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Abstract

This paper extends the termination proof techniques based on reduction orderings to a higher-order
setting, by defining a family of recursive path orderings forterms of a typed lambda-calculus generated
by a signature of polymorphic higher-order function symbols. These relations can be generated from
two given well-founded orderings, on the function symbols and on the type constructors. The obtained
orderings on terms are well-founded, includeβ-reductions, are monotonic for terms of equal type, and
stable under substitution. They can be used to prove the strong normalization property of the various
existing kinds of higher-order calculi in which constants can be defined by higher-order rewrite rules,
regardless of whether these calculi use first-order or higher-order pattern matching. For example, the
polymorphic version of G̈odel’s recursor for the natural numbers is easily oriented.And indeed, our
ordering is polymorphic, in the sense that a single comparison allows to prove the termination property
of all monomorphic instances of a polymorphic rewrite rule.Many non-trivial examples are given which
examplify the expressive power of these orderings.

This paper is an extended and improved version of [22]. Polymorphic algebras have been made
more expressive than in our previous framework. The notionsof polymorphic higher-order ordering and
polymorphic normalized higher-order ordering are new. Theordering itself has been made much more
powerful by replacing the congruence on types used there by an ordering on types. This yields a very
elegant presentation of the whole machinery by integratingboth orderings into a single one operating
on terms and types as well. This presentation should in turn be considered as the key missing stone
on the way towards the definition of a recursive path orderingfor dependent type calculi. Finally, the
normalized higher-order recursive path ordering is new as well.

∗This work was partly supported by the RNRT project CALIFE andthe CICYT project HEMOSS, ref. TIC98-0949-C02-01.



1 Introduction

Rewrite rules are increasingly used in programming languages and logical systems, with two main
goals: defining functions by pattern matching; describing rule-based decision procedures. ML, Alf [8]
and Isabelle [32] examplify the first use. A future version ofCoq [18] will examplify the second use [14].
In Isabelle, rules operate on terms inβ-normal, η-expanded form. In ML and Alf, they operate on
arbitrary terms. In a future version of Coq, both kinds should coexist.

The use of rules in logical systems is subjected to three mainmeta-theoretic properties : subject
reduction, local confluence, and strong normalization. Thefirst two are usually easy. The last one is
difficult, requiring the use of sophisticated proof techniques based, for example, on Tait and Girard’s
computability predicate technique. Our ambition is to remedy to this situation by developping for the
higher-order case the kind of semi-automated termination proof techniques that are available for the
first-order case, of which the most popular one is the recursive path ordering [12].

Our contribution to this program is a reduction ordering fortyped higher-order terms following a
typing discipline including polymorphic sort constructors, which conservatively extendsβ-reductions
for higher-order terms on the one hand, and on the other hand Dershowitz’s recursive path ordering
for first-order unisorted terms. In the latter, the precedence rule allows to decrease from the terms =
f(s1, . . . , sn) to the termg(t1, . . . , tn), provided that (i)f is bigger thang in the given precedence
on function symbols, and (ii)s is bigger than everyti. For typing reasons, in our ordering the latter
condition becomes: (ii) for everyti, eithers is bigger thanti or somesj is bigger than or equal to
ti. Indeed, we can instead allowti to be obtained from the subterms ofs by computability preserving
operations. Here, computability refers to Tait and Girard’s strong normalization proof technique which
we have used to show that our ordering is well-founded. And indeed the restriction of our proof to the
first-order sublanguage yields a new, simple proof of well-foundedness of Dershowitz’s recursive path
ordering. This proof does not use Kruskal’s tree theorem, and of course, does not show that the recursive
path ordering is a well-ordering. It appears therefore thatproving the property of well-foundedness of
the recursive path ordering is quite easy -to a point that onewonders why this proof was not discovered
before- while proving the slightly stronger propertry of well-orderedness becomes quite difficult.

In a preliminary version of this work presented at the Federated Logic Conference in Trento, our order-
ing could only compare terms of equal types (after identifying sorts such as Nat or List). In the present
version, our ordering is capable of ordering terms ofdecreasing types, the ordering on types being sim-
ply a slightly weakened form of Dershowitz’s recursive pathordering. Several other improvements have
been made, which allow to prove a great variety of practical examples. To hint at the strength of our
ordering, let us mention that the polymorphic version of Gödel’s recursor for the natural numbers is eas-
ily oriented. And indeed, our ordering can prove at once the termination property of all monomorphic
instances of a polymorphic rewrite rule. Many other examples are given which examplify the expressive
power of the ordering.

In the litterature, one can find several attempts at designing methods for proving strong normalization
of higher-order rewrite rules based on ordering comparisons. These orderings are either quite weak [26,
21], or need an important user interaction [10]. Besides, they operate on terms inη-long β-normal
form, hence apply only to the higher-order rewriting “à la Nipkow” [27], based on higher-order pattern
matching moduloβη. To our knowledge, our ordering is the first to operate on arbitrary higher-order
terms, therefore applying to the other kind of rewriting, based on plain pattern matching. And indeed we
want to stress several important features of our approach. Firstly, it can be seen as a way to lift an ordinal
notation operating on a first-order language (here, the set of labelled trees ordered by the recursive path
ordering) to an ordinal notation of higher type operating ona set of well-typedλ-expressions built over
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the first-order language. Secondly, the analysis of our ordering, based on Tait and Girard’s computability
predicate proof technique, leads to hiding this technique away, by allowing one to carry out future meta-
theoretical investigations based on ordering comparisonsrather than by a direct use of the computability
predicate technique. Thirdly, a very elegant presentationof the whole ordering machinery obtained
by integrating both orderings on terms and types into a single one operating on both kinds shows that
this presentation can in turn be the basis for generalizing the ordering to dependent type calculi. Last
but not least, a very simple modification of the ordering can be used to prove strong normalization of
higher-order rewrite rules operating on terms inη-long β-normal form, and this is indeed true of any
higher-order rewrite ordering containingβ-reductions.

The framework we use is described in Section 2. This framework includes several novel aspects,
among which two important notions of polymorphic higher-order rewriting and of polymorphic higher-
order rewrite orderings (both allowing on demand for higher-order pattern matching). The basic version
of our ordering is defined and studied in Section 3, where several examples are also given. The notion of
computable closure used to boost the expressivity of the ordering is introduced and studied in Section 4.
Section 6 introduces another enhencement, whose role is to improve the treatment of bound variables.
The latter ordering is then adapted to rewriting on terms inη-long β-normal form in Section 5. We
discuss several other improvements of our method in Section7. Finally, further potential extensions of
our work as well as some related work are discussed in Section8. All examples which can be found
in [30, 27, 10] are solved with our method but one which resisted all attacks.

The reader is expected to be familiar with the basics of term rewriting systems [13, 24] and typed
lambda calculi [1, 2].

2 Polymorphic Higher-Order Algebras

This section describes our framework of polymorphic higher-order algebras, together with higher-
order rewriting and rewrite orderings. Polymorphic higher-order algebras enjoy the property that typable
terms have a unique type in a given environment, which eases the following developments. Several
definitions of (polymorphic) higher-order rewriting are considered, and the associated (polymorphic)
rewrite orderings are then introduced. Types will therefore play a central role in this paper, but the
reader should be aware that the paper is by no means about polymorphic typing : it is about polymorphic
higher-order orderings.

2.1 Types

Given a setS of sort symbolsof a fixed arity, denoted bys : ∗n → ∗, and a setS∀ of type variables,
the setTS∀ of polymorphic typesis generated from these sets by the constructor→ for functional types:

TS∀ := s(T n
S∀) | α | (TS∀ → TS∀)

for s : ∗n → ∗ ∈ S andα ∈ S∀

We denote byVar(σ) the set of type variables of the typeσ ∈ TS∀ , and byTS the set ofmonomorphic
or groundtypes, whose set of type variables is empty.

Types arefunctionalwhen they are headed by the→ symbol, anddata typeswhen they are headed by
a sort symbol. As usual,→ associates to the right. We will often explicit the functional structure of an
arbitrary typeτ by writing it in thecanonical formσ1 → . . .→ σn → σ, with n ≥ 0, whereσ is a data

type or a type variable calledcanonical output typeof τ denoted by
→0
τ , andn is thefunctional level(or

arity) of τ denoted byar(τ).

3



Following [3], we could have also considered inductive types in our framework, without having to
face new difficulties. We choosed not to do so in the present framework, which, we think, is already
quite powerful and complex. We will come back on this question in Section 7.

A type substitutionis a mapping fromS∀ to TS∀ extended to an endomorphism ofTS∀. Type variable
renamingsare bijective type substitutions. We writeσξ for the application of the type substitutionξ to
the typeσ. We denote byDom(σ) = {α ∈ S∀ | ασ 6= α} the domain ofσ ∈ TS∀, by σ|V its restriction
to the domainDom(σ) ∩ V, byRan(σ) =

⋃

α∈Dom(σ) Var(ασ) its range, and by≃ the equivalence of
types under type renaming. By a renaming of the typeσ apart fromV ⊂ X , we mean a typeσξ where
ξ is a type renaming such thatDom(ξ) = Ran(σ) andRan(ξ) ∩ V = ∅.

In the following, we useα, β for type variables,σ, τ, ρ, θ for arbitrary types, andξ, ζ to denote type
substitutions.

2.2 Signatures

We are given a set of function symbols denoted by the lettersf, g, h, which are meant to be algebraic
operators equipped with a fixed numbern of arguments (called thearity) of respective typesσ1 ∈
TS∀, . . . , σn ∈ TS∀, andoutput typeσ ∈ TS∀ such thatVar(σ) ⊆

⋃

i Var(σi). Let

F =
⊎

σ1,...,σn,σ

Fσ1×...×σn→σ

be the set of all function symbols. The membership of a given function symbolf to a setFσ1×...×σn→σ

is called atype declarationand writtenf : σ1 × . . .× σn → σ. In casen = 0, the declaration becomes
f :→ σ or simplyf : σ whenσ is not a functional type. Type declarations are not types, although they
are used for typing purposes. Note however thatσ1 → . . .→ σn → σ is a type iff : σ1×. . .×σn → σ is
a type declaration. A type declaration isfirst-order if it uses only sorts, and higher-order otherwise. It is
polymorphicif it uses some polymorphic type, otherwise, it ismonomorphic. The intended meaning of a
polymorphic type declaration is the set of all its type instantiations, that is, polymorphic type declarations
are implicitely universally quantified, or, equivalently,can be renamed by an arbitrary type renaming.
F is called afirst-order signatureif all its type declarations are first-order, and a higher-order signature

otherwise. It is apolymorphic signatureif some type declaration is polymorphic, and a monomorphic
signature otherwise. Type instantiation does not change the arity of a function symbol. Polymorphic
signatures capture infinitely many monomorphic (and polymorphic) ones via type instantiation.

A function symbol having several type declarations in a given signature is said to beoverloaded.
Overloading is quite useful, but it complicates typing unless the following property is satisfied :

Definition 2.1 A (possibly polymorphic) signatureF is regular if for any two type declarationsf :
σ1 → . . .→ σn → σ andf : σ′

1 → . . .→ σ′
n → σ′ where

⋃

i Var(σi) ∩
⋃

i Var(σ′
i) = ∅, the equational

problem(
i=n
∧

i=1

σi = σ′
i) ∧ σ 6= σ′ has no solution.

Regular signatures are important because they provide deterministic typing, as we will see in Sec-
tion 2.4. A non-overloaded signature is of course regular. Note that regularity is decidable, since the
existence of a ground solution (for the type variables) to the above formula is decidable [6].

It is worth noting that regularity implies the condition that in a given type declaration, all type vari-
ables occuring in an output type already occur in one of the input types. As a consequence, polymorphic
constants are not allowed. Although regularity should be relaxed for constants in order to ease specifica-
tions, as we will see later in several examples, we will assume it throughout the paper, unless explicitely
mentionned otherwise.
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2.3 Terms

The setT (F ,X ) of raw algebraicλ-termsis generated from the signatureF and a denumerable set
X of variables according to the grammar rules:

T := X | (λX : TS∀ .T ) | @(T , T ) | F(T , . . . , T ).

Terms of the formλx : σ.u are calledabstractions, while the other terms are said to beneutral. @(u, v)
denotes the application ofu to v. We may sometimes omit the typeσ in λx : σ.u as well as the
application operator, writingu(v) for @(u, v), in particular whenu is a higher-order variable (which do
not have arity in the present framework). As a matter of convenience, we may writeu(v1, . . . , vn), or
@(u, v1, . . . , vn) for u(v1) . . . (vn), assumingn ≥ 1. The term@(u, v) is called a (partial)left-flattening
of s = u(v1) . . . (vn), u being possibly an application itself (hence the word “partial”).

Terms are identified with finite labeled trees by consideringλx : σ. , for each variablex and typeσ,
as a unary function symbol taking a termu as argument to construct the termλx : σ.u. We denote the
set of free variables of the termt by Var(t), its set of bound variables byBVar(t), its size (the number
of symbols occurring int) by |t|.

Positionsare strings of positive integers.Λ and· denote respectively the empty string (root position)
and the concatenation of strings. We usePos(t) for the set of positions int. Thesubtermof t at position
p is denoted byt|p, and we writet � t|p for the subterm relationship. The result of replacingt|p at
positionp in t by u is denoted byt[u]p. We sometimes uset[x : σ]p for a term with a (unique) hole of
typeσ at positionp, also called a context.

The notations will be ambiguously used to denote a list, or a multiset, or a set of termss1, . . . , sn.

2.4 Typing Rules

Typing rules restrict the set of terms by constraining them to follow a precise discipline.

Definition 2.2 An environmentΓ is a finite set of pairs written as{x1 : σ1, . . . , xn : σn}, wherexi is a
variable,σi is a type, andxi 6= xj for i 6= j. Var(Γ) = {x1, . . . , xn} is the set of variables ofΓ. The
size|Γ| of the environmentΓ is the sum of the sizes of its constituants. Given two environmentsΓ and
Γ′, their compositionis the environmentΓ · Γ′ = Γ′ ∪ {x : σ ∈ Γ | x 6∈ Var(Γ′)}. Two environmentsΓ
andΓ′ arecompatibleif Γ · Γ′ = Γ ∪ Γ′.

Our typing judgements are written asΓ ⊢F s : σ, and read “s has typeσ in the environmentΓ”. They
are displayed at Figure 1.

A term s has typeσ in the environmentΓ if the judgementΓ ⊢F s : σ is provable in our inference
system. Given an environmentΓ, a terms is typableif there exists a typeσ such thatΓ ⊢F s : σ.

An example of signature together with typable terms is givenat example 2.
We now prove the main properties of our type system which are instrumental, in our view, to develop

a theory of higher-order rewriting.

Lemma 2.3 AssumeF is regular. Then, the problem, given an environmentΓ and a terms, wether there
exists a typeσ such thatΓ ⊢ F s : σ is decidable in linear time in the sum of the sizes ofΓ and s.
Moreover,σ is unique whenever it exists.

Proof: We prove unicity and linear time complexity togetherby induction on the size of(Γ, s).
If s is a variable, both properties follow from set membership.

5



Variables:
x : σ ∈ Γ

Γ ⊢F x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

ξ some type substitution of domain⊆
⋃

i
Var(σi)

Γ ⊢F t1 : σ1ξ . . . Γ ⊢F tn : σnξ

Γ ⊢F f(t1, . . . , tn) : σξ

Abstraction:
Γ · {x : σ} ⊢F t : τ

Γ ⊢F (λx : σ.t) : σ → τ

Application:
Γ ⊢F s : σ → τ Γ ⊢F t : σ

Γ ⊢F @(s, t) : τ

Figure 1. The type system for polymorphic higher-order alge bras

If s = @(u, v), we apply the induction hypothesis to both(Γ, u) and(Γ, v) and check the inference
step in constant time, yielding unicity and linear time complexity.

If s = λx : τ.u, we reason by induction on(Γ · {x : τ}, u), since|Γ|+ |λx : τ.u| > |Γ · {x : τ}|+ |u|.
Both properties follow directly.

If s = f(s1, . . . , sn), we first apply the induction hypothesis to(Γ, s1), . . . , (Γ, sn). By regularity
assumption, for each declarationf : σ1 × . . . × σn → σ ∈ F , if any, such that the types obtained for
s1, . . . , sn match the typesσ1, . . . , σn, the output type obtained fors in case of success is the same. The
inference step is again done in constant time, therefore proving our second claim. 2

The existence of a unique type for a term in a given environment will be important in the sequel.
Polymorphic constants violate our regularity assumption,but unique typing is nevertheless maintained
for them by our typing rules (the type variables occuring in the type declaration of a polymorphic con-
stanta cannot be renamed, though, unlessa occurs as a subterm in a bigger term). This will be used in
section 6, where possibly polymorphic constants are introduced to replace some bound variables. And
indeed, we could have given a more powerful type system in twodifferent ways in order to cope with
function declarations for which the output type has extra variables. In both cases, the ruleFunctions
is modified. In the first case, by allowing forα-conversion of these variables, yielding type uniqueness
up toα-conversion. In the second case, by replacing pattern matching (for computingξ) by unification.
Type uniqueness would be lost, but this type system would instead enjoy the principal typing property,
which would be enough for our purpose.

Type substitutions apply to types in terms:xξ = x, (λx : σ.s)ξ = λx : σξ.sξ, (u, v)ξ = (uξ, vξ), and
f(u)ξ = f(uξ). A whole judgement can indeed be instantiated:

Lemma 2.4 Assume that the signatureF is regular. Then,Γ ⊢F s : σ impliesΓξ ⊢F sξ : σξ for anyξ.

Proof: By induction on the type derivation ofs and by case upon the last rule applied.
If s is a variable or an application, the result is clear. Ifs = λx : τ.u, then, the last rule applied in the

typing derivation isAbstraction, and thereforeσ = τ → ρ andΓ · {x : τ} ⊢F u : ρ. By induction
hypothesis,Γξ · {x : τξ} ⊢F uξ : ρξ, and by usingAbstaction, Γξ ⊢F λx : τξ.uξ : τξ → ρξ, that
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is, Γξ ⊢F sξ : σξ. If s = f(s1, . . . , sn) with f : σ1 × . . . × σn → σ, then, the last rule applied in the
typing derivation isFunctions, and thereforeσ = τξ for some type substitutionξ andΓ ⊢F si : σiξ for
i ∈ [1..n]. By induction hypothesis,Γζ ⊢F si : (σiξ)ζ = σi(ξζ), henceΓζ ⊢F f(s1, . . . , sn) : τ(ξζ) =
(τξ)ζ = σζ , and we are done. 2

Lemma 2.5 Assume given a regular signatureF , and environmentΓ, a terms and a typeσ such that
Γ ⊢F s : σ holds. Then,Γ · Γ′ ⊢F s : σ for all Γ′ compatible withΓ.

Proof: By induction on the proof of the judgementΓ ⊢F s : σ, and by case upon the last rule applied.
There is subtlety with the caseAbstraction, for which there is a typeτ such thatΓ · {x : σ} ⊢F u : τ .

We then apply our induction hypothesis to the judgementΓ · {x : σ} ⊢F u : τ and the environment
Γ′ · {x : σ} which is easily shown compatible withΓ · {x : σ}, since so areΓ andΓ′, yielding(Γ · {x :
σ}) · (Γ′ · {x : σ}) ⊢F u : τ . But (Γ · {x : σ}) · (Γ′ · {x : σ}) = (Γ · Γ′) · {x : σ}, and therefore we can
applyAbstraction to get the result.

Other cases are straightforward. 2

Lemma 2.6 Assume given a regular signatureF , an environmentΓ, a terms and a typeσ such that
Γ ⊢ F s : σ holds. Then, for allp ∈ Dom(s), there exists a canonical environmentΓs|p and a type
τ such thatΓs|p ⊢ F s|p : τ is a subproof of the proof of the judgementΓ ⊢ F s : σ. Moreover,
Γs|(p·q) = (Γs|p)(s|p)|q .

Proof: By induction on the length ofp. If p = Λ, the result is trivial, withs|Λ = s, Γs|Λ
= Γ and

τ = σ. Otherwise, we discuss by case according to the top functionsymbol ofs.
If s = @(s1, s2) andp = i · q (with i = 1, 2), or s = f(s1, . . . , sn) andp = i · q (with i ∈ [1..n]),

then, byApplication or Functions, there is a typeσi such thatΓ ⊢F s|i : σi. We apply the induction
hypothesis to the judgementΓ ⊢F s|i : σi and the subterm(s|i)|q = s|(i·q) of s|i at positionq, yelding a
canonical environmentΓs|(i·q) such that the proof of the judgementΓs|(i·q) ⊢F s|(i·q) : τ for someτ is a
subproof of the proof of the judgementΓ ⊢F s|i : σi, hence ofΓ ⊢F s : σ, showing this case.

If s = λx : ρ.u andp = 1 · q, by theAbstraction rule,Γ · {x : ρ} ⊢F u : θ for someθ, a judgement
whose proof is a subproof of the proof ofΓ ⊢F s : σ. Now, s|p = u|q, and by induction hypothesis,
there exists a canonical environment(Γ · {x : ρ})u|q such that(Γ · {x : ρ})u|q ⊢F u|q : τ is a subproof
of the proof of the judgementΓ · {x : ρ} ⊢F u : θ, hence of the proof of the judgementΓ ⊢F s : σ. We
takeΓs|p = (Γ · {x : τ})u|q and we are done.

Finaly, the propertyΓs|(p·q) = (Γs|p)(s|p)|q follows directly from our construction. 2

Lemma 2.7 Assume given a regular signatureF , an environmentΓ, two termss and v, two typesσ
and τ , and a positionp ∈ Pos(s) such thatΓ ⊢F s : σ, Γs|p ⊢F s|p : τ andΓs|p ⊢F v : τ . Then,
Γ ⊢F s[v]p : σ.

Proof: By induction on the length ofp. The basic case is trivial, withΓs|Λ
= Γ, τ = σ, ands[v]Λ = v.

If s = @(s1, s2) andp = i · q (with i = 1, 2), or s = f(s1, . . . , sn) andp = i · q (with i ∈ [1..n]),
then, byApplication or Functions, there is a typeσi such thatΓs|i = Γ ⊢F s|i : σi. Noting that, by
lemma 2.6,Γs|p = (Γs|i)(s|i)|q ⊢F s|p = (s|i)|q : τ andΓs|p = (Γs|i)(s|i)|q ⊢F v : τ , we can apply the
induction hypothesis to the judgementΓ ⊢F s|i : σi and the positionq of s|i. The result then follows by
using the ruleApplication or Functions.

If s = λx : ρ.u andp = 1 · q, by theAbstraction rule, Γs|1 = Γ · {x : ρ} ⊢F u : θ for someθ. By
lemma 2.6,Γs|p = (Γ · {x : ρ})u|q , and therefore(Γ · {x : ρ})u|q ⊢F v : τ . By induction hypothesis,
Γ · {x : ρ} ⊢F u[v]q : θ, and the result follows by applyingAbstraction. 2

We now introduce substitutions:
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Definition 2.8 A term substitution, or simplysubstitutionis a finite setγ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn :
σn) 7→ (Γn, tn)}, whose elements are quadruples made of a variable symbol, a type, an environment and
a term, such that

(i) ∀i ∈ [1..n], ti 6= xi andΓi ⊢F ti : σi,
(ii) ∀i 6= j ∈ [1..n], xi 6= xj , and
(iii) ∀i 6= j ∈ [1..n], Γi andΓj are compatible environments.

We sometimes omit the parentheses, the typeσi and the environmentΓi in (xi : σi) 7→ (Γi, ti).
The set of (input) variables of the substitutionγ is Var(γ) = {x1, . . . , xn}, its domainis the environ-

mentDom(γ) = {x1 : σ1, . . . , xn : σn} while itsrangeis the environmentRan(γ) =
⋃

i∈[1..n] Γi.
We denote byγ|V the restriction of the substitutionγ to the domainV ∩ Var(γ), and byγ\V the

substitutionγ|(X\V ).

Note that the setRan(γ) is indeed an environment by our compatibility assumption (iii).

Lemma 2.9 Assume given a substitutionγ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn : σn) 7→ (Γn, tn)}. Then,
Ran(γ) ⊢F ti : σi.

Proof: By condition (iii) of Definition 2.8,Γi ⊆ Ran(γ) =
⋃

i∈[1..n] Γi, which implies by Lemma 2.5
thatRan(γ) ⊢F ti : σi.

Definition 2.10 A substitutionγ is said to becompatiblewith an environmentΓ if
(i) Dom(γ) is compatible withΓ,
(ii) Ran(γ) is compatible withΓ \ Dom(γ).
We will also say thatγ is compatible with the judgementΓ ⊢F s : σ.

Definition 2.11 A substitutionγ compatible with a judgementΓ ⊢F s : σ operates as an endomorphism
ons (keeping its bound variables unchanged) and yields a termsγ defined as follows:

If s = x ∈ X andx 6∈ Var(γ) then sγ = x
If s = x ∈ X and(x : σ) 7→ (Γ, t) ∈ Γ then sγ = t
If s = @(u, v) then sγ = @(uγ, vγ)
If s = f(u1, . . . , un) then sγ = f(u1γ, . . . , unγ)
If s = λx : τ.u then sγ = λx : τ.uγ\{x}

Lemma 2.12 Assume given a regular signatureF and a substitutionγ compatible with the judgement
Γ ⊢F s : σ. Then,Γ · Ran(γ) ⊢F sγ : σ.

Proof: By induction on the derivation of the judgementΓ ⊢F s : σ.
Assume thats = x 6∈ Var(γ). By Definition 2.11, it follows thatxγ = x. Therefore,Γ·Ran(γ) ⊢F x :

σ by compatibility assumption ofRan(γ) with Γ ⊆ Dom(γ) and Lemma 2.5.
Assume thats = x ∈ Var(γ). Then, by compatibility assumption ofDom(γ) with Γ, there exist

someΓ′ andt such that(x : σ) 7→ (Γ′, t) ∈ γ. Then,sγ = t by Definition 2.11,Ran(γ) ⊢F t : σ by
Lemma 2.9, andΓ · Ran(γ) ⊢F t : σ by Lemma 2.5.

Assume thats = @(u, v). Then,sγ = @(uγ, vγ) by Definition 2.11, andΓ ⊢ F u : τ → σ and
Γ ⊢F v : τ for some typeτ by the ruleApplication . By induction hypothesis,Γ ⊢F uγ : τ → σ and
Γ ⊢F vγ : τ , and therefore,Γ ⊢F sγ : σ by the ruleApplication .

The cases = f(s1, . . . , sn) is similar.
Assume finally thats = λx : τ.u. By the ruleAbstraction, Γ · {x : τ} ⊢ F u : τ → σ. Since

γ compatible with the environmentΓ, Dom(γ) andΓ are compatible, and therefore,Dom(γ\{x}) and
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Γ ·{x : τ} are compatible. Similarly,Ran(γ) andΓ\Dom(γ) are compatible, and thereforeRan(γ\{x})
andΓ · {x : τ} \ Dom(γ\{x}) are compatible, showing that the substitutionγ\{x} is compatible with the
environmentΓ · {x : τ}. Therefore, by induction hypothesis,Γ · {x : τ} ⊢F uγ\{x} : τ → σ, and by the
ruleAbstraction, it follows thatΓ ⊢F λx.τ : (uγ\{x}) : τ → σ. We conclude with Definition 2.11. 2

When writingsγ, we will always make the assumption that the domain ofγ is compatible with the
judgementΓ ⊢F s : σ. We will use the letterγ for substitutions and postfix notation for their application.
We will sometimes use the notationAγ whereA is a set of terms, andγ a substitution, for the set of the
instantiated terms ofA.

2.5 Plain higher-order rewriting [20]

We now come to the definition of higher-order rewriting. Among the three possible variations by
Klop [24], Jouannaud and Okada [20], and Nipkow [30], we consider here the last two which differ
significantly, while the first one can be easily encoded via the other two. Based on using plain pattern
matching for firing rules, plain higher-order rewriting is the first of these two.

Definition 2.13 Given a regular signatureF , a rewrite ruleis a quadruple writtenΓ ⊢ l → r : σ,
wherel andr are higher-order terms such that

(i) Var(r) ⊆ Var(l),
(ii) Γ ⊢F l : σ andΓ ⊢F r : σ.
The rewrite rule is said to bepolymorphicif σ is a polymorphic type. Aplain term rewriting system,

or simplyterm rewriting systemis a set of rewrite rules.

We will often omit the typeσ or even the environmentΓ in the ruleΓ ⊢F l → r : σ.
Examples of polymorphic rules are given later in this section. Here is an example of a triple which

is not a rewrite rule because its lefthand and righthand sides do not have the same type: letF = {f :
α → α, g : β → β, 0 : IN}, TS∀ = {α, β}, and consider the triple{x : α} ⊢ f(x) → g(0). We
have{x : α} ⊢F f(x) : α, {x : α} ⊢F g(0) : IN, andα 6= IN. On the other hand, the type instance
{x : IN} ⊢ f(x)→ g(0) : IN is a rule, as well as the term instance{x : α} ⊢ f(0)→ g(0) : IN.

The following property follows easily from the definition, Lemma 2.4 and Lemma 2.12:

Lemma 2.14 Assume thatΓ ⊢ l → r : σ is a rewrite rule. Then, for every type substitutionξ and every
term substitutionγ compatible withΓξ, the quadrupleΓξ ·Ran(γ) ⊢ lξγ → rξγ : σξ is a rewrite rule.

We are now ready for defining the rewrite relation :

Definition 2.15 Given a plain higher-order rewriting systemR and an environmentΓ, a terms such
thatΓ ⊢F s : σ rewrites to a termt at positionp with the ruleΓi ⊢ li → ri : σi, the type substitutionξ
and the term substitutionγ, writtenΓ ⊢ s

p
−→

Γi ⊢ li→ri

t, or simplyΓ ⊢ s→R t, or evens→R t assuming

the environmentΓ, if the following conditions are satisfied :
(i) Dom(γ) ⊆ Γiξ,
(ii) Γiξ · Ran(γ) ⊆ Γs|p,
(iii) s|p = liξγ,
(iv) t = s[riξγ]p.

These conditions mean that the rule used for rewritings at positionp is the instanceΓiξ ⊢ liξ → riξ :
σiξ of the polymorphic ruleΓi ⊢ li → ri : σi by the type substitutionξ, which maps the types of the
variables inli with the type of the terms by which these variables are replaced. Note that condition (iii)
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implies that variables which are bound in the rule do not occur free inγ, therefore avoiding capturing
variables when rewriting.

Example 1 Let S = {o1, o2, o3, o4}, S∀ = {α : ∗, β : ∗}, andF = {f : α× β → α, g : α× β → β}.
Let Γ = {x1 : o1, x2 : o2, x3 : o3, x4 : o4}, ands = g(f(x1, x2) + f(x3, x4)). We haveΓ ⊢F s : o3.
Let γ = {x1 : o1 7→ ({x1 : o2, x6 : o1}, g(x1, x6)), x3 : o3 7→ ({x2 : o2, x5 : o3}, g(x2, x5)), x6 :

o2 7→ ({x1 : o2, x5 : o3}, f(x1, x5))}.
Dom(γ) = {x1 : o1, x3 : o3, x6 : o2}, andRan(γ) = {x1 : o2, x2 : o2, x5 : o3, x6 : o1}.
sγ = g(f(g(x1, x6), x2), f(g(x2, x5), x4)).
Γ · Ran(γ) = {x1 : o2, x2 : o2, x3 : o3, x4 : o4, x5 : o3, x6 : o1}.
Γ · Ran(γ) ⊢F sγ : o3.

Typechecking the rewritten term is not necessary, thanks tothe so-calledSubject reductionproperty:

Lemma 2.16 Assume thatΓ ⊢F s : σ andΓ ⊢ s→R t. ThenΓ ⊢F t : σ.

Proof: By Lemma 2.4,Γiξ ⊢F liξ : σiξ. By conditions (i) and (ii) in Definition 2.15, the substitution
γ is compatible with the environmentΓiξ, and therefore, by lemma 2.12,Γiξ · Ran(γ) ⊢F liξγ : σiξ.
By condition (ii) and lemma 2.5,Γs|p ⊢F liξγ : σiξ, and therefore, by condition (iii),Γs|p ⊢F s|p : σiξ.
Note that this tells us how to computeξ in practice. Similarly,Γs|p ⊢F riξγ : σiξ. By lemma 2.7), we
deduce thatΓ ⊢F s[riξγ]p : σiξ. Using now condition (iv), we finally conclude thatΓ ⊢F t : σ. 2

Plain rewriting uses plain pattern matching: givens, σ, p andli, ri, σi, the propertyΓs|p ⊢F s|p : σiξ
allows to compute the type substitutionξ in linear time. Now, computing the substitutionγ, if any, such
that l|p = liξγ can be done in linear time as well. Overall, plain pattern matching in our formalism is
linear. Note that it follows from condition (ii) thatRan(γ) ⊆ Γs|p.

Example 2 We give here the specification for Gödel’s system T. LetS = {IN}, S∀ = {α}, F = {0 :→
IN, s : IN → IN, + : IN × IN → IN, rec : IN × α× (IN → α → α)→ α}. Gödel’s recursor for natural
numbers is defined by the following rewrite rules:

{U : α, X : IN → α→ α} ⊢ rec(0, U, X) → U
{x : IN, U : α, X : IN → α→ α} ⊢ rec(s(x), U, X) → @(X, x, rec(x, U, X))

Let s = rec(S(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z)))),
which typechecks by instantiating the type declaration ofrec with the type substitutions{α 7→ IN} and
{α 7→ IN → IN → IN}. We can rewrite this term with the (corresponding type instances of the) rule for
recursors. Using a call-by-value stategy, we obtain:

rec(S(0), 0, rec(0, λ x : IN y : IN. + (x, y), λ x : IN y : IN → IN → IN z : IN.y(+(x, z))))
→3

{U :α, X:IN→α→α} ⊢ rec(0,U,X)→U
rec(S(0), 0, λ x : IN y : IN. + (x, y))

→ǫ

{x:IN, U :α, X:IN→α→α} ⊢ rec(S(x),U,X)→U
@(λ x : IN y : IN. + (x, y), 0, rec(0, 0, λ x : IN y : IN. + (x, y)))

→ǫ
β @(λ y : IN. + (0, y), rec(0, 0, λ x : IN y : IN. + (x, y)))→ǫ

β +(0, rec(0, 0, λ x : IN y : IN. + (x, y)))
→2

{U :α, X:IN→α→α} ⊢ rec(0,U,X)→U
+(0, 0)

→ǫ

{x:IN} ⊢ +(x,0)→x
0

As a general benefit, the use of polymorphic signatures allows us to have only one recursor rule,
instead of inifinitely many rules described by one rule schema as in Gödel’s original presentation. 2
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Several other examples of higher-order rewrite systems aredevelopped in section 3.
Because plain higher-order rewriting is type preserving, we may often omit the environmentΓ in

which a terms is typechecked as well as its type, and consider the sequenceof terms originating froms
by reduction from a given setR of higher-order rules. In other words, we will often consider rewriting
as a relation operating directly on terms. This will allow usto sometimes simplify our notations in the
rest of the paper.

A terms such thats
p
−→

R
t is calledreducible(with respect toR). s|p is aredexin s, andt is thereduct

of s. Irreducible terms are said to be inR-normal form. A substitutionγ is in R-normal form ifxγ is
in R-normal form for allx. We denote by ∗

−→
R

the reflexive, transitive closure of the rewrite relation

−→
R

, and by←→∗
R its reflexive, symmetric, transitive closure. We are actually interested in the relation

−→Rβ = −→R ∪−→β .
Given a rewrite relation−→, a terms is strongly normalizableif there is no infinite sequence of

rewrites issuing froms. The rewrite relation itself isstrongly normalizing, or terminating, if all terms
are strongly normalizable, in which case it is called areduction. It is confluent ifs−→∗ u ands−→∗ v
implies thatu−→∗ t andv−→∗ t for somet.

2.6 Conversion rules

Equations are rewrite rules which can be used in both directions. These three particular equations
originate from theλ-calculus, and are calledα-, β- andη-equality:

{u : α, v : β} ⊢ @(λx : α.v, u) =β v{x 7→ u}
{u : α→ β} ⊢ λx : α.@(u, x) =η u if x 6∈ Var(u)

{v : β} ⊢ λx : α.v =α λy : α.v{x 7→ y} if y 6∈ BVar(v) ∪ (Var(v) \ {x})

The above equations are indeed equation schemas : all occurrences ofu andv stand for arbitrary terms
to which the substitutions{x → u} and{x → y} apply. Of course, it must be shown that the lefthand
and righthand sides of rules are typable with the same type intheir environment, thanks to Lemma 2.12.
As already said, this justifies an abuse of notation, by forgetting the environment of the equations. As
usual, we also do not distinguishα-convertible terms.

We use ∗
←→

β
for the congruence generated by theβ-equality, and−→β for theβ-reduction rule:

{u : α, v : β} ⊢F @(λx : α.v, u) −→β v{x 7→ u}

Sinceη-expansion may not terminate, its use is restricted by spelling out in which context it applies:

{u : σ1 → . . .→ σn → σ} ⊢F s[u]p
p
−→

η
s[λx1 : σ1, . . . , xn : σn.@(u, x1, . . . , xn)]p

if



















σ is a canonical output type
x1, . . . , xn 6∈ Var(u)
u is not an abstraction
s|q is not an application in casep = q · 1

The last condition means that the first argument of an application cannot be recursively expanded on top,
therefore preventing non-termination. We could of course allow any finiteη-expansion of these terms.

It is well-known that the simply typedλ-calculus is confluent (moduloα-conversions) and terminating
with respect toβ-reductions and either the above notion ofη-expansions, or the more usual notion of
η-reduction. We writes↓β, (s↓ for short) for the uniqueβ-normal formof the terms, s↑η (s ↑ for
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short), for the unique (up toα-equivalence)η-long formof s wrt. η-expansion,s ↓η for the unique (up
to α-equivalence)η-normal form ofs wrt. η-reduction, andu lηβ, (u l for short) for its unique (up to
α-equivalence) normal form with respect toβ-reductions andη-expansions, also calledη-long normal
form (terms inη-long normal form are callednormalized). We may sometimes annotate the arrow with

the set of positions at which rewriting is allowed or disallowed, as in
Λ↓
−→

η
, ↑Λ, or

(6=Λ)↑
−→

η
. These definitions

extend to substitutions in a natural way. We allow ourselvesto normalize sets of terms, writingA↓,
for the set of normalized terms of the setA. These normal forms satisfy the following well-known
properties:

Lemma 2.17 u l= u ↓↑= u ↑↓.

Lemma 2.18 Normalized terms are of the following two forms:
(i) λx : ρ.@(X, v1, . . . , vp), for somex : ρ, X : τ1 → . . .→ τp → τ ∈ X wherep > 0 andτ is a data

type or a type variable, and normalized termsv1, . . . , vp, omitting@() whenp = 0;
(ii) λx : ρ.@(F (u1, . . . , un), v1, . . . , vp), for somex : ρ, F ∈ Fσ1×...×σn→(τ1→...→τp→τ) whereτ is a

data type or a type variable, and normalized termsu1, . . . , un, v1, . . . , vp, omitting@() whenp = 0 and
the other two parentheses whenn = 0.

In normalized terms, the first argument of an application cannot be inη-long form. The following
definition aims at characterizing classes of possiblyβ-normal terms which are not fullyη-expanded.

Definition 2.19 A termt is tail expanded(resp.tail normal) if it is of the following form:
(i) t ∈ X ,
(ii) t = f(u1, . . . , un), andu1, . . . , un are inη-long form (resp. normalized),
(iii) t = @(u1, . . . , un), u1 is tail expanded (resp. tail normal and is not an abstraction) andu2, . . . , un

are inη-long normal form (resp. normalized),
(iv) t = λx : σ.u, u is tail expanded (resp. tail normal) and not of the form@(v, x) with x 6∈ Var(v).

Every normalized terms of typeσ contains a tail normal term of the same typeσ as a subterm, which is
a proper subterm ifσ is functional, and the termt itself otherwise.

We denote byt ↑ 6=Λ (resp. tl 6=Λ) the unique tail expanded (resp. tail normal) terms η-equivalent
(βη-equivalent) tot.

Expansion and tail expansion are indeed mutually recursive, as examplified by the following proper-
ties rephrasing definition 2.19, that will be used without mentionning when needed:

(λx.u)↑ 6=Λ = λx.(u↑ 6=Λ) providedu 6= @(v, x)
(λx.u)↑ = λx.(u↑)
f(u)↑ 6=Λ = f(u↑)

f(u)↑ = (f(u)↑ 6=Λ) ↑Λ

@(u1, u2, . . . , un)↑ 6=Λ = @(u1↑ 6=Λ, u2↑, . . . , un ↑)
@(u)↑ = (@(u)↑ 6=Λ) ↑Λ

These easy properties can be regarded as an algorithm for computing theη-expansion and tailη-expansion
of a term.

Important properties of normal terms carry over to tail normal terms :

Lemma 2.20 ul 6=Λ= u↑ 6=Λ↓.
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Lemma 2.21 Let s be tail normal, andξ is a type substitution. Thensξl 6=Λ= sξ ↑ 6=Λ.

Lemma 2.22 Let s be a tail normal term,t be a tail normal neutral term, andp ∈ Pos(s) such thats|p
andt have the same type. Thens[t]p is tail normal.

Lemma 2.23 Let s←→βη t. Thens andt have the same tail normal form.

We can see that tail normal terms enjoy properties similar tothose of normalized terms. Being simpler
is an argument for their use.

2.7 Normalized higher-order rewriting [30, 27]

The idea of normalized higher-order rewriting is to define computations overλ-terms used as a suitable
abstract syntax for encoding functional objects like programs or specifications. It uses higher-order
pattern matching for firing rules. We do not assume here that output types of function declarations or
variables are data types, a quite restrictive assumption always made in the litterature : output types may
be functionnal or even polymorphic. Because our rules will be defined as pairs of tail normal terms, they
will not beη-expanded at the top as one might have expected, and will rewrite tail normal subterms.

Definition 2.24 A normalized rewrite ruleis a rewrite ruleΓ ⊢ l → r : σ such thatl and r are tail
normal terms. Anormalized term rewriting systemis a set of normalized rewrite rules.

Given a normalized term rewriting systemR and an environmentΓ, a tail normal terms such that
Γ ⊢F s : σ rewrites to a termt at positionp with the tail normal ruleΓi ⊢ li → ri : σi, the type
substitutionξ and the term substitutionγ, written Γ ⊢ s

p
−→

Γiξ ⊢ liξ→riξ:σiξ
t, or simplyΓ ⊢ s →R t, or

evens→R t assuming the environmentΓ, if the following conditions are satisfied :
(i) Dom(γ) ⊆ Γiξ,
(ii) Γiξ · Ran(γ) ⊆ Γs|p,
(iii) s|p is tail normal ands|p←→∗

βη liξ ↑ 6=η γ,
(iv) t = (s[riξ ↑ 6=Λ γ ↓β]p) ↓β.

Note that it is not a restriction to assume thats|p is tail normal, since we can always chosep fulfilling
this property.

As previously, we can show thatΓs|p ⊢F s|p : σiξ, allowing to compute the type substitutionξ in linear
time by first-order pattern matching. Then, normalized rewriting uses higher-order pattern matching to
compute the substitutionγ, if any, such thats|p←→∗

βη liξ ↑η γ. Higher-order pattern matching is an
open problem for order strictly bigger than 4, but is decidable, with a linear complexity again, when the
lefthand sides of rules are patterns in the sense of Miller [28]. A key observation is the following:

Lemma 2.25 Let Γ ⊢F s : σ for some tail normal terms andΓ ⊢ s →R t. ThenΓ ⊢F t : σ andt is
tail normal.

Proof: Normalization oft is by definition and Lemma 2.22. For the typing judgement, theproof is
similar to that of Lemma 2.14, by using in addition confluenceof βη reductions in order to show thats|p
andliγ have the same type, sinceβ-reductions andη-reductions are type preserving. 2

We can adopt a more efficient definition oft = s[riξ ↑η γ ↓β]p in case the output type of a function
symbol is a data type, an assumption frequently met in practice but not required here. In the general
case, it is enough to climb up the term from the positionp to the root as long as the symbol on the path
is an application operator. This makes it easy to implement with an appropriate data structure for terms.
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Example 3 This encoding of first-order prenex normal forms is adapted from [30], where its local con-
fluence is proved via the computation of its (higher-order) critical pairs. Formulas are represented as
λ-terms with sortform. The idea is that quantifiers bind variables via the use of a functional argument.

Let S = {form}, F = {∧,∨ : form × form → form;¬ : form → form; ∀, ∃ : (form →
form)→ form}. The rules are the following:

P ∧ ∀(λx.Q(x)) → ∀(λx.(P ∧Q(x)))
∀(λx.Q(x)) ∧ P → ∀(λx.(Q(x) ∧ P ))
P ∨ ∀(λx.Q(x)) → ∀(λx.(P ∨Q(x)))
∀(λx.Q(x)) ∨ P → ∀(λx.(Q(x) ∨ P ))
P ∧ ∃(λx.Q(x)) → ∃(λx.(P ∧Q(x)))
∃(λx.Q(x)) ∧ P → ∃(λx.(Q(x) ∧ P ))
P ∨ ∃(λx.Q(x)) → ∃(λx.(P ∨Q(x)))
∃(λx.Q(x)) ∨ P → ∃(λx.(Q(x) ∨ P ))
¬(∀(λx.Q(x))) → ∃(λx.¬(Q(x)))
¬(∃(λx.Q(x))) → ∀(λx.¬(Q(x)))

We give later a termination proof of these rules based on the ordering we develop in the paper. 2

This example makes sense in the context of normalized higher-order rewriting, that is, when rewriting
moduloβη, simply because using plain pattern matching instead of higher-order pattern matching would
not allow to pull out quantifiers for all terms. For example, the formulaφ ∧ ∀(λz.z ∨ z) does not match
with the lefthand side of the first rule if plain pattern matching is used while it does with higher-order
pattern matching.

2.8 Higher-Order Reduction Orderings

We will make intensive use of well-founded relations for proving strong normalization properties,
using the vocabulary of rewrite systems for these relations. For our purpose, these relations may not be
transitive, hence are not necessarily orderings, althoughtheir transitive closures will be well-founded
orderings, which justifies to sometimes call them orderingsby abuse of terminology.

For our purpose, astrict orderingis an irreflexive and transitive relation, and anorderingis the union
of its strict part withα-conversion. The following results will play a key role, see[13]:

Assume≻,≻1, . . . ,≻n are relations on setsS, S1, . . . , Sn. Let
- (≻1, . . . ,≻n)mon be the relation onS1× . . .×Sn defined as(s1, . . . , sn)(≻1, . . . ,≻n)mon(t1, . . . , tn)

iff s1 ≻1 t1, . . . , sn ≻n tn;
- (≻1, . . . ,≻n)lex be the relation onS1 × . . .× Sn defined as(s1, . . . , sn)(≻1, . . . ,≻n)lex(t1, . . . , tn)

iff s1 = t1, . . . , si−1 = ti−1 andsi ≻i ti for somei ∈ [1..n];
- ≻mul be the relation on the set of multisets of elements ofS defined as

M ∪ {x} ≻mul N ∪ {y1, . . . , yn} iff M ≻mul N and∀i ∈ [1..n] x ≻ yi.
It is well known that these operations preserve the well-foundedness of the relations≻,≻1, . . . ,≻n.
As already stressed, we are going to define non-transitive, well-founded relations on higher-order

terms. In addition, these relations will be monotonic for terms of equivalent type, for some given quasi-
ordering>TS on types. Therefore, the union of these relations with strict-subterm may not be well-
founded in general. However, it will be for an adequate restriction of the subterm relation:

Definition 2.26 Let≥TS be a type ordering. The (strict)type-decreasing subterm relation, denoted by
�>TS

, is defined ass : σ �>TS
t : τ iff s � t, σ ≥TS τ andVar(s) ⊆ Var(t).
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Lemma 2.27 Let > be a well-founded relation of a setS of terms which is monotonic for terms of
equivalent types (in=TS ). Then,> ∪�>TS

is well-founded.

Proof: Since≥TS is well-founded, it is enough to show the property for terms of equivalent type. This
follows from the fact that�>TS

and> commute for such terms by the monotonicity property of>. 2

We end up this section by defining the notion of reduction orderings operating on higher-order terms,
which allow one’s to show that the rewrite relations−→R ∪−→β or−→

R
η
β

are well-founded by simply

comparing the lefthand and righthand sides of the (polymorphic) rules inR:

Definition 2.28 A higher-order reduction ordering≻ is a well-founded ordering of the set of judgements
such that:

(i) ≻ is monotonic, i.e.,(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) implies∀Γ′ ⊢F u[x : σ] : τ such thatΓ andΓ′

are compatible, then(Γ · Γ′ ⊢F u[s] : τ) ≻ (Γ · Γ′ ⊢F u[t] : τ);
(ii) ≻ is stable, i.e.,(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) implies that for all substitutionγ whose domain is

compatible withΓ, then(Γ · Ran(γ) ⊢F sγ : σ) ≻ (Γ · Ran(γ) ⊢F tγ : σ);
(iii) ≻ is compatible, i.e.,(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) implies(Γ′ ⊢F s : σ) ≻ (Γ′ ⊢F t : σ) for

every environmentΓ′ such thatΓ andΓ′ are compatible,Γ′ ⊢F s : σ andΓ′ ⊢F t : σ;
(iv) ≻ is functional, i.e.,(Γ ⊢F s : σ−→β t : σ) implies(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ).

Besides,� is said to bepolymorphicif (Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) implies(Γξ ⊢F sξ : σξ) ≻
(Γξ ⊢F tξ : σξ) for all type substitutionsξ.

Polymorphism can be seen as a monotonicity property of System F’s application operator of a term to
a type : the need for stating polymorphism arises from the lack of type quantification and type application
in our formalism.

Since rewrite rules of a higher-order term rewriting systemR are type-preserving in any environment
where they can be used, we will often abuse notations by writing (Γ ⊢ F s : σ ≻ t : σ) instead of
(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) when comparing two termss andt such thatΓ ⊢F s−→R t. This amounts
to view the ordering as a relation on typed terms instead of a relation on judgements. We may even
sometimes omit types and/or environments, considering theordering as operating directly on terms, and
write Γ ⊢ s ≻ t, s : σ ≻ t : τ , or s ≻ t.

Theorem 2.29Let� be a polymorphic, higher-order reduction ordering andR = {Γi ⊢F li → ri}i∈I

be a higher-order rewrite system such thatΓi ⊢F li ≻ ri for everyi ∈ I. Then the relation−→R ∪−→β

is strongly normalizing.

Proof: Assume thatΓ ⊢F s : σ andΓ ⊢F s
p
−→

Γiξ ⊢ liξ→riξ:σiξ
t. By definition of higher-order rewrit-

ing, Γs|p ⊢ F s|p : σiξ, Dom(γ) ⊆ Γiξ, Γiξ · Ran(γ) ⊆ Γs|p, s|p = liξγ, and t = s[riξγ]p. By
assumption,Γi ⊢ F li ≻ ri : σi. By polymorphism,Γiξ ⊢ F liξ ≻ riξ : σiξ. By stability,
Γiξ · Ran(γ) ⊢ F liξγ ≻ riξγ : σiξ. By compatibility,Γs|p ⊢ F liξγ ≻ riξγ : σiξ. By mono-
tonicity of≻ for terms of equal type,Γs|p ·Γ ⊢F s[liξγ] = s ≻ s[riξγ] = t : σ. By compatibility again,
Γ ⊢F s ≻ t. Finally, the case of aβ-reduction is similar. 2

The polymorphic property of higher-order reduction orderings allows to show termination in all
monomorphic instances of the signature by means of a single comparison for each polymorphic rewrite
rule. Polymorphic higher-order reduction orderings are therefore an appropriate tool in order to make
termination proofs of polymorphic plain higher-order rewrite systems. In case of a monomorphic rewrite
system, there is of course no need for a polymorphic ordering, even if the signature itself is polymorphic.
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2.9 Normalized Higher-Order Reduction Orderings

Higher-order reduction orderings turn out to be adequate toshow termination of normalized rewriting.

Definition 2.30 A higher-order normalized reduction ordering≻ is a well-founded ordering of the set of
judgements such that:

(i) ≻ is tail monotonicfor tail expanded terms : for all tail-expanded termss andt such that(Γ ⊢F s :
σ) ≻ (Γ ⊢F t : σ), then∀Γ′ ⊢F u[x : σ] : τ such thatΓ andΓ′ are compatible, andu[s] andu[t] are
tail expanded,(Γ · Γ′ ⊢F u[s] : τ) ≻ (Γ · Γ′ ⊢F u[t] : τ);

(ii) ≻ is stable;
(iii) ≻ is compatiblefor tail expanded terms;
(iv) ≻ is tail functional: for all tail expanded termss andt such that(Γ ⊢F s : σ−→β t : σ), then

(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ).

Restricting functionality and monotonicity to tail expanded terms will be important in Section 6 where
such a normalized ordering is exhibited which does not satisfy functionality and monotonicity for arbi-
trary terms.

Definition 2.31 A subrelation≻η
β of a higher-order normalized reduction ordering≻ is said to be

(i) β-stable, in which case≻η
β is said to be anormalized higher-order reduction ordering, if (Γ ⊢F s) ≻η

β

(Γ ⊢F t) implies(Γ · Ran(γ) ⊢F sγ↓β) ≻ (Γ · Ran(γ) ⊢F tγ↓β) for all tail normal termss, t and tail
normal substitutionγ compatible withΓ;

(ii) η-polymorphic(or simplypolymorphic) if (Γ ⊢F s) ≻η
β (Γ ⊢F t) implies(Γξ ⊢F sξ ↑ 6=Λ) ≻η

β

(Γξ ⊢F tξ ↑ 6=Λ) for all tail normal termss, t and all type substitutionξ.

Theorem 2.32Assume that≻ is a higher-order normalized reduction ordering and that≻η
β is aβ-stable

andη-polymorphic subrelation of≻. LetR = {Γi ⊢ li → ri : σi}i∈I be a higher-order rewrite system
such that(Γi ⊢F li) ≻

η
β (Γi ⊢F ri) for everyi ∈ I. Then the relation−→

R
η
β

is strongly normalizing.

Proof: Lets be a tail normal term such thatΓ ⊢ F s
p
−→

Γiξ ⊢ liξ→riξ:σiξ
t. Sinces|p is tail normal, and

s|p←→∗
βη liξ ↑ 6=Λ γ by definition of rewriting, we gets|p = liξ ↑ 6=Λ γ ↓β by the confluence property ofβ-

reductions together with tail expansions. Sinces itself is tail normal, it follows thats = s[liξ ↑ 6=Λ γ ↓β]p.
By assumption,Γi ⊢ F li ≻

η
β ri. By η-polymorphism,Γiξ ⊢ F liξ ↑ 6=Λ ≻η

β riξ ↑ 6=Λ. By β-
stability, Γiξ · Ran(γ) ⊢ F (liξ ↑ 6=Λ)γ ↓β ≻ ⊢ F (riξ ↑ 6=Λ)γ ↓β. By compatibility, we get
Γs|p ⊢F (liξ ↑ 6=Λ γ) ↓β ≻ (riξ ↑ 6=Λ)γ ↓β. By monotonicity of≻ for tail normal terms of equal type,
Γs|p · Γ ⊢F s[liξ ↑ 6=Λ γ ↓β]p = s ≻ s[riξ ↑ 6=Λ γ ↓β]p. By compatibility again,Γ ⊢F s[liξ ↑ 6=Λ γ ↓β
]p = s ≻ s[riξ ↑ 6=Λ γ ↓β]p. By tail functionnality,Γ ⊢F s[riξ ↑ 6=Λ γ ↓β]p ≻ t. Finally, by transitivity,
Γ ⊢F s ≻ t, implying strong normalization as claimed. 2

We are left constructing polymorphic (normalized) higher-order reduction orderings.
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3 The Higher-Order Recursive Path Ordering

In this section, we present a first version of our higher-order recursive path ordering, together with
examples of its use. We will give more elaborated versions inthe subsequent sections. Some proofs will
be omitted in this section, to avoid duplications.

3.1 The HORPO ordering

The higher-order recursive path ordering on typed higher-order terms is generated from three basic
ingredients, presented first. The relation itself is definedin the fourth subsection.

3.1.1 Type ordering

We assume given two (intimately related) quasi-orderings on types≥TS and≥→
TS

such that the following
properties are satisfied :

1. containement: >TS⊆>→
TS

and=TS==→
TS

;

2. Well-foundedness: >→
TS

is well-founded (this is no restriction for finite signatures);

3. Arrow subterm property: τ → σ >→
TS

τ andτ → σ >→
TS

σ;

4. Functional preservation(i), we also say that=TS is arrow preserving:

τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ andσ =TS σ′;

5. Functional preservation(ii), we also say that>TS is arrow decreasing:

τ → σ >TS α impliesσ ≥TS α or α = τ ′ → σ′, τ ′ =TS τ andσ >TS σ′;

The ordering≥TS will be used in the definition of the higher-order recursive path ordering, while the
ordering>→

TS
will be used to build up induction arguments for which the subterm property is necessary.

The next two properties have to do with polymorphic signatures:

6. Stability(under substitution): Ifσ >TS τ , (σ =TS τ , respectively) thenσξ >TS τξ for every ground
type substitutionξ (σξ =TS τξ, respectively);

7. Compatibilityof signature declarations with type instantiations: for any function symbolf : σ1 ×
. . .× σn → σ and type instantiationsξ′, ξ′′ such that∀i ∈ [1..n] σiξ

′ =TS σiξ
′′, thenσξ′ =TS σξ′′.

Operating on type expressions, this ordering is an orderingon first-order unisorted terms. We will see
later how the recursive path ordering can be restricted so asto meet the above properties.

Lemma 3.1 Assume thatσ =TS α andσ is a data type, thenα is a data type as well.

Preservation of data types follows from the preservation ofarrows and stability (which is needed to
avoid having a type variable equal to a data type). Preservation of functional and data types will play a
key role in our proofs.

We denote byT min
S the set of ground types which are minimal with respect to>→

TS
.

Lemma 3.2 Assuming thatS 6= ∅, thenT min
S is a non-empty set of data types.

Proof: Because>→
TS

is well-founded and arrow types cannot be minimal in>→
TS

. 2
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3.1.2 Statuses

We assume given a partitionMul ⊎ Lex of F and we say thatf ∈ Mul (resp.f ∈ Lex) has amultiset
(resp.lexicographic) status.

3.1.3 Precedence

We assume given a quasi-ordering≥F onF , called theprecedence, such that

1. if f : σ → σ =F g : τ → τ , thenσ =TS τ andf ∈ Lex iff ( g ∈ Lex andσ(=TS )monτ );

2. >F is well-founded;

3. free variables are considered as constants incomparablein >F among themselves and with other
function symbols, coming therefore together with a type declaration.

3.1.4 Definition of the higher-order recursive path ordering

We can now give our definition of the higher-order recursive path ordering (HORPO), which builds
upon Dershowitz’s recursive path ordering for first-order terms [12], and improves quite significantly
over [22].

In contrast to the usual first-order case, it is not possible to consider the terms to be compared as
ground, since the property is not closed by taking subterms under an abstraction. We will therefore
define HORPO for non-ground terms, by considering, as in the first-order case, the free variables of the
typing environement as new constant symbols which are incomparable among themselves and with other
function symbols. It therefore makes sense to compare typing judgementsΓ ⊢ s : σ andΣ ⊢ t : τ
rather than terms.

Following the tradition, we implicitely consider equivalence classes of terms moduloα-conversion,
using the syntactic equality symbol= for the equivalence=α, and define our ordering≻horpo by means
of a set of rules, writing�horpo for ≻horpo∪ =. In contrast, the recursive path ordering [13] contains a
non-trivial equivalence allowing to freely permute subterms below multiset function symbols. Although
one may argue about the practical relevance of this feature,we will adress the question in Section 7.

The ordering definition starts with 4 rules reproducing Dershowitz’s recursive path ordering for first-
order terms, with one main difference when higher-order terms are compared: the rules can also take
care of higher-order terms in the arguments of the smaller side by having a corresponding bigger higher-
order term in the arguments of the bigger side (this is redundant for first-order terms because of the
subterm property). This idea is captured in the following proposition:

A = ∀v ∈ t (Γ ⊢F s : σ) ≻
horpo

(Σ ⊢F v : ρ) or (Γ ⊢F u : θ) ≻
horpo

(Σ ⊢F v : ρ) for someu ∈ s

The definition we give below operates on judgements. However, we will quickly forget the judgement
version and adopt a more easily readable term version.

Definition 3.3 Given two judementsΓ ⊢F s : σ andΣ ⊢F t : τ ,

(Γ ⊢F s : σ) ≻
horpo

(Σ ⊢F t : τ) iff σ ≥TS τ and

1. s = f(s) with f ∈ F , and(Γ ⊢F u : θ) �
horpo

(Σ ⊢F t : τ) for someu ∈ s
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2. s = f(s) with f ∈ F , andt = g(t) with f >F g, andA

3. s = f(s) andt = g(t) with f =F g ∈ Mul, and(Γ ⊢F s : σ) ( ≻
horpo

)mul (Σ ⊢F t : τ )

4. s = f(s) andt = g(t) with f =F g ∈ Lex, and(Γ ⊢F s : σ) ( ≻
horpo

)lex (Σ ⊢F t : τ ) andA

5. s = @(s1, s2), and(Γ ⊢F s1 : ρ→ σ) �
horpo

(Σ ⊢F t : τ) or (Γ ⊢F s2 : ρ) �
horpo

(Σ ⊢F t : τ)

6. s = λx : α.u with x 6∈ Var(t), and(Γ · {x : α} ⊢F u : θ) �
horpo

(Σ ⊢F t : τ)

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) and(Γ ⊢F s : σ) ≻
horpo

(Σ ⊢F v : ρ)

9. σ = α→ θ, t = λx : β.v, α =TS β and(Γ ⊢F @(s, x)) : θ ≻
horpo

(Σ ⊢F v : ρ)

10. s = @(s1, s2), t = @(t) is a partial left-flattening oft, and
{(Γ ⊢F s1 : θ → σ), (Γ ⊢F s2 : θ)}( ≻

horpo
)mul(Σ ⊢F t : τ )

11. s = λx : α.u, t = λx : β.v, α =TS β, and(Γ · {x : α} ⊢F u : θ) ≻
horpo

(Σ · {x : β} ⊢F v : ρ)

12. s = @(λx : α.u, v) and(Γ ⊢F u{x 7→ v} : σ) �
horpo

(Σ ⊢F t : τ)

The definition is recursive, and, apart from case 12, recursive calls operate on judgements whose
terms which are subterms of the term in the starting judgement. This ensures the well-foundedness
of the definition, since the union ofβ-reduction with subterm is well-founded, by comparing pairs of
argument terms in the well-founded compatible relation(−→β ∪�, �)lex. This will actually be used as
an inductive argument in many proofs to come1.

From now on, we will forget about judgements when comparing terms, leaving implicit the environ-
ment and the type used in their typing judgements.

Example 4 (example 1 continued) We use here the ordering on types generated by the properties of the
type ordering introduced in Section 3.1.1, and assume a multiset status forrec. The first rule succeeds
immediately by case 1. For the second rule, we apply case 7, and need to show recursively that (i)
X �horpo X, (ii) s(x)≻horpo x, and (iii)rec(s(x), u, X)≻horpo rec(x, u, X). (i) is trivial. (ii) is by case 1.
(iii) is by case 3, calling again recursively fors(x)≻horpo x.

Note that we have proved Gödel’s polymorphic recursor, forwhich the output type ofrec is any given
type. This is because we do not care about types in our comparisons, provided two compared terms are
typable with related types. This example was already provedin [22].

We can of course now add some defining rules for sum and product(omitting environments):
x + 0 → 0

x + s(y) → s(x + y)
x ∗ y → rec(y, 0, λz1z2.x + z2)

1In [36] and related articles, it is argued that the recursivepath ordering is not an inductive definition, but a fixpoint definition, making then very
complicated everything that had been considered very simple before. To remedy this misunderstanding, it must be stressed that multiset and lexicographic
extensions are defined for arbitrary relations and preservewell-foundedness of arbitrary (well-founded) relations (see Section 2.8). They also preserve
orderings, of course, but defining multiset and lexicographic extensions for orderings only is simply not appropriate.
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The first two rules are easy work. For the third, we use the precedence∗ >F rec to eliminate therec
operator. But the computation fails, since there is no subterm of x ∗ y to take care of the righthand side
subtermλz1z2.x + z2. We will come back to this example later, after having boosted the ordering. 2

Example 5 This example is partly taken from [22]. LetS = {List, IN} andF = {nil :→ List, cons :
IN × List→ List, map : List× (IN → IN)→ List}. The rules formap are:

{X : α→ α} ⊢ map(nil, X) → nil
{x : α, l : List, X : α→ α} ⊢ map(cons(x, l), X) → cons(@(X, x), map(l, X))

Using the ordering on types generated as previously by the properties of the type ordering and the
equality of the two sort constants IN andList, the first rule is trivially taken care of by case 1. For the
second, letmap ∈ Mul andmap >F cons. Sincemap >F cons, applying case 2, we need to show
thatmap(cons(x, l), X)≻horpo @(X, x) andmap(cons(x, l), X)≻horpo map(l, X). The latter is true by
case 3, sincecons(x, l)≻horpo l by case 1. The first is by case 7, asX is an argument of the first term
andcons(x, l)≻horpo x by case 1.

Let us now consider a polymorphic version of the same example, with S = {List}, S∀ = {α}, and
F = {nil :→ List, cons : α × List → List, map : List × (α → α) → List}, then the computation
fails since@(X, x) has now typeα which cannot be compared to the sortList.

We now reformulate the specification of polymorphic lists bytaking advantage of our richer type
discipline with overloading. LetS = {Nlist : ∗, List : ∗ → ∗}, S∀ = {α}, andF = {nil :→
NList, cons : α ×NList → List(α), cons : α × List(α) → List(α), map : NList × (α → α) →
NList, map : List(α)× (α→ α)→ List(α)}. The rules for map become:

{X : α→ α} ⊢ map(nil, X) → nil
{x : α, l : NList, X : α→ α} ⊢ map(cons(x, l), X) → cons(@(X, x), map(l, X))
{x : α, l : List(α), X : α→ α} ⊢ map(cons(x, l), X) → cons(@(X, x), map(l, X))

The need for duplicating the secondmap rule comes from the regularity assumption which should be
weakened for constants, allowing to declarenil : List(α). Note the two uses of the firstmap declaration
in the first rule and in the righthand side of the second rule, and the three uses of the secondmap
declaration for the other occurrences ofmap. Letting againmap ∈ Mul andmap >F cons, the first
rule is taken care of by case 1 as previously. For the second, we need to setList(α) >TS NList
for the recursive comparisonmap(cons(x, l), X)≻horpo map(l, X), andList(α) >TS α for the other
comparisonmap(cons(x, l), X)≻horpo @(X, x). Both are possible (see section 3.5). The computation
goes then as previously, and is similar for the third rule. 2

Important observations are the following:
Comparing two termss andt requires comparing their types, the type ordering being used in the con-

struction of interpretations for the strong normalizationproof. Note that the present ordering compares
terms of related types, improving over [22], where terms of equivalent types only could be compared
(the equivalence on types being generated there by the equality on sorts). Without type comparisons
based on a type ordering, we could never allow a subterm case for terms headed by an application or by
an abstraction. Note that the type of the lefthand side of a recursive comparison may have increased in
cases 1 and 5.

When the signature is first-order, Cases 1, 2, 3 and 4 of the definition of ≻horpo together reduce to
the usual recursive path ordering for first-order terms, whose complexity is known to be inO(n2) for
an input of sizen. Accordingly, we conjecture that a polynomial complexity of low degree is again
obtained when dropping Case 12 (we have not investigate thispoint yet).
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Variables:
x : σ ∈ Γ σ′ =TS

σ

Γ ⊢F x :C σ′

Functions:
f : σ1 × . . .× σn → σ ∈ F

ξ some type substitution of domain⊆
⋃

i
Var(σi)

Γ ⊢F t1 :C σ1ξ . . . Γ ⊢F tn :C σnξ τ =TS
σξ

Γ ⊢F f(t1, . . . , tn) :C σξ

Abstraction:
Γ · {x : σ} ⊢F t :C τ θ =TS

σ

Γ ⊢F (λx : σ.t) :C θ → τ

Application:
Γ ⊢F s :C σ → τ Γ ⊢F t :C σ

Γ ⊢F @(s, t) :C τ

Figure 2. Candidate judgements

All other cases deal with applications and abstractions. Note the following points: there is no prece-
dence case for applications against abstractions; left-flattening is used in the righthand sides only, that
is, in Cases 7 and 10, and indeed, our strong normalization proof does not go through if it is also used in
the lefthand sides.

Note the tradeoff between the increase of types and the decrease of size when using left-flattening
in Case 10: moving from@(@(a, b), c)) to @(a, b, c) replaces the subterm@(a, b) by the two smaller
subtermsa, b, buta has a bigger type than@(a, b). Type considerations may therefore be used to drive
the choice of the amount of flattening. We think it is also possible to use a lexicographic comparison,
although we did not check this alternative yet.

Another remark to ease the implementation of the ordering isthat the non-deterministic or comparison
of propositionA used in cases 2, 4, and 7, can be replaced by the equivalent deterministic one:

∀v : ρ ∈ t if ρ ≤TS τ then s ≻
horpo

v otherwiseu �
horpo

v for someu : θ ∈ s such thatθ ≥TS ρ

We now state the main result of this section, whose proof is the subject of the coming two subsections:

Theorem 3.4≻horpo is decidable, and included into a polymorphic, higher-order reduction ordering.

3.1.5 Candidate Terms

The use of equivalent types leads naturally to the definitionof an extended set of typable terms. These
terms will be the basis for using Tait and Girard’s reducibility technique. In fact, we will not use the
smallest possible set of terms for which our proof techniqueapplies, but the largest one that we were
able to characterize via the extended type system describedin Figure 2.

Definition 3.5 Terms typable in the type system of Figure 2 are calledcandidate terms.

We first show that every candidate term has a unique type (up toequivalence) in a given environment:
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Lemma 3.6 AssumeΓ ⊢F s :C σ. ThenΓ ⊢F s :C τ iff σ =TS τ .

Proof: By induction on the type derivation, and by case on thelast judgement applied, using functional
preservation for arrow types.Variables is trivial. ForFunctions, the if direction results easily from the
transitivity of=TS , but the only if one is a bit more delicate : letσ1, . . . , σn be the types oft1, . . . , tn with
ξ the associated type substitution in the first type derivation, andσ′

1, . . . , σ
′
n be the types oft1, . . . , tn with

ξ′ the associated type substitution in the second type derivation. By induction hypothesis,σ′
i =TS σi,

henceσiξ
′ =TS σiξ and thereforeσξ′ =TS σξ by compatibility of signature declarations with type

instantiations. We conclude then easily by transitivity of=TS . ForAbstraction, since a type equivalent
to σ → τ is of the formσ′ → τ ′ with σ′ =TS σ and τ ′ =TS τ , we use the fact that, by induction
hypothesis,t :C τ ′ iff τ ′ =TS τ . ForApplication , we use the induction hypothesis ont to haveτ ′ =TS τ
and the induction hypothesis ons to ajust the type for the application rule to make sense. 2

This will allow us to talk aboutthe type(up to equivalence) of a candidate term.
Note finally three easy, but important properties of the set of candidate terms:

1. Becauseβ-reduction is type preserving, the set of candidate terms isclosed underβ-reductions;

2. Becauseβ-reduction is strongly normalizing for a typedλ-calculus with arbitrary constants, the
set of candidate terms is well-founded with respect toβ-reductions (consider a signature in which
f : σ′

1 × . . . × σ′
n → σ′ ∈ F providedf : σ1 × . . . × σn → σ ∈ F with σ′

i =TS σi for every
i ∈ [1..n] andσ′ =TS σ;

3. HORPO applies to candidate terms as well, by keeping the same definition.

Candidate terms are used throughout Subsections 3.2 and 3.3.

3.2 Ordering properties of HORPO

From now on, we will mostly compare terms, forgetting about the whole judgements which can be in
general inferred from the context. This is made easier by thefact that the typing environment and the
type itself do not change along a derivation.

A weakness of our definition is that the relation≻horpo does not satisfy transitivity. This is not a
theoretical problem, however, because we will show that it is well-founded, hence its transitive closure is
a well-founded ordering. On the practical side, the use of the transitive closure of≻horpo may sometimes
be necessary, as we will see later.

All properties studied in this section refer to candidate terms.

Lemma 3.7 (Monotonicity) ≻horpo is monotonic for candidate terms of equivalent types.

Proof: Assume thats :C σ≻horpo t :C τ with σ =TS τ . We have to consider three possible cases.

• Let f : . . . × α × . . . → θ be a function symbol such thatαξ =TS σ =TS τ , for some type
instantiationξ. If f ∈ Mul, thenf(. . . s . . .) :C θξ≻horpo f(. . . t . . .) :C θξ follows by case 3.
Otherwise, iff ∈ Lex, then{. . . s . . .}(≻horpo)lex{. . . t . . .} and, for everyv ∈ {. . . t . . .}, there
existsu ∈ {. . . s . . .} such thatu�horpo v. Therefore,f(. . . s . . .)≻horpo f(. . . t . . .) by case 4.

• If s, t andu have appropriate types, then@(s, u)≻horpo @(t, u) and@(u, s)≻horpo @(u, t) follow
by case 10.

• Similarly,λx.s≻horpo λx.t follows by case 11.
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Finally, we can concludeu[s] :C ρ≻horpo u[t] :C ρ for all termsu :C ρ, by induction on the size ofu. 2

This of course implies the monotonicity of the quasi-ordering�horpo for candidate terms of equivalent
types.

A key usual consequence of monotonicity is that every subterm of a strongly normalizing term is itself
strongly normalizing. This is true for type preserving derivations, but false in a context like here where
ordering derivations may decrease the type of terms, since a(possibly type decreasing) rewriting of a
subterm cannot be lifted to a rewriting of the whole term. This difficulty, however, cannot happen if
the type of the subterm is minimal. So, the strong normalization property of a term implies the strong
normalization property of its subterms of minimal type. This property will be used later.

Lemma 3.8 (Stability) ≻horpo is stable.

Proof: We prove thatΓ ⊢F s :C σ≻horpo t :C τ impliesΓ · Ran(γ) ⊢F sγ :C σ≻horpo tγ :C τ
for all substitutionγ, by induction on(−→β ∪�, �)lex. Since term substitutions do not affect the typing
judgments, in order to simplify the proof we will only consider the term comparisons of the ordering
and will omit any reference to types and judgements. There are several cases according to the definition.

1. If s≻horpo t by case 1, thensi�horpo t, and by induction hypothesissiγ�horpo tγ, and therefore,
sγ≻horpo tγ by case 1.

2. If s≻horpo t by case 2, thens = f(s), t = g(t), f >F g and for allti :C ρ ∈ t eithers≻horpo ti or
sj �horpo ti for somesj :C ρ′ ∈ s. By induction hypothesis, for alltiγ :C ρ ∈ tγ eithersγ≻horpo tiγ
or sjγ�horpo tiγ for somesjγ :C ρ′ ∈ sγ. Therefore,sγ = f(sγ)≻horpo g(tγ) = tγ by case 2.

3. If s≻horpo t by case 3, thens = f(s), t = g(t), f =F g, f, g ∈ Mul ands(≻horpo)mult. By
induction hypothesissγ(≻horpo)multγ, and hencesγ≻horpo tγ by case 3.

4. If s≻horpo t by case 4, thens = f(s), t = g(t), f =F g, f, g ∈ Lex, s(≻horpo)lext, and for
all ti :C ρ ∈ t eithers≻horpo ti or sj �horpo ti for somesj :C ρ′ ∈ s. By induction hypothesis
sγ(≻horpo)lextγ, and as in the precedence case, by induction hypothesis, forall tiγ :C ρ ∈ tγ either
sγ≻horpo tiγ or sjγ�horpo tiγ for somesjγ :C ρ′ ∈ sγ. Thereforesγ≻horpo tγ by case 4.

5. If s≻horpo t by case 5, the reasonning is similar to Case 1.

6. If s≻horpo t by case 6, thens = λx.u andu�horpo t. Letγ a substitution of domainVar(s)∪Var(t),
hencex 6∈ Dom(γ) by assumption onx. By induction hypothesis,uγ�horpo tγ, hencesγ =
λx.uγ≻horpo tγ by case 6.

7. If s≻horpo t = @(t) by case 7, then for everyti :C ρ ∈ t, eithers≻horpo ti, andsγ≻horpo tiγ
by induction hypothesis, orsj �horpo ti for somesj :C ρ′ ∈ s, andsjγ≻horpo tiγ by induction
hypothesis. Therefore, since@(tγ) is a partial left-flattening oftγ, sγ≻horpo tγ by case 7.

8. If s≻horpo t by Case 8, thent = λx.v with x 6∈ Var(v) ands≻horpo v. By induction hypothe-
sis,sγ≻horpo vγ for evey substitutionγ of domainVar(v) \ {x} such thatx 6∈ Var(vγ), hence
sγ≻horpo tγ = λx.vγ by Case 8.

9. If s = @(s1, s2)≻horpo t = @(t) by case 10, then the proof goes as in case 2, allowing us to
conclude by case 10.

10. If s≻horpo t by case 11, thens = λx.u and t = λx.v andu≻horpo v. Therefore, by induction
hypothesisuγ≻horpo vγ. Assuming thatx /∈ Dom(γ), thensγ = λx.uγ≻horpo λx.vγ = tγ by
case 11.
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11. If s = ≻horpo t by case 12, then the property holds by stability ofβ-reduction. 2

Lemma 3.9≻horpo is compatible.

The proof is left to the reader. Now we prove that≻horpo is polymorphic.

Lemma 3.10 (Polymorphism)≻horpo is polymorphic.

Proof: Here, it is enough to consider terms instead of candidate terms. LetF be a polymorphic
signature,s : σ and t : τ be two terms such thatΓ ⊢ F s : σ≻horpo t : τ . We need to show that
Γξ ⊢F s : σξ≻horpo t : σξ for all type substitutionsξ, and proceed by induction on(−→β ∪�, �)lex.

First, by stability under substitutions of the type ordering, σ ≥TS τ implies σξ ≥TS τξ. Now we
consider several cases according to the definition. As previously, we omit the environment, showing that
s : σ≻horpo t : τ impliess : σξ≻horpo t : τξ.

1. If s : σ≻horpo t : τ by case 1, thens = f(s) with f ∈ F andu : ρ�horpo t : τ , for someu ∈ s
and typeρ. Then by induction hypothesisu : ρξ�horpo t : τξ, and therefore,s : σξ≻horpo t : τξ by
case 1.

2. If s : σ≻horpo t : τ by case 2, thens = f(s), t = g(t), f >F g and for all ti : ρ ∈ t either
s : σ≻horpo ti : ρ or sj : ρ′�horpo ti : ρ for somesj : ρ′ ∈ s. By induction hypothesis, for all
ti : ρξ ∈ t eithers : σξ≻horpo ti : ρξ or sj : ρ′ξ�horpo ti : ρξ for somesj : ρ′ξ ∈ s. Therefore,
s : σξ = f(s)≻horpo g(t) = t : τξ by case 2.

3. If s : σ≻horpo t : τ by case 3, thens = f(s), t = g(t), f =F g, f, g ∈Mul ands : σ(≻horpo)mult :
τ . By induction hypothesiss : σξ(≻horpo)mult : τξ, and hences : σξ≻horpo t : τξ by case 3.

4. If s : σ≻horpo t : τ by case 4, thens = f(s), t = g(t), f =F g, f, g ∈ Lex, s : σ(≻horpo)lext : τ ,
and for allti : ρ ∈ t eithers : σ≻horpo ti : ρ orsj : ρ′�horpo ti : ρ for somesj : ρ′ ∈ s. By induction
hypothesiss : σξ(≻horpo)lext : τξ, and as in the precedence case, by induction hypothesis, forall
ti : ρξ ∈ t eithers : σξ≻horpo ti : ρξ or sj : ρ′ξ�horpo ti : ρξ for somesj : ρ′ξ ∈ s. Therefore
s : σξ≻horpo t : τξ by case 4.

5. If s : σ≻horpo t : τ by case 5, the reasonning is similar as in case 1.

6. If s : σ≻horpo t : τ by case 6, thens = λx.u andu : ρ�horpo t : τ . By induction hypothesis,
u : ρξ�horpo t : τξ, hences : σξ = λx.u : σξ≻horpo t : τξ by case 6.

7. If s : σ≻horpo t = @(t) : τ by case 7, then for everyti : ρ ∈ t, eithers : σ≻horpo ti : ρ, and
s : σξ≻horpo ti : ρξ by induction hypothesis, orsj : ρ′�horpo ti : ρ for somesj : ρ′ ∈ s, and
sj : ρ′ξ≻horpo ti : ρξ by induction hypothesis. Therefore, since@(t) : τξ is a partial left-flattening
of t : τξ, s : σξ≻horpo t : τξ by case 7.

8. If s : σ≻horpo t : τ by Case 8, thent = λx.v with x 6∈ Var(v) ands : σ≻horpo v : ρ. By induction
hypothesis,s : σξ≻horpo v : ρξ, and hences : σξ≻horpo t : τξ = λx.v : τξ by Case 8.

9. If s = @(s1, s2) : σ≻horpo t = @(t) : τ by case 10, then by induction we can conclude again by
case 10.

10. If s : σ≻horpo t : τ by case 11, thens = λx.u andt = λx.v andu : ρ≻horpo v : ρ′. Therefore, by
induction hypothesisu : ρξ≻horpo v : ρ′ξ. Thens : σξ = λx.uγ≻horpo λx.v = t : τξ by case 11.
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11. If s = ≻horpo t by case 12, then the property holds by polymorphism ofβ-reduction. 2

Although the above proofs are slightly more difficult technically than the usual proofs for the recu-
sive path ordering, they follow the same kind of pattern (polymorphism was actually never considered
before). This contrasts with the proof of strong normalization to come.

3.3 Strong Normalization

For the recursive path ordering, strong normalization follows from the fact that it contains the em-
bedding relation which is a well-order by Kruskal’s tree theorem. Since we do not know of any non-
trivial extension of Kruskal’s tree theorem for higher-order terms that includesβ-reductions (and wasted
much of our time in looking for an appropriate one), we will adopt a completely different method, the
computability predicate proof method due to Tait and Girard. This proof method will also suggest an
important improvement of our ordering, discussed in Section 4.

Note that, as a bi-product, we obtain a proof of well-foundedness for the recursive path ordering on
first-order terms which does not rely on Kruskal’s theorem. It should be pointed out here that, in the
first-order case, a very simple part of Tait’s method is used,since there is no need of the computability
predicate. What is used is the technique based on the fact that, given an arbitrary strongly normalizing
substitutionγ, one can then build an induction argument to prove that, for an arbitrary termt, the termtγ
is strongly normalizing. The identity substitution being trivially strongly normalizable, we then conclude
for t. This proof technique had previously been used in a first order context in [15].

Since there is no type application in our calculus, our (weak) notion of polymorphism does not interfer
with rewriting, hence with strong normalization. It is therefore sufficient to prove the strong normaliza-
tion property of the calculus for a monomorphic signature (obtained by decorating each monomorphic
instance of a function symbol by its type declaration, yielding a possibly infinite signature) which we
start doing now.

We give no more than the necessary details for the understanding of the reader, assuming some famil-
iarity with the computability (also called reducibility) candidates method of Tait and Girard [16].

3.3.1 Candidate interpretation of ground types

Again, this section refers to candidate terms, rather than to candidate judgements. Our definition of
computability for candidate terms of a ground type is standard, but we make sure that computability
is compatible with the equivalence=TS on types. Technically, we denote by[[σ]] the computability
predicate of the typeσ, which, by construction, will be equal to the predicate[[α]] for any typeα =TS σ.

Without loss of generality, we assume a global environment for variables.

Definition 3.11 The family ofcandidate interpretations{[[σ]]}σ∈TS is the family of subsets of the set of
candidates whose elements are the least sets satisfying thefollowing properties:

(i) If σ is a data type, thens :C σ ∈ [[σ]] iff t ∈ [[τ ]] ∀t :C τ such thats≻horpo t
(ii) If s :C σ = τ → ρ thens ∈ [[σ]] if @(s, t) ∈ [[ρ]] for everyt ∈ [[τ ]];
A candidate terms of ground typeσ is said to becomputableif s ∈ [[σ]]. A vectors of terms is

computable iff so are all its components.

The above definition is based on a lexicographic combinationof an induction on the well-founded
type ordering>→

TS
, and a fixpoint computation for data types. The existence of aleast fixpoint is ensured

by the monotonicity of the underlying family (indexed by theset of data types) of functionals with
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respect to set inclusion. By an ”induction on the definition of the candidate interpretations”, we mean
an outer induction on the type ordering>→

TS
followed by an inner induction on the fixpoint computation.

The following important property is a straightforward consequence of the definition, Lemma 3.6 and
functional preservation:

Lemma 3.12 Assumeσ =TS τ . Then[[σ]] = [[τ ]].

The next lemma follows easily as well, by induction onn:

Lemma 3.13 Let σ = σ1 → . . . → σn → τ , wheren > 0. Thens ∈ [[σ]] iff @(s, t1, . . . , tn) ∈ [[τ ]] for
all t1 ∈ [[σ1]], . . . , tn ∈ [[σn]].

In the sequel, we will always assume that functional types are in canonical form and thatn > 0 in
σ = σ1 → . . .→ σn → τ .

We first recall the properties of the interpretations.

Property 3.14 (Computability Properties)
(i) Every computable term is strongly normalizable;
(ii) Assuming thats is computable ands�horpo t, thent is computable;
(iii) A neutral terms is computable ifft is computable for everyt such thats≻horpo t;
(iv) If t be a vector of computable terms such that@(t) is a candidate term, then@(t) is computable;
(v) λx : σ.u is computable iffu{x 7→ w} is computable for every computable termw :C σ;
(vi) Let s :C σ ∈ T min

S . Thens is computable iff it is strongly normalizable.

Note that variables are not asumed to be computable. Variables of a data type are of course com-
putable by definition since they have no reduct. But variables of a functional type will be computable
by Property 3.14 (iii). This will actually forbid us to provethe computability properties (i), (ii) and
(iii) separately. A possible alternative would be modify the definition of the computability predicates by
adding the property that variables of a functional type are computable. This would make the properties
(i), (ii) and (iii) independant to the price of other complications.

Proof:

• Property (iv). Straigtforward induction on the length oft.

• Properties (i), (ii), (iii).

Note first that the only if part of property (iii) is property (ii). We are left with (i), (ii) and the if
part of (iii) which we now spell out as follows:

Given a typeσ, a terms :C σ ∈ [[σ]], a termt :C τ such thats≻horpo t, and a neutral termu :C σ
such thatw :C θ ∈ [[θ]] for everyw such thatu≻horpo w, we prove by induction on the definition of
[[σ]] that (i)s is strongly normalizable, (ii)t is computable, and (iii)u is computable.

1. Assume first thatσ is a data type.

(i) All reducts ofs are computable by definition of the interpretations, hence strongly normal-
izable by induction hypothesis, and therefore, so iss.

(ii) By definition of the candidate interpretations.
(iii) By definition of the candidate interpretations.

2. Assume thatσ is a functional type.
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(i) Let s :C σ = θ0≻horpo s1 :C θ1 . . .≻horpo sn :C θn≻horpo . . . be a derivation issuing from
s. Note thatsn ∈ [[θn]] by assumption forn = 0 and repeated applications of induction
property (ii) otherwise. Such derivations are of the following two kinds:
(a) σ >TS θn for somen, in which casesn is strongly normalizable by induction hypothe-

sis, hence the derivation issuing froms is finite;
(b) θn =TS σ for all n, in which case, the sequence of terms@(sn, y :C σ1) :C σ2 →

. . . σn → τ is well-typed, and strictly decreasing by monotonicity Lemma 3.7. Since
σ >→

TS
σ1, y :C σ1 is computable by induction hypothesis (iii), hence, by definition,

@(sn, y) is computable. By induction hypothesis (i), the above sequence is again finite.
(ii) Let σ = θ → ρ. By arrow preservation and arrow decreasing properties, there are two

cases:
(a) ρ ≥TS τ . Sinces is computable,@(s, u) is computable for everyu ∈ [[θ]]. Let y :C θ.

By induction hypothesis (iii),y ∈ [[θ]], hence@(u, y) is computable. Since@(s, y) :C
ρ≻horpo t :C τ by case 5 of the definition, we conclude by induction hypothesis (ii) that
t is computable.

(b) τ = θ′ → ρ′, with θ =TS θ′ andρ ≥TS ρ′. Sinces is computable, givenu ∈ [[θ]], then
@(s, u) ∈ [[ρ]], hence, by induction hypothesis (ii)@(t, u) ∈ [[ρ′]]. Since[[θ]] = [[θ′]] by
Lemma 3.12,t ∈ [[τ ]] by definition of the interpretations.

(iii) Let σ = σ1 → . . . → σn → τ , wheren > 0 andτ is a data type. By Lemma 3.13,t is
computable iff@(t, u1, . . . , un) is computable for arbitrary termsu1 ∈ [[σ1]], . . . , un ∈ [[σn]]
which are strongly nor malizable by Property 3.14 (i). By definition, asτ is a data type,
@(t, u1, . . . , un) is computable iff so are all its reducts.
We prove by induction on the multiset of computable terms{u1, . . . , un} ordered by
(�horpo)mul the property (H) stating that termsw strictly smaller than@(t, u1, . . . , ui) in
≻horpo are computable. Takingi = n yields the desired property. Ifi = 0, terms strictly
smaller thant are computable by assumption. For the general case(i + 1) ≤ n, we need
to consider all termsw strictly smaller than@(@(t, u1, . . . , ui), ui+1). Sincet is neutral,
hence is not an abstraction, there are two possible cases:
(a) @(@(t, u1, . . . , ui), ui+1)≻horpo w by Case 5. There are again two possibilities:

– @(t, u1, . . . , ui)�horpo w, and therefore@(t, u1, . . . , ui)≻horpo w for type reason since
w is also a reduct of@(t, u1, . . . , ui+1). We then conclude by induction hypothesis
(H).

– ui+1�horpo w. We conclude by assumption and induction property (ii).
(b) @(@(t, u1, . . . , ui), ui+1)≻horpo w by Case 10, hencew = @(w). By definition of the

multiset extension and for type reasons, there are the following two possibilities:
– for all v ∈ w, either@(t, u1, . . . , ui)≻horpo v, andv is computable by induction

hypothesis (H), orui+1�horpo v, in which casev is computable by assumption and
induction property (ii). It follows thatw is computable by Property 3.14 (iv).

– w1 = @(t, u1, . . . , ui) andui+1≻horpo w2, implying thatw2 is computable by as-
sumption and induction property (ii). By induction property (H), all reducts ofw are
computable. Sincew andt have the same (data) type,w is therefore computable by
induction property (iii).

As a consequence, all reducts of@(t, u1, . . . , un) are computable and we are done. 2

• Property (v).
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The only if part is property (ii) together with the definitionof computability. For the if part, as-
suming thatu{x 7→ s} is computable for an arbitrary computables, we prove that@(λx.u, w) is
computable for an arbitrary computablew.

Since variables are computable by property (iii),u = u{x 7→ x} is computable by assumption. By
property (i),u andw are strongly normalizable. Sinceλx.u�horpo v impliesu�horpo v or v = λx.u′

andu�horpo u′, an easy induction onu shows thatλx.u is strongly normalizable as well. We will
prove that@(λx.u, w) is computable by induction on the pair{λx.u, w} ordered by(≻horpo)lex.
By property (iii), the neutral term@(λx.u, w) is computable iffv is computable for allv such that
@(λx.u, w)≻horpo v. There are several cases to be considered.

1. If the comparison is by case 5, there are two cases:
- if w�horpo v, we conclude by property (ii).
- if λx.u≻horpo v, there are two cases. Ifu�horpo v by case 6, we conclude by property
(ii) again. Otherwise,v = λx.u′ andu≻horpo u′, henceu{x 7→ w}≻horpo u′{x 7→ w} by
Lemma 3.8. By assumption and property (ii),u′{x 7→ w} is therefore computable. Hence,
@(v, w) is computable by induction hypothesis applied to the pair(v = λx.u′, w). We then
conclude by definition of the interpretations thatv is computable.

2. If the comparison is by case 10, thenv = @(v) and all terms in{v} are smaller thanw or λx.u.
There are two cases:
- v1 = λx.u andw≻horpo vi for i > 1. Thenvi is computable by property (ii) and, since
u{x 7→ v2} is computable by the main assumption,@(v1, v2) is computable by induction
hypothesis. Ifv = @(v1, v2), we are done, and we conclude by Lemma 3.13 otherwise.
- For all other cases, terms inv are reducts ofλx.u andw. Reducts ofw and reducts ofλx.u
which are themselves reducts ofu are computable by property (ii). If all terms inv are such
reducts,v is computable by Lemma 3.13.
Otherwise, for typing reason,v1 is a reduct ofλx.u of the formλx.u′ with u≻horpo u′, and
all other terms inv are reducts of the previous kind. By the main assumption,u{x 7→ v′′}
is computable. Besides,u{x 7→ v′′}≻horpo u′{x 7→ v′′} by stability property of the ordering.
Thereforeu′{x 7→ v′′} is computable by Property (ii). By induction hypothesis,@(v1, v2) is
again computable. Ifv = @(v1, v2), we are done, otherwisev is computable by Lemma 3.13.

3. Otherwise,@(λx.u, w)≻horpo v by case 12, thenu{x 7→ w}�horpo v. By assumption,u{x 7→
w} is computable, and hencev is computable by property (ii).

• Property (vi).

The only if direction is property (i). For the if direction, let s be a strongly normalizable term of
typeσ ∈ T min

S . We prove thats is computable by induction on≻horpo. Sinceσ is a data type,s
must be neutral. Let nows≻horpo t :C τ , henceσ ≥TS τ . By definition ofT min

S , τ =TS σ, hence,
by Lemma 3.1,τ is a data type, and sinceσ is minimal, so isτ , henceτ ∈ T min

S . By assumption on
s, t must be strongly normalizable, and by induction hypothesis, it is therefore computable. Since
this is true of all reducts ofs, by definitions is computable. 2

The following lemma and proof are both essential:

Lemma 3.15 Letf : σ → τ ∈ F ands :C σ be a vector of computable terms. Thenf(s) is computable.
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Proof: Since terms ins are computable, by Property 3.14 (i), they are strongly normalizable. We use
this remark to build our induction argument: we prove thatf(s) is computable by induction on the pair
(f, s) ordered lexicographically by(>F , (≻horpo)statf )lex.

Sincef(s) is neutral, by Property 3.14 (iii), it is computable iff every t such thatf(s)≻horpo t is
computable, which we prove by an inner induction on the size of t. We discuss according to the possible
cases of the definition of≻horpo.

1. Let f(s)≻horpo t by case 1, hencesi�horpo t for somesi ∈ s. Sincesi is computable,t is com-
putable by Property 3.14 (ii).

2. Let s = f(s)≻horpo t by case 2. Thent = g(t), f >F g and for everyv ∈ t eithers≻horpo v, in
which casev is computable by the inner induction hypothesis, oru�horpo v for someu ∈ s andv
is computable by Property 3.14 (ii). Therefore,t is computable, and sincef >F g, t is computable
by the outer induction hypothesis.

3. If f(s)≻horpo t by case 3, thent = g(t), f =F g, ands(≻horpo)mult. By definition of the multiset
comparison, for everyti ∈ t there is somesj ∈ s, s.t.sj �horpo ti, hence, by Property 3.14 (ii),ti is
computable. This allows us to conclude by the outer induction hypothesis thatt is computable.

4. If f(s)≻horpo t by case 4, thent = g(t), f =F g, s(≻horpo)lext and for everyv ∈ t either
f(s)≻horpo v or u�horpo v for someu ∈ s. As in the precedence case, this implies thatt is com-
putable. Then, sinces(≻horpo)lext, t is computable by the outer induction hypothesis.

5. If f(s)≻horpo t by case 7, let@(t1, . . . , tn) be the partial left-flattening oft used in that proof. By
the same token as in case 2, every term int is computable, hencet is computable by Property 3.14
(iv).

6. If f(s)≻horpo t by case 8, thent = λx.u with x 6∈ Var(u), andf(s)≻horpo u. By the inner
induction hypothesis,u is computable. Hence,u{x 7→ w} = u is computable for any computable
w, and therefore,t = λx.u is computable by Property 3.14 (v). 2

3.3.2 Strong normalization proof

Lemma 3.16 Letγ be a computable substitution andt be an algebraicλ-term. Thentγ is computable.

Proof: The proof proceeds by induction on the size oft.

1. t is a variablex. Thenxγ is computable by assumption.

2. t is an abstractionλx.u. By Property 3.14 (v),tγ is computable ifuγ{x 7→ w} is computable for
every well-typed computable candidate termw. Takingδ = γ ∪{x 7→ w}, we haveuγ{x 7→ w} =
u(γ ∪ {x 7→ w}) sincex may not occur inγ. Sinceδ is computable and|t| > |u|, by induction
hypothesis,uδ is computable.

3. t = @(t1, t2). Thent1γ andt2γ are computable by induction hypothesis, hencet is computable by
Property 3.14 (iv).

4. t = f(t1, . . . , tn). Thentiγ is computable by induction hypothesis, hencetγ is computable by
Lemma 3.15. 2
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We can now easily conclude the proof of well-foundedness needed for our main theorem, by showing
that every term is strongly normalizable with respect to≻horpo.

Proof: Given an arbitrary termt, let γ be the identity substitution. Sinceγ is computable,t = tγ is
computable by Lemma 3.16, and strongly normalizable by Property 3.14 (i). 2

3.4 Examples

The following classical example gives a set of rewrite rulesdefining the insertion algorithm for the
(ascending or descending) sort of a list of natural numbers.

Example 6 Insertion Sort. LetS = {IN, List} and
F = {nil :→ List; cons : IN × List → List; max, min : IN × IN → IN; insert : IN × List ×
(IN × IN → IN) × (IN × IN → IN) → List; sort : List × (IN × IN → IN) × (IN × IN → IN) →
List; ascending sort, descending sort : List→ List}.

max(0, x) → x max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))

min(0, x) → 0 min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))

We simply need the precedencemax, min >F 0 for these first-order rules.

insert(n, nil, X, Y ) → cons(n, nil)
insert(n, cons(m, l), X, Y ) →

cons(X(n, m), insert(Y (n, m), l, X, Y ))

The firstinsert rule is easily taken care of by applying case 2 with the precedenceinsert >F cons, and
then case 1. For the secondinsert rule, we apply first case 2, and we recursively need to show: firstly,
thatinsert(n, cons(m, l), X, Y )≻horpo @(X, n, m), which follows by applying rule 2, and then case 1
recursively; and secondly thatinsert(n, cons(m, l), X, Y )≻horpo insert(Y (n, m), l, X, Y ), which suc-
ceeds as well by case 4, with a right-to-left lexicographic status forinsert, and calling recursively with
insert(n, cons(m, l), X, Y )≻horpo @(Y, n, m), which is solved by case 10.

sort(nil, X, Y ) → nil
sort(cons(n, l), X, Y ) →

insert(n, sort(l, X, Y ), X, Y )

Again, these rules are easily oriented by≻horpo, by using the precedencesort >F insert.
On the other hand,≻horpo fails to orient the following two seemingly easy rules.

ascending sort(l) →
sort(l, λxy.min(x, y), λxy.max(x, y))

descending sort(l) →
sort(l, λxy.max(x, y), λxy.min(x, y))

This is so, because the termλxy.min(x, y) occuring in the lefthand side has type IN→ IN → IN, which
is not comparable to any lefthand side type. We will come backto this example in Section 7. 2

We now come to a more tricky example, where we will need the transitive closure of the ordering to
show termination of a rule, that is, we will need to invent amiddle terms such thatl≻horpo s≻horpo r
for some rulel → r.
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Example 7 (Surjective Disjoint Union, taken from [10]) LetS = {A, B, U}, α ∈ {A, B, U}, F =
{inl : A→ U ; inr : B → U ; caseα : U × (A→ α)× (B → α)→ α}. The rules are the following:

caseα(inl(X), F, G) → @(F, X)
caseα(inr(Y ), F, G) → @(G, Y )

caseα(Z, λx.H(inl(x)), λy.H(inr(y))) → @(H, Z)

The first two rules are taken care of by Case 7. For the last, we show that
caseα(Z, λx.H(inl(x)), λy.H(inr(y)))≻horpo @(λx.H(x), Z)≻horpo @(H, Z).
The first comparison is again done by Case 7, generating the proof obligationλx.H(inl(x))≻horpo λx.H(x),
which suceeds by applying successively Cases 11 and 1. The second comparison is by Case 12. 2

3.5 The ordering on types

Given a partitionMul ⊎ Lex of S called astatus, and a partial quasi-ordering>S on sort construc-
tors called aprecedencesuch that equal constructors ofLex status have the same arity, we define the
following rpo-like quasi ordering on types:

Let A = ∀v ∈ τ σ ≻
horpo

v

Definition 3.17 σ ≥TS τ iff

1. σ = c(σ) andσi ≥TS τ for someσi ∈ σ

2. σ = α→ β, andβ ≥TS τ

3. σ = c(σ) andτ = d(τ) with c >S d, andA

4. c = d ∈Mul andσ(≥TS )mulτ

5. c = d ∈ Lex andσ(≥TS )lexτ , andA

6. σ = α→ β, τ = α′ → β ′ andα =TS α′ andβ ≥TS β ′

where>TS and=TS are respectively the strict ordering and the equivalence associated with≥TS .
We will also write≥rpo for the full recursive path ordering on types generated by the given precedence

and statuses onS.

Note that, because of the subtem property for sort symbols,∀v ∈ τ σ≻horpo v oru�horpo v for someu ∈
σ andA are equivalent propositions. We will later use this remark.

Definition 3.18 A function symbolf : σ1 × . . . × σn → σ ∈ F is compatibleif ∀ξ ∈ Var(σ), ∃τ ∈
{σ1, . . . , σn} such thatτ |p = ξ for somep ∈ Dom(τ), and∀q < p, τ(q) ∈ Lex.

Compatibility can of course always be ensured by giving the lexicographic status to all sort symbols.

Proposition 3.19≥TS is a type ordering satisfying containement (with respect to≥rpo), well-foundedness
and arrow-subterm property of≥rpo, functional preservation, stability under type substitution, and sig-
nature compatibility iff all function symbols are compatible.

31



Proof: The first three properties follow from the fact that≥TS ∪ �→ is included in the recursive
path ordering generated by the precedence on the type constructors. Functionnal preservation is easy
to verify. For stability, the if part is easy. For the converse, it is enough to show a counterexample to
signature compatibility when a function symbol is not compatible. This is left to the reader. 2

All examples given so far can use the above type ordering, provided the appropriate precedence on
type constructors is given by the user.

3.6 A uniform ordering on terms and their types

Assuming we chose the above ordering as our type ordering, weare now going to reformulate the
entire ordering by taking advantage of the facts that types are indeed first-order terms, that the above
type ordering is a restriction of Dershowitz’s recursive path ordering, and that the higher-order recursive
path ordering restricts to the recursive path ordering for the case of first-order terms. This will enable us
to have a single definition for ordering terms and types.

For making uniformity possible, we add a new constant in our language,∗, such that all types have
themselves type∗. We omit the straightforward type system for typing types, which only aims at verify-
ing arities of sorts symbols.∗ will therefore be the only non-typable term in the language.

3.6.1 Statuses and Precedence

We assume given
- a partitionMul⊎Lex of F ∪S ∪{@} such that@ ∈Mul and all function symbols are compatible.
- a well-founded quasi-ordering≥FS onF ∪ S, called theprecedence, such that

1. if f : σ → σ =FS g : τ → τ , thenσ =TS τ andf ∈ Lex iff g ∈ Lex andσ(=FS)monτ ;

2. variables are considered as constants incomparable in>FS among themselves and with other func-
tion symbols.

3.6.2 Definition of the ordering

To ease the reading (as well as the writing!), we omit environments in this new definition.

Definition 3.20

Givens : σ andt : τ, s ≻
horpo

t iff σ = τ = ∗ or σ �
horpo

τ and

1. s = f(s) with f ∈ FS, andu �
horpo

t for someu ∈ s

2. s = f(s) andt = g(t) with f >FS g, andA

3. s = f(s) andt = g(t) with f =FS g ∈Mul ands( ≻
horpo

)mult

4. s = f(s) andt = g(t) with f =FS g ∈ Lex ands( ≻
horpo

)lext, andA

5. s = @(s1, s2) andu �
horpo

t for someu ∈ {s1, s2}

6. s = λx : σ.u, x 6∈ Var(t) andu �
horpo

t
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7. s = f(s), @(t) is an arbitrary left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands �
horpo

v

9. s = @(s1, s2), @(t) is an arbitrary left-flattening oft and{s1, s2}( ≻
horpo

)mult

10. s = λx : α.u, t = λx : β.v, α=β andu ≻
horpo

v

11. s = @(λx.u, v) andu{x 7→ v} �
horpo

t

12. s = α→ β, andβ �
horpo

t

13. s = α→ β, t = α′ → β ′, α =
horpo

α′ andβ ≻
horpo

β ′

whereA = ∀v ∈ t s ≻
horpo

v or u �
horpo

v for someu ∈ s

This uniform formulation of the higher-order recursive path ordering opens the way to its general-
ization to dependent type calculi such as the calculus of constructions. Indeed, the formulation of the
ordering for the calculus of constructions should by now be clear for the cognitive reader. Our conjecture
is that such an ordering should be well-founded as well, possibly imposing some extra conditions on big
variables as in [38].

In the rest of this paper, we will consider the previous, moregeneral formulation of the higher-order
recursive path ordering in which the ordering on types is defined separately from the ordering on terms.

4 Computational Closure

The ordering is quite sensitive to innocent variations of the language, like adding (higher-order)
dummy arguments to righthand sides orη-expanding higher-order variables. We will solve these prob-
lems by improving our definition in the light of the strong normalization proof. In that proof, it was
crucial to show the computability of the righthand side subterms from the assumed computability prop-
erty of the lefthand side subterms. In our definition, we actually require that for each righthand side
subtermv, there exists a lefthand side subtermu such thatu�horpo v. Assumingu is computable, thenv
is computable by Property 3.14 (ii). But any computability preserving operation applied to the lefthand
side subterms in order to construct a term of the appropriatetype would do as well. For example, the
higher-order variableX is computable if and only ifλx.X(x) is computable. Therefore, both forms
may coexist. This discussion is formalized in subsection 4.1 with the notion of a computational closure
borrowed from [3], with a slightly enhanced formulation.

4.1 The Computational Closure

Definition 4.1 Given a termt = f(t) with f ∈ F , we define itscomputable closureCC(t) asCC(t, ∅),
whereCC(t,V), withV ∩ Var(t) = ∅, is the smallest set of well-typed terms containing all variables in
V, all terms int, and closed under the following operations:

1. subterm of minimal type: lets ∈ CC(t,V), andu : σ be a subterm ofs such thatσ ∈ T min
S and

Var(u) ⊆ Var(t); thenu ∈ CC(t,V);
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2. precedence: letg such thatf >F g, ands ∈ CC(t,V); theng(s) ∈ CC(t,V);

3. recursive call: lets be a sequence of terms inCC(t,V) such that the termf(s) is well typed and
t(≻horpo∪�>TS

)statf s; theng(s) ∈ CC(t,V) for everyg =F f ;

4. application: lets : σ1 → . . . → σn → σ ∈ CC(t,V) andui : σi ∈ CC(t,V) for everyi ∈ [1..n];
then@(s, u1, . . . , un) ∈ CC(t,V);

5. abstraction: letx /∈ Var(t) ∪ V ands ∈ CC(t,V ∪ {x}); thenλx.s ∈ CC(t,V);

6. reduction: letu ∈ CC(t,V), andu�horpo v; thenv ∈ CC(t,V);

7. weakening: letx 6∈ Var(u, t) ∪ V. Then,u ∈ CC(t,V ∪ {x}) iff u ∈ CC(t,V).

As a simple illustration of the use of the definition, let us show how to derive the following extension-
ality property: assumingx 6∈ Var(u)∪V, thenλx.@(u, x) ∈ CC(t,V) iff u ∈ CC(t,V). Let us prove first
the if direction. Assuming without loss of generality thatx 6∈ Var(t), by weakening,u ∈ CC(t,V∪{x}).
By basic case,x ∈ CC(t,V ∪ {x}), hence, by application,@(u, x) ∈ CC(t,V ∪ {x}), and by ab-
straction, we getλx.@(u, x) ∈ CC(t,V). For the converse, starting fromλx.@(u, x) ∈ CC(t,V),
we getλx.u ∈ CC(t,V) by reduction because@(u, x)�horpo u by Case 5 of definition 3.3 and hence
λx.@(u, x)�horpo λx.u by Case 11 of definition 3.3, and thenu ∈ CC(t,V) by reduction again, because
λx.u�horpo u by Case 6 of definition 3.3.

Similarly, we can easily show that the abstraction rule is indeed an equivalence, by using weakening,
application and reduction.

Note that we use≻horpo instead ofβ-reduction as in [22] in Case 6. The derivation of the extension-
ality rule shows the usefulness of rule 6. On the other hand, it makes the membership of a term to the
computational closure undecidable. But it becomes decidable if its use is bounded. In pratice, we can of
course restrict the use of�horpo by allowing a single step only, which is enough for all examples to come
(it is enough for the extensionality property as well, by using an alternative proof). A similar remark
applies to the recursive call case.

The rules we have given are meant to be used in a goal-orientedway. Using them in a forward chaining
way makes essential use of weakening, but weakening is needed for backward chaining also, as seen
from our coming examples. Note that the definition of the computational closure is easily extendable
when new closure properties are established, since it is defined by a set of Horn clauses.

An important remark is that we use the previously defined ordering�horpo in Case 6 and the relation
≻horpo∪�>TS

in Case 3 of the closure definition instead of simplyβ-reductions andβ ∪ �-reductions
respectively as in [22]. And indeed, we will consequently use≻horpo and≻horpo∪�>TS

as induction
arguments in our proofs.

The following property of the computable closure can easilybe shown by induction on the definition:

Lemma 4.2 Assume thatu ∈ CC(t). Then,uγ ∈ CC(tγ) for every substitutionγ.

Proof: We prove that ifu ∈ CC(t,V) with V ⊆ X \ (Var(t) ∪ Var(tγ) ∪ Dom(γ)), thenuγ ∈
CC(tγ,V). We proceed by induction on the definition ofCC(t,V). Note that the property onV depends
on t andγ, but not onu. It will therefore be trivially satisfied in all cases but abstraction and weakening.
And indeed, this is the only cases in the proof which is not routine, hence we do them in detail as well
as Case 1 to show its simplicity.
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Case 1: lets = f(s) : σ ∈ CC(t,V) with f ∈ F and u : τ be a subterm ofs with σ ∈ T min
S and

Var(u) ⊆ Var(t). By induction hypothesis,sγ ∈ CC(tγ,V). By assumption onu, uγ : τ is a
subterm ofsγ : σ andVar(uγ) ⊆ Var(tγ). Therefore,uγ ∈ CC(tγ,V) by Case 1.

Case 5: letu = λx.s with x ∈ X \ (V ∪ Var(t)) ands ∈ CC(t,V ∪ {x}). To the price of renaming the
variablex in s if necessary, we can assume in addition thatx 6∈ Var(tγ) ∪ Dom(γ), and therefore
V ∪ {x} ⊆ X \ (Var(t) ∪ Var(tγ) ∪ Dom(γ)). By induction hypothesis,sγ ∈ CC(tγ,V ∪ {x}).
Sincex 6∈ Var(tγ) ∪ V, by Case 5 of the definitionλx.sγ ∈ CC(tγ,V) and, sincex 6∈ Dom(γ),
we haveuγ = λx.sγ.

Case 7: letV ′ = V ∪ {x}. By definition,u ∈ CC(t,V ′), with x 6∈ Var(u, t) ∪ V. By induction hypothesis
we haveuγ ∈ CC(tγ,V ′), and, sincex 6∈ Var(uγ, tγ) ∪ V, by Case 7, we haveuγ ∈ CC(tγ,V).

Case 6: letu ∈ CC(t,V), andu�horpo v; thenv ∈ CC(t,V); 2

Lemma 4.3 Assume thatu : σ ∈ CC(t : τ). Then,uξ : σξ ∈ CC(tξ : τξ) for every type substitutionξ.

Proof: We prove that ifu : σ ∈ CC(t : τ,V) with V ⊆ X \ Var(t), thenuξ : σξ ∈ CC(t : τξ,Vξ). By
Vξ, we mean that the types of the variables inV are instantiated byξ. We proceed by induction on the
definition ofCC(t,Vxi).

If u : σ is inVξ or in tξ it holds directly. Otherwise there are several cases according to the definition.

Case 1: lets = f(s) : σ′ ∈ CC(t,V) with f ∈ F andu : σ be a subterm ofs with σ ∈ T min
S (which implies

that σ is ground) andVar(u) ⊆ Var(t). By induction hypothesis,sξ : σ′ξ ∈ CC(t : τξ,Vξ).
Therefore, sinceσ = σξ ∈ T min

S anduξ : σξ is a subterm ofs : σ′ξ, we haveuξ : σξ ∈ CC(t :
τξ,Vξ) by Case 1.

Case 2: letu = g(u) : σ with g such thatf >F g, andu : σ ∈ CC(t : τ,V). Then, by induction hypothesis,
we haveuξ : σξ ∈ CC(t : τξ,Vξ) and henceuξ = g(uξ) : σξ ∈ CC(tξ : τξ,Vξ) by Case 2.

Case 3: letu = g(u) : σ andt = f(t) : τ with f =F g, u : σ in CC(t : τ,V) andt : τ (≻horpo∪�>TS
)statf u :

σ. Then, by polymorphism of≻horpo and�>TS
(the latter due to the stability under type substutions

of the type ordering), we havet : τξ(≻horpo∪�>TS
)statf u : σξ. Since, by induction hypothesis,

uξ : σξ in CC(tξ : τξ,Vξ), we can concludeuξ = g(uξ) : σξ ∈ CC(tξ : τξ,Vξ) by Case 3.

Case 4: letu = @(s, u1, . . . , un) : σ with s : σ1 → . . . → σn → σ ∈ CC(t : τ,V) andui : σi ∈
CC(t : τ,V) for every i ∈ [1..n]. Then, by induction hypothesis, we havesξ : σ1ξ → . . . →
σnξ → σξ ∈ CC(tξ : τξ,Vξ) anduiξ : σiξ ∈ CC(tξ : τξ,Vξ) for everyi ∈ [1..n]. Therefore
uξ = @(sξ, u1ξ, . . . , unξ) : σξ ∈ CC(tξ : τξ,Vξ) by Case 4.

Case 5: letu = λx.s : σ1 → σ2 with x ∈ X \ (V ∪ Var(t)) ands : σ2 ∈ CC(t : τ,V ∪ {x}). By induction
hypothesis,sξ : σ2ξ ∈ CC(tξ : τξ,Vξ ∪ {x : σ1ξ}), and henceλx.sξ : σ1ξ → σ2ξ ∈ CC(tξ :
τξ,Vxi) by Case 5 of the definition.

Case 6: lets : ρ ∈ CC(t : τ,V) with s : ρ�horpo u : σ. By polymorphism of�horpo, we haves :
ρξ�horpo u : σξ and, by induction hypothesis, we havesξ : ρξ ∈ CC(tξ : τξ,Vξ). Therefore,
uξ : σξ ∈ CC(tξ : τξ,Vξ); by Case 6.

Case 7: letV ′ = V∪{x}. By definition,u : σ ∈ CC(t,V ′), with x 6∈ Var(u, t)∪V ′. By induction hypothesis
we haveuξ : σξ ∈ CC(tξ : τξ,V ′ξ), and hence, by Case 7, we haveuξ : σξ ∈ CC(tξ : τξ,Vξ). 2
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4.2 The Higher-Order Recursive Path Ordering with Closure

From now on, both orderings≻horpo and≻chorpo will coexist. We first give a more general formulation
of the propositionA:

A = ∀v ∈ t s ≻
chorpo

v or u �
chorpo

v for someu ∈ CC(s)

Definition 4.4

s : σ ≻
chorpo

t : τ iff σ ≥TS τ and

1. s = f(s) with f ∈ F , and (i)u �
chorpo

t for someu ∈ s or (ii) t ∈ CC(s)

2. s = f(s) with f ∈ F andt = g(t) with f >F g, andA

3. s = f(s) andt = g(t) with f, g ∈Mul, f =F g, ands ( ≻
chorpo

)mul t

4. s = f(s) andt = g(t) with f, g ∈ Lex, f =F g, ands ( ≻
chorpo

)lex t andA

5. s = @(s1, s2), ands1 �
chorpo

t or s2 �
chorpo

t

6. s = λx : α.u with x 6∈ Var(t), andu �
chorpo

t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands ≻
chorpo

v

9. s = @(s1, s2), t = @(t) is a partial left-flattening oft and{s1, s2}( ≻
chorpo

)mul{t}

10. s = λx : α.u, t = λx : β.v, α =TS β, andu �
chorpo

v

11. s = @(λx : α.u, v) andu{x 7→ v} �
chorpo

t

The definition is recursive, and we can show that it is well-founded by comparing pairs of terms in
the well-founded ordering(≻horpo, �)right−to−left−lex.

As an easy consequence of Case 1, we obtain thats = f(s) : σ≻chorpo t : τ with f ∈ F if σ = τ
andt ∈ CC(s). This shows that the technique based on the general schema, essentially based on the
closure mecanism introduced by Blanqui, Jouannaud and Okada [3], is a very particular case of the
present method. This does not necessarily mean that the latter outperforms the former. It could be that
the ordering mecanism is kind of redundant with the closure mecanism. We do not think so, however,
since we were able to prove many examples that the general schema could not. Besides, this new method
inherits all the advantages of the recursive path ordering based methods, in particular it is possible to
combine it with interpretations based techniques [35].

The proofs of Lemmas 3.7, 3.8 and 3.10 are easy to adapt (usingnow Lemma 4.2 for the proof of the
new version of Lemma 3.8 and Lemma 4.3 for Lemma 3.10) to the ordering with closure:

Lemma 4.5≻chorpo is monotonic for terms of equivalent types, stable, and polymorphic.
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4.3 Strong Normalization

We first show that terms in the computable closure of a term arecomputable under the appropriate
hypotheses for their use in a comparison.

First, the computability predicate is of course now defined with respect to≻chorpo. To show that
the computability properties remain valid, we simply observe that there is no change whatsoever in the
proofs, since the rules applying to application-headed terms did not change. For this, it is crucial to
respect the given formulation of Case 5, avoiding the use of the closure as in Case 1. Actually, we could
have defined a specific, weaker closure for terms headed by an application, to the price of doing again
the two most complex proofs of the computability properties. We did not think it was worth the trouble.

Second, we are still using the previous ordering≻horpo in the definition of the new ordering≻chorpo,
via the closure definition in particular. We will therefore need to prove that≻horpo ⊆ ≻chorpo in order
to apply the induction arguments based on the well-foundedness of≻chorpo on some appropriate set of
terms. The following lemma is important for the proof of Property 4.7:

Lemma 4.6≻horpo ⊆ ≻chorpo.

The importance of this lemma comes from the computability properties. By the above inclusion,
any term smaller than a computable term in the ordering≻horpo will therefore be computable by Prop-
erty 3.14 (ii).

We come to the main property of terms in the computable closure, which justifies its name:

Property 4.7 Assumet : τ is computable, as well as every termg(s) with s computable andg(s) smaller
thant = f(t) in the ordering(>F , (≻horpo∪�>TS

)statf )lex operating on pairs〈f, t〉. Then every term in
CC(t) is computable.

The precise formulation of this statement arises from its forthcoming use inside the proof of Lemma 4.8.
Proof: We prove thatuγ : σ is computable for every computable substitutionγ of domainV and every

u ∈ CC(t,V) such thatV ∩Var(t) = ∅. We obtain the result by takingV = ∅. We proceed by induction
on the definition ofCC(t,V).

For the basic case: ifu ∈ V, thenuγ is computable by the assumption onγ; if u ∈ t, we conclude
by the assumption thatt is computable, sinceuγ = u by the assumption thatV ∩ Var(t) = ∅; and if u
is a subterm off(t), we again remark thatγ acts as the identity on such terms, and therefore, they are
computable by assumption.

For the induction step, we discuss the successive operations to form the closure:

case 1:u is a subterm of type inT min
S of somev ∈ CC(t,V). By induction hypothesis,vγ is computable,

hence strongly normalizable by Property 3.14 (i). By monotonicity of ≻chorpo for terms of equiva-
lent types,uγ is also strongly normalizable, and hence computable by Property 3.14 (vi).

case 2:u = g(u) whereu ∈ CC(t,V). By induction hypothesis,uγ is computable. Sincef >F g, uγ is
computable by our assumption that terms smaller thanf(t) are computable.

case 3:u = g(u) wheref =F g, u ∈ CC(t,V) andVar(u) ⊆ Var(t). By induction hypothesis,uγ is
computable. By assumption, and monotonicity of reductions, tγ(≻horpo∪�>TS

)statf uγ. Therefore
uγ = g(uγ) is computable by our assumption that terms smaller thanf(t) are computable.

case 4: by induction and Property 3.14 (iv).
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case 5: letu = λx.s with x 6∈ V ands ∈ CC(t,V ∪ {x}). To the price of possibly renamingx, we can
assume without loss of generality thatx 6∈ Dom(γ) ∪ Var(t). As a first consequence,V ∪ {x} ∩
Var(t) = ∅; as a second, given an arbitrary computable termw, γ′ = γ∪{x 7→ w} is a computable
substitution of domainV ∪ {x}. By induction hypothesis,sγ′ is therefore computable, and by
Property 3.14 (v),(λx.s)γ is computable.

case 6: by Property 3.14 (ii).

case 7: by induction hypothesis. 2

We now restate Property 3.15 and show in one case how the proofmakes use of Property 4.7.

Lemma 4.8 Letf ∈ F and lett be a set of terms. Ift is computable, thenf(t) is computable.

Proof: We prove thatf(t) is computable if terms int are computable by an outer induction on the pair
〈f, t〉 ordered lexicographically by the ordering(>F , (≻chorpo∪�>TS

)statf )lex, and an inner induction on
the size of the reducts oft. Since terms int are computable by assumption, they are strongly normalizable
by Property 3.15(ii), hence, by Lemma 2.27 the ordering(>F , ((≻chorpo∪�>TS

)stat)lex is well founded
on the pairs satisfying the assumptions.

By Lemma 4.6, the set of pairs smaller than the pair〈f, t〉 for the ordering(>F , (≻chorpo∪�>TS
)stat)lex

contains the set of pairs that are smaller than that pair for the ordering(>F , (≻horpo∪�>TS
)stat)lex. This

key remark allows us to use Property 4.7.
The proof is actually similar to the proof of Property 3.15, except for case 1 and for the cases using

propertyA. We therefore do Cases 1 and 2, the latter using propertyA.

case 1: letf(t)≻chorpo s by case 1, henceti�horpo s for someti ∈ t or s ∈ CC(t). In the former case, since
ti is computable,s is computable by Property 3.14 (ii); in the latter case, all terms smaller than
f(t) with respect to(>F , (�horpo)stat)lex are computable by induction hypothesis and the above
key remark, hences is computable by Property 4.7.

case 2: lett = f(t)≻chorpo s by case 2. Thens = g(s), f >F g and for everysi ∈ s eithert≻chorpo si, in
which casesi is computable by the inner induction hypothesis, orv�chorpo si for somev ∈ CC(t),
in which casev is computable by Property 4.7 and hencesi is computable by Property 3.14 (ii).
We then conclude thats is computable the by outer induction hypothesis sincef >F g. 2

Theorem 4.9≻chorpo is included in a polymorphic higher-order reduction ordering.

Proof: Thanks to Property 4.7, the strong normalization proof of this improved ordering is exactly
the same as previously, using of course Lemma 4.8 instead of Lemma 3.15. Using now Lemma 4.5,
we therefore conclude that the transitive closure of≻chorpo is a higher-order polymorphic reduction
ordering. 2

4.4 Examples

This new definition is much stronger than the previous one. Inaddition to allowing us proving the
strong normalization property of the remaining rules of thesorting example, and for the same reason,
the following rule can be added to the other rules of Example 2:

Example 8 n ∗m → rec(n, 0, λz1z2.m + z2)
This additional rule can be proved terminating with the precedence:∗ >F {rec, +, 0}, sinceλz1z2.m+

z2 ∈ CS(n∗m): by base case,m andz2 belong toCC(n∗m, {z1, z2}), hencem+z2 ∈ CC(n∗m, {z1, z2})
by case 2 of the definition of the computational closure. Applying case 5 twice yields then the result.2
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The coming example is quite classical too.

Example 9 Let S = {NList : ∗, List : ∗ → ∗}, S∀ = {α}, F = {0, 1 :→ α; + : α × α → α; nil :→
NList; cons : α × NList → List(α); cons : α × List(α) → List(α); foldl : (α → α → α) × α ×
NList→ α; foldl : (α→ α→ α)× α× List(α)→ α; sum : List(α)→ α; +c : α→ α→ α}.
The rules are the following:

{x : α, F : α→ α→ α} ⊢ foldl(F, x, nil) → x
{x, y : α, F : α→ α→ α, l : NList} ⊢ foldl(F, x, cons(y, l)) → foldl(F, (F x y), l)
{x, y : α, F : α→ α→ α, l : List(α)} ⊢ foldl(F, x, cons(y, l)) → foldl(F, (F x y), l)

+c → λxy.x + y
{l : List(α)} ⊢ sum(l) → foldl(+c, 0, l)

The first rule is by subterm case. For the second, we set a right-to-left lexicographic status forfoldl,
and, applying rule 4, we recursively have to show thatcons(y, l)≻chorpo l, which succeeds by subterm,
andF on the righthand side being taken care of byF on the lefthand one, we are left to show that
foldl(F, x, cons(y, l))≻chorpo @(F, x, y), which succeeds easily by rule 7.

For the third, we show thatλxy.x + y is in the closure of+c, provided+c >F +.
For the last, we need the precedencesum >F {flodl, +c, 0} in order to show that the righthand side

is in the closure of the lefthand one. 2

The following example, a definition of formal derivation, illustrates best the power of the computa-
tional closure.

Example 10 Let S = {form}, F = {D : (form → form) → (form → form); ∀, ∃ : (form →
form)→ form; 0, 1 :→ form; −, sin, cos, ln : form→ form; +,×, / : form×form→ form}.
The rules are the following:

D(λx.y) → λx.0
(λx.x) → λx.1

{F : form→ form} ⊢ D(λx.sin(F x)) → λx.cos(F x)× (D(F ) x)
{F : form→ form} ⊢ D(λx.cos(F x)) → λx.− sin(F x)× (D(F ) x)
{F, G : form→ form} ⊢ D(λx.(F x) + (G x)) → λx.(D(F ) x) + (D(G) x)
{F, G : form→ form} ⊢ D(λx.(F x)× (G x)) → λx.(D(F ) x)× (G x) + (F x)× (D(G) x)
{F : form→ form} ⊢ D(λx.ln(F x)) → λx.(D(F ) x)/(F x)

We takeD >F {0, 1,×,−, +, /} for precedence and assume that the function symbols are inMul. We
do the first rule and the one before last.

SinceD >F 0, D(λx.y)≻chorpo 0 by precedence case, and sincex 6∈ Var(0), D(λx.y)≻chorpo λx.0
by precedence case for abstractions.

An alternative proof uses the computational closure : sinceD >F 0, 0 ∈ CC(D(λx.y), {x}) by prece-
dence case, henceλx.0 ∈ CC(D(λx.y)) by abstraction. Therefore,D(λx.y)≻chorpo λx.0 by subterm
case.

For the rule before last, we show again that the right hand side is in the closure of the lefthand one and
apply the subterm case. Since it is more complicated, we willtake this opportunity to do a goal-directed
proof, using a stack of subgoals:
Initial goal (for sake of clarity, we rename the bound variables and make applications explicit):
λy.@(D(F ), y)×@(G, y) + @(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))))
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By abstraction, we obtain the new subgoal:
@(D(F ), y)×@(G, y) + @(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By precedence, we obtain now two subgoals:
@(D(F ), y)×@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By precedence again, we obtain two new subgoals:
@(D(F ), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By application:
D(F ) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
y ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By recursive call (note thatλx.(@(F, x)×@(G, x)) �>TS

F ):
F ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
y ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By extensionality (which has been proved already):
λx.@(F, x) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
y ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By reduction (sinceλx.(@(F, x)×@(G, x))≻horpo λx.@(F, x) by Cases 1 and 11):
λx.(@(F, x)×@(G, x)) ∈ CC(D(λx.(@(F, x)×@(G, x))), {x, y});
y ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By basic case, the first goal now disappers:
y ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By basic case again, the first subgoal disappears:
@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y});
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By abstraction:
λy.@(G, y) ∈ CC(D(λx.(@(F, x)×@(G, x))));
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By reduction as before (renaming the bound variabley into x):
λx.(@(F, x)×@(G, x)) ∈ CC(D(λx.(@(F, x)×@(G, x))));
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y})
By basic case, the first subgoal disappears and we are left with a single subgoal:
@(F, y)×@(D(G), y) ∈ CC(D(λx.(@(F, x)×@(G, x))), {y}) which is now solved as previously.2
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This example can therefore be entirely solved by the mechanism of the closure. This does not mean
that it could be already solved with the same proof by the technique developped in [3], where the com-
putational closure was first introduced without any other mecanism. The point is that the closure defined
here is more powerful thanks to case 6 based on≻horpo instead of simply usingβ-reductions as in [3].

Note that our proof is goal-directed, but not syntax directed. The use of reductions (actually ex-
pansions in this backward chaining use of the rules) needs some user interaction to provide with the
appropriate term reducing to the goal. This is however, at least in this example, a rather simple task that
could be performed with an appropriate tactic.

We are not completely satisfied with this computation, though, because the structural definition of the
ordering has been completely lost here. We would prefer to improve the ordering so as to do some of the
computation via the ordering and delegate the hard parts only to the more complex closure mecanism.
For the time being, however, the closure mechanism is the only one which applies to rules whose right-
hand side is an abstraction with the bound variable occurring in the body, assuming that the lefthand side
of rule is not itself an abstraction.

The next example (uncurrying) shows again the need of more user-interaction via the use of a middle
term. So, the fact that≻chorpo is not transitive appears also as a weakness of the ordering.

Example 11 First, to a signatureF , we associate the signature

F curry =

{

fi : σ1 × . . .× σi → (σi+1 → . . .→ σp → τ) for everyi ∈ [0..p] |
f : σ1 × . . .× σn → (σn+1 → . . .→ σp → τ) ∈ F whereτ is a data-type

}

and we introduce the following rewrite rules for currying/uncurrying:

{t1 : σ1, . . . , tj+1 : σj+1} ⊢ fj+1(t1, . . . , tj+1) → @(fj(t1, . . . , tj), tj+1)
{t1 : σ1, . . . , ti+1 : σi+1} ⊢ @(fi(t1, . . . , ti), ti+1) → fi+1(t1, . . . , ti+1)

Starting with the first rule, we setfj+1 >F fj . Since the use of case 7 fails for type reason when
comparingfj+1(t1, . . . , tj+1) andfj+1(t1, . . . , tj), we proceed to show that the righthand side is in the
closure of the lefthand one. By application, we have to show that both subtermsfj(t1, . . . , tj) andtj+1

are in the closure. This is trivial for the second, and results from the precedence case for the first.
Trying now to prove that the lefthand side of the second rule is bigger than the righthand one, we set

fi >F fi+1, and the only possible case is subterm. But the comparisonfi(t1, . . . , ti)≻chorpo fi+1(t1, . . . , ti+1)
cannot succeed since there is a new free variable(ti+1) in the righthand side. The computational closure
does not help either here, since it is generated from the set{fi(t1, . . . , ti), ti+1}, and there is no way, in
general, to access the termst1, . . . , ti in order to build the righthand side by the precedence rule.

The trick is to invent a middle term, and show that the lefthand side is bigger than the righthand one in
thetransitive closureof the ordering. The convenient middle term here is@(λx.fi+1(t1, . . . , ti, x), ti+1),
which reduces to the righthand side by the use of Case 11. We therefore simply need to show that
the lefthand side is bigger than the middle term. Since both terms are headed by an abstraction, we
simply need to prove thatfi(t1, . . . , ti)≻chorpo λx.fi+1(t1, . . . , ti, x), which we prove now by showing
that the righthand side term is in the closure of the lefthandside one. Indeed, now,t1, . . . , ti, x ∈
CC(fi(t1, . . . , ti), {x}), and by precedence,fi+1(t1, . . . , ti, x) ∈ CC(fi(t1, . . . , ti), {x}), and we con-
clude by abstraction. We see here that the middle term allowed us to pop up the subtermfi(t1, . . . , ti) of
the lefthand side of rule, allowing to make the termst1, . . . , ti available in the closure offi(t1, . . . , ti).
Although this looks as a trick, the (type) conditions for applying this trick sucessfully can be easily
characterized and hence implemented, making it transparent for the user. We will indeed use it again for
solving another example later.

41



Remark that we can accomodate a mixture of currying and uncurrying by chosing an appropriate well-
founded precedence for selecting the right number of arguments desired for a given function symbol.2

We end this section with two examples showing yet another (temporary) weakness of our ordering.

Example 12 (adapted from [26]) LetS = {List}, S∀ = {α}, F = {nil : List, cons : α × List →
List, fcons : (α→ α)→ List, dapply : α× (α→ α)× (α→ α)→ α, lapply : α× List→ α}. The
rules are the following:

{F, G : α→ α, x : α} ⊢ dapply(x, F, G) → F (G(x))
{x : α} ⊢ lapply(x, nil) → x

{F : α→ α, x : α, l : List} ⊢ lapply(x, cons(F, L)) → F (lapply(x, L))

The first two rules are straightfoward. For the third, we facethe problem thatF is not in the closure
of the lefthand side, as a higher-order variable occuring inside a strict subterm of a lefthand side ar-
gument. Although arbitrary subterms may yield non-terminating sequences as shown in [19], where a
non-terminating example is constructed by using such a deepvariable, this is not the case here:cons be-
ing the free list constructor, its subterms are indeed computable whenever the whole term is computable.
This example can therefore be solved by adding this propertyto the closure, see Section 7 for details.2

A second, more serious weakness shows up with the following example about process algebra, in
which a quantifier namedΣ binds variables via the use of a functional argument, that is, an abstraction:

Example 13 (taken from [11]) LetS = {proc, data},F = {+ : proc×proc→ proc, · : proc×proc→
proc, δ :→ proc, Σ : (data→ proc)→ proc)}. Here,+ stands for the choice operator,· for sequential
composition,δ for deadlock, andΣ for the data dependent choice. The rules are the following:

{x : proc} ⊢ x + x → x
{x, y, z : proc} ⊢ (x + y) · z → (x · z) + (y · z)
{x, y, z : proc} ⊢ (x · y) · z → x · (y · z)
{x : proc} ⊢ x + δ → x
{x : proc} ⊢ δ · x → δ
{x : proc} ⊢ Σ(λd : data.x) → x

{D : data, P : data→ proc} ⊢ Σ(λd : data.P (d)) + P (D) → Σ(λd : data.P (d))

{P, Q : data→ proc} ⊢











Σ(λd : proc.P (d) + Q(d))
→

Σ(λd : proc.P (d)) + Σ(λd : proc.Q(d))
{x : proc, P : data→ proc} ⊢ Σ(λd : data.P (d)) · x → Σ(λd : data.(P (d) · x))

The first eight rules can be easily oriented by using our ordering (without the closure mechanism) with
the precedence{·, Σ} >F +. For the last rule, we cannot use the precedence case of the ordering
(assuming nowΣ >F +), since we would end up withλd : data.(P (d) · x) on the right, whose type
is data → proc, hence cannot be smaller than the whole lefthand side. But the closure does not work
either, since our two starting terms areΣ(λd : data.P (d)) andx, which cannot help for building the
righthand side. This is quite surprising, since no application occurs in the example, apart from the
terms like@(P, d) applying a higher-order variable to a term. Having inductive types would help again,
provided we use the recent ideas from [5] : by reaching under the constructors· andΣ, λd : data.(P (d),
henceP (d) would be in the closure. It is then easy to reconstruct the righthand side. We develop an
alternative technique in section 5 that could also be used here. 2
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5 Normalized Rewriting

The purpose of this section is to give aβ-stable subrelations(≻horpo)
η
β of ≻horpo and(≻chorpo)

η
β of

≻chorpo, in order to prove the strong normalization property of normalized rewriting.
First, we remark that≻horpo and≻chorpo themselves (without neutralized positions) are notβ-stable.

The following example shows the kind of terms which cause a violation ofβ-stability by≻chorpo:

Example 14 @(X, f(a)) = X(f(a))≻horpo X(a) = @(X, a) and X(a)≻horpo a
while instantiating these comparisons with the substitutionγ = {X 7→ λy.a} yields:
X(f(a))γ↓ = X(a)γ↓ = a which contradictsβ-stability. 2

Fortunatelly this is the only situation in whichβ-stability can be violated. We will therefore restrict
the orderings≻horpo and≻chorpo by forbidding the kind of comparison suggested by example 14.

5.1 The Normalized Higher-Order Recursive Path Ordering

We sketch here the definition of(≻horpo)
η
β on (arbitrary) terms:

Definition 5.1 The relation(≻horpo)
η
β is defined as≻horpo but restricting cases 5 and 9 as follows :

5. s = @(s1, s2), s1 is not an abstraction nor a variable andu( �
horpo

)η
β t for someu ∈ {s1, s2}

9. s = @(s1, s2), t = @(t) is a partial left-flattening oft, s1 is not an abstraction nor a variable and
{s1, s2}(( ≻

horpo
)η
β )mul{t}

Lemma 5.2 (≻horpo)
η
β is aβ-stable andη-polymorphic subrelation of≻horpo.

Proof: The fact that(≻horpo)
η
β is a subrelation of≻horpo is an easy consequence of their definitions:

both relations differ only in Cases 5 and 9, by forbidding variables and abstractions as first argument
of the lefthand side application in both cases. The proofs ofstability and polymorphism can then be
obtained from the proofs of Lemmas 5.19 and 5.9 as a particular case. 2

5.2 The Normalized Computational Closure

We can now define the adequate version of the computational closure. Notice that we do not assume
terms to be normalized in this definition. The reason is that taking possibly non-normalized terms allows
to have more normalized terms in the closure on the one hand, and eases the coming stability proof on the
other hand. In practice, we only need to collect normalized terms from the closure, since the righthand
sides of rules (as well as the lefthand ones indeed) are assumed to be normalized.

First we need to restrict the type decreasing subterm relation�>TS
:

Definition 5.3 Let≥TS be a type ordering, and let us writes : σ �x
>TS

t : τ iff t = s|p is a subterm ofs
such that (i) no superterms|q<p of t in s is of the form@(x, v) with x a variable, (ii)σ ≥TS τ and (iii)
Var(u) ⊆ Var(t).

Definition 5.4 Given a termt = f(t) with f ∈ F , we define itsnormalized computable closureCCη
β(t)

as the set of tail normal terms inCCη
β(t, ∅), whereCCη

β(t,V), withV ∩ Var(t) = ∅, is the smallest set of
well-typed terms containing all variables inV, all terms int andt↑ 6=Λ, and closed under the following
operations:
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1. restricted subterm of minimal type: lets ∈ CCη
β(t,V), andu : σ = s|p be a subterm ofs such

that (i) no superterms|q<p of u in s is of the form@(w, v) with w a variable or an abstraction, (ii)
σ ∈ T min

S and (iii) Var(u) ⊆ Var(t); thenu ∈ CCη
β(t,V);

2. precedence: letg such thatf >F g, ands ∈ CCη
β(t,V); theng(s) ∈ CCη

β(t,V);

3. recursive call: lets be a sequence of terms inCCη
β(t,V) such that the termf(s) is well typed and

t(≻horpo∪�>TS
)statf s; theng(s) ∈ CCη

β(t,V) for everyg =F f ;

4. application: lets : σ1 → . . .→ σn → σ ∈ CCη
β(t,V), andui : σi ∈ CC

η
β(t,V) for everyi ∈ [1..n];

then@(s, u1, . . . , un) ∈ CC
η
β(t,V);

5. abstraction: letx /∈ Var(t) ∪ V ands ∈ CCη
β(t,V ∪ {x}); thenλx.s ∈ CCη

β(t,V);

6. reduction: letu ∈ CCη
β(t,V), andu�horpo v; thenv ∈ CCη

β(t,V);

7. weakening: letx 6∈ Var(u, t) ∪ V. Then,u ∈ CCη
β(t,V ∪ {x}) iff u ∈ CCη

β(t,V).

Lemma 5.5 Let t = f(t). ThenCCη
β(t) ⊆ CC(t).

Proof: The proof follows from an easy induction on the definition of CCη
β(t,V), using the fact that

(≻horpo)
η
β is a subrelation of≻horpo. 2

We now prove the stability properties of the closure.

Lemma 5.6 Letu ∈ CCη
β(t,V) for someV. Thenu ↓, u ↑, u↑ 6=Λ andu l belong toCCη

β(t,V).

Proof: Foru ↓, we simply use Case 6, and foru ↑ andu↑ 6=Λ, we use successively Cases 7, 4 and 5.

Corollary 5.6.1 Let t = f(t) be a tail expanded term, andu ∈ t↑ 6=Λ. Thenu ∈ CCη
β(t).

Lemma 5.7 Let t = f(t) be a term andγ be a substitution. Ifu ∈ CCη
β(t) thenuγ ∈ CCη

β(tγ).

Proof: The proof is the same as the proof of Lemma 4.2.

Lemma 5.8 Let t = f(t) be a term andγ be a substitution. Ifu ∈ CCη
β(t) thenuγ↓∈ CCη

β(tγ↓).

Proof: LetV be a set of variables such thatV ⊆ X \ (Var(t) ∪ Var(tγ) ∪ Dom(γ)).
We prove thatu ∈ CCη

β(t,V) impliesuγ↓∈ CCη
β(tγ↓,V) by induction on the definition ofCCη

β(t,V).
We assume thatDom(γ) ⊆ Var(t).

If u ∈ V thenuγ↓= u ∈ V, and henceuγ↓∈ CCη
β(tγ↓,V). If u ∈ t, thenuγ↓∈ tγ↓, and therefore

uγ↓∈ CCη
β(tγ↓,V). Otherwise, we discuss with respect to the cases of definition 5.4, of which Cases 1, 4

and 7 are the only not entirely straightforward ones.

1. If u : σ ∈ CCη
β(t,V) by Case 1, thenu = s|p for somes ∈ CCη

β(t,V) with p ∈ Pos(s), σ ∈ T min
S

andVar(u) ⊆ Var(t). By induction hypothesis,sγ↓∈ CCη
β(tγ↓,V). By assumption, no superterm

of u in s is of the form@(w, v) with w with w an abstraction or a variable, henceuγ↓= s↓ |p,
with p ∈ Pos(sγ↓), Var(uγ) ⊆ Var(tγ), and, by subject reduction property of−→β, uγ : σ.
Therefore,uγ↓∈ CCη

β(t,V) by Case 1.

2. If u ∈ CCη
β(t,V) by case 4, thenu = @(s, u1, . . . , un) ∈ CC

η
β(t,V), wheres, u1, . . . , un ∈

CCη
β(t,V). By induction hypothesis,sγ ↓, u1γ ↓, . . . , unγ ↓∈ CC

η
β(tγ ↓,V), and therefore,@(sγ ↓

, u1γ↓, . . . , unγ↓) ∈ CC
η
β(tγ↓,V) by Case 4. Using Case 6 repeatedly,uγ↓∈ CCη

β(tγ↓,V).
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3. Case 7 follows from the assumption on the variables inV. 2

Lemma 5.9 Let t = f(t) be a term andξ be a type substitution. Ifu ∈ CCη
β(t) thenuξ ∈ CCη

β(tξ).

Proof: The proof is the same as the proof of Lemma 4.3.

Lemma 5.10 Letu ∈ CCη
β(f(t),V). Thenu↑ 6=Λ, u ↑∈ CCη

β(f(t ↑),V).

Proof: By Lemma 5.6, it suffices to prove it for anyone ofu ↑ 6=Λ, u ↑. We do it by induction on the
definition ofCCη

β(t,V), and proceed with the interesting cases:

1. Base case. Ifu : σ ∈ V, then, by definition of the closure,u ↑ 6=Λ= u ∈ CCη
β(f(t ↑),V); If u ∈ t,

thenu ↑∈ t ↑, henceu ↑∈ CCη
β(f(t ↑),V).

2. Case 1. Assume thats ∈ CCη
β(t,V), and letu : σ = s|p. By induction hypothesis,s ↑ 6=Λ∈

CCη
β(f(t ↑),V). Now, u ↑ 6=Λ= s ↑ |q for someq which satisfies the same properties asp, and we

are done.

3. Case 4. Assumeu, s1, . . . , sn are inCCη
β(t,V). By induction hypothesis,u↑ 6=Λ, s1 ↑, . . . , sn ↑ are in

CCη
β(f(t ↑),V). By Case 4,@(u ↑ 6=Λ, s1 ↑, . . . , sn ↑) = @(u, s1, . . . , sn) ↑ 6=Λ is in CCη

β(f(t ↑),V).
2

Since the closure contains only tail normal terms, we get:

Corollary 5.10.1 Letu ∈ CCη
β(f(t)). Thenu ∈ CCη

β(f(t ↑)).

5.3 The Normalized Higher-Order Recursive Path Ordering

Definition 5.11 Let the propositionA be:

∀v ∈ t s( ≻
chorpo

)η
β v or u( �

chorpo
)η
β v for someu ∈ CCη

β(s)

s : σ( ≻
chorpo

)η
β t : τ iff σ ≥TS τ and

1. s = f(s) with f ∈ F , and (i)u( �
chorpo

)η
β t for someu ∈ s or (ii) t ∈ CCη

β(s)

2. s = f(s) with f ∈ F andt = g(t) with f >F g, andA

3. s = f(s), t = g(t) with f =TS g ∈Mul, ands(( ≻
chorpo

)η
β )mult

4. s = f(s), t = g(t) with f =TS g ∈ Lex ands(( ≻
chorpo

)η
β )lext, andA

5. s = @(s1, s2), s1 6∈ X ands1( �
chorpo

)η
β t or s2( �

chorpo
)η
β t

6. s = λx : α.u with x 6∈ Var(t), andu( �
chorpo

)η
β t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands( �
chorpo

)η
β v

45



9. s = @(s1, s2), t = @(t) is a partial left-flattening oft, s1 6∈ X and{s1, s2}(( ≻
chorpo

)η
β )mul{t}

10. s = λx : α.u, t = λx : β.v, α =TS β, andu( �
chorpo

)η
β v

11. s = @(λx : α.u, v) andu{x 7→ v}( �
chorpo

)η
β t

12. t = λx.@(v, x) with x 6∈ Var(v) ands( ≻
chorpo

)η
β v

We start now proving its closure properties with respect to term and type instantiation. We start with
polymorphism, whose proof is quite different from the proofof polymorphism for plain higher-order
rewriting, and much more complicated. As a preparation, we study the behaviour of the ordering with
respect toη-expansions.

Lemma 5.12 Assume thats(�chorpo)
η
β t, wheres is tail η-expanded. Thent is tail η-expanded.

Proof: By inspecting all cases in the definition. 2

Lemma 5.13 Assumes(≻chorpo)
η
β t : σ, whereσ = σ → τ is canonical. Thens(≻chorpo)

η
β λx :

σ.@(t, x).

Note that the form of the typeσ → τ is the most general possible.
Proof: By induction on the size ofσ and applications of Case 12 of the definition. 2

Corollary 5.13.1 Assumes(≻chorpo)
η
β t for some tail expanded termss, t. Thens(≻chorpo)

η
β t ↑.

Lemma 5.14 Assume thats : σ(�chorpo)
η
β t : σ′, andσ is the canonical typeσ1 → . . . σn → τ . Then

λx : σ.@(s, x)(�chorpo)
η
β t.

Proof: By induction onn. If n = 0, we are done. Otherwise, by Case 5,@(s, xn)(�chorpo)
η
β t for

somexn : σn 6∈ Var(t), and therefore, by Case 6, we getλxn : σn.@(s, xn)(�chorpo)
η
β t, and we can

now conclude by induction hypothesis. 2

Corollary 5.14.1 Assumes(�chorpo)
η
β t for some tail expanded termss, t. Thens ↑ (�chorpo)

η
β t.

Lemma 5.15 Assume thats : σ(�chorpo)
η
β t : σ′, σ is the canonical typeσ1 → . . . σn → τ andσ′ is the

canonical typeσ′
i1
→ . . . σip → τ1 → . . .→ τq → τ ′ with

(i) 1 ≤ i1 < . . . < ip ≤ n,
(ii) σ′

ik
=TS σik for everyk ∈ [1..p],

(iii) τ ≥TS τ1 → . . .→ τq → τ ′.
Thenλx : σ.@(s, x)(�chorpo)

η
β λy : σ′λz : τ .@(t, y, z).

Note that the form of the typeσ′ is the most general possible, since it follows from the fact that
σ ≥TS σ′ which itself follows from the assumption thats : σ(�chorpo)

η
β t : σ′. Besides, in cases andt

are tail expanded (resp. tail normal), thenλx : σ.@(s, x) andλy : σ′λz : τ .@(t, y, z) areη-expended
(resp. normalized).

Proof: First of all, in cases is a variableX, thent = X and the result is clear. Otherwise, we discuss
by induction onn + p + q and by cases on their respective values.

1. Assume thatq 6= 0. Then, by Case 12 applied to the assumption, we gets : σ(�chorpo)
η
β λzq.@(t, zq),

and we can conclude by the induction hypothesis.
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2. Assume thatq = 0 andp = 0. Thenq = 0 and we are done.

3. Assume thatq = 0, p 6= 0 andip = n. Then, by Case 10 applied to the assumption (and assuming
without loss of generality thatxn = yip), we getλxn.@(s, xn)(�chorpo)

η
β λyip.@(t, yip), and we can

conclude again by the induction hypothesis.

4. Assume thatq = 0, p 6= 0 andip 6= n. Sinces is not a variable,@(s, xn)(�chorpo)
η
β t for some

xn : σn 6∈ Var(t) by Case 5, and therefore, by Case 6,λxn.@(s, xn)(�chorpo)
η
β t, and we can

conclude again by the induction hypothesis. Note that the typing conditions in order to apply the
induction hypothesis are all fullfilled. 2

Corollary 5.15.1 Assumes(�chorpo)
η
β t for some tail expanded termss, t. Thens ↑ (�chorpo)

η
β t ↑.

Lemma 5.16 Assume thats(≻chorpo)
η
β t. Thens↑ 6=Λ (≻chorpo)

η
β t↑ 6=Λ.

Proof: The proof thats↑ 6=Λ (�chorpo)
η
β t↑ 6=Λ is by induction on the definition of the ordering.

First, we remark that propertyA : ∀v ∈ t either (i)f(s)(�chorpo)
η
β v or (ii) u(�chorpo)

η
β v for some (tail

normal)u ∈ CCη
β(f(s)) implies propertyA ↑: ∀v ∈ t ↑ either (i)f(s ↑)(�chorpo)

η
β v or (ii) u(�chorpo)

η
β v

for some (tail normal)u ∈ CCη
β(f(s ↑)).

For (i), we getf(s ↑)(�chorpo)
η
β v↑ 6=Λ by induction hypothesis, and thereforef(s ↑)(�chorpo)

η
β v ↑ by

Corollary 5.13.1.
For (ii), we getu ↑ 6=Λ= u(�chorpo)

η
β v ↑ 6=Λ by induction hypothesis, and thereforeu(�chorpo)

η
β v ↑ by

Corollary 5.13.1. We conclude by Corollary 5.10.1.
PropertyA ↑ assumes thatv is always fully expanded. This is actually not the case when it is used in

Case 7, because the first argument of a fully expanded application is tail expanded. There is no difficulty
in proving this slightly modified form ofA ↑, and we will use it without mentioning further this subtlety.

1. Case 1 (i). By induction hypothesis,u↑ 6=Λ (�horpo)
η
β t↑ 6=Λ. By Corollary 5.14.1,u ↑ (�horpo)

η
β t↑ 6=Λ,

and therefore,f(s ↑)(�chorpo)
η
β t↑ 6=Λ by Case 1 (i).

Case 1 (ii). By Lemma 5.10,t↑ 6=Λ= t ∈ CCη
β(f(s ↑)), hencef(s ↑)(�chorpo)

η
β t↑ 6=Λ by Case 1 (ii).

2. Case 2. By the above propertyA ↑, we getf(s ↑)(≻chorpo)
η
β g(t ↑), which is our goal.

3. Case 3. By induction hypothesis, Corollary 5.15.1 and Case 3.

4. Case 4. By induction hypothesis, propertyA ↑, Corollary 5.15.1 and Case 4.

5. Case 5. By applying successively the induction hypothesis to s1(�chorpo)
η
β t, or the induction

hypothesis tos2(�chorpo)
η
β t followed by Corollary 5.14.1, and then Case 5.

6. Case 6. By induction hypothesis and Case 6.

7. Case 7. By propertyA ↑ and Case 7.

8. Case 8. By induction hypothesis and Case 8.

9. Case 9. By induction hypothesis, Corollarys 5.14.1, 5.13.1 and 5.15.1 when needed, and Case 9.

10. Case 10. By induction hypothesis and Case 10.

11. Case 11. By induction hypothesisu{x 7→ v} ↑ 6=Λ (�chorpo)
η
β t ↑ 6=Λ. Sinceu{x 7→ v} ↑ 6=Λ= u ↑ 6=Λ

{x 7→ v↑ 6=Λ}, we get@(λx : σ.u↑ 6=Λ, v↑ 6=Λ) = s↑ 6=Λ (�horpo)
η
β t↑ 6=Λ by Case 11.
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12. Case 12. By induction hypothesis,s↑ 6=Λ (�chorpo)
η
β v↑ 6=Λ= t↑ 6=Λ and we are done. 2

Lemma 5.17 Let s(�horpo)
η
β t andξ be a type substitution. Thensξ�chorpo tξ.

Proof: The proof is the same as the proof of Lemma 3.10, using now Lemma 5.9. 2

Theorem 5.18The ordering(�chorpo)
η
β is η-polymorphic.

Proof: By Lemmas 5.17 and 5.16.
We are left withβ-stability. In order to prove it, we show a technical property characterizing the exact

behaviour of the ordering with respect to instantiations:

Lemma 5.19 Let s and t be tail normal candidate terms. Ifs (≻chorpo)
η
β t then for all tail normal

substitutionsγ there is a candidate termw such thatsγ↓ (≻chorpo)
η
β w−→∗

β tγ↓.

Proof: By induction on the definition of(≻chorpo)
η
β , and by cases according to the definition.

First, PropositionA : ∀v ∈ t s( ≻
chorpo

)η
β v or u( �

chorpo
)η
β v for someu ∈ CCη

β(s) implies Proposition

Aγ↓: ∀vi = tiγ↓ ∃wi such thatwi−→∗
β tiγ↓ and











(i) sγ↓ ( ≻
chorpo

)η
β wi, or

(ii) u( �
chorpo

)η
β wi for someu ∈ CCη

β(sγ↓)

by an easy use of the induction hypothesis, noting that termsfrom the closure are tail normal.

1. Case 1. Lets = f(s)(≻chorpo)
η
β t with f ∈ F , and

• (i) u(�chorpo)
η
β t for someu ∈ s. By induction hypothesis, there exists a termw such that

uγ↓ (�chorpo)
η
β w−→∗

β tγ↓. By Case 1 (i), we getsγ↓ (≻chorpo)
η
β w−→∗

β tγ↓.

• (ii) t ∈ CCη
β(s). By lemma 5.8,tγ↓∈ CCη

β(sγ↓), hencesγ↓ (≻chorpo)
η
β tγ↓ by Case 1 (ii) and

we can takew = tγ↓.

2. Case 2. Lets = f(s)(≻chorpo)
η
β t = g(t) with f, g ∈ F , f >F g, andA. By PropositionAγ↓, taking

w = g(w) yieldsg(w)−→∗
β tγ↓. Now, sγ↓= f(sγ↓)(�chorpo)

η
β g(w) by Case 2, becausef >F g

and for everyw ∈ w, either (i)sγ↓ (≻chorpo)
η
β w or (ii) u(�chorpo)

η
β w for someu ∈ CCη

β(sγ↓).

3. Case 3. Ifs = f(s) (≻chorpo)
η
β t = g(t) with f =λF g ∈ Mul ands((�chorpo)

η
β )mult. By induction

hypothesis, there is some multisetw such thatsγ↓ (�chorpo)mulw(−→∗
β)montγ↓. Takingw = g(w),

we getsγ↓ (≻chorpo)
η
β w−→∗

β t by Case 3.

4. Case 4. Lets = f(s)(≻chorpo)
η
β t = g(t) with f =λF g ∈ Lex, (s)((�chorpo)

η
β )lex(t) and

A. By definition of the lexicographic extension, there existssome indexk such thatsi = ti for
i ∈ [1..k − 1] andsk(≻chorpo)

η
β tk. We therefore setwi = siγ↓ for i ∈ [1..k − 1], wk is defined

by the induction hypothesis, and the rest of them by PropertyAγ ↓. As a consequence, we get
sγ ↓ ((�chorpo)

η
β )lexw(−→∗

β)montγ ↓, and propertyA is true of w. Taking w = g(w), we get
sγ↓ (≻chorpo)

η
β w−→∗

β t by Case 4.

5. Case 5. Lets = @(s1, s2)(≻chorpo)
η
β t, s1 6∈ X ands1(�chorpo)

η
β t. By assumption ons1, s1γ↓

cannot be a variable. By assumption ons, it cannot be an abstraction either. Therefore,sγ ↓=
@(s1γ↓, s2γ↓).

By induction hypothesis, there is somew such thats1γ↓ (�chorpo)
η
β w−→∗

β tγ↓, ors1γ↓ (�chorpo)
η
β w−→∗

β tγ↓.
Sinces1γ↓ is not a variable, we getsγ↓= @(s1γ↓, s2γ↓)(≻chorpo)

η
β w−→∗

β tγ↓ by Case 5 and we
are done.
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6. Case 6. Lets = λx : α.u(≻chorpo)
η
β t with x 6∈ Var(t), andu(�chorpo)

η
β t. Sincesγ↓= λx : α.uγ↓

with x 6∈ Var(tγ↓), and, by induction, there is somew s.t. uγ↓ (≻chorpo)
η
β w−→∗

β tγ↓, we can
conclude by case 6 thatλx : α.uγ↓ (≻chorpo)

η
β w−→∗

β tγ↓.

7. Case 7. Lets = f(s)(≻chorpo)
η
β t = @(t) with f ∈ F , @(t) is a partial left-flattening, and

A. Mimicking the proof of case 2, we getsγ ↓ (≻chorpo)
η
β w−→∗

β @((t)γ ↓) for somew. Since
tγ↓= @((t)γ↓)↓, we getw−→∗

β tγ↓, and we are done.

8. Case 8. Lets = f(s)(≻chorpo)
η
β t = λx : α.v with f ∈ F , x 6∈ Var(v) and s(�chorpo)

η
β v.

Sincetγ↓= λx : α.vγ↓ with x 6∈ Var(vγ↓), by induction hypothesis, there is somew such that
sγ↓ (≻chorpo)

η
β w−→∗

β vγ↓. We can conclude by Case 8 thatλx : α.uγ↓ (≻chorpo)
η
β w−→∗

β tγ↓.

9. Case 9. Lets = @(s1, s2)(≻chorpo)
η
β t = @(t) with s1 6∈ X , t is a partial left-flattening and

{s1, s2}((�chorpo)
η
β )mul{t}. Sinces1 6∈ X , s1γ is not a variable either, nor an abstraction by

assumption ons. Therefore,sγ ↓= @(s1γ ↓, s2γ ↓). By induction hypothesis there is a term
w = @(w) such that{s1γ↓, s2γ↓}((�chorpo)

η
β )mulw and@(w)−→∗

β @(tγ↓). Therefore, by case 9,
sγ↓ (≻chorpo)

η
β w. Sincew−→∗

β @(tγ↓)−→∗
β tγ↓, the result holds.

10. Case 10. Lets = λx : α.u(≻chorpo)
η
β t = λx : β.v with α =TS β, andu(�chorpo)

η
β v. Since

sγ ↓= λx : α.uγ ↓ and tγ ↓= λx : β.vγ ↓, by induction hypothesis, there is somew such that
uγ↓ (≻chorpo)

η
β w−→∗

β vγ↓. Therefore, by case 10,sγ↓ (≻chorpo)
η
β λx : β.w−→∗

β tγ↓.

11. Case 11 does not apply sinces is tail normal by assumption.

12. Case 12. Lett = λx : σ.@(v, x) with x 6∈ Var(v) ands(≻chorpo)
η
β v. By induction hypothesis,

there exists some termw such thatsγ↓ (≻chorpo)
η
β w−→∗

β vγ↓. Without loss of generality, we can
assume thatx 6∈ Var(vγ), and therefore, by Case 12,sγ↓ (≻chorpo)

η
β λx : σ.@(w, x)−→∗

β λx :
σ.@(vγ↓, x). Additionalβ-rewrite steps if necessary yield the result. 2

Lemma 5.20 ((≻chorpo)
η
β )+ is aβ-stable subrelation of(≻chorpo)

+.

Proof: By induction on the length of the derivation. Assume that s(≻chorpo)
η
β u((≻chorpo)

η
β )∗t. By

lemma 5.19,sγ ↓ (≻chorpo)
+uγ ↓, sinceβ-reduction is included in≻chorpo. If u = t, we are done.

Otherwise, by induction hypothesis,uγ↓ (≻chorpo)
+tγ↓ and hence,sγ↓ (≻chorpo)

+tγ↓. 2

We can finally conclude:

Theorem 5.21(≻chorpo)
η
β is included in a polymorphic normalized higher-order reduction ordering.

6 Neutralizing abstractions

In our ordering, all arrow type terms are treated as if they could become applied and serve in aβ-
reduction. This makes it difficult to prove the termination of rules whose righthand side has arrow type
subterms which do not occur as lefthand side arguments. In such a case, the use of the computable
closure may sometimes help, but Example 13 shows that this isnot always the case. In this example, the
righthand side arrow type subtermλy.P (y) · x does not receive a special treatment, although it cannot
serve creating a redex in a derivation. We will now improve our ordering by introducing a special
treatment for these terms. The idea is to equip every function symbol with a set of neutralized positions,
which can be seen as an additional status for that purpose.

Notation: In this section, we assume given a new constant⊥σ for every typeσ. We will denote
by Fnew the augmented signature. Because⊥σ has typeσ which may be polymorphic, there is no
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garantee thatFnew is regular. We already discussed this issue in Section 2, andnoted that the unique
typing property was preserved. Note also that for any type instantiationξ and any environmentΓ,
Γ ⊢Fnew

(⊥σ)ξ : τ iff Γ ⊢Fnew
⊥σξ : τ . In the sequel, we will actually identify(⊥σ)ξ with the term

⊥σξ, and assume that the precedence≥F on the extended signature has the following stability property:
f ≥F g impliesfξ ≥F gξ for every type instantiationξ.

Of course, the higher-ordre rules we want to prove terminah ting are built from terms inT (F ,X ), not
in T (Fnew,X ).

6.1 Neutralization and Normalization

Definition 6.1 The i-neutralization, or neutralization of leveli of a termt ∈ T (Fnew,X ) is the term
Ni(t) defined as follows :

1. if i > 0 andt is of the formλx : σ.u thenNi(t) = Ni−1(u{x 7→ ⊥σ});

2. OtherwiseNi(t) = t.

Lemma 6.2 Let t be anη-expanded term andγ be a substitution. ThenNi(tγ) = Ni(t)γ for all i.

Proof: We proceed by induction oni. There are two cases.

1. Assumei > 0 andt is of the formλx : σ.u. Without loss of generality, we can further assume
thatx 6∈ Dom(γ). ThenNi(tγ) = Ni((λx : σ.u)γ) = Ni(λx : σ.uγ) = Ni−1(uγ{x 7→ ⊥σ}) =
Ni−1(uγ′) whereγ′ = γ ∪ {x 7→ ⊥σ}. By induction hypothesis,Ni−1(uγ′) = Ni−1(u)γ′ =
Ni−1(u){x 7→ ⊥σ}γ = Ni(t)γ.

2. Otherwise,Ni(t) = t. Sincet is η-expanded, it cannot be a variable of a functionnal type. Hence
tγ cannot be an abstraction unlessi = 0, and thereforeNi(tγ) = tγ = Ni(t)γ by definition. 2

Lemma 6.3 Let t be a normalized term andγ be a tail normal substitution. ThenNi(tγ↓) = Ni(t)γ↓.

Proof: We proceed by induction oni.

1. If i > 0 andt is of the formλx : σ.u thenNi(t) = Ni−1(u{x 7→ ⊥σ}); by induction hypothesis
Ni−1(u{x 7→ ⊥σ})γ↓= Ni−1(u{x 7→ ⊥σ}γ↓). Thus, we haveNi(t)γ↓= Ni−1(u{x 7→ ⊥σ}γ↓),
and, since, we assume thatx does not occur inγ, we haveNi(t)γ↓= Ni−1((uγ){x 7→ ⊥σ}↓) =
Ni(t)γ↓= Ni−1((uγ↓){x 7→ ⊥σ}), and thereforeNi(t)γ↓= Ni(λx : σ.uγ↓) = Ni((λx : σ.u)γ↓
) = Ni(tγ↓).

2. Otherwise,t is not an abstraction unlessi = 0, and henceNi(t) = t. Sincet is normalized, it cannot
be of a functionnal type, unlessi = 0, and sincet andtγ have the same type in any environnement,
tγ↓ is not an abstraction either, unlessi = 0. Therefore,Ni(tγ↓) = tγ↓= Ni(t)γ↓. 2

Since we want to neutralize only abstractions in terms, or terms that can become abstractions along
reductions, we need to control neutralization via the function symbols heading these abstractions by
neutralizing some of their arguments whose type is functional.

Definition 6.4 To each symbolf : σ1 × . . . × σn → σ ∈ F and each argument positionj of f , we
associate a natural numberNLf

j ≤ ar(σj), called neutralization levelof f at positionj. We call

neutralizedthose positionsj withNLf
j > 0.
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We will now neutralize terms recursively. To this end, we need introducing new function symbols
in the signature : for every algebraic symbol declarationf : σ1 × . . . × σn → σ, we assume given
a new symbolfnew : σ′

1 × . . . × σ′
n → σ in the new neutralized signature. The type declaration of

fnew symbol depends only upon the respective neutralization levels of the argument positions off : if
σi = τ1 → . . .→ τk → τ andNLf

i = q ≤ k, thenσ′
i = τq+1 → . . .→ τk → τ . Besides, we assume that

the extended signature is again regular, which is true when the neutralization level of a given argument
position of the function symbolf is the same for all its type declarations.

Definition 6.5 A termt is said to bealgebraically expandedif it satisfies the following property : for all
subterms oft of the formf(u1, . . . , un), ui is η-expanded for everyi.

Thefull neutralizationof an algebraically expanded termt is the termFN (t) defined as:

1. if t ∈ X or t = ⊥σ, thenFN (t) = t;

2. if t = λx.u, thenFN (t) = λx.FN (u);

3. if t = @(t1, . . . , tn), thenFN (t) = @(FN (t1), . . . ,FN (tn));

4. if t = f(t1, . . . , tn) with f ∈ F , thenFN (t) = fnew(NNLf
1
(FN (t1)), . . . ,NNLf

n
(FN (tn))).

Let us first remark that our definition makes sense, since :
- the term constructed in Case 4 is typable, thanks to the assumption that the arguments of an algebraic

symbol areη-expanded, therefored ensuring that the type offnew depends only upon the type of the
arguments off and its neutralization level, and not upon the form of the arguments themselves in case
they have a functional type.

- the full normalization of an algebraically expanded term is itself algebraically expanded.
In the following, we are primarily interested in the full normalization of tail expanded (or tail normal)

terms. Note first that a tail expanded terms is algebraically expanded, and thatFN (s) is indeed itself
tail expanded.

Lemma 6.6 Letu be a tail expanded term andγ be a tail expanded substitution.
ThenFN (uγ) = FN (u)FN (γ).

Proof: We proceed by induction on|u| and case analysis.

1. Assume thatDom(γ) ∩ Var(u) = ∅. Thenuγ = u and sinceDom(γ) ∩ Var(u) = ∅, the result
holds trivially.

2. Assumeu ∈ Dom(γ). SinceFN (u) = u, the result holds again.

3. Assumeu = λy.w. Then,FN ((λy.w)γ) = FN (λy.(wγ)) = λy.FN (wγ). By induction hypothe-
sis,λy.FN (wγ) = λy.(FN (w)FN (γ)) = (λy.FN (w))FN (γ) = FN (u)FN (γ).

4. Assumeu = f(u1, . . . , un). Then,FN (uγ) = FN (f(u1γ, . . . , unγ)) = fnew(u′
1, . . . , u

′
n), where

u′
j = NNLf

j
(FN (ujγ)). By induction hypothesisFN (ujγ) = FN (uj)FN (γ). Sinceu is tail

expanded, alluj areη-expanded, and thereforeFN (uj) is η-expanded as well. By lemma 6.2, we
haveNNLf

j
(FN (uj)γ) = NNLf

j
(FN (uj))FN (γ) and the result holds.

5. Assumeu = @(w1, w2). Then,FN (@(w1, w2)γ) = FN (@(w1γ, w2γ)) = @(FN (w1γ),FN (w2γ)).
By induction hypothesis, we getFN (@(w1, w2)γ) = @(FN (w1)FN (γ),FN (w2)FN (γ)) =
@(FN (w1),FN (w2))FN (γ) = FN (u)FN (γ) and we are done. 2
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We now show that full normalization preserves all kinds of normal forms, as can be expected from
a transformation that drops abstractions and replaces their bound variables by bottom constants in the
bodies. The first two lemmas are easy.

Lemma 6.7 Let t be a normalized term. ThenFN (t)↓= FN (t).

Lemma 6.8 Let t be a tail normal term. ThenFN (t)↓= FN (t).

Lemma 6.9 Let t be a tail normal term andγ be a tail normal substitution. ThenFN ((tγ) ↓) =
(FN (t)FN (γ))↓.

Proof: By Lemma 6.6, it suffices to show thatFN ((tγ)↓) = (FN (tγ))↓, which we prove by induction
on−→β. By Lemma 6.7, the result holds when(tγ)↓= tγ. Otherwise,t = @(s, t1, . . . , tn), where
sγ = λy.u. Assuming without loss of generality thaty does not occur int2, . . . , tn,
FN ((tγ)↓) = FN ((@(u{y 7→ t1}, t2, . . . , tn)γ)↓) = FN ((@(u, t2, . . . , tn)γ′)↓)
with γ′ = γ∪{y 7→ (t1γ)↓}. Sincetγ−→β @(u, t2, . . . , tn)γ′, applying the induction hypothesis yields:
FN ((@(u, t2, . . . , tn)γ′)↓) = (FN (@(u, t2, . . . , tn))FN (γ′))↓=
(FN (@(u, t2, . . . , tn))({y 7→ FN (t1γ↓)} ∪ FN (γ)))↓
and, by induction hypothesis again, the latter expression is equal to
(FN (@(u, t2, . . . , tn))({y 7→ (FN (t1)FN (γ))↓} ∪ FN (γ)))↓=
(FN (@(u, t2, . . . , tn)){y 7→ FN (t1)↓})FN (γ))↓=
((@(FN (u),FN (t2), . . . ,FN (tn)){y 7→ FN (t1)↓})FN (γ))↓=
(@(FN (u){y 7→ FN (t1)↓},FN (t2), . . . ,FN (tn))FN (γ))↓=
(@(λy.FN (u),FN (t1)↓},FN (t2), . . . ,FN (tn))FN (γ))↓=
(@(FN (λy.u),FN (t1),FN (t2), . . . ,FN (tn))FN (γ))↓=
(@(s,FN (t1),FN (t2), . . . ,FN (tn))FN (γ))↓=
(FN (@(s, t1, t2, . . . , tn))FN (γ))↓= (FN (t)FN (γ))↓. 2

The following property is straightforward :

Lemma 6.10 Let t be a term andx a variable of typeσ. Thent{x 7→ ⊥σ}↑η= t↑η {x 7→ ⊥σ}.

Since the level of neutralizationNLf
j of any argument is smaller than or equal to the arity of its type,

we have the following properties.

Lemma 6.11 Let s : σ be anη-expanded term. ThenNi(sξ↑η) = Ni(s)ξ↑η for all i ≤ ar(σ).

Proof: We proceed by induction oni. There are two cases.

1. if i = 0 thenNi(sξ↑η) = sξ↑η andNi(s) = s. Hence, the result holds.

2. if i > 0 then, by assumption onσ, σ = ρ→ τ ands = λx : ρ.u by assumption ons. Therefore
Ni(sξ↑η) = Ni((λx : ρξ.uξ)↑η) = Ni(λx : ρξ.(uξ)↑η) = Ni−1((uξ)↑η {x 7→ ⊥ρξ}).
By induction hypothesis,Ni−1((uξ)↑η= Ni−1(u)ξ↑η, hence
Ni−1((uξ)↑η {x 7→ ⊥ρξ}) = (Ni−1(u)ξ↑η){x 7→ ⊥ρξ}. By Lemma 6.10
(Ni−1(u)ξ↑η){x 7→ ⊥ρξ} = (Ni−1(u)ξ{x 7→ ⊥ρξ})↑η= (Ni−1(u){x 7→ ⊥ρ})ξ↑η,
and therefore(Ni−1(u){x 7→ ⊥ρ})ξ↑η= Ni(λx : ρ.u)ξ↑η= Ni(s)ξ↑η. 2

Lemma 6.12 Let t : σ be a tail expanded term. ThenFN (tξ ↑ 6=Λ) = FN (t)ξ ↑ 6=Λ.
Le t : σ be anη-expanded term. ThenFN (tξ↑η) = FN (t)ξ↑η.
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Proof: We first show that the second property follows from thefirst. If σξ is not an arrow type, then
both properties coincide. Otherwise, assume thatσξ = τ1 → τn → τ . Then,tξ↑η= λx1 . . . xn.@(tξ ↑ 6=Λ

, x1, . . . , xn). By definitionFN (tξ↑η) = FN (λx1 . . . xn.@(tξ ↑ 6=Λ, x1, . . . , xn)) = λx1 . . . xn.@(FN (tξ ↑ 6=Λ

), x1, . . . , xn), which by the first property isλx1 . . . xn.@(FN (t)ξ ↑ 6=Λ, x1, . . . , xn) = FN (t)ξ↑η.
We now prove the first property by induction on|t|.

1. Assume thatt ∈ X . Sincetξ ↑ 6=Λ= tξ,FN (t) = t andFN (tξ) = tξ, it follows thatFN (tξ↑ 6=Λ) =
tξ = tξ ↑ 6=Λ= FN (t)ξ ↑ 6=Λ.

2. Assume thatt = ⊥σ. Thentξ ↑ 6=Λ= ⊥σξ. Hence,FN (tξ ↑ 6=Λ) = ⊥σξ = ⊥σξ = FN (t)ξ ↑ 6=Λ.

3. Assume thatt = λx : τ.u. ThenFN (tξ ↑ 6=Λ) = FN ((λx : τξ.uξ) ↑ 6=Λ) = FN (λx : τξ.(uξ) ↑ 6=Λ

) = λx : τξ.FN (uξ ↑ 6=Λ). By induction hypothesis,FN (uξ ↑ 6=Λ) = FN (u) ↑ 6=Λ ξ, which implies
thatλx : τξ.FN (uξ ↑ 6=Λ) = λx : τξ.(FN (u)↑ 6=Λ)ξ = (λx.FN (u)↑ 6=Λ)ξ = (λx.FN (u))↑ 6=Λ ξ =
FN (t)↑ 6=Λ ξ.

4. Assume thatt = @(t1, . . . , tn). ThenFN (tξ ↑ 6=Λ) = FN (@(t1ξ, . . . , tnξ) ↑ 6=Λ= FN (@(t1ξ ↑ 6=Λ

, t2ξ↑η, . . . , tnξ↑η)) = @(FN (t1ξ ↑ 6=Λ),FN (t2ξ↑η), . . . ,FN (tnξ↑η)). By using the induction hy-
pothesis forFN (t1)ξ ↑ 6=Λ, and the induction hypothesis together with the fact that the first property
implies the second fort2ξ↑η, . . . , t2ξ↑η, we get
@(FN (t1ξ ↑ 6=Λ),FN (t2ξ↑η), . . . ,FN (tnξ↑η)) =
@(FN (t1)ξ ↑ 6=Λ,FN (t2)ξ↑η, . . . ,FN (tn)ξ↑η) =
@(FN (t1)ξ,FN (t2)ξ, . . . ,FN (tn)ξ)↑ 6=Λ=
@(FN (t1), . . . ,FN (tn))ξ ↑ 6=Λ=
FN (@(t1, . . . , tn))ξ ↑ 6=Λ= FN (t)ξ ↑ 6=Λ.

5. Assume finally thatt = f(t1, . . . , tn) with f ∈ F . ThenFN (tξ ↑ 6=Λ) = FN (f(t1, . . . , tn)ξ ↑ 6=Λ) =
FN (f(t1ξ↑η, . . . , tnξ↑η)) = fnew(t′1, . . . , t

′
n), wheret′j = NNLf

j
(FN (tjξ↑η)).

By using the induction hypothesis together with the fact that the first property implies the second
for tjξ↑η, NNLf

j
(FN (tjξ↑η)) = NNLf

j
(FN (tj)ξ↑η) and, by Lemma 6.11,NNLf

j
(FN (tj)ξ↑η) =

NNLf
j
(FN (tj))ξ↑η. Let t′′j = NNLf

j
(FN (tj)). Thenfnew(t′1, . . . , t

′
n) = fnew(t′′1ξ↑

η, . . . , t′′nξ↑
η) =

fnew(t′′1ξ, . . . , t
′′
nξ)↑ 6=Λ= fnew(t′′1, . . . , t

′′
n)ξ ↑ 6=Λ with t′′j = NNLf

j
(FN (tj)). Hence

fnew(t′′1, . . . , t
′′
n)ξ ↑ 6=Λ= FN (f(t1, . . . , tn))ξ ↑ 6=Λ= FN (t)ξ ↑ 6=Λ. 2

6.2 The Neutralized Ordering

We are now ready to define and study two modified orderings, onefor plain higher-order terms and one
for tail normal higher-order terms, by using the corresponding orderings on neutralized terms defined in
Section 5.

Definition 6.13 Given two tail expanded termss andt, we define the neutralized orderings as follows:

s ≻
nhorpo

t if and only ifFN (s) ≻
horpo
FN (t)

s ( ≻
nhorpo

)η
β t if and only ifFN (s)( �

chorpo
)η
β FN (t)
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In order to make the proofs simnpler, we use the version of ourordering on normalized terms with-
out the computable closure. Using the version with the computable closure would of course make the
ordering stronger, but the proofs much more involved.

We now need to show that≻nhorpo is well-founded and monotonic, compatible and functional on
tail extanded terms of the same type, and that(≻nhorpo)

η
β is included in≻nhorpo, β-stable andη-

polymorphic.

Lemma 6.14≻nhorpo is well-founded and compatible.

Proof: Compatibility trivially holds as for≻horpo and well-foudedness follows directly from well-
foundedness of≻horpo. 2

Monotonicity needs some preparation:

Lemma 6.15 Let s andt be two tail expanded terms (in the neutralized signature) ofthe same type and
u[s] be theη-expanded form ofs. Thens≻horpo t impliesNi(u[s])≻horpoNi(u[t]) for anyi.

Proof: We proceed by induction oni.

1. For the base casei = 0, the property holds by monotonicity of≻horpo.

2. Assume thati > 0 andu is not empty. Thenu[s] = λx : σ.u′[@(s, x)] for someu′ such thatx /∈
Var(s) andx /∈ Var(u′). ThenNi(u[s]) = Ni−1(u

′[@(s,⊥σ)]) andNi(u[t]) = Ni−1(u
′[@(t,⊥σ)]).

By monotonicity of≻horpo, @(s,⊥σ)≻horpo @(t,⊥σ). Note that@(s,⊥σ) and@(t,⊥σ) are tail ex-
panded terms andu′[@(s,⊥σ)] is theη-expansion of@(s,⊥σ). Therefore, by induction hypothesis,
Ni−1(u

′[@(s,⊥σ)])≻horpoNi−1(u
′[@(t,⊥σ)]).

3. Assume now thati > 0 andu is empty. We prove thatNi(s)≻horpoNi(t) assuming thats is both
η-expanded and tail expanded andt is tail expanded and have the same type.

If s, and thereforet, has a non-functional type, thenNi(s) = s≻horpo t = Ni(t).

Otherwise,s and t have a typeσ → τ . Sinceu is empty,s = λx.s′ for somes′ such thatx ∈
Var(s′). The comparisonλx.s′≻horpo t can only be by cases 6, 10 or 12. But, sincet is tail
expanded case 12 cannot apply and, since, by subterm property of the type orderingτ 6≥TS σ → τ ,
case 6 cannot apply either. Therefore,s≻horpo t holds by case 11, which implies thatt = λx : σ.t′

ands′ : τ ≻horpo t′ : τ .

By stability of≻horpo, we gets′{x 7→ ⊥σ} : τ ≻horpo t′{x 7→ ⊥σ} : τ . Sinces is bothη-expanded
and tail expanded, so iss′{x 7→ ⊥σ} : τ . And sincet is tail expanded, so ist′{x 7→ ⊥σ} : τ . By
induction hypothesis,Ni−1(s

′{x 7→ ⊥σ})≻horpoNi−1(t
′{x 7→ ⊥σ}). Therefore

Ni(s) = Ni(λx.s′) = Ni−1(s
′{x 7→ ⊥σ})≻horpoNi−1(t

′{x 7→ ⊥σ}) = Ni(λx.t′) = Ni(t). 2

Lemma 6.16≻nhorpo is monotonic on tail expanded terms.

In the following, we will use without notice the property that u[t] is tail-expanded whenever so are
s, u[s] andt, ands andt have the same type.

Proof: Assuming thats andt are arbitrary tail expanded terms of the same type as well asu[s] and
u[t], we prove thatFN (s)≻horpoFN (t) impliesFN (u[s])≻horpoFN (u[t]). We proceed by induction
on the size ofu and case analysis. Ifu is empty, the result holds trivially. Otherwise, there are four
cases:
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1. Assume thatu[s] = f(w1, . . . , u
′[s], . . . , wn), whereu′[s] must be of the formv[w[s]] for some tail

expanded termw[s] such thatv[w[s]] is itsη-expansion. By induction hypothesis
FN (w[s])≻horpoFN (w[t]), and, by Lemma 6.15,Ni(v[FN (w[s])])≻horpoNi(v[FN (w[t])]) for
anyi. By definition ofv, FN (v[w[s]]) = v[FN (w[s])] andFN (v[w[t]]) = v[FN (w[t])], hence
Ni(FN (u′[s]))≻horpoNi(FN (u′[t])), and by monotonicity of≻horpo,
FN (f(w1, . . . , u

′[s], . . . , wn)) = fnew(w′
1, . . . , Ni(FN (u′[s])), . . . , w′

n)≻horpo

fnew(w′
1, . . . , Ni(FN (u′[t)), . . . , w′

n) = FN (f(w1, . . . , u
′[s], . . . , wn)).

2. Assume thatu[s] = @(u′[s], w1, . . . , wn) whereu′[s] andu′[t] are tail expanded terms. By induction
hypothesisFN (u′[s])≻horpoFN (u′[t]). Now, by monotonicity of≻horpo, we get
FN (@(u′[s], w1, . . . , wn)) = @(FN (u′[s]),FN (w1), . . . ,FN (wn))≻horpo

@(FN (u′[t]),FN (w1), . . . ,FN (wn)) = FN (@(u′[t], w1, . . . , wn)).

3. Assume thatu[s] = @(w1, . . . , u
′[s], . . . , wn) whereu′[s] must be of the formv[w[s]] for some tail

expanded termw[s] such thatv[w[s]] is itsη-expansion. We proceed as in Case 1.

4. Assume thatu[s] = λx.u′[s] whereu′[s] and u’[t] are tail expanded. We proceed again as in Case 1.
2

Lemma 6.17≻nhorpo is functional on tail expanded terms.

Proof: SinceFN (@(λx.u, v)) = @(λx.FN (u),FN (v)),FN (@(λx.u, v))−→β FN (u){x 7→ FN (v)}.
By functionality of≻horpo, it follows thatFN (@(λx.u, v))≻horpoFN (u){x 7→ FN (v)} = FN (u{x 7→
v} by Lemma 6.6. 2

Lemma 6.18 (≻nhorpo)
η
β is β-stable.

Proof: Lets andt be tail normal terms, andγ be a tail normal substitution. We need to show that
s (≻nhorpo)

η
β t implies(sγ)↓ (≻nhorpo)

η
β (tγ)↓.

Sinces (≻nhorpo)
η
β t, FN (s) (≻nhorpo)

η
β FN (t). By β-stability of (≻horpo)

η
β ,

FN (s)FN (γ) ↓ (≻horpo)
η
β FN (t)FN (γ) ↓. By Lemma 6.9,(FN (s)FN (γ)) ↓= FN ((sγ) ↓) and

(FN (t)FN (γ))↓= FN ((tγ)↓), which implies thatFN ((sγ)↓)(≻horpo)
η
β FN ((tγ)↓). 2

Lemma 6.19 (≻nhorpo)
η
β is polymorphic.

Proof: Assume thats (≻nhorpo)
η
β t. By definition,s (≻nhorpo)

η
β t impliesFN (s)(≻horpo)

η
β FN (t).

By polymorphism of(≻horpo)
η
β , FN (s)ξ ↑ 6=Λ (≻horpo)

η
β FN (t)ξ ↑ 6=Λ and hence, by Lemma 6.12,

FN (sξ↑ 6=Λ) = FN (s)ξ ↑ 6=Λ (≻horpo)
η
β FN (t)ξ ↑ 6=Λ= FN (tξ ↑ 6=Λ), which impliessξ ↑ 6=Λ (≻nhorpo)

η
β tξ ↑ 6=Λ

and we are done. 2

We conclude with our last unsuccessful example, showing that neutralization allows to orient the rule
that could not be oriented before:

7 Further improvements and alternatives

We first consider the framework for normalized higher-orderrewriting and orderings, before to move
to the higher-order recursive path ordering itself, in which case the ideas presented in this section apply
to all previous defined orderings, although they may be more useful for some versions than others. The
second and third subsections present an improvement, in thesense that it gives some additional power
to the orderings. The following three are alternatives, that allow defining variations of the previous
orderings which can sometimes be useful for practical applications. The very last subsection describes
a last example.
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7.1 Higher-order rewriting

Our notion of higher-order rewriting is based on tail normalterms. One may wonder whether our
work could have been carried out for the other natural generalization of Nipkow’s rewriting, in which
normalized terms are used instead, and the answer is positive. The only change to be made is to define
η-polymorphism as(Γ ⊢F s : σ) ≻ (Γ ⊢F t : σ) implies(Γξ ⊢F sξ ↑η: σξ) ≻ (Γξ ⊢F tξ ↑η: σξ) for
all type substitutionsξ.

One may also wonder whether any of these two is the good one, and also whether Nipkow’s notion
of rewriting (on terms of a data type) is the good one. We actually don’t think so. The major role of
η-expansions is to normalize the number of arguments of a higher-order term. Since functions symbols
have an arity in our framework, it is not necessary toη-expand terms headed by a function symbol. Giv-
ing an arity to the variables, as done by Klop in his seminal work, would allow us getting rid completely
of normal expansions. This new point of view is developped ina forthcoming paper.

7.2 Building in the permutative equality

So far, we have been very careful defining strict relations, in the sense that their transitive closure is
irreflexive. We now move to non-strict ones, which will be theunion of a strict part and an equality part.

For our purpose, anequivalenceon higher-order terms is a reflexive, symmetric and transitive relation
= containingα-conversion, and acompatiblerelation� is the union of astrict part≻ whose transitive
closure≻∗ is a strict ordering, and an equivalence≃ such that≻ is compatible with≃, that is,s′ ≃ s ≻
t ≃ t′ impliess′ ≻ t′ (actually,s′ ≻∗ t′ would suffice) for all termss, t, s′, t′. A transitive compatible
relations (the strict part of which being a strict ordering)is called aquasi-ordering, and is anordering
when the equivalence coincides withα-conversion.

The transitive closure�∗ of the compatible relation� happens to be the quasi-ordering having≻∗

as strict part and= as equivalence. Indeed, apart from transitivity, compatible relations enjoy most
properties of quasi-orderings which make them an appropriate tool for proving termination of rewrite
systems. To this end, we say that a compatible relation� is well-founded when so is its strict part≻.
Note that� is a well-founded compatible relation iff≻ is well-founded and compatible with≃.

We now define the multiset and lexicographic extensions of relations on a setS (resp. Si) given as
pairs≃,≻ (resp.≃i,≻i) such that≃ (resp.≃i)is an equivalence relation, and≻ (resp.≻i)is an arbitrary
relation. By abuse of notation, we will allow us to write� (resp.�i) to denote such a pair. This notation
makes of course sense when� (resp.�i) is known to be a compatible relation.

- (s1, . . . , sn)(≃1, . . . ,≃n)n be the relation onS1 × . . .× Sn defined as
(s1, . . . , sn)(≃1, . . . ,≃n)n(t1, . . . , tn) iff s1 ≃1 t1, . . . , sn ≃n tn;

Then,(�1, . . . ,�n)n is an equivalence relation.

- (�1, . . . ,�n)lex be the relation onS1 × . . .× Sn defined as the union of the relations(�1, . . . ,�n

)strict−lex and(≃1, . . . ,≃n)n, where
(s1, . . . , sn)(�1, . . . ,�n)strict−lex(t1, . . . , tn) iff s1 ≃1 t1, . . . , si−1 ≃i−1 ti−1 andsi ≻i ti for some
i ∈ [1..n];

Then(�1, . . . ,�n)lex is a well-founded compatible relation if so are�1, . . . ,�n.

- ≃mul be the relation on the set of multisets of elements ofS defined as
N ∪ {x} ≃mul N ′ ∪ {y} iff N ≃mul N ′ andx ≃ y;

Then,≃mul is an equivalence relation.
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- ≻mul be the relation on the set of multisets of elements ofS defined as
N ∪ {x} ≻mul N ′ ∪ {y1, . . . , yn} iff N ≻mul N ′ and∀i ∈ [1..n] x ≻ yi;

- �mul be the relation on the set of multisets of elements ofS defined as the union of the relations
�strict−mul and≃mul;

Then,�mul is a well-founded compatible relation if so is�.

To show these results, it suffices to show that the above operations preserve compatible relations
(this follows immediately from the compatibility propertyof the given relations), and then, by [13],
the transitive closures of the resulting compatible relations are well-founded, and therefore, so are the
compatible relations themselves. A direct proof of this second part would actually simplify a little bit
the standard arguments.

We now define the relation�horpo = ≻horpo∪=horpo, where

s =
horpo

t iff σ =TS τ and

1. s = f(s), t = g(t), f =F g ∈Mul ands ( =
horpo

)mul t

2. s = f(s), t = g(t), f =F g ∈ Lex ands( =
horpo

)mont

3. s = @(s1, s2), t = @(t1, t2), and{s1, s2} ( =
horpo

)mul {t1, t2}

4. s = λx : α.v, t = λx : β.w, α =TS β andv =
horpo

w.

s ≻
horpo

t iff σ ≥TS τ and

1. s = f(s) with f ∈ F , andu �
horpo

t for someu ∈ s

2. s = f(s) with f ∈ F andt = g(t) with f >F g, andA

3. s = f(s) andt = g(t) with f =F g ∈Mul ands ( �
horpo

)mul t

4. s = f(s) andt = g(t) with f =F g ∈ Lex ands ( �
horpo

)lex t, andA

5. s = @(s1, s2), ands1 �
horpo

t or s2 �
horpo

t

6. s = λx : α.u with x 6∈ Var(t), andu �
horpo

t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands ≻
horpo

v

9. s = @(s1, s2), t = @(t) is a partial left-flattening oft and{s1, s2}( �
horpo

)mult

10. s = λx : α.u, t = λx : β.v, α =TS β andu ≻
horpo

v
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11. s = @(λx : α.u, v) andu{x 7→ v} �
horpo

t

where, as before
A = ∀v ∈ t s ≻

horpo
v or u �

horpo
v for someu ∈ s

We can then mimic the study of the ordering done in Section 3, with some adaptations:
Firstly, we need to show (by an easy induction on|s| + |u|) that s : σ =horpo t : τ , s′≻horpo s and

t =horpo t′ imply s′≻horpo t′. This will imply that�horpo is a well-founded compatible relation for any
set of terms for which≻horpo is itself well-founded.

Secondly, the properties of the ordering such as monotonicity for terms of equivalent types, stability,
polymorphism have now to be proved for both=horpo and≻horpo.

Thirdly, the computability property 3.14(ii) need to be reproved to take=horpo into account, which is
routine. Everything else remains the same.

The changes are similar for the orderings defined in the othersections.

7.3 Building in inductive types

This makes sense when using the closure mecanism only. Inductive types are sorts equipped with a
set of strictly positive typed free constructors, see [4] for precise definitions. For an example, the set of
natural numbers in Peano notation is a strictly positive inductive types:

Inductive type Nat = 0⊕ S(Nat)

When the syntax allows to declare explicitely strictly positive inductive types, it is possible to de-
fine the computability predicates so as to ensure a new computability property for terms headed by a
constructor symbol:

C(t) is computable iff all terms int are computable.

This property can now be built in the definition of the closure, by adding the rule

8. arguments of constructor headed terms: letC(s) ∈ CC(t,V) for some constructor symbolC; then
u ∈ CC(t,V) ∀u ∈ s;

This rule allows to simplify the treatment of some examples presented in this paper.

7.4 Building in the type ordering

In all definitions of the ordering≻horpo the type ordering has only be used to restrict the pair of
terms that could be compared. However, the type ordering canalso be used inside the ordering like the
precedence. That is, we can add the following case to the definition

12. s = f(s) with f ∈ F andt = g(t) with σ >TS τ , andA

Since we always haveσ ≥TS τ there is no need to add a conditionσ =TS τ in any other case.
The resulting ordering is more powerful than the ordering without the computable closure but incom-

parable with the ordering with the computable closure. The reason is that the inclusion of this new case
requires to modify the induction argument of lemma 4.8 to include the type of the term as first com-
ponent in the lexicographic comparison. Therefore, in the definition of the computable closure we can
include a new case
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10. type-ordering: letg : ρ1 × . . . × ρn → τ such thatσ >TS τ , ands : ρ ∈ CC(t : σ,V); then
g(s) : τ ∈ CC(t : σ,V);

but we have to restrict the precedence case in the following way:

2. precedence: letg : ρ1 × . . . × ρn → τ such thatσ =TS τ andf >F g, ands : ρ ∈ CC(t : σ,V);
theng(s) : τ ∈ CC(t : σ,V);

It is easy to see that the new computable closure is incomparable with the previous one, which implies
that the obtained ordering is incomparable with the previous one.

7.5 Building in the subterm type decreasing relation

Since the ordering≻horpo defined in Section 3 is compatible with the ordering�>TS
, it is natural to

try building the latter in the former. The proposal below is not an extension of≻horpo, however, since it
may fail orienting some pairs oriented by≻horpo. But we think it is worthwhile a study that we have not
done in enough detail so as to make a well-foundedness claim.We do it for the ordering of Section 3
first, before to comment on the impact on the closure definition.

Let Subt>TS
(t) = {s | t �>TS

s} if t is neutral, andSubt>TS
(t) = ∅ otherwise. Let now

A = ∀v ∈ Subt>TS
(t) s ≻

horpo
v or u �

horpo
v for someu ∈ Subt>TS

(s)

We define now

s ≻
horpo

t iff σ ≥TS τ and

1. s = f(s) with f ∈ F , andu �
horpo

t for someu ∈ Subt>TS
(s).

2. s = f(s) with f ∈ F andt = g(t) with f >F g, andA

3. s = f(s) andt = g(t) with f =F g ∈Mul ands) ( ≻
horpo

)mul t andA

4. s = f(s) andt = g(t) with f =F g ∈ Lex ands ( ≻
horpo

)lex t, andA

5. s = @(s1, s2), ands1 �
horpo

t or s2 �
horpo

t andA

6. s = λx : α.u with x 6∈ Var(t), andu �
horpo

t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening oft, andA

8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) ands ≻
horpo

v

9. s = @(s1, s2), t = @(t) is a partial left-flattening oft, {s1, s2}( ≻
horpo

)mult andA

10. s = λx : α.u, t = λx : β.v, α =TS β andu ≻
horpo

v

11. s = @(λx : α.u, v), u{x 7→ v} �
horpo

t andA
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The proof of this variant needs a bit more work. Indeed, the computability definition of the arrow type
terms should now be changed to:

If s :C σ = τ → ρ thens ∈ [[σ]] if @(s, t) ∈ [[ρ]] for everyt such thatv ∈ [[τ ]] for everyv ∈ Subt>TS
(t).

For this variant, any term smaller than a computable term will be computable, and therefore the closure
of a term will be closed by taking subterms of smaller type. This has a clear practical impact, since the
ability of taking subterms, in particular for the starting term, is crucial for many proofs.

7.6 EXAMPLE

Section 5 relies on the property that terms in normal form should not need anyη-expansions when
instantiated by a type substitution. To ensure that property, we required that output types of both function
symbols and variables be different from a type variable. An alternative allows to cope with type variables
as output types, provided they are never instantiated by arrow types. This extension is straightfoward,
but useful. It allows in particuler to deal with polymorphicrecursors, as the one given in example 5.

On the other hand, there are situations where we need more flexibility. Here comes such an example.

Example 15 (Encoding Natural Deduction; taken from [9]) Let
S = {o : ∗, c : ∗ × ∗ → ∗}, S∀ = {σ, τ, ρ}.
F = {appσ,τ : (σ → τ)× σ → τ ; absσ,τ : (σ → τ)→ (σ → τ); Πσ,τ : σ × τ → c(σ, τ);

Π0
σ,τ : c(σ, τ)→ σ; Π1

σ,τ : c(σ, τ)→ τ ; ∃+
σ : o× σ → c(o, σ); ∃−σ,τ : c(o, σ)× (o→ σ → τ)→ τ}.

X = {X : σ; Y : τ ; Z : o; T : c(o, ρ), F : σ → τ ; G : o→ σ → τ, H : o→ ρ→ (σ → τ),
I : o→ ρ→ c(σ, τ), J : o→ ρ→ c(o, σ)}.

The rules are the following:

appσ,τ (absσ,τ (F ), X) → @(F, X) (1)
Π0

σ,τ (Πσ,τ (X, Y )) → X (2)
Π1

σ,τ (Πσ,τ (X, Y )) → Y (3)
∃−σ,τ (∃

+
σ (Z, X), G) → @(G, Z, X) (4)

appσ,τ (∃−ρ,σ→τ (T, H), X) → ∃−ρ,τ (T, λx : o y : ρ.appσ,τ (@(H, x, y), X)) (5)
Π0

σ,τ (∃
−
ρ,c(σ,τ)(T, I)) → ∃−ρ,τ (T, λx : o y : ρ.Π0

σ,τ (@(I, x, y))) (6)

Π1
σ,τ (∃

−
ρ,c(σ,τ)(T, I)) → ∃−ρ,τ (T, λx : o y : ρ.Π1

σ,τ (@(I, x, y))) (7)

∃−σ,τ (∃
−
ρ,c(o,σ)(T, J), G) → ∃−ρ,τ (T, λx : o y : ρ.∃−σ,τ (@(J, x, y), G)) (8)

Rules 1, 2, 3 and 4 can be easily proved by applying the definition of the ordering. Rules 6 and 7,
follow easily as well, using first case 1 (i) and considering∃ρ,c(σ,τ) >F {∃ρ,τ , Π

0
σ,τ , Π

1
σ,τ} for the rest.

Rule 5 is requires more work, as sketched below.
First, we introduce a family of ternary symbols∃ρ,σ→τ,σ : c(o, ρ)× o → ρ → (σ → τ)× σ → τ pa-

rameterized by the typesσ, τ, ρ, together with the precedences:∃ρ,σ→τ >F ∃ρ,σ→τ,σ >F {∃ρ,τ , appσ,τ}.
We then construct the “middle term”@(λy.∃ρ,σ→τ,σ(T, H, y), X) and show that

appσ,τ (∃
−
ρ,σ→τ (T, H), X)( ≻

chorpo
)η
β @(λy.∃ρ,σ→τ,σ(T, H, y), X)

and
@(λy.∃ρ,σ→τ,σ(T, H, y), X)( ≻

chorpo
)η
β ∃

−
ρ,τ (T, λx : o y : ρ.appσ,τ (@(H, x, y), X))

therefore proving that the rule is in the transitive closureof (≻chorpo)
η
β .
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To show the first comparison we apply case 7 and then show that

∃−ρ,σ→τ (T, H)( ≻
chorpo

)η
β λy.∃ρ,σ→τ,σ(T, H, y)

using case 1 (iii).
For the second comparison we apply case 11, and show that

∃ρ,σ→τ,σ(T, H, X)( ≻
chorpo

)η
β ∃

−
ρ,τ (T, λx : o y : ρ.appσ,τ (@(H, x, y), X))

using case 2 and showing thatλx : o y : ρ.appσ,τ (@(H, x, y), X) is in the computable closure of
∃ρ,σ→τ,σ(T, H, X).

Finally, let us mention that Rule 8 cannot be proved terminating by our ordering. 2

8 Conclusion

We have defined a powerful mecanism for defining orderings operating on higher-order terms. Based
on the notion of the computable closure of a term, we have succeeded defining a conservative extension
of Dershowitz’s recursive path ordering, which is indeed a polymorphic reduction ordering including
β-reductions. To our knowledge, this is the first such ordering ever.

Another hidden achievement is a new, simple, easy to teach well-foundedness proof for Dershowitz’s
recursive path ordering. This proof can be easily extractedfrom the strong normalization proof given
here: it actually reduces to a simplified version of the proofs of Lemma 3.15, spelled out in full detail
in [7]. A similar proof also appears in [17]. Of course, this does not prove the stronger (but less usefull)
property that the recursive path ordering is a well-order.

The idea of the computable closure originates from [3], where it was used to define a syntactic class
of higher-order rewrite rules that are compatible with betareductions and with recursors for arbitrary
positive inductive types. The language there is indeed richer than the one considered here, since it is the
calculus of inductive constructions generated by a monomorphic signature. The usefulness of the notion
of closure in this different context shows the strength of the concept.

Our definition of the higher-order recursive path ordering can be developped now in several different
directions, besides thoses mentionned in Section 7, that wediscuss in turn.

First of all, we are not satisfied with our treatment of abstractions based on neutralization. This
technique is a little bit complicated and technical, and compromises in some sense the elegance of the
ordering and computational closure definitions. We would instead like to incorporate a better handling
of abstractions directly in the recursive definition of the ordering.

The idea of the recursive path ordering is to prove the strongnormalization property of the rewrite
relation generated by a pairl → r by checking the rewrite relation generated by a set of pairsl′ → r′

obtained froml → r by taking various subterms ofl (for l′) and subterms ofr for r′. The computation
will of course fail if the new relation is not strongly normalizing. A possible patch is to improve the
ordering by combining it with another ordering based, e.g. on interpretations. This has been done for the
first-order case [23, 34], and for the higher-order case as well [35]. There is still room for improvement,
though, since the interpretations used there are essentially first-order, and using interpretations “a la Van
de Pol” would give a quite stronger ordering.

Assume that the two termsu andv are comparable, having for example the same type. Then, the two
termsλx : σ.λy : τ.u andλy : τ.λx : σ.v are however incomparable for type reason if the typesσ andτ
are not equivalent in the type ordering. Even more,λx : σ.λy : τ.u andλy : τ.λx : σ.v are not equivalent
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although they denote semantically identical functions. A solution to this problem would be to build Di
Cosmo’s type isomorphism in the type ordering. This does notseem so easy, however, since our current
conditions on the type ordering would be violated.

Associative commutative operators are common in practice,and therefore, it is important to adapt our
ordering to this case. This will be one of the directions we want to pursue.

Truly important is the development of an ordering able to compare terms of the calculus of construc-
tions. Such an ordering can be obtained by replacing case 11 for abstractions by a clause ensuring
monotonicity of dependent products. This is done in [38], bystarting from the original version of the
higher-order recursive path ordering introduced in [22]. Extending the uniform presentation of the or-
dering on terms and types will yield a much stronger ordering. First, this would improve the ordering
on object-level terms of a dependent type, since such terms of different but convertible types such as
list(1 + 1) and list(2) cannot be compared in [38]. Besides, this ordering should beable to compare
arbitrary terms of the calculus, not only object-level terms, but type and kind level ones as well, hence
generalizing what is called strong elimination in the calculus of inductive constructions. This is our con-
jecture sketched in Section 3.6 that such an ordering shouldbe terminating. The fact that this conjecture
generalizes strong elimination hints at its difficulty.

Using the computability technique instead of the Kruskal theorem is intriguing, and raises the question
whether it is possible to exhibit a suitable extension of Kruskal’s theorem that would allow proving that
the higher-order recursive path ordering is a well-order ofthe set of higher-order terms ? Here, we must
confess that we actually failed in our initial quest to find a suitable extension of Kruskal theorem on
higher-order terms. In retrospect, the reason is that we were looking for too strong a statement. It may
be that a version of Kruskal’s theorem holds, and would implyour result, based on an adequate notion
of subterm. If this is the case, this notion of subterm shouldsomehow be related with the computability
properties: not all subterms of a computable term are themselves computable. Related to this problem
is the question of the ordinality of our ordering (or of a total extansion of it).

Acknowledgments:we are grateful to Femke Van Ramsdoonk for a couple of useful remarks.
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