { flodl, +¢, 0} in order to show that the righthand side
is in the closure of the lefthand one. O

The following example, a definition of formal derivationlugtrates best the power of the computa-
tional closure.

Example 10Let S = {form}, F = {D : (form — form) — (form — form); ¥,3 : (form —
form) — form; 0,1 :— form; —, sin, cos,ln : form — form; +, %,/ : form x form — form}.
The rules are the following:

D(A\xy) — Ax.0
(Ar.x) — Azl
{F: form — form} H D(A\z.sin(F z)) — Ax.cos(F z) x (D(F) x)
{F: form — form} H D(Azx.cos(F z)) — Ax.—sin(Fx)x (D(F)x)
{F,G: form — form} F Dz.(Fz)+(Gz)) — M. (D(F)z)+ (D(G)x)
{F,G: form — form} F DAz.(Fz)x (Gz)) — . (D(F)z)x(Gz)+ (Fzx)x (DG)x)
{F: form — form} + D(A\x.n(F z)) — Xe.(D(F)zx)/(F x)

We takeD ># {0, 1, x, —, +, /} for precedence and assume that the function symbols ark.in We
do the first rule and the one before last.

SinceD >z 0, D(A\x.y) >chorpo 0 Dy precedence case, and sinc& Var(0), D(Ax.y) > chorpo Az.0
by precedence case for abstractions.

An alternative proof uses the computational closure : sincer 0,0 € CC(D(\z.y), {z}) by prece-
dence case, hence:.0 € CC(D(\x.y)) by abstraction. Thereford)(\z.y) >chorpo Ax.0 Dy subterm
case.

For the rule before last, we show again that the right hanelisiah the closure of the lefthand one and
apply the subterm case. Since it is more complicated, weaki#é this opportunity to do a goal-directed
proof, using a stack of subgoals:

Initial goal (for sake of clarity, we rename the bound valealband make applications explicit):
N.Q(D(F),y) X Q(G,y) + Q(F,y) x Q(D(G),y) € CC(D(Me.(Q(F,z) x Q(G, x))))

39

By abstraction, we obtain the new subgoal:

Q(D(F),y) x Q(G,y) + Q(F,y) x Q(D(G),y) € CC(D(Ar.(Q(F,z) x Q(G, x))),{y})
By precedence, we obtain now two subgoals:

Q(D(F),y) x Q(G,y) € CC(D(Ax.(Q(F, x) x Q(G, x))),{y});
Q(F,y) x Q(D(G),y) € CC(D(Mr.(Q(F,z) x Q(G, z))),{y})
By precedence again, we obtain two new subgoals:
Q(D(F),y) € CC(D(Ax.(Q(F,z) x Q(G,))), {y});

Q(G,y) € CC(D(A\x.(Q(F, x) x Q(G,x))),{y});

Q(F,y) x Q(D(G),y) € CC(D(Ax.(Q(F, z) x Q(G,))),{y})
By application:

D(F) € CC(D(Ax(Q(F,) x Q(G, x))), {y});
y € CC(D(r.(a(F, 2) x @(C, x))). {y))
Q(G,y) € CC(D(Me.(Q(F,) x Q(G, 7)), {y});

x) X
Q(F,y) x @(D(G),y) € ce(D (. (0(F,z) x (G,), {y})
By recursive call (note thatv.(Q(F, z) x Q(G,x)) >>, F):
F e CC(D(Mx.(Q(F, z) x Q(G, a:))), {y});
y € CC(D(Mz.(Q(F,z) x Q(G, x))), {y});
Q(G,y) € CC(D(Mx.(Q(F, x) x Q(G,x))),{y});
Q(F,y) x @(D(G),y) € CC(D(Ax.(Q(F, z) x Q(G, x))),{y})
By extensionality (which has been proved already):
Ae.Q(F,z) € CC(D(M\x.(Q(F,x) x Q(G, x))),{y});
y € CC(D(Mz.(Q(F,z) x Q(G, x))), {y});
Q(G,y) € CC(D(hx.(Q(F, z) X Q(G, x))), {y});
Q(F,y) x @(D(G),y) € CC(D(Ar.(Q(F,x) x Q(G, x))),{y})
By reduction (since\r.(Q(F, x) x Q(G, x)) = phorpo Ax.Q(F, x) by Cases 1 and 11):
Ar.(Q(F,x) x Q(G,z)) € CC(D(Mx.(Q(F,z) x Q(G,x))),{z,y});
y € CC(D(M\r.(Q(F,x) x Q(G, x))),{y});
Q(G,y) € CC(D(Mx.(Q(F, x) x Q(G,x))),{y});
Q(F,y) x @(D(G),y) € CC(D(Ax.(Q(F, z) x Q(G, x))),{y})
By basic case, the first goal now disappers:
y € CC(D(Ax.(Q(F,z) x Q(G, x))),{y});
Q(G,y) € CC(D(he.(Q(F, z) x Q(G, 1)), {y});
Q(F,y) x Q(D(G),y) € CC(D(Mx.(Q(F,z) x Q(G, x))),{y})
By basic case again, the first subgoal disappears:
(G, y) € CC(D(\r.(Q(F,) x Q(G,2))), {y});
Q(F,y) x @(D(G),y) € CC(D(\r.(Q(F, x) x Q(G,x))), {y})
By abstraction:
Xy.Q(G,y) € CC(D(A\x.(Q(F, x) x Q(G, x))));
Q(F,y) x Q(D(G),y) € CC(D(Mr.(Q(F,z) x (G, z))),{y})
By reduction as before (renaming the bound variafil&o z):
M. (Q(F,z) x Q(G,x)) € CC(D(Ae.(Q(F,x) x Q(G, x))));
Q(F,y) x @(D(G),y) € CC(D(Ax.(Q(F,z) x Q(G, x))),{y})
By basic case, the first subgoal disappears and we are léfavgingle subgoal:
Q(F,y) x Q(D(G),y) € CC(D(M.(Q(F,z) x Q(G,x))),{y}) whichis now solved as previousIy

40

This example can therefore be entirely solved by the meshanf the closure. This does not mean
that it could be already solved with the same proof by thertegle developped in [3], where the com-
putational closure was first introduced without any othecamésm. The point is that the closure defined
here is more powerful thanks to case 6 basee-gn,,, instead of simply using-reductions as in [3].

Note that our proof is goal-directed, but not syntax dirdctdhe use of reductions (actually ex-
pansions in this backward chaining use of the rules) neegl® seer interaction to provide with the
appropriate term reducing to the goal. This is however,atlen this example, a rather simple task that
could be performed with an appropriate tactic.

We are not completely satisfied with this computation, thgumgcause the structural definition of the
ordering has been completely lost here. We would prefer poawe the ordering so as to do some of the
computation via the ordering and delegate the hard paristorthe more complex closure mecanism.
For the time being, however, the closure mechanism is theam which applies to rules whose right-
hand side is an abstraction with the bound variable ocaymithe body, assuming that the lefthand side
of rule is not itself an abstraction.

The next example (uncurrying) shows again the need of maeioteraction via the use of a middle
term. So, the fact that .;,,,, iS not transitive appears also as a weakness of the ordering.

Example 11 First, to a signaturg-, we associate the signature

reurry _ fitoox...x0; = (0441 — ... = 0, — 1) foreveryi € [0..p] |
| froox...x0, = (041 — ... — 0, — T) € F Wherer is a data-type

and we introduce the following rewrite rules for curryingéurrying:

{ti:on,... tj o) F ity tjm) — Q(f(th, ... t5),tj11)
{ti:on,.. . tip oy B Q(filth,. ... 6),tin) — fira(t, .- tig1)

Starting with the first rule, we seti,; > f;. Since the use of case 7 fails for type reason when
comparingf;+i(ti,...,t;+1) and f;41(t1, .. ., t;), we proceed to show that the righthand side is in the
closure of the lefthand one. By application, we have to shat both subtermg; (¢, ...,¢;) andt, .4

are in the closure. This is trivial for the second, and resiuttim the precedence case for the first.

Trying now to prove that the lefthand side of the second milgigger than the righthand one, we set
fi > fi+1, and the only possible case is subterm. But the compayigon. . ., ;) >chorpo fit1(t1s - -, tis1)
cannot succeed since there is a new free varighle) in the righthand side. The computational closure
does not help either here, since it is generated from théfsgt, . . ., ;), t;11 }, and there is no way, in
general, to access the terms. . ., ¢; in order to build the righthand side by the precedence rule.

The trick is to invent a middle term, and show that the lefthside is bigger than the righthand one in
thetransitive closureof the ordering. The convenient middle term her@{sw. f; 11 (t1, . . ., ti,), tiz1),
which reduces to the righthand side by the use of Case 11. ¥efdre simply need to show that
the lefthand side is bigger than the middle term. Since betin$ are headed by an abstraction, we
simply need to prove that;(t1, ..., %) > chorpo AT fir1(t1, - . ., t;,), which we prove now by showing
that the righthand side term is in the closure of the lefthasitgé one. Indeed, now;, ... t;,x €
CC(fi(t1,...,t;),{z}), and by precedence,(t1,...,t;,x) € CC(f;(t1,...,t;),{x}), and we con-
clude by abstraction. We see here that the middle term atlawseo pop up the subterifa(t,, . . ., ¢;) of
the lefthand side of rule, allowing to make the terims . ., ¢; available in the closure of;(¢4, ..., t;).
Although this looks as a trick, the (type) conditions for g this trick sucessfully can be easily
characterized and hence implemented, making it transpimetie user. We will indeed use it again for
solving another example later.

41

Remark that we can accomodate a mixture of currying and uyiagrby chosing an appropriate well-
founded precedence for selecting the right number of argisrdesired for a given function symbal.

We end this section with two examples showing yet anothenteary) weakness of our ordering.

Example 12 (adapted from [26]) LeS = {List}, S¥ = {a}, F = {nil : List,cons : o x List —
List, fcons : (a« —) — List, dapply : a X (¢ — a) X (« — «) — a,lapply : a x List — «}. The
rules are the following:

{F,.G:a—a, z:a} H dapply(z, F,G) — F(G(z))
{z:a} H lapply(z,nil) — =«
{F:a—a, z:a,l:Listt F lapply(z,cons(F,L)) — F(lapply(z, L))

The first two rules are straightfoward. For the third, we fue problem tha#’ is not in the closure
of the lefthand side, as a higher-order variable occurirsidm a strict subterm of a lefthand side ar-
gument. Although arbitrary subterms may yield non-termngasequences as shown in [19], where a
non-terminating example is constructed by using such a daegble, this is not the case herens be-

ing the free list constructor, its subterms are indeed cdaippe whenever the whole term is computable.
This example can therefore be solved by adding this propertye closure, see Section 7 for details.

A second, more serious weakness shows up with the followxagnele about process algebra, in
which a quantifier names binds variables via the use of a functional argument, thatrisabstraction:

Example 13 (taken from [11]) LetS = {proc, data}, F = {+ : procx proc — proc, - : procx proc —
proc, § :— proc, 3 : (data — proc) — proc)}. Here,+ stands for the choice operatofpr sequential
compositiony for deadlock, and& for the data dependent choice. The rules are the following:

{z : proc} + r+r —
{z,y,2: proc} - (@+y)-z — (z-2)+(y-2)
{z,y,z: proc} - (x-y)-z2 — x-(y-2)
{z : proc} H x4+ — w
{z : proc} H o-x — 6
{z : proc} H Y(M\d : data.x) — =
{D :data, P :data — proc} F 3X(\d:data.P(d))+ P(D) — X(\d:data.P(d))

Y(Ad : proc.P(d) + Q(d))
{P,Q : data — proc} + —
Y(Ad : proc.P(d)) + (A : proc.Q(d))
{z : proc, P :data — proc} F Y(AMd : data.P(d))-x — X(Ad: data.(P(d) - x))

The first eight rules can be easily oriented by using our amdgwithout the closure mechanism) with
the precedencé-, >} >» +. For the last rule, we cannot use the precedence case of deeray
(assuming nowt >x +), since we would end up withd : data.(P(d) - z) on the right, whose type
is data — proc, hence cannot be smaller than the whole lefthand side. Butltsure does not work
either, since our two starting terms até\d : data.P(d)) andz, which cannot help for building the
righthand side. This is quite surprising, since no applcabccurs in the example, apart from the
terms like@Q(P, d) applying a higher-order variable to a term. Having induetiypes would help again,
provided we use the recent ideas from [5] : by reaching urdeconstructorsandX, \d : data.(P(d),
henceP(d) would be in the closure. It is then easy to reconstruct thiethignd side. We develop an
alternative technique in section 5 that could also be usesl he O

42

5 Normalized Rewriting

The purpose of this section is to giveﬁast_abl_e subrelation&hwpg)g of > horpo and (> chorpo) s Of
> chorpos 1IN Order to prove the strong normalization property of nalized rewriting.

First, we remark thatj,,,, and>.-,, themselves (without neutralized positions) are pistable.
The following example shows the kind of terms which causeo&ation of 3-stability by > 1o

Example 14 Q(X, f(a)) = X(f(a)) >horpo X (a) = Q(X,a) and X(a) >porpo @
while instantiating these comparisons with the substtuti = { X — My.a} yields:
X(f(a))yl = X(a)yl = a which contradictss-stability. O

Fortunatelly this is the only situation in whighstability can be violated. We will therefore restrict
the orderings-,o,p,, and>;.-p, DY forbidding the kind of comparison suggested by example 14

5.1 The Normalized Higher-Order Recursive Path Ordering

We sketch here the definition ()ﬁf»horpo)g on (arbitrary) terms:
Definition 5.1 The relation(>horpo)g is defined as-,,,, but restricting cases 5 and 9 as follows :

5. s = @Q(sy, $2), 1 IS not an abstraction nor a variable and >)g t for someu € {sy, s}
horpo

9. s = Q(sy,s2), t = Q(%) is a partial left-flattening of, s, is not an abstraction nor a variable and
{52 1((, = B s {7)

Lemma 5.2 (=norpo)j3 1S @3-stable and-polymorphic subrelation of-o,,-

Proof: The fact tha(}hmnp(,)g is a subrelation of-,,,, is an easy consequence of their definitions:
both relations differ only in Cases 5 and 9, by forbiddingiafales and abstractions as first argument
of the lefthand side application in both cases. The proofstaibility and polymorphism can then be
obtained from the proofs of Lemmas 5.19 and 5.9 as a particake. O

5.2 The Normalized Computational Closure

We can now define the adequate version of the computatiosslid. Notice that we do not assume
terms to be normalized in this definition. The reason is tdng possibly non-normalized terms allows
to have more normalized terms in the closure on the one haddases the coming stability proof on the
other hand. In practice, we only need to collect normalizeths from the closure, since the righthand
sides of rules (as well as the lefthand ones indeed) are @&sktmbe normalized.

First we need to restrict the type decreasing subterm oelatLTS X

Definition 5.3 Let >, be a type ordering, and let us write: o DiTS t: 7iff t = s|, is a subterm of
such that (i) no superterm|,., of ¢ in s is of the formQ(z, v) with x a variable, (i) >z, 7 and (iii)
Var(u) C Var(t).

Definition 5.4 Given atermt = f(f) with f € F, we define itfiormalized computable closu€e; (1)
as the set of tail normal terms &Cj(t,), whereCCj(t, V), withV N Var(t) = 0, is the smallest set of
well-typed terms containing all variables W, all terms int and? 1#A, and closed under the following
operations:

43

=

restricted subterm of minimal type: lete CCj(t,V), andu : o = s|, be a subterm of such
that (i) no superterns|,,, of u in s is of the formQ@(w, v) with w a variable or an abstraction, (ii)
o € T¢"™ and (iii) Var(u) C Var(t); thenu € CCj(t, V),

2. precedence: lgj such thatf >z g, ands € CCj(t, V); theng(s) € CCj(t, V),

3. recursive call: lets be a sequence of terms@cj;(, V) such that the ternf(s) is well typed and
(= horpo U7)stat, 5; theng(s) € CC(t, V) for everyg =5 f;

4. application: lets : 0y — ... — 0y, — 0 € CC}(t, V), andu, : o; € CC}(t, V) for everyi € [1..n];
then@(s, uy, ..., u,) € CCh(t, V),

5. abstraction: letr ¢ Var(t) UV ands € CCj(t,V U {z}); then\z.s € CCj(t, V),

6. reduction: letu € CCj(t, V), andu = o,y v; thenv € CCJ(t, V);

7. weakening: let ¢ Var(u,t) UV. Thenu € CCj(t,V U {z}) iff u € CCL(t, V).
Lemma 5.5 Lett = f(f). ThenCCj(t) C CC(t).

Proof: The proof follows from an easy induction on the deiimitof CCj(t, V), using the fact that
(>horpo) 3 1S @ subrelation of-,,po. O
We now prove the stability properties of the closure.

Lemma 5.6 Letu € CCj(t, V) for someV. Thenu |, u T, uT#* andu | belong toCC}i(t, V).
Proof: Foru |, we simply use Case 6, and for] andu T#A, we use successively Cases 7, 4 and 5.
Corollary 5.6.1 Lett = f(f) be a tail expanded term, ande £ 7#A. Thenu € CCj(t).
Lemma 5.7 Lett = f(f) be a term andy be a substitution. I € CC}j(t) thenuy € CCj(tv).
Proof: The proof is the same as the proof of Lemma 4.2.
Lemma 5.8 Lett = f(f) be a term andy be a substitution. If, € CC}j(t) thenuy|c CCj(ty]).

Proof: LetV be a set of variables such tHatC X'\ (Var(t) U Var(ty) U Dom(7)).

We prove that, € CCj(t, V) impliesuyle CCj(ty], V) by induction on the definition afCj(t, V).
We assume thaom () C Var(t).

If uw € Vthenuyl=u €V, and hencery|c CCi(tv], V). If u € %, thenuy|€ Tv], and therefore
uyl€ CCh(tvl], V). Otherwise, we discuss with respect to the cases of defirfitié, of which Cases 1, 4
and 7 are the only not entirely straightforward ones.

1. Ifu: o € CCH(t,V) by Case 1, them = s|, for somes € CC}j(t, V) with p € Pos(s), o € T&"™"
andVar(u) C Var(t). By induction hypothesisyy| € CCj(tv], V). By assumption, no superterm
of u in s is of the form@(w, v) with w with w an abstraction or a variable, henee |= s| |,,
with p € Pos(svl]), Var(uy) C Var(ty), and, by subject reduction property ef-;, uy : o.
Thereforeuy| e CCJ(t, V) by Case 1.

2. If u € CCj(t,V) by case 4, them = Q(s,uy,...,u,) € CCj(t,V), wheres, uy,...,u, €
CCj(t,V). By induction hypothesiswl,uwl,_. - upyl€ CCh(ty], V), and therefore@(sy |
;s uryls - unyl) € CCh(ty], V) by Case 4. Using Case 6 repeatedtyl € CC3(ty], V).

44

3. Case 7 follows from the assumption on the variablés.in O
Lemma 5.9 Lett = f(f) be aterm and be a type substitution. if € CCj(t) thenué € CCj(t¢).
Proof: The proof is the same as the proof of Lemma 4.3.
Lemma5.10Letu € CCi(f(%),V). ThenuT#A, u T€ CCR(f(E 1), V).

Proof: By Lemma 5.6, it suffices to prove it for anyonewof#A, v 7. We do it by induction on the
definition of CC}(¢, V), and proceed with the interesting cases:

1. Base case. li : o € V, then, by definition of the closure, A= u € CC}(f(t 1),V); If u € 1,
thenu 1€ ¢ 1, henceu T€ CCL(f(1),V).

2. Case 1. Assume that ¢ CCj(t,V), and letu : o = s|,. By induction hypothesiss 1#Ac
CCh(f(t1),V). Now,u T#A= s 1 |, for someq which satisfies the same propertiespaand we
are done.

3. Case 4. Assume sq,...,s, are inCC%(t, V). By induction hypothesis; T#A,s; T,...,s,] arein
gcg(f(f 1), V). By Case 4@(u1#A,s1 1,...,8, T) = Q(u,51,...,5,) T#AisINCCH(f(t 1), V).

Since the closure contains only tail normal terms, we get:

Corollary 5.10.1 Letu € CCj(f(t)). Thenu € CC3(f(% 1)).
5.3 The Normalized Higher-Order Recursive Path Ordering

Definition 5.11 Let the propositioM be:

Voets(=)jvoru(=)}vforsomeu € CCJ(s)

chorpo chorpo

s:o(=)ht:7iff o >7, 7and

chorpo

1.5 = f(s5)with f € F,and ()u(>)}t forsomeu € 5or (i) t € CC}(s)

chorpo
2. s = f(s) with f € Fandt = g(t) with f >z g, and A
3. s=f(3),t=g(t) with f =7, g € Mul, ands((>)g Ymut

chorpo

4. s = f(3),t=g(t)with f =7, g € Lex ands((>)Z)iext, @aNA A

chorpo

5.5 =Q(s1,s2),51 ¢ Xands (=)jtorsy(=)it

chorpo chorpo

6. s = \v:auwiths & Var(t), andu(=)jt

chorpo
7. s = f(3) with f € F,t = Q(¢) is a partial left-flattening of, and A
8.s=f(E)withf € F,t =\ :avwithz ¢ Var(v) ands(=)jv

chorpo

45

9. s = Q(sy, 82), t = Q(1) is a partial left-flattening of, s; ¢ X and{s;, 32}((ch§po)g Ymu it}

10.s =M :au, t = v S, a =7 f,andu(=)jv

chorpo

11. 5 = Q(\r : aww,v) anduf{z — v}(=)it

chorpo

12. t = \z.Q(v, x) with x & Var(v) and s(R)i v
chorpo
We start now proving its closure properties with respecetmtand type instantiation. We start with
polymorphism, whose proof is quite different from the pradfpolymorphism for plain higher-order
rewriting, and much more complicated. As a preparation, twdysthe behaviour of the ordering with
respect toj-expansions.

Lemma 5.12 Assume that(zchorpo)g t, wheres is tail n-expanded. Thenis tail n-expanded.
Proof: By inspecting all cases in the definition. O

Lemma 5.13 ASSUMes(chorpo)y t : 0, Whereo = @ — 7 is canonical. Thens(=chorpo)jj AT
7.Q(t, 7).

Note that the form of the typ& — 7 is the most general possible.
Proof: By induction on the size @f and applications of Case 12 of the definition. O

Corollary 5.13.1 ASSUM& (= chorpo) 3 ¢ fOr some tail expanded termst. Thens(=cnorpo) s t 1.

Lemma 5.14 Assume that : o(>=cporpo)3 ¢ = o', ando is the canonical type;, — ..o, — 7. Then
AT : E'@<S7f)(ichorpo)g .

Proof: By induction om. If n = 0, we are done. Otherwise, by Case®s, x,,)(=chorpo) s ¢ fOr
somexr, : o, ¢ Var(t), and therefore, by Case 6, we get, : 0,,.Q(s, 2,,)(=chorpo)j3 t, @nd we can
now conclude by induction hypothesis. O

Corollary 5.14.1 ASSUME& (= chorpo)j; ¢ fOr some tail expanded termst. Thens T (=chorpo)js t-

Lemma 5.15 Assume that : o (=chomp0)j ¢ : 0, 0 is the canonical type; — ..o, — 7 ando’ is the
canonical typer;, — ...0;, = 1 — ... — 7, — 7 With

()1<ip<...<ip,<n,

(i) 0}, =75 03, foreveryk € [1..p],

(i 7> —...o1,— 7.

Then\T : 7.Q(s,T) (= chorpo) s AU : 0'NZ : T.Q (1,7, Z).

Note that the form of the type’ is the most general possible, since it follows from the faett t
o >7, o' which itself follows from the assumption that a(tchorpo)g t : o'. Besides, in caseandt
are tail expanded (resp. tail normal), then : .Q(s,7) and\y : 0’\z : 7.Q(t,7, %) aren-expended
(resp. normalized).

Proof: First of all, in case is a variableX, thent = X and the result is clear. Otherwise, we discuss
by induction om + p + ¢ and by cases on their respective values.

1. Assumethaf # 0. Then, by Case 12 applied to the assumption, we get(= j.orpe) 3 A24-Q(1, 2,),
and we can conclude by the induction hypothesis.

46

2. Assume thay = 0 andp = 0. Theng = 0 and we are done.

3. Assume thag = 0, p # 0 andi, = n. Then, by Case 10 applied to the assumption (and assuming

without loss of generality that, = y;,), we get\z,,.Q(s, 2,) (Zcnorpo) 5 AYi,-Q(t, i), @and we can
conclude again by the induction hypothesis.

4. Assume thay = 0, p # 0 andi, # n. Sinces is not a variableQ(s, z,,)(=crorpo) 3 t fOr some
T, : 0, ¢ Var(t) by Case 5, and therefore, by Case\a,,.Q(s, 2,)(=chorpo)3 £, @Nd we can
conclude again by the induction hypothesis. Note that tpagyconditions in order to apply the
induction hypothesis are all fullfilled. O

Corollary 5.15.1 Assume;(ichorpo) t for some tail expanded termst. Thens T (= c,wrpo)g t 7.
Lemma 5.16 Assume that (= chorpo) s t. ThENs T#A (= chorpo)jj £ 171

Proof: The proof that 1#A (>~ C,Wpo)” t T#A is by induction on the definition of the ordering.

First, we remark that property : Vv € t either (i) f (35) (= chorpo) 3 ¥ OF (il) u(=chorpo) 3 v fOr some (tail
normal)u € CCj(f(5)) implies propertyA 7: Vv € T 1 either (I)f(s T)(Zchorpo) 3 v OF (||) U(= chorpo)
for some (tail normal)t cCCLH(f(3T)).

For (i), we getf (5 7)(>= Chorpo) v 1#A by induction hypothesis, and therefofes 1) (= cnorpo) 3 v 1 by
Corollary 5.13.1.

For (i), we getu 1#A= u(>=chorpo) s v 174 by induction hypothesis, and therefaré= o) v 1 by
Corollary 5.13.1. We conclude by Corollary 5.10.1.

PropertyA 1 assumes thatis always fully expanded. This is actually not the case whenused in
Case 7, because the first argument of a fully expanded apphda tail expanded. There is no difficulty
in proving this slightly modified form ofl T, and we will use it without mentioning further this subtlety

1. Case 1 (i). By induction hypothesis]#A (=porpo) 3t T#A. By Corollary 5.14.14 T (Zporpe) 3 t T#4,
and thereforef (5 1) (=chorpo) s t 172 by Case 1 (i).

Case 1 (ii). By Lemma 5.10,#A=t € CCi(f(5 1)), hencef (3 1) (=chorpo) 3 t 172 by Case 1 (ii).
Case 2. By the above properly!, we getf (s T)(>chorpo) 5 9(t T), which is our goal.

Case 3. By induction hypothesis, Corollary 5.15.1 anceGas

Case 4. By induction hypothesis, prope#tyf, Corollary 5.15.1 and Case 4.

a k~ w0 N

Case 5. By applying successively the induction hyposhtsk; (= norp0)3 ¢, OF the induction
hypothesis t&; (= chorpo)j3 ¢ followed by Corollary 5.14.1, and then Case 5.

Case 6. By induction hypothesis and Case 6.
Case 7. By propertyl T and Case 7.
Case 8. By induction hypothesis and Case 8.

© 0 N o

Case 9. By induction hypothesis, Corollarys 5.14.1, 8.48d 5.15.1 when needed, and Case 9.
10. Case 10. By induction hypothesis and Case 10.

11. Case 11. By induction hypothesi$r — v} 1#8 (Zcporpo) g t 174, SinCeu{z = v} [#A= u T#A
{z — v1#A}, we getQ(\r : o.uT#A v]#A) = sT#A (ihorpo)g t1#A by Case 11.

47

12. Case 12. By induction hypothesig#A (= porpo)3 v 1#A= tT#A and we are done. O
Lemma 5.17 Let s(=j0,p0) 3 t @nd& be a type substitution. Theg = 0.0 1.
Proof: The proof is the same as the proof of Lemma 3.10, usimgbiemma 5.9. O
Theorem 5.18 The ordering(=o,p0) 5 IS 7-polymorphic.

Proof: By Lemmas 5.17 and 5.16.
We are left with3-stability. In order to prove it, we show a technical progataracterizing the exact
behaviour of the ordering with respect to instantiations:

Lemma5.19Let s and ¢ be tail normal candidate terms. K (~cuorp0);3 ¢ then for all tail normal
substitutionsy there is a candidate terma such thatsy] (=chorpo) s w —5 171

Proof: By induction on the definition Q&chorpo)g , and by cases according to the definition.
First, Propositio : Vv € £s(=)jvoru(=)jvforsomeu € CCj(s) implies Proposition

chorpo chorpo
@) syl (=)g w;, Or
(i) u(t)6 w; for someu € CCj(sv])

chorpo

by an easy use of the induction hypothesis, noting that ténons the closure are tail normal.

1. Case 1. Let = f(5)(>=chorpo) s t With f € F, and

e (i) u(=chorpo) s t for someu € 5. By induction hypothesis, there exists a teansuch that
uyl (= chm«po)g w—pty|. By Case 1 (i), we getyl (=chorpo) s w —517..

e (ii) t € CCj(s). By Iemma 5.8¢vl€ CCj(svl), hencesy] (=chorpo) tw by Case 1 (ii) and
we can takeu = tv].

2. Case 2. Let = f(E)(>chorpo) t=g(t)with f,g € F, f > g,andA. By PropositionA~|, taking
w = g(w) yields g(w) — tvl Now, sy|= f(57])(=chorpo) j 9(W) by Case 2, because>r g
and for everyw € w, elther (D)s7L (=chorpo) 3 w OF (i) U(=chorpo) 3 w fOr SOMeu € CCH(sv1).

3. Case 3. 16 = f(5) (=chorpo) t = g(t) With f =xr g € Mul and3((=chorpo))muit- By induction
hypothesis, there is some multlwsuch tha®y] (= chorpo) mu@(—)montw. Takingw = g(w),
we 99t5’7l (>_Ch07“p0)13 w % t by Case 3.

Avy|: Vv; = tyy] Jw; such thatv; —7 ¢, and

4. Case 4. Lets = f(5)(=chorpo) t = g(t) With f =y5 g € Lex, (5)((Zchorpo)js)iex(t) @and
A. By definition of the Iexicographlc extension, there exsene indext such thats; = ¢; for
i € [L..k — 1] andsg(>chorpo) 3 tr- We therefore set; = s;v] fori € [1..k — 1], wy, is defined
by the induction hypothesis, and the rest of them by Propérty. As a consequence, we get
syl (= chorpo)g)iea®(—5)monty |, @nd propertyA is true ofw. Takingw = g(w), we get
svL (> chorpo) 3 w—5t by Case 4.

5. Case 5. Let = Q(sy,52)(™chorpo) s T 51 & X andsi(Zchorpo) s t- By assumption ony, s, |
cannot be a variable. By assumption gnit cannot be an abstraction either. Therefare,|=
Q(s171, s27])-
By induction hypothesis, there is somesuch that,v| (> c,Wpo)ﬁw — m orsiyl (= chorpo)ﬁw — 5yl
Sinces; | is not a variable, we gety|= Q(s,7], s27.) (> chorpo) 3 w — ty| by Case 5 and we
are done.

48

6. Case 6. Let = \v : a.u(>chorpo) s t With = & Var(t), andu(=cpoppo) t- Sincesyl= Av : a.uy)
with x ¢ Var(tvl), and, by induction, there is somes.t. uy | (=chorpo) s w —5 17|, We can
conclude by case 6 that: : a.uy| (=chorpo)3 W —5 7]

7. Case 7. Lek = f(5)(=chorpo)y t = Q(f) with f € F, Q(%) is a partial left-flattening, and
A. Mimicking the proof of case 2, we g8ty | (= chorpo)3 w —5Q(()7]) for somew. Since
tyl=Q(()v])l, we getw —} tv], and we are done.

8. Case 8. Let = f(5)(chorpo)p t = M : v with [€ F, 2 & Var(v) and s(=cnorpo)js v-
Sincety|= M : a.wy] with x & Var(vy]), by induction hypothesis, there is somesuch that
87) (=chorpo)p w —5 vyl We can conclude by Case 8 that: a.uy| (=chorpo) s w —517].

9. Case 9. Let = @(51,52)(>chorpo)g t = Q(t) with s; ¢ X, t is a partial left-flattening and
{51, 52} ((Zehorpo) s Jmu{t}. Sinces; € X, sy is not a variable either, nor an abstraction by
assumption ors. Therefore,sy |= Q(sy7y |, s9y |). By induction hypothesis there is a term
w = @(w) such tha{s17], 527] } (= chorpo) s Jmu®@ and@(w) —% @(7]). Therefore, by case 9,
571 (> chorpo) 3 w. Sincew —7% @Q(Ty]) — 4 tvl, the result holds.

10. Case 10. Let = Az : a.u(chorpo)y t = Az = Bov With a =75 B, andu(=chorpo) v. Since
syl= A : awwy] andty |= Mx : [B.oy], by induction hypothesis, there is somesuch that
wyl (=chorpo) s W —% vy]. Therefore, by case 18y (=chorpo)jy A : B.w —5 1],

11. Case 11 does not apply sinces tail normal by assumption.

12. Case 12. Let = \r : 0.Q(v,z) with x € Var(v) ands(>=cnorpo) s v- By induction hypothesis,
there exists some term such thatsy| (>chorpo)g w —7;vy]. Without loss of generality, we can
assume that ¢ Var(vy), and therefore, by Case 12y| (~chorpo) A : 0.Q(w, 2) —5 Av
0.@Q(vy|, x). Additional 5-rewrite steps if necessary yield the result. O

Lemma 5.20 ((>=chorpo) 3)" IS @ 3-stable subrelation of-ciorpo) "

Proof: By induction on the length of the derivation. Assumats (= rorpo)s U((>=chorpo)3)*t. BY
lemma 5.19,57 | (>=chorpo) Ty |, SinceB-reduction is included in- om0 If u = t, we are done.
Otherwise, by induction hypothesisy| (>chorpo) Tty] @and hencesy| (> chorpo) Tt]. O

We can finally conclude:

Theorem 5.21 (> chorpo) is included in a polymorphic normalized higher-order retion ordering.
6 Neutralizing abstractions

In our ordering, all arrow type terms are treated as if thaylddvecome applied and serve inja
reduction. This makes it difficult to prove the terminatidira@es whose righthand side has arrow type
subterms which do not occur as lefthand side arguments. dn awcase, the use of the computable
closure may sometimes help, but Example 13 shows that thit islways the case. In this example, the
righthand side arrow type subterky. P(y) - = does not receive a special treatment, although it cannot
serve creating a redex in a derivation. We will now improve ordering by introducing a special
treatment for these terms. The idea is to equip every funslymbol with a set of neutralized positions,
which can be seen as an additional status for that purpose.

Notation: In this section, we assume given a new constantfor every types. We will denote
by F..., the augmented signature. Becausg has typesc which may be polymorphic, there is no

49

garantee thaf,,.,, is regular. We already discussed this issue in Section 2natetl that the unique
typing property was preserved. Note also that for any tytaimtiationé and any environment,
I' Fr.. (Lp)E o Tiff T Fg,.. Lo @ 7. Inthe sequel, we will actually identify.L,)¢ with the term
1,¢, and assume that the precedengeon the extended signature has the following stability priype
f > gimplies f¢ >x g€ for every type instantiatiog.

Of course, the higher-ordre rules we want to prove termiimahare built from terms i¥ (¥, X'), not
iN 7 (Frew, X)-

6.1 Neutralization and Normalization

Definition 6.1 Thei-neutralization or neutralization of level of a termt € 7 (F,ew, X) is the term
N;(t) defined as follows :

1. ifi > 0 andt is of the form\z : o.u thenN;(t) = N;_1(u{z — L,});
2. OtherwiseV;(t) =
Lemma 6.2 Lett be ann-expanded term and be a substitution. TheN;(ty) = N;(t)y for all i.

Proof. We proceed by induction anThere are two cases.

1. Assumei > 0 andt is of the formAz : o.u. Without loss of generality, we can further assume
thatz & Dom(~). ThenN;(ty) = Ni((M\x : o.u)y) = Ni(Mx : ouy) = Niqg(uy{z — L,}) =
N;_1(uy") wherey = v U {z — 1,}. By induction hypothesisN; i(uy) = N;_1(u)y =

—i(wfz = Loty = Ni(t)y.

2. OtherwiseN;(t) = t. Sincet is n-expanded, it cannot be a variable of a functionnal type.dden
ty cannot be an abstraction unléss 0, and thereforeV;(t) = ty = N;(t)y by definition. O

Lemma 6.3 Lett be a normalized term ang be a tail normal substitution. TheN;(¢v]) = N;(t)v].

Proof. We proceed by induction an

1. Ifz' > 0 andt is of the formAz : o.u thenN;(t) = N;_1(u{z — L,}); by induction hypothesis
J(ufe = L})yl= N (ufz — L)), s, we haveV; (t)y | = N1 (ufe — L, }70),
and since, we assume thatloes not occur iny, we haveN;(t)y|= N_ ((uv){x — 1,}]) =
Ni(t)Wl Nia((wy){z = 1,}), and thereforeV;(t)y|= N;(Ax : o.uyl) = Ni((Az : o)y

) = Ni(tv]).
2. Otherwiset is not an abstraction unless- 0, and hencéV;(t) = ¢. Sincet is normalized, it cannot

be of a functionnal type, unless= 0, and since andty have the same type in any environnement,
tv] is not an abstraction either, unless: 0. Therefore \;(tv]) = ty|= N;(t)7]. O

Since we want to neutralize only abstractions in terms, wnsethat can become abstractions along
reductions, we need to control neutralization via the fiomcsymbols heading these abstractions by
neutralizing some of their arguments whose type is funetion

Definition 6.4 To each symbof : 0, x ... x 0, — o € F and each argument positionof f, we
associate a natural numbek/ﬁf < ar(oj), called neutralization levebf f at positionj. We call

neutralizedhose positiong with Nﬁf > 0.

50

We will now neutralize terms recursively. To this end, we ch@droducing new function symbols
in the signature : for every algebraic symbol declarationo; x ... x 0, — o, we assume given
a new symbolf,..,, : o] x ... x g/, — o in the new neutralized signature. The type declaration of
fnew Symbol depends only upon the respective neutralizatioeldesf the argument positions ¢f: if
0O;i=T1 — ... — T — randNL‘{ =q < k,thens] = 7,41 — ... — 7, — 7. Besides, we assume that
the extended signature is again regular, which is true whemeutralization level of a given argument
position of the function symbaf is the same for all its type declarations.

Definition 6.5 A termt is said to bealgebraically expandedlit satisfies the following property : for all
subterms of of the formf(uy, ..., u,), u; is n-expanded for every
Thefull neutralizationof an algebraically expanded tertis the termFA/ (¢) defined as:

1. ifte Xort= 1,,thenFN(t) =t;

2. ift = M.u, thenFN (t) = e FN (u);

3.ift =Q(ty,...,t,), thenFN (t) = Q(FN (t1),..., FN(t,));

4. ift = f(tr, ..., tn) With f € F, thenFN (1) = frew(Nyor (FN (01)), -, Nipr (FN (£)))-

Let us first remark that our definition makes sense, since :

- the term constructed in Case 4 is typable, thanks to thengstsan that the arguments of an algebraic
symbol aren-expanded, therefored ensuring that the typég,Qf depends only upon the type of the
arguments off and its neutralization level, and not upon the form of thaiargnts themselves in case
they have a functional type.

- the full normalization of an algebraically expanded tesntself algebraically expanded.

In the following, we are primarily interested in the full moalization of tail expanded (or tail normal)
terms. Note first that a tail expanded tesris algebraically expanded, and tha\/ (s) is indeed itself
tail expanded.

Lemma 6.6 Letu be a tail expanded term angdbe a tail expanded substitution.
ThenZN (uy) = FN (u) FN (7).

Proof: We proceed by induction dn| and case analysis.

1. Assume thaDom(v) N Var(u) = (. Thenuy = u and sinceDom(vy) N Var(u) = @, the result
holds trivially.

2. Assumeu € Dom(7). SinceFN (u) = u, the result holds again.

3. Assumeu = \y.w. Then,FN ((Ay.w)y) = FN (Ay.(wvy)) = Ay.FN (wy). By induction hypothe-
sis, \y. FN (wy) = Ay.(FN (w)FN (7)) = Ay FN (w))FN (v) = FN (u) FN (7).

4. Assumeu = f(uy,...,u,). Then,FN (uy) = FN(f(u1y, ..., unY)) = foew(tul, ..., ul),), where
wy = Ny (FN(uj7v)). By induction hypothesisiV (u;y) = FN (u;)FN(y). Sincew is tail

J
expanded, all; aren-expanded, and therefofeV (u;) is n-expanded as well. By lemma 6.2, we

haveN, s (FN (u;)y) = Ny .1 (FN (u;)) FN () and the result holds.

~—

5. Assume: = @Q(wy, wy). Then,FN (Q (w1, wy)y) = FN (Q(wyy, wyy)) = Q(FN (wyy), FN (way)).
By induction hypothesis, we getN (Q(wy, wy)y) = Q(FN (w1)FN(7), FN (we) FN (7))

Q(FN (w1), FN (we))FN (v) = FN (u)FN (v) and we are done. ;

51

We now show that full normalization preserves all kinds ofmal forms, as can be expected from
a transformation that drops abstractions and replacestiband variables by bottom constants in the
bodies. The first two lemmas are easy.

Lemma 6.7 Lett be a normalized term. TheBN (t)|= FN ().
Lemma 6.8 Lett be a tail normal term. Theff N (t)|= FN(1).

Lemma 6.9 Let ¢ be a tail normal term andy be a tail normal substitution. The#&N ((ty)) =
(FN()FN (7))L

Proof: By Lemma 6.6, it suffices to show th&aN ((ty)]) = (FN (t))!], which we prove by induction
on — ;. By Lemma 6.7, the result holds whéty) |= ty. Otherwiset = Q(s,t,,...,t,), where
sy = Ay.u. Assuming without loss of generality thatoes not occur i, . . ., t,,

FN((t9)1) = FN(Q(ufy — t1}, ta, .., ta)Y)L) = FN(Q(u, ta, . .., t)7)])
withy" = yU{y = (t17)l}. Sincety — ;5 Q(u, t5, ..., t,)7’, applying the induction hypothesis yields:
FN((Q(u, ta, ..., tn)Y)]) = (FN(Q(u, ta, . .., 1)) FN (V)=
(FN(Q(u, ta, ..., t.)){y — FN(t17])} UFN ()]
and, by induction hypothesis again, the latter expressi@gual to
(FN(Qu, b, .. 1)) ({y = (FN () FN (7)1} U FN (7))l =

N(@Q(u, by, .., 1)) {y — fN(tl)i})fN(vm:
(FN (u), FN(t2), FN (ta) {y — FN (t1)| }) FN (7))l =

N (u){y — FN ()L}, FN (E2), - ., FN (8)) FN (7)1 =

TN (), EN ()L}, EN (E2), ., FN (£)) N (7)) L=
FN Oyu), EN (1), FN (ta), - .. FN (£ FN (7)) =
s, FN (1), fN(tz) N (1)) FN (7)) 1=

(s, 11, tar .,) FN(3))I= (N (DFN ()] O

The following property is straightforward :

(F
(@

(Q(F
(@
(Q(
(Q(
(FN

Lemma 6.10 Lett¢ be a term and: a variable of typer. Thent{z — L, }1"= 1" {z — L1,}.

Since the level of neutralizatioh’ﬁf of any argument is smaller than or equal to the arity of itetyp
we have the following properties.

Lemma 6.11Lets : o be ann-expanded term. TheN(s&17) = N;(s)£1" for all i < ar(o).
Proof: We proceed by induction anThere are two cases.

1. if i = 0 thenN;(s£]") = s&1" andN;(s) = s. Hence, the result holds.

. if i > 0 then, by assumption an, o = p — 7 ands = \x : p u by assumption on. Therefore
Ni(s€1") = Ni((Ax = p€uf)1") = (A:c pf (u&)1") = Nica ()1 {a = Lpe}).
By induction hypothesisy; ((ug)T" ()&, hence
Nt (1" {z = Lye}) = (Niza(u)ﬁT"){x — L&} By Lemma 6.10

N (W)ET) = Ly} = Wi (u)er s Lye}) i (Vi (ufs = LD
and thereforé N (u){z — L, })E11= Ni(Ar - pu)¢l= Ni(s)El". 0

Lemma 6.12 Lett : o be a tail expanded term. TheB\ (t£ 1#A) = FN(t)€ 1#A.
Let : o be annp-expanded term. TheRN (t£17) = FN (£)E1M.

52

Proof: We first show that the second property follows fromftrst. If o€ is not an arrow type, then
both properties coincide. Otherwise, assumedl§at 7 — 7, — 7. Thent{1"= Az ...z, Q(t& #A

y L1y e ey
),.Tl,...,

x,). By definitionFN (t£17) = FN (Axq ... 2, QEET#A 21, ..o, x)) = Ay .. 2, Q(FN ($E 140
r,,), which by the first property i8z; . .. 2,.Q(FN (£)ET#M, x4, . .., x,) = FN(£)EM.

We now prove the first property by induction gh

1.

6.2

Assume that € X. Sinceté 1#A= t&, FN(t) = t andFN (t€) = t¢, it follows that FA/ (t£ 1#A) =
t§ = tE1#h= FN(1)E T#0.

. Assume that = 1 ,. Thent{ T#A= L. Hence, FN (t£1#8) = L, = L,& = FN () T#A.
. Assume that = M\ : 7.u. ThenFN (t€ 1#8) = FN((\x : 7&uf) T#8) = FN (Ax : 7€ (ug) 1#A

) = Xz : TEFN (u€ 1#1). By induction hypothesisEN (ué 1#8) = FN (u) T#A &, which implies
that\r : 7&.FN (u€ 1#0) = M 7E(FN (u) 1#0)E = (M. FN (u) 1#0)€ = (M. FN (u)) 1#A € =
FN(t) 11 €.

. Assume that = Q(t,...,t,). ThenFN (t& 1#A) = FN(Q(t1E, ... t,£) T#A= FN(Q(t,€ 1#A

JETT Lt ETT)) = Q(FN (8.£1#8), FN (82617, . .., FN(,€17)). By using the induction hy-
pothesis fotFN (t1)¢ 1#4, and the induction hypothesis together with the fact thafitist property
implies the second farl17, ..., t2€1", we get

@(:FN(tlgT#A)v fN<t2£Tn>7 s 7fN<tn£Tn>>
QFN (#)ET#A, FN (82)E17, ..., FN (£,)€17)
Q(FN (81)&, FN (L)€, ..., FN (tn)€) T#A=
QFN (L), ..., FN(t,))E1#h=

FN(Qty,. .., t,))ET#0= FN ()€ T#A.

. Assume finally that = f(t1,...,t,) with f € F. ThenFN (t£1#A) = FN(f(t1, ..., tn)E1#A) =

FN(f(t617, .. ta€1") = frew(th, - - -, 1), wheret), = J\/Nﬁj(]—"/\/(tjﬂ”)).

By using the induction hypothesis together with the fact tha first property implies the second
for £, 17, Ny (FN (5617)) = Nor (FN (£5)€17) and, by Lemma 6.11r (FN'(1;)617) =
Nior (BN ())€17. L] = Ny e (FN (). THEN fus (B - 1) = few (HET", ., ETT) =
Jrew (&, .. H1E) 1#A= fnew(t’{, oot €T with ¢ = N, (FN(t5)). Hence

Frew(tf . EETA= EN(f(tr,... 1,))ET#A= FN(D)E T4, 0

The Neutralized Ordering

We are now ready to define and study two modified orderingsfanmain higher-order terms and one
for tail normal higher-order terms, by using the correspog@rderings on neutralized terms defined in
Section 5.

Definition 6.13 Given two tail expanded termssand¢, we define the neutralized orderings as follows:

s = tifandonly if N (s) = FN (1)

nhorpo horpo
s (nh;po)g t if and only if}?\/’(s)(Chng)g FN(t)

53

In order to make the proofs simnpler, we use the version obodering on normalized terms with-
out the computable closure. Using the version with the cdaiga closure would of course make the
ordering stronger, but the proofs much more involved.

We now need to show that,,;.,, is well-founded and monotonic, compatible and functional o
tail extanded terms of the same type, and tr(atnhorpo)g is included in>,,,0mp0, S-Stable andy-
polymorphic.

Lemma 6.14 >, IS Well-founded and compatible.

Proof: Compatibility trivially holds as for-,,,, and well-foudedness follows directly from well-
foundedness of ., o- O
Monotonicity needs some preparation:

Lemma 6.15 Let s andt be two tail expanded terms (in the neutralized signaturéhefsame type and
u[s] be then-expanded form of. Thens 4,0 t IMplieSN;(u[s]) = porpo N; (u[t]) for anyi.

Proof: We proceed by induction an
1. For the base cage= 0, the property holds by monotonicity 6f;,, ..

2. Assume that > 0 andu is not empty. Then[s] = \z : 0.u/[Q(s,)] for someu’ such thatr ¢
Var(s)andz ¢ Var(u'). ThenV;(u[s]) = N;_1(v/'[Q(s, L,)]) andN;(ult]) = N;—1(v'[Q(¢t, L,)]).
By monotonicity 0f-,,,p0, Q(S, L) =norpo Q(t, L,). Note thatQ(s, L,) and@(¢, L,) are tail ex-
panded terms and[Q(s, L,)] is then-expansion ofd(s, L,). Therefore, by induction hypothesis,
Nic1(W[Q(s, Lo)]) =horpo Ni—1 (w'[Q(2, Lo)]).

3. Assume now that > 0 andu is empty. We prove tha\/;(s) =m0 N;(t) @assuming that is both
n-expanded and tail expanded and tail expanded and have the same type.

If s, and therefore, has a non-functional type, thé¥i(s) = s >porpo t = Ni(2).

Otherwise,s andt have a typer — 7. Sinceu is empty,s = Az.s’ for somes’ such thatr €
Var(s'). The comparisomz.s’ .t can only be by cases 6, 10 or 12. But, sirtcis tail
expanded case 12 cannot apply and, since, by subterm prapéne type ordering 7?7, 0 — 7,
case 6 cannot apply either. Therefose; ., t holds by case 11, which implies that= Az : 0./
ands’ : T > porpot’ 1 T.

By stability of 1,0, We gets’{z — L} : 7 >=porpo t'{z — L,} : 7. Sinces is bothn-expanded
and tail expanded, so ¥{z — L,} : 7. And sincet is tail expanded, so i8{z — L1,} : 7. By
induction hypothesisV;_1(s'{z — Ls}) > horpo Ni—1(t'{x — L,}). Therefore

Ni(s) = Ni(Ax.s') = Nica(s'{z — Lo }) =horpo Nic1 (' {x — L,}) = Ni(Az.t') = N;(t). O

Lemma 6.16 >, IS Monotonic on tail expanded terms.

In the following, we will use without notice the property thgt| is tail-expanded whenever so are
s, u[s] andt, ands andt have the same type.

Proof: Assuming that and¢ are arbitrary tail expanded terms of the same type as wel[sasnd
ult], we prove thatFN (s) = porpo FN (t) implies FN (u[s]) =norpo FN (u[t]). We proceed by induction
on the size ofu and case analysis. if is empty, the result holds trivially. Otherwise, there avarf
cases:

54

1. Assume that[s] = f(wy,...,u[s],..., w,), whereu'[s] must be of the formv[w/[s]] for some tail
expanded ternw[s| such thaw[w]s]] is itsn-expansion. By induction hypothesis
FN (w]s]) = horpo FN (w]t]), and, by Lemma 6.15N; (v[FN (w][s])]) = norpo Ni(v[FN (w]t])]) for
anyi. By definition ofv, FN (v[w[s]]) = v[FN (w[s])] andFN (v[w[t]]) = v[FN (w]t])], hence
Ni(FN (W'[3])) > horpo Ni(FN (¢/[t])), @and by monotonicity of-1,.po,
FN(f(wy ..., [s], .. ywn) = frew(Wh, . ooy Ni(FN(W[s])), - ..y W) = horpo
Jnew(W, oo, Ni(FN(W[t)), ..., w)) = FN(f(wy, ..., u/[s],...,w,)).

2. Assumethat[s] = Q(u/[s], wy, ..., w,) whereu'[s] andu’[¢] are tail expanded terms. By induction
hypothesisFN (u/[s]) = norpo FN (/[t]). Now, by monotonicity of-,,,,,, we get
FN(Q(u[s], wy, . .., wy)) = Q(FN (u[s]), FN (w1), ..., FN (wn)) > horpo
Q(FN (W'[t]), FN (wy), ..., FN (w,)) = FN(Q(u'[t], wl,...,wn)).

3. Assume that[s] = Q(wy, ..., u'[s],...,w,) whereu'[s] must be of the form[w[s]] for some tail
expanded ternw[s| such that[w][s]] is its n-expansion. We proceed as in Case 1.

4. Assume that[s] = A\r.u/[s] whereu'[s] and u’[t] are tail expanded. We proceed again as in Case 1.
O

Lemma 6.17 >, IS functional on tail expanded terms.

Proof: SinceFN (Q(\z.u, v)) = Q(A\e. FN (u), FN (v)), FN (Q(Xv.u, v)) — 5 FN (u){z — FN(v)}.
By functionality of - ,,,p0, it follows that FN (Q(Az.u, v)) = horpe FN (w){z — FN (v)} = FN (u{z —
v} by Lemma 6.6. O

Lemma 6.18 (pnorpo) s IS B-Stable.

Proof. Lets andt be tail normal terms, and be a tail normal substitution. We need to show that
S (= nhorpo) 3 t IMplies (sy)] (=nnorpo)s (17)1-

Sinces (=nhorpo) s ts FN(5) (=nhorpo) s FN (t). By 3-stability of (=porpo)js »
FN($)FN(7) L (=norpo) g FN(£)FN (v)l By Lemma 6.9,(FN (s)F ()) I= FN((s7) 1) and
(FN@O)FN ()= FN ((twl) which implies thatFNV ((s7)1) (= norpo) s FN ((17)1). O

Lemma 6.19 (pnorpo) s IS polymorphic.

Proof: Assume that (-norpo)3 t- BY definition, s (=rnorpo) s t iMplies FN (s)(>=horpo) s FN (1).
By polymorphism of (> 4orp0) 5 » FN(8)E T#2 (horpo) s FN (1) 1#4 and hence, by Lemma 6.12,
FN (SE1#A) = FN($)ETAA (= norpo)} FN (£)€ 122 = FN (£ T#1), which impliesss 1#8 (= orpo)) £ 1%
and we are done. O

We conclude with our last unsuccessful example, showingatralization allows to orient the rule
that could not be oriented before:

7 Further improvements and alternatives

We first consider the framework for normalized higher-oneegvriting and orderings, before to move
to the higher-order recursive path ordering itself, in vilhdase the ideas presented in this section apply
to all previous defined orderings, although they may be meedulifor some versions than others. The
second and third subsections present an improvement, setiee that it gives some additional power
to the orderings. The following three are alternativest #ilow defining variations of the previous
orderings which can sometimes be useful for practical appbns. The very last subsection describes
a last example.

55

7.1 Higher-order rewriting

Our notion of higher-order rewriting is based on tail norrregms. One may wonder whether our
work could have been carried out for the other natural géimateon of Nipkow’s rewriting, in which
normalized terms are used instead, and the answer is goslthe only change to be made is to define
n-polymorphismasl’ Frs: o) = (I' Fxt:o)implies(I'¢ Fr s 1 o) = (T Fxt& 1" of) for
all type substitutions.

One may also wonder whether any of these two is the good odealano whether Nipkow’s notion
of rewriting (on terms of a data type) is the good one. We digtamn’t think so. The major role of
n-expansions is to normalize the number of arguments of agnigider term. Since functions symbols
have an arity in our framework, it is not necessary{expand terms headed by a function symbol. Giv-
ing an arity to the variables, as done by Klop in his seminakyweould allow us getting rid completely
of normal expansions. This new point of view is developped farthcoming paper.

7.2 Building in the permutative equality

So far, we have been very careful defining strict relationshe sense that their transitive closure is
irreflexive. We now move to non-strict ones, which will be tiveon of a strict part and an equality part.
For our purpose, aaquivalencen higher-order terms is a reflexive, symmetric and traresitlation
= containinga-conversion, and aompatiblerelation> is the union of astrict part - whose transitive

closure>* is a strict ordering, and an equivaleneesuch that- is compatible with~, that is,s’ ~ s >

t ~ t' impliess’ = ¢’ (actually,s’ =* ¢’ would suffice) for all terms;, ¢, s’,¢'. A transitive compatible
relations (the strict part of which being a strict orderimg¥alled aguasi-ordering and is arordering
when the equivalence coincides withconversion.

The transitive closure-* of the compatible relatioi happens to be the quasi-ordering having
as strict part and= as equivalence. Indeed, apart from transitivity, compatrelations enjoy most
properties of quasi-orderings which make them an appr@ptaol for proving termination of rewrite
systems. To this end, we say that a compatible relatios well-founded when so is its strict paft
Note that>- is a well-founded compatible relation i# is well-founded and compatible with.

We now define the multiset and lexicographic extensions laficms on a seb (resp. .S;) given as
pairs~~, > (resp.~;, »;) such that- (resp.~;)is an equivalence relation, and(resp.>;)is an arbitrary
relation. By abuse of notation, we will allow us to write(resp.>;) to denote such a pair. This notation
makes of course sense wher(resp.>;) is known to be a compatible relation.

- (81,4, 80) (21, ...,)" be the relation orb; x ... x S, defined as
(S1ye ey Su) (1, 22n) (b1, oo) B s7 22y B, 0 8y 22 s
Then,(>4,...,>=,)™ is an equivalence relation.

- (=1,...,=n)e: De the relation or%; x ... x S, defined as the union of the relatiofts,, ..., =,
Vstrict—tex @NA(~1, ..., ~,)", where .
(81, e Sn)(tl, ceey tn)strictflem(th C 7tn> iff §1 1 b1, ..., 8.1 1 tiq andSi R for some
i €[1.n];
Then(>1,...,). IS @ Well-founded compatible relation if so arg, ..., =,.

- ~.. be the relation on the set of multisets of element§ difined as
NU{z} ~pu N U{y}iff N ~,,, N andz ~ y;

Then,~,,..; is an equivalence relation.

56

- = D€ the relation on the set of multisets of element§ difined as
NUA{z} = N U{y1,. .., yn} iff N = N andVvi € [1.n] z > y;;

- =... be the relation on the set of multisets of element$ afefined as the union of the relations
istm’ctfmul and:mul;

Then,>,,..; is a well-founded compatible relation if sois

To show these results, it suffices to show that the above tipesapreserve compatible relations
(this follows immediately from the compatibility properof the given relations), and then, by [13],
the transitive closures of the resulting compatible refaiare well-founded, and therefore, so are the
compatible relations themselves. A direct proof of thisosekcpart would actually simplify a little bit
the standard arguments.

We now define the relatior ;.0 = > horpo U =horpo, Where

s = tiff o =7, 7and
horpo
1. s=f(3), t=yg(t), f = g € Mul ands (h: Yot €
orpo
2.s=f(3),t=yg(t), f=5g € Lex andg(h: Ymont
orpo

3.5= @(Sl, 82), t= @(tl,tg), and{Sl, 82} (=)mul {tl,tz}

horpo

4. s=X :av, t=M:pw, a=r fandv = w.

horpo

s > tiff o >, 7and
horpo

1. s = f(5) with f € F, andu > ¢ for someu € 35
horpo

2. s = f(3) with f € F andt = g(¢) with f >z g, andA
3. s= f(3)andt = g(t) with f =z g € Mul ands (=)t

horpo

4. s = f(3)andt = g(t) with f =x g € Lex ands (=)., t, andA

horpo

5.5 =Q(sy,82),ands; = torsy, =t
horpo horpo

6. s = M\ : auwithz & Var(t),andu > ¢

horpo
7. s = f(3) with f € F,t = Q(%) is a partial left-flattening of, and A
8. s= f(s)with f € F,t = X : co with x & Var(v) ands > v

horpo

9. s = Q(syq, $2), t = Q(1) is a partial left-flattening of and{s, so}(=)mut

horpo

10. s=X :au, t =Xv: v, a=7 fandu > v

horpo

57

11. s = Q(\r : a.u,v) anduf{z — v}hi t
orpo
where, as before
A=Yvet s = voru = vforsomeucs
horpo horpo
We can then mimic the study of the ordering done in Sectionit®, some adaptations:
Firstly, we need to show (by an easy induction|eh+ |u|) thats : o =pnepot @ T, S >horpo s @Nd
t =horpo t’ IMPlY 8" =p0rpe t'. This will imply that >, is a well-founded compatible relation for any
set of terms for which-,,,,, is itself well-founded.
Secondly, the properties of the ordering such as monotgrimi terms of equivalent types, stability,
polymorphism have now to be proved for beth,,,, and> ;. po-
Thirdly, the computability property 3.14(ii) need to be reyed to take=y,,,, into account, which is
routine. Everything else remains the same.
The changes are similar for the orderings defined in the ctheions.

7.3 Building in inductive types

This makes sense when using the closure mecanism only. timeligpes are sorts equipped with a
set of strictly positive typed free constructors, see [4]decise definitions. For an example, the set of
natural numbers in Peano notation is a strictly positivelatre types:

Inductive type Nat = 0 @ S(Nat)

When the syntax allows to declare explicitely strictly ps inductive types, it is possible to de-
fine the computability predicates so as to ensure a hew cability property for terms headed by a
constructor symbol:

C'(t) is computable iff all terms i are computable.

This property can now be built in the definition of the closung adding the rule

8. arguments of constructor headed termsCl&t) € CC(t, V) for some constructor symbadl; then
u € CC(t,V)Vu €T,

This rule allows to simplify the treatment of some examplesspnted in this paper.
7.4 Building in the type ordering

In all definitions of the ordering-,,,,, the type ordering has only be used to restrict the pair of
terms that could be compared. However, the type orderingilsambe used inside the ordering like the
precedence. That is, we can add the following case to theitilafin

12. s = f(3) with f € F andt = g(t) with 0 >7, 7, andA

Since we always have >, 7 there is no need to add a conditien=7, 7 in any other case.

The resulting ordering is more powerful than the orderinthaut the computable closure but incom-
parable with the ordering with the computable closure. Hason is that the inclusion of this new case
requires to modify the induction argument of lemma 4.8 tdude the type of the term as first com-
ponent in the lexicographic comparison. Therefore, in tBkndion of the computable closure we can
include a new case

58

10. type-ordering: ley : p; X ... x p, — 7 such thatr >z, 7, ands : p € CC(t : o,V); then
g(5):TeCC(t:0,V);

but we have to restrict the precedence case in the following w

2. precedence: let: p; X ... x p, — 7suchthav =z, 7andf > g, ands : p € CC(t : 0,V);
theng(s) : 7 € CC(t : 0, V);

Itis easy to see that the new computable closure is incorbfganath the previous one, which implies
that the obtained ordering is incomparable with the previone.

7.5 Building in the subterm type decreasing relation

Since the ordering-,.», defined in Section 3 is compatible with the ordering,,_, it is natural to
try building the latter in the former. The proposal below & an extension of-,,,,, however, since it
may fail orienting some pairs oriented by,,,,.. But we think it is worthwhile a study that we have not
done in enough detail so as to make a well-foundedness clendo it for the ordering of Section 3
first, before to comment on the impact on the closure defmitio

Let Subt., (t) = {s |t >~,, s}if tis neutral, andbubt.,_ (t) = () otherwise. Let now

A=Vv € Subt., (t) s = voru = vforsomeu € Subt., (s)

horpo horpo

We define now

s = tiff o >z, 7and
horpo

1. s= f(5) with f € F, andu = ¢ for someu € Subt.,_(s).
horpo

2. s = f(3) with f € F andt = ¢g(¢) with f >» g, andA
3. s = f(3) andt = g(t) with f =z g € Mul ands) (>), t andA

horpo

4. s = f(s)andt = g(t) with f =x g € Lex ands (>)., t, andA

horpo

5.5 =Q(sy,82),ands; = torsy = tandA
horpo horpo

6. s = A : a.uwithz & Var(t),andu > t

horpo
7. s = f(s)with f € F,t = Q(t) is a partial left-flattening of, and A
8.s= f(3)with f € F,t = \r: co with x & Var(v) ands = v

horpo

9. s = Q(sy, $2), t = Q(t) is a partial left-flattening of, {s1, s2}(mut @and A

h;:éo)
10. s=X :au, t =Xv: fv,a=7 fandu > v

horpo

11. s = Q(\r : au,v),u{r — v} = tandA

horpo

59

The proof of this variant needs a bit more work. Indeed, thematability definition of the arrow type
terms should now be changed to:

If s:c 0 =7 — pthens € [o] if Q(s,?) € [p] for everyt suchthat € [r] for everyv € Subt.,_(¢).

For this variant, any term smaller than a computable terdbeicomputable, and therefore the closure
of a term will be closed by taking subterms of smaller typeisTHas a clear practical impact, since the
ability of taking subterms, in particular for the startirggr, is crucial for many proofs.

7.6 EXAMPLE

Section 5 relies on the property that terms in normal formusthaot need any)-expansions when
instantiated by a type substitution. To ensure that prgped required that output types of both function
symbols and variables be different from a type variable. leraative allows to cope with type variables
as output types, provided they are never instantiated lmyatypes. This extension is straightfoward,
but useful. It allows in particuler to deal with polymorphecursors, as the one given in example 5.

On the other hand, there are situations where we need motilitgxHere comes such an example.

Example 15 (Encoding Natural Deduction; taken from [9]) Let
S={o:% c:xxx—x}, S ={o7pl
F={appor: (0 = 7) X0 —=7T; absy,: (0 = 7) = (0 = 7); Uy, 0 xT—c(o,7);
I clo,7) = oy U}, i c(o,7) = 7; 3 cox 0 —clo,0); 3, :¢(0,0) x (0= 0 —T) =T}
X={X:o;Y:1;Z:0,T:¢(0,p), F:o—=1;G:0—0—T1, H:0—p— (0 —71),
I:0—p—cloT), J:0—p—cloo)}
The rules are the following:

apper(absy - (F), X) — Q(F,X) (1)
Iy (I,,(X,Y)) — X (2)

. (- (X,Y)) — Y (3)
3,.35(2,X),G) — Q(G,Z,X) (4)
appo,r (3,5 (T, H), X) — 3, (T, Az 0y : p.appe,(Q(H, z,y), X)) (5)
0 (3, on(T D) — 3, (T Ax:0y: plly (Q(I,2,y))) (6)

05 (3 eon(T D) — 3, (T Az o0y pll; (Q(1,2,y))) (7)
3;7(3;0(070) (1,J),G) — EI;T(T, Ax:oy: pEI;T(@(J,x, v),G)) (8)

Rules 1, 2, 3 and 4 can be easily proved by applying the deimdf the ordering. Rules 6 and 7,
follow easily as well, using first case 1 (i) and considerihg..-) >» {3, 115 ., I} } for the rest.
Rule 5 is requires more work, as sketched below.

First, we introduce a family of ternary symbals,_., , : c(o,p) x 0 = p — (0 = 7) x 0 — 7T pa-
rameterized by the types 7, p, together with the precedences;, .. > 3,,—r0 >7 {3pr, aPPs- }-

We then construct the “middle termi¥(Xy.3, , ., (7, H,y), X)) and show that

appUﬂ'(EI;o‘—w—(T’H)?X)(-)g @()\y'EIP,U—VF,U(TaHay)aX)

chorpo
and
Q(Ny.3poro(T, H,y), X)(ch;m)z 3, (T, Xz 20y : p.apps-(Q(H, z,y), X))

therefore proving that the rule is in the transitive closti €~ c1o,40) -

60

To show the first comparison we apply case 7 and then show that

Foor(LH)(= Vs W Fpomro(T5 H, y)
using case 1 (iii).
For the second comparison we apply case 11, and show that
Jporo (L, H’chh:»po)g 3, (T, Az 0y p.apps-(Q(H, z,y), X))
using case 2 and showing that : oy : p.app,.(Q(H,z,y), X) is in the computable closure of
pooro(T, H, X).
Finally, let us mention that Rule 8 cannot be proved ternmggby our ordering. O

8 Conclusion

We have defined a powerful mecanism for defining orderingsatipgl on higher-order terms. Based
on the notion of the computable closure of a term, we haveesatad defining a conservative extension
of Dershowitz’s recursive path ordering, which is indeedoéymorphic reduction ordering including
(G-reductions. To our knowledge, this is the first such ordgever.

Another hidden achievement is a new, simple, easy to tealtHaumdedness proof for Dershowitz’s
recursive path ordering. This proof can be easily extrafrtaa the strong normalization proof given
here: it actually reduces to a simplified version of the psaaffLemma 3.15, spelled out in full detalil
in [7]. A similar proof also appears in [17]. Of course, thized not prove the stronger (but less usefull)
property that the recursive path ordering is a well-order.

The idea of the computable closure originates from [3], whewas used to define a syntactic class
of higher-order rewrite rules that are compatible with betductions and with recursors for arbitrary
positive inductive types. The language there is indeeckritthan the one considered here, since it is the
calculus of inductive constructions generated by a monphiosignature. The usefulness of the notion
of closure in this different context shows the strength ef¢bncept.

Our definition of the higher-order recursive path orderiag be developped now in several different
directions, besides thoses mentionned in Section 7, thaiseess in turn.

First of all, we are not satisfied with our treatment of aldtoms based on neutralization. This
technique is a little bit complicated and technical, and pmmises in some sense the elegance of the
ordering and computational closure definitions. We wougdead like to incorporate a better handling
of abstractions directly in the recursive definition of thidering.

The idea of the recursive path ordering is to prove the strwrgnalization property of the rewrite
relation generated by a pdir— r by checking the rewrite relation generated by a set of gairs »/
obtained from — r by taking various subterms éffor /") and subterms of for »’. The computation
will of course fail if the new relation is not strongly nornmhg. A possible patch is to improve the
ordering by combining it with another ordering based, erginterpretations. This has been done for the
first-order case [23, 34], and for the higher-order case #§3&. There is still room for improvement,
though, since the interpretations used there are esdefitist-order, and using interpretations “a la Van
de Pol” would give a quite stronger ordering.

Assume that the two termsandv are comparable, having for example the same type. Thenwthe t
terms)\z : 0. Xy : 7.u andXy : 7.\x : o.v are however incomparable for type reason if the typesdr
are not equivalent in the type ordering. Even more; 0.)y : 7.u andy : 7.\x : o.v are not equivalent

61

although they denote semantically identical functions.oAugon to this problem would be to build Di
Cosmo’s type isomorphism in the type ordering. This doesaetn so easy, however, since our current
conditions on the type ordering would be violated.

Associative commutative operators are common in praciice therefore, it is important to adapt our
ordering to this case. This will be one of the directions watta pursue.

Truly important is the development of an ordering able to pare terms of the calculus of construc-
tions. Such an ordering can be obtained by replacing caserldbitractions by a clause ensuring
monotonicity of dependent products. This is done in [38]starting from the original version of the
higher-order recursive path ordering introduced in [22ftdiding the uniform presentation of the or-
dering on terms and types will yield a much stronger orderifigst, this would improve the ordering
on object-level terms of a dependent type, since such tefrdgferent but convertible types such as
list(1 + 1) andlist(2) cannot be compared in [38]. Besides, this ordering shouldhbe to compare
arbitrary terms of the calculus, not only object-level terrout type and kind level ones as well, hence
generalizing what is called strong elimination in the chlswof inductive constructions. This is our con-
jecture sketched in Section 3.6 that such an ordering shmutdrminating. The fact that this conjecture
generalizes strong elimination hints at its difficulty.

Using the computability technique instead of the Kruskabtiem is intriguing, and raises the question
whether it is possible to exhibit a suitable extension ofdkal’s theorem that would allow proving that
the higher-order recursive path ordering is a well-ordehefset of higher-order terms ? Here, we must
confess that we actually failed in our initial quest to findustable extension of Kruskal theorem on
higher-order terms. In retrospect, the reason is that we Veeking for too strong a statement. It may
be that a version of Kruskal's theorem holds, and would inquly result, based on an adequate notion
of subterm. If this is the case, this notion of subterm shgoltiehow be related with the computability
properties: not all subterms of a computable term are thimeseomputable. Related to this problem
is the question of the ordinality of our ordering (or of a taatansion of it).

Acknowledgments: we are grateful to Femke Van Ramsdoonk for a couple of useférks.
References

[1] Henk BarendregtHandbook of Theoretical Computer Scieneelume B, chapter Functional Pro-
gramming and Lambda Calculus, pages 321-364. North-HhIE®90. J. van Leeuwen ed.

[2] Henk BarendregtHandbook of Logic in Computer Scienohapter Typed lambda calculi. Oxford
Univ. Press, 1993. eds. Abramsky et al.

[3] F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calcudlagebraic Constructions. In Narendran
and Rusinowitch [29]. pp.

[4] F. Blanqui, J.-P. Jouannaud, and M. Okada. InductiveaOgpes.Theoretical Computer Science
277:. 2001.

[5] F. Blanqui. Inductive Types Revisited. submitted.

[6] Alain Colmerauer. Equations and Inequations on Finie kfinite Trees. In Proc. Fifth Generation
Computer Systems, Tokyo, Japan, pp 85-99. North Hollarg¥}.19

[7] Hubert Comon and Jean-Pierre Jouannaud. Les termeseduigarordre. Cours du DEA “Pro-
grammation”. Available from the web at http://www.lix.yoéchnique.fif]jouannaud/biblio.html.

62

[8] T. Coquand. Inductive definitions and type theory. Leetnotes. Int. summer school on automated
deduction, Chambéry, July 1994.

[9] J. Van de Pol. Termination of Higher-Order Rewrite SystemsPhD thesis, Department of
Philosophy—Utrecht University, 1996.

[10] J. Van de Pol and H. Schwichtenberg. Strict functiowaltermination proofs. IMTyped Lambda
Calculi and Applications, Edinburgtspringer-Verlag, 1995.

[11] J. Van de Pol. Termination proofs for higher-order négvsystems. IrHigher-Order Algebra,
Logic and Term Rewritingl993. LNCS 816, pp 305-325, Springer-Verlag, 1994.

[12] Nachum Dershowitz. Orderings for term rewriting syste Theoretical Computer Science
17(3):279-301, March 1982.

[13] Nachum Dershowitz and Jean-Pierre Jouannaud. Resygms. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Scieneelume B, pages 243—-309. North-Holland, 1990.

[14] G. Dowek, T. Hardin, and C. Kirchner. Theorem provingdutm, 1998. Rapport de recherche
INRIA 3400.

[15] Maribel Fernandez and Jean-Pierre Jouannaud. Mpotedmination of term rewriting systems
revisited. In Egidio Astesiano, Gianni Reggio, and AndrEajlecki, editorsRecent Trends in
Data Type Specificatigh. NCS 906:255-272. Springer-Verlag, 1995. Refereed seleof papers
presented at ADT'94.

[16] J.-Y. Girard, Y. Lafont, and P. TayloProofs and TypesCambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1989.

[17] Jean Goubault. Well founded recursive relatio@emputer Science Logic Workshdtaris, 2001.
In LNCS 2142:484-497, Springer-Verlag, 2002.

[18] Gérard Huet, Gilles Kahn and Christine Paulin-MolgtinThe Coq Proof Assistant. A Tutorial.
Version 7.3. INRIA Rocquencourt and ENS Lyon.

[19] Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstiatet type systemsTheoretical Computer
Sciencel73(2):349-391, February 1997.

[20] Jean-Pierre Jouannaud and Mitsuhiro Okada. HighdeOAlgebraic Specifications. In , editor,
Annual IEEE Symposium on Logic in Computer ScieAcesterdam, The Netherlands, 1991. IEEE
Comp. Soc. Press.

[21] Jean-Pierre Jouannaud and Albert Rubio. Rewrite orgsrfor higher-order terms in-long
G-normal form and the recursive path orderingheoretical Computer Scienc208(1-2):3-31,
November 1998.

[22] Jean-Pierre Jouannaud and Albert Rubio. The highderaecursive path ordering. In Giuseppe
Longo, editor,Fourteenth Annual IEEE Symposium on Logic in Computer $ejéirento, Italy,
July 1999. IEEE Comp. Soc. Press.

[23] Sam Kamin and Jean-Jacques Levy. Two generalizatibtiteeaecursive path ordering. Unpub-
lished notes, 1980.

63

[24] Jan Wilhelm Klop. Combinatory Reduction Relations. thkEmatical Centre Tracts 127. Mathe-
matisch Centrum, Amsterdam, 1980.

[25] Jan Wilhelm Klop. Term Rewriting Systems. In S. AbramdR.M. Gabbay, and T.S.E. Maibaum,
editors,Handbook of Logic in Computer Scieneelume 2:2-116. Oxford University Press, 1992.

[26] C. Loria-Saenz and J. Steinbach. Termination of doedb (rewrite and\-calculus) systems. In
Proc. 3rd Int. Workshop on Conditional Term Rewriting Syste Ponta-Mousson, LNCS 656
volume 656 ofLecture Notes in Computer Scienpages 143—-147. Springer-Verlag, 1992.

[27] Richard Mayr and Tobias Nipkow. Higher-order rewrijstems and their confluenc&heoretical
Computer Sciencd 92(1):3-29, February 1998.

[28] Dale Miller. Lambda PROLOG. environ 90.

[29] Paliath Narendran and Michael Rusinowitch, editdr@th International Conference on Rewriting
Techniques and Applicationgrento, Italy, July 1999. LNCS 1631, Springer-Verlag.

[30] Tobias Nipkow. Higher-order critical pairs. ¥th IEEE Symp. on Logic in Computer Science
pages 342—-349. IEEE Computer Society Press, 1991.

[31] Mitsuhiro Okada and Gaisi Takeuti. On the theory of quadinal diagrams. In S. G. Simpson,
editor,Logic and CombinatoricsAmerican Mathematical Society, 1986.

[32] Lawrence C. Paulson. Isabelle: the next 700 theoremepso In P. Odifreddi, editot,ogic and
Computer Sciencécademic Press, 1990.

[33] Albert Rubio. A fully syntactic AC-RPO. In Narendran@Rusinowitch [29].

[34] Cristina Borralleras, Maria Ferreira and Albert Rubi€omplete monotonic semantic path or-
derings. InConference on automated deductidhttsburg, 2000. LNAI 1831:346-364, Springer-
Verlag.

[35] Cristina Borralleras and Albert Rubio. A monotonicgher-order semantic path ordering. submit-
ted, 2001.

[36] Hans Zantema. Termination. Trerm Rewriting SystemM. Bezem, J.W. Kop and R. de Vrijer
eds, Cambridge Tracts in Theoretical Computer Science &mj@idge University Press, 2003.

[37] Femke Van Raamsdonk. Confluence and Normalization fghét-Order Rewrite Systems. phd
thesis, Vrije Universiteit, Amsterdam, The Netherland989

[38] Daria Walukiewicz-Chrzaszcz. Termination of rewrgiin the Calculus of Constructions. Rro-
ceedings of the Workshop on Logical Frameworks and Metgtlages, Santa Barbara, California
2000.

64

