
Higher-Order Rewriting:
Framework, Confluence and Termination

Jean-Pierre Jouannaud?

LIX/CNRS UMR 7161 & École Polytechnique, F-91400 Palaiseau
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/

1 Introduction

Equations are ubiquitous in mathematics and in computer science as well.
This first sentence of a survey on first-order rewriting borrowed again and
again characterizes best the fundamental reason why rewriting, as a tech-
nology for processing equations, is so important in our discipline [10].
Here, we consider higher-order rewriting, that is, rewriting higher-order
functional expressions at higher-types. Higher-order rewriting is a use-
ful generalization of first-order rewriting: by rewriting higher-order func-
tional expressions, one can process abstract syntax as done for example
in program verification with the prover Isabelle [27]; by rewriting expres-
sions at higher-types, one can implement complex recursion schemas in
proof assistants like Coq [12].

In our view, the role of higher-order rewriting is to design a type-
theoretic frameworks in which computation and deduction are integrated
by means of higher-order rewrite rules, while preserving decidability of
typing and coherence of the underlying logic. The latter itself reduces to
type preservation, confluence and strong normalization.

It is important to understand why there have been very different pro-
posals for higher-order rewriting, starting with Klop’s Combinatory re-
duction systems in 1980, Nipkow’s higher-order rewriting in 1991 and
Jouannaud and Okada’s executable higher-order algebraic specifications
in 1991 as well: these three approaches tackle the same problem, in dif-
ferent contexts, with different goals requiring different assumptions.

Jan Willem Klop was mostly interested in generalizing the theory of
lambda calculus, and more precisely the confluence and finite develop-
ments theorems. Klop does not assume any type structure. As a conse-
quence, the most primitive operation of rewriting, searching for a redex,
is already a problem. Because he wanted to encode pure lambda calculus
? Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay,

CNRS, École Polytechnique, INRIA, Université Paris-Sud.

and other calculi as combinatory reduction systems, he could not stick to
a pure syntactic search based on first-order pattern matching. He there-
fore chose to search via finite developments, the only way to base a finite
search on beta-reduction in the absence of typing assumptions. And be-
cause of his interest in simulating pure lambda calculi, he had no real need
for termination, hence concentrated on confluence results. Therefore, his
theory in its various incarnations is strongly influenced by the theory of
residuals initially developed for the pure lambda calculus.

Nipkow was mainly interested in investigating the meta-theory of
Isabelle and in proving properties of functional programs by rewriting,
goals which are actually rather close to the previous one. Functional pro-
grams are typed lambda terms, hence he needed a typed structure. He
chose searching via higher-order pattern matching, because plain pat-
tern matching is too poor for expressing interesting transformations over
programs with finitely many rules. This choice of higher-order pattern
matching instead of finite developments is of course very natural in a
typed framework. He assumes termination for which proof methods were
still lacking at that time. His (local) confluence results rely on the compu-
tation of higher-order critical pairs -because higher-order pattern match-
ing is used for searching redexes- via higher-order unification. Nipkow
restricted lefthand sides of rewrite rules to be patterns in the sense of
Miller [25]. The main reason for this restriction is that higher-order pat-
tern matching and unification are tractable in this case which, by chance,
fits well with most intended applications.

Jouannaud and Okada were aiming at developping a theory of typed
rewrite rules that would generalize the notion of recursor in the calculus
of inductive constructions, itself generalizing Gödel’s system T. This ex-
plains their use of plain pattern matching for searching a redex: there is no
reason for a more sophisticated search with recursors. In this context, the
need for strongly terminating calculi has two origins: ensuring consistency
of the underlying logic, that is, the absence of a proof for falsity on the
one hand, and decidability of the type system in the presence of depen-
dent types on the other hand. Confluence is needed as well, of course, as
is type preservation. The latter is easy to ensure while the former is based
on the computation of first-order critical pairs -because first-order pat-
tern matching is used for searching redexes. This explains the emphasis
on termination criteria in this work and its subsequent developments.

Our goal in this paper is to present a unified framework borrowed
from Jouannaud, Rubio and van Raamsdonk [22] for the most part, in
which redexes can be searched for by using either plain or higher-order

2

rewriting, confluence can be proved by computing plain or higher-order
critical pairs, and termination can be proved by using the higher-order
recursive path ordering of Jouannaud and Rubio [19].

We first present examples showing the need for both search mecha-
nisms based on plain and higher-order pattern matching on the one hand,
and for a rich type structure on the other hand. These examples show the
need for rules of higher type, therefore contradicting a common belief that
application makes rules of higher type unnecessary. They also recall that
Klop’s idea of variables with arities is very handy. Then, we present our
framework in more detail, before we address confluence issues, and finally
termination criteria. Missing notations and terminology used in rewriting
or type theory can be found in [10, 2].

2 Examples

We present here by means of examples the essential features of the three
aforementionned approaches to higher-order rewriting. Rather than com-
paring their respective expressivity [32], we use our unified framework
to show why they are important and how they can be smoothly inte-
grated. Framework and syntax are explained in detail in Section 3, but
the necessary information is already provided here to make this section
self-contained to anybody who is familiar with typed lambda calculi.

Language. It is our assumption that our examples extend a typed
lambda calculus, in which abstraction and application (always written
explicitely) are written λx : σ.u and @(u, v) respectively where u, v are
terms, x is a variable and σ a type. We sometimes drop types in ab-
stractions, and write λxy.u for λx.(λy.u), assuming that the scope of an
abstraction extends as far to the right as possible. A variable not in the
scope of an abstraction is said to be free, otherwise it is bound. An ex-
pression is ground if it has no free variable. The (right-associative) type
constructor → for functional types is our main type constructor, apart
from user-defined ones. We will also need a weak notion of polymorphism,
requiring the use of a special (untypable) constant ∗ denoting an arbitrary
type. We do not have product types, unless introduced by the user. Recall
that lambda calculus is a formal model in which functional computations
are described by three (higher-order) rewrite rules, beta-reduction, eta-
reduction and alpha-conversion:

beta @(λx.u, v) −→β u{x 7→ v}
eta λx.@(u, x) −→η u where x is not a free variable of u

alpha λy.u −→α λx.u{y 7→ x} where x is not a free variable of u

3

In these rules, u, v stand for arbitrary terms, making them rule schemas
rather than true rewrite rules. The notation u{x 7→ v} stands for substitu-
tion of x by v in u. Variable capture, that is, a free variable of v becoming
bound after substitution, is disallowed which may force renaming bound
variables via alpha-conversion before instantiation can take place. The
second rule can also be used from right-to-left, in which case it is called
an expansion. These rules define an equivalence over terms, the higher-
order equality =βη, which can be decided by computing normal forms: by
using beta and eta both as reductions yielding the beta-eta-normal form;
or by using beta as a reduction and eta as an expansion (for terms which
are not the left argument of an application, see Section 3 for details)
yielding the eta-long beta-normal form. Given two terms u and v, first-
order pattern matching (resp. unification) computes a subtitution σ such
that u = vσ (resp. uσ = vσ). Plain and syntactic are also used instead
of first-order, for qualifying pattern matching, unification or rewriting.
Higher-order pattern matching (resp. unification) computes a subtitution
σ such that u =βη vσ (resp. uσ =βη vσ). Of course, such substitutions
may not exist. First-order pattern matching and unification are decidable
in linear time. Higher-order unification is undecidable, while the exact
status of higher-order matching is unknown at orders 5 and up [11].

Our examples come in two parts, a signature for the constants and
variables, and a set of higher-order rewrite rules added to the rules of
the underlying typed lambda calculus. We use a syntax à la OBJ, with
keywords introducing successively type constants (Typ), type variables
(Tva), term variables (Var), constructors (Con), defined function symbols
(Ope), and rewrite rules (Prr and Hor). Defined function symbols occur
as head operators in lefthand sides of rules, while constructors may not.
With some exceptions, we use small letters for constants, greek letters for
type variables, capital latin letters for free term variables, and small latin
letters for bound term variables. Due to the hierarchichal structure of our
specifications, and the fact that a type declaration binds whatever comes
after, the polymorphism generated by the type variables is weak, as in
Isabelle: there is no need for explicit quantifiers which are all external.

Finally, our framework is typed with arities: besides having a type,
constants also have an arity which is indicated by writing a double arrow
⇒ instead of a single arrow → to separate input types from the output
type in the typing declarations. The double arrow does not appear when
there are no input types. We write f(u1, . . . , un) when f has arity n > 0
and simply f when n = 0. In general, the use of arities facilitates the
reading. Just like constants, variables also will have arities.

4

Gödel’s system T. We give a polymorphic version of Gödel’s system T,
a simply typed lambda calculus in which natural numbers are represented
in Peano notation. This example has an historical significance: it is the
very first higher-order rewrite system added to a typed lambda calculus,
introduced by Gödel to study the logic of (a fragment of) arithmetic;
it plaid a fundamental role in the understanding of the Curry-Howard
isomorphism which led to the definition of System F by Girard.

Example 1. Recursor for natural numbers

Tva α : ∗
Typ IN : ∗
Con 0 : IN
Con s : IN⇒ IN
Ope rec : IN→ α→ (IN→ α→ α)⇒ α
Var X : IN
Var U : α
Var Y : IN→ α→ α

Prr rec(0,U,Y)→ U
Prr rec(s(X),U,Y)→ @(Y,X, rec(X,U,Y))

In this example IN is the only type constant and α the only type
variable. The constants 0 and s are the two constructors for the type
IN of natural numbers, as it can be observed from their output type.
All variables have arity zero. The rec operator provides us with higher-
order primitive recursion. It can be used to define new functions, such as
addition, multiplication, exponentiation or even the Ackermann function
by choosing appropriate instantiations for the higher-order variables U
and X in the rules given in Example 1. For example,

Var M,N : IN
Prr plus(N,M)→ rec(N,M, λz1z2.s(z2))
Prr mul(N,M) → rec(N, 0, λz1z2.plus(M, z2))

The precise understanding of the recursor requires some familiarity
with the so-called Curry-Howard isomorphism, in which types are propo-
sitions in some fragment of intuitionistic logic (here, a quantified propo-
sitionnal fragment), terms of a given type are proofs of the correspond-
ing proposition, and higher-order rules describe proof transformations. In
system T, rec can be intuitively interpreted as carrying the proof of a
proposition α (the output type of rec) done by induction over the natu-
ral numbers. Assuming that α has the form ∀n.P (n) (beware that this

5

proposition is not a type here, we would need a type system à la Coq
for that), the variable U is then a proof of P (0), while Y is a function
which takes a natural number n and a proof of P (n) as inputs and yields a
proof of P (s(n)) as output. It is now easy to see that the first rule equates
two proofs of P (0). Further, since rec(X,U,Y) in the rigthand side of the
second rule is a proof of P (X), that rule equates two proofs of P (s(X)).

This simple example is already quite interesting in our view.
First, it is based on the use of plain pattern matching. This is always

so with recursors for inductive types and is indicated here by using the
keyword Prr. This comes from the fact that a ground expression of an
inductive type (like IN) which is in normal form must be headed by a
constructor (0 or s for IN). Now, pattern matching an expression in normal
form (like 0 or s(u) for some normal form u) with respect to the terms 0
and s(X) (in the case of rec) or with respect to the variable N (in the case
of plus,mul) does not need higher-order pattern matching since beta- and
eta-reductions can only occur inside variables (X or N).

Second, there is no way to define recursors by a finite number of
higher-order rules in the absence of polymorphism. A description saying
that U is a variable of an arbitrary ground type amounts to have one
rule for each ground type, which does not fit our purpose: to give a finite
specification for system T.

Finally, observe that rewriting expressions for which subexpressions of
type IN are ground results in a normal form in which the recursor does not
appear anymore. In the OBJ jargon, the operator rec is sufficiently de-
fined. The fact that all defined operators are sufficiently defined is crucial
for encoding recursion by rec.

Polymorphic lists.

Example 2. Recursors for lists

Typ list : ∗ ⇒ ∗
Tva α, β : ∗
Con nil : list(α)
Con cons : α→ list(α)⇒ list(α)
Ope map : list(α)→ (α→ β)⇒ list(β)
Var H : α
Var T : list(α)
Var F : α→ β

Prr map(nil,F)→ nil
Prr map(cons(H,T),F)→ cons(@(F,H),map(T,F))

6

This example familiar to Lisp programmers shows that the above final
remark applies to any inductive type, such as polymorphic lists. Here,
list is a type operator of arity one, therefore taking an arbitrary type
as input. map returns the list of applications of the function F given as
second argument to the elements of the list given as first argument.

Example 3 extends Example 2 with a parametric version of insertion
sort (called sort), which takes a list as input, sorts the tail and then inserts
the head at the right place by using a function insert, whose second ar-
gument is therefore a sorted list. The additional parameters X,Y in both
sort and insert stand for functions selecting one of their two arguments
with respect to some ordering. Instantiating them yields particular sort-
ing algorithms, as for example ascending − sort. The additional signature
declarations are omitted, as well as the keyword Prr.

Example 3. Parametric insertion sort

max(0,X) → X max(X, 0) → X
max(s(X), s(Y))→ s(max(X,Y))

min(0,X) → 0 min(X, 0) → 0
min(s(X), s(Y))→ s(min(X,Y))

insert(N, nil,X,Y)→ cons(N, nil)
insert(N, cons(M,T),X,Y)→ cons(@(X,N,M), insert(@(Y,N,M),T,X,Y))

sort(nil,X,Y)→ nil
sort(cons(N,T),X,Y)→ insert(N, sort(T,X,Y),X,Y)

ascending − sort(L)→ sort(L, λxy.min(x, y), λxy.max(x, y))
descending − sort(L)→ sort(L, λxy.max(x, y), λxy.min(x, y))

As this example shows, many programs can be defined by first-order
pattern matching, a well-known fact exploited by most modern functional
programming languages, such as those of the ML family. Again, we could
(and should) prove that these new defined operators are sufficiently de-
fined, but the argument is actually the same as before.

Differentiation. We now move to a series of examples showing the need
for higher-order pattern matching, which will be indicated by using the
second keyword Hor for rules. First, we need some more explanations
about the typed lambda calculus. IN and list(IN) are called data types,
while IN→ IN, which is headed by →, is a functional type. Constant data
types like IN are also called basic types. In Nipkow’s work, the lefthand
and righthand side of higher-order rules must have the same basic type,
a condition which is usually enforced when needed by applying a term of
a functional type to a sequence of variables of the appropriate types. All

7

terms must be in eta-long beta-normal form, forcing us to write λx.@(F, x)
instead of simply F. Lefthand sides of rules must be patterns [25], an
assumption frequently met in practice which makes both higher-order
pattern matching and unification decidable in linear time. Finally, there
is no notion of constructor and defined symbol, and no recursors coming
along with. We choose arbitrarily to have all symbols as defined. We give
only one rule, the others should be easily guessed by the reader.

Example 4. Differentiation 1

Typ IR : ∗
Ope sin, cos : IR→ IR
Ope mul : IR→ IR→ IR
Ope diff : (IR→ IR)→ IR→ IR
Var y : IR
Var F : IR→ IR

Hor @(diff, λx : IR.@(sin,@(F, x)), y)→
@(mul,@(cos,@(F, y)),@(diff, λx : IR.@(F, x), y))

Note that all function symbols and variables have arity zero, since
there is no arity in our sense in Nipkow’s framework. Both sides of the
rule have type IR: diff computes the differential of its first argument at the
point given as second argument. Unlike the previous examples, these rules
use higher-order pattern matching, and this is necessary here to compute
the derivative of the function sin itself. Clearly, @(diff, λx.@(sin, x)) does
not match the lefthand side of rule. Let us instantiate the variable F
of the lefthand side of rule by the identity function λx.x, resulting in
the expression @(diff, λx.@(sin,@(λx.x, x)), y) which beta-reduces to the
expected result @(diff,@(sin, x)), y). This shows that the latter expres-
sion higher-order matches the lefthand side of rule. Using plain pattern
matching would require infinitely many rules, one for each possible in-
stantiation of F requiring a beta-reduction. Incorporating beta-reduction
into the matching process allows one to have a single rule for all cases.

Using rules of higher-order type as well as function symbols and vari-
ables of non-zero arity is possible thanks to a generalisation of Nipkow’s
work [22], resulting in the following new version of the same example:

8

Example 5. Differentiation 2

Typ IR : ∗
Ope sin, cos : IR⇒ IR
Ope mul : (IR→ IR)→ (IR→ IR)⇒ (IR→ IR)
Ope diff : (IR→ IR)⇒ (IR→ IR)
Var F : IR⇒ IR

Hor diff(λx : IR. sin(F(x))→ mul(λx : IR. cos(F(x)), diff(λx : IR.F(x)))

Here, the rule has the higher-order type IR⇒ IR, making diff the true dif-
ferential of the function given as argument. In this format, eta-expansion
is controlled by the systematic use of arities. This use of arities for replac-
ing applications by parentheses should be considered here as a matter of
style: one can argue that arities are not really needed for that purpose,
since, traditionally, the application operator is not explicitly written in
the lambda calculus: some write (M N) for @(M,N) while others favour
M(N) instead. But this is a convention. In both cases, the conventional
expression is transformed by the parser into the one with explicit appli-
cation. Here, the syntax forces us to write @(M,N) when M is not a
variable or is a variable with arity zero, and M(N) when M is a variable
with arity 1. More convincing advantages are discussed later.

To get the best of our format, we can declare F as a function symbol
of arity zero and use the beta-eta-normal form instead of the eta-long
beta-normal form. With this last change, the rule becomes:

Var F : IR→ IR
Hor diff(sin(F))→ mul(cos(F), diff(F))

Simply typed lambda calculus. We end up this list with Klop’s fa-
vorite example, showing the need for arities of variables in order to encode
the lambda calculus. The challenge here is to have true rewrite rules for
beta-reduction and eta-reduction: the usual side condition for the eta-rule
must be eliminated. This is made possible by allowing us to control which
variables can or cannot be captured through substitution when replacing
a variable with arity: a substitute for a variable of arity n must be an ab-
straction of n different bound variables. For example, a variable of arity
one depends upon a single variable, like X which must be written X(x)
for some variable x bound above, and replaced by an abstraction λx.u
for some term u. The instance of X(x) will then become @(λx.u, x) and
beta-reduce to u. This idea due to Klop is indeed very much related to
Miller’s notion of pattern: in a pattern, every occurence of X must be of

9

the form X(x) with x bound above if X has arity one, and it becomes
then natural to define u as the substitute for X(x) rather than λx.u as a
substitute for X which does not exist as a syntactic term. We will later
see that this relationship is stronger than anticipated.

Example 6. Simply typed lambda calculus

Typ α, β : ∗
Ope app : (α→ β)→ α⇒ β
Ope abs : (α→ β)⇒ (α→ β)
Var U : α⇒ β
Var V : α
Var X : α→ β

Hor app(abs(λx : α.U(x)),V)→ U(V)
Hor abs(λx : α.app(X, x))→ X

The beta-rule shows the use of a variable of arity one in order to internalize
the notion of substitution, while the eta-rule shows the use of a variable of
arity zero in order to eliminate the condition that x does not occur free in
an instance of X: since X has arity zero, it cannot have an abstraction for
substitute. And because variable capture is forbidden by the definition of
substitution, x cannot occur in the substitute. The use of arity 1 for U is
not essential here, since we could also choose the arity zero to the price
of replacing the first rule by the variant

Hor app(abs(U),V)→ @(U,V).
The example is a variation of Klop’s, since we actually model a lambda

calculus with simple types. It also shows the need of a rich enough type
structure for specifying an example even as simple as this one.

3 Polymorphic Higher-Order Algebras

This section introduces the framework of polymorphic algebras [20, 22].
The use of polymorphic operators requires a rather heavy apparatus.

3.1 Types

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n ⇒ ∗, and
a set S∀ of type variables, the set TS∀ of polymorphic types is generated
from these sets by the constructor → for functional types:

TS∀ := α | s(T n
S∀) | (TS∀ → TS∀)

for α ∈ S∀ and s : ∗n ⇒ ∗ ∈ S

10

where s(T n
S∀) denotes an expression of the form s(t1, . . . , tn) with ti ∈ TS∀

for all i ∈ [1..n]. We use Var(σ) for the set of (type) variables of the type
σ ∈ TS∀ . When Var(σ) 6= ∅, the type σ is said to be polymorphic and
monomorphic otherwise. A type σ is functional when headed by the →
symbol, a data type when headed by a sort symbol (basic when the sort
symbol is a constant). → associates to the right.

A type substitution is a mapping from S∀ to TS∀ extended to an endo-
morphism of TS∀ . We write σξ for the application of the type substitution
ξ to the type σ. We denote by Dom(σ) = {α ∈ S∀ | ασ 6= α} the do-
main of σ ∈ TS∀ , by σ|V its restriction to the domain Dom(σ) ∩ V, by
Ran(σ) =

⋃
α∈Dom(σ) Var(ασ) its range. By a renaming of the type σ

apart from V ⊂ X , we mean a type σξ where ξ is a type renaming such
that Dom(ξ) = Ran(σ) and Ran(ξ) ∩ V = ∅.

We shall use α, β for type variables, σ, τ, ρ, θ for arbitrary types, and
ξ, ζ to denote type substitutions.

3.2 Signatures

We are given a set of function symbols denoted by the letters f, g, h,
which are meant to be algebraic operators equiped with a fixed number n
of arguments (called the arity) of respective types σ1 ∈ TS∀ , . . . , σn ∈ TS∀ ,
and an output type σ ∈ TS∀ such that Var(σ) ⊆

⋃
i Var(σi) if n > 0. We

call aritype the expression σ1 → . . . → σn ⇒ σ when n > 0 and σ when
n = 0, which can be seen as a notation for the pair made of a type and an
arity. The condition Var(σ) ⊆

⋃
i Var(σi) if n > 0 ensures that aritypes

encode a logical proposition universally quantified outside, making our
type system to come both rich and simple enough. Let F be the set of all
function symbols:

F =
⊎

σ1,...,σn,σ

Fσ1→...→σn⇒σ

The membership of a given function symbol f to the set Fσ1→...→σn⇒σ

is called a type declaration and written f : σ1 → . . . → σn ⇒ σ. A
type declaration is first-order if it uses only sorts, and higher-order oth-
erwise. It is polymorphic if it uses some polymorphic type, otherwise, it is
monomorphic. Polymorphic type declarations are implicitely universally
quantified: they can be renamed arbitrarily. Note that type instantiation
does not change the arity of a function symbol.

Alike function symbols, variables have an aritype. A variable declara-
tion will therefore take the same form as a function declaration.

11

3.3 Terms

The set T (F ,X) of (raw) terms is generated from the signature F and a
denumerable set X of arityped variables according to the grammar:

T := (λX : TS∀ .T) | @(T , T) | X (T , . . . , T) | F(T , . . . , T).

s will ambiguously denote a list, a set or a multiset of terms s1, . . . , sn.
Terms of the form λx : σ.u are called abstractions, the type σ being
possibly omitted. Because a type is a particular aritype, bound variables
have arity zero. @(u, v) denotes the application of u to v. Parentheses are
omitted for function or variable symbols of arity zero. The term @(v) is
called a (partial) left-flattening of s = @((. . .@(v1, v2)) . . . vn), v1 being
possibly an application itself. Var(t) is the set of free term variables of t.

Terms are identified with finite labeled trees by considering λx : σ. ,
for each variable x and type σ, as a unary function symbol taking a
term u as argument to construct the term λx : σ.u. Positions are strings
of positive integers. Λ and · denote respectively the empty string (root
position) and string concatenation. Pos(t) is the set of positions in t. t|p
denotes the subterm of t at position p. Replacing t|p at position p in t
by u is written t[u]p. The notation t[]p stands for a context waiting for a
term to fill its hole.

3.4 Typing rules

Definition 1. An environment Γ is a finite set of pairs written as {x1 :
σ1, . . . , xn : σn}, where xi is a variable, σi is an aritype, and xi 6= xj for
i 6= j. Var(Γ) = {x1, . . . , xn} is the set of variables of Γ . The size |Γ |
of the environment Γ is the sum of the sizes of its constituents. Given
two environments Γ and Γ ′, their composition is the environment Γ ·
Γ ′ = Γ ′ ∪ {x : σ ∈ Γ | x 6∈ Var(Γ ′)}. Two environments Γ and Γ ′ are
compatible if Γ · Γ ′ = Γ ∪ Γ ′.

Our typing judgments are written as Γ `F s : σ. A term s has type σ
in the environment Γ if and only if the judgment Γ `F s : σ is provable
in the inference system of Figure 1. Given an environment Γ , a term s is
typable if there exists a type σ such that Γ `F s : σ.

Remember our convention that function and variable symbols having
arity zero come without parentheses. When writing a jugement Γ `F s :
σ, we must make sure that σ is a type in the environment defined by
the signature. Types are indeed unisorted first-order terms (of sort ∗).
Since there is only one sort, and type symbols have a fixed arity, verifying

12

Functions:
f : σ1 → . . . → σn ⇒ σ ∈ F
ξ some type substitution

Γ `F t1 : σ1ξ . . . Γ `F tn : σnξ

Γ `F f(t1, . . . , tn) : σξ

Variables:
X : σ1 → . . . → σn ⇒ σ ∈ Γ

Γ `F t1 : σ1 . . . Γ `F tn : σn

Γ `F X(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} `F t : τ

Γ `F (λx : σ.t) : σ → τ

Application:
Γ `F s : σ → τ Γ `F t : σ

Γ `F @(s, t) : τ

Fig. 1. The type system for polymorphic higher-order algebras with arities

that an expression is a type amounts to check that all symbols occuring
in the expression are sort symbols or type variables, and that all sort
symbols in the expression have the right number of types as inputs, an
easily decidable property usually called well-formedness.

This typing system enjoys the unique typing property: given an envi-
ronment Γ and a typable term u, it can be easily shown by induction on
u that there exists a unique type σ such that Γ `F u : σ.

Note that type substitutions apply to types in terms: xξ = x, (λx :
σ.s)ξ = λx : σξ.sξ, @(u, v)ξ = @(uξ, vξ), and f(u)ξ = f(uξ).

3.5 Substitutions

Definition 2. A (term) substitution γ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn :
σn) 7→ (Γn, tn)}, is a finite set of quadruples made of a variable symbol,
an aritype, an environment and a term, such that

(i) Let σi = τi1 → . . . → τip ⇒ τi. Then ti = λyi1 : τi1 . . . yip : τip .ui

for distinct variables yi1 , . . . , yip and term ui 6= xi such that Γi `F ti : σi.
(ii) ∀i 6= j ∈ [1..n], xi 6= xj, and
(iii) ∀i 6= j ∈ [1..n], Γi and Γj are compatible environments.

We may omit the aritype σi and environment Γi in (xi : σi) 7→ (Γi, ti).
The set of (input) variables of the substitution γ is Var(γ) = {x1, . . . , xn},

its domain is the environment Dom(γ) = {x1 : σ1, . . . , xn : σn} while its
range is the environment (by assumption (iii)) Ran(γ) =

⋃
i∈[1..n] Γi.

Definition 3. A substitution γ is compatible with an environment Γ if

13

(i) Dom(γ) is compatible with Γ ,
(ii) Ran(γ) is compatible with Γ \ Dom(γ).
We will also say that γ is compatible with the judgement Γ `F s : σ.

Definition 4. A substitution γ compatible with a judgement Σ `F s : σ
operates as an endomorphism on s and yields the instance sγ defined as:

If s = @(u, v) then sγ = @(uγ, vγ)

If s = λx : τ.u then
sγ = λz : τ.(u{x 7→ z})γ
with z fresh.

If s = f(u1, . . . , un) then sγ = f(u1γ, . . . , unγ)
If s = X(u1, . . . , un) and X 6∈ Var(γ) then sγ = X(u1γ, . . . , unγ)

If
s = X(u1, . . . , un) and

(X : σ) 7→ (Γ, λy1 :τ1 . . . yn :τn.u) ∈ γ
then sγ =

@(λy1 :τ1 . . . yn :τn.u,
u1γ, . . . , unγ)

In the last case, we could also perform the introduced beta-reductions
therefore hiding the application operator. Writing sγ assumes Dom(γ)
compatible with Γ ` F s : σ and it follows that (Γ \ Dom(γ)) ∪
Ran(γ) `F sγ : σ. Given γ, the composition or instance ({(xi : σi) 7→
(Γi, ti)}i)γ is the substitution {(xi : σi) 7→ ((Γi\Dom(γ))∪Ran(γ), tiγ)}i.

3.6 Higher-order rewriting relations

We now introduce the different variants of higher-order rewriting, catego-
rized by their use of pattern matching. Allowing for variables with arities
should be considered as a cosmetic variation of the traditional frame-
works, since this is the case for the pattern matching and unification
algorithms, as well as for the definition of patterns.

Plain higher-order rewriting.

Definition 5. A plain higher-order rewrite system is a set of higher-
order rewrite rules {Γi ` li → ri : σi}i such that

(i) Γi `F li : σi and Γi `F ri : σi,
(ii) Var(r) ⊆ Var(l).

Plain higher-order rewriting is based on plain pattern matching:

Σ ` u
p−→

Γ ` l→r
v if Σ `F u : τ for some type τ, u|p = lσ and v = u[rσ]p.

Note the need for an environment Σ in which u is typable. Then, it is
easy to see that Σ `F v : τ , a property called type preservation, which
allows us to actually drop the environment Σ so as to make our notations
more readable. We also often take the liberty to drop the type of a rule.

14

A higher-order equation is a pair of higher-order rewrite rules {Γ ` l→
r : σ, Γ ` r → l : σ}. We abbreviate such a pair by Γ ` l = r : σ, and
write Σ ` u←→∗

R v or Σ ` u =R v if R is a set of equations.

Conversion rules. Conversion rules in the typed lambda calculus are a
particular example of higher-order equations:

{V : τ} ` λx : σ.V =α λy : σ.V {x 7→ y}
{U : σ, V : τ} ` @(λx : σ.V, U) =β V {x 7→ U}
{U : σ → τ} ` λx : σ.@(U, x) =η U

Traditionally, these equations are schemas, in which U and V stand for
arbitrary terms, with x 6∈ Var(U) for the eta-rule and y 6∈ (Var(V)\{x})
for the alpha-rule. Here, these conditions are ensured by our definition
of substitution, hence these equations are indeed true higher-order equa-
tions.

Orienting the last two equalities from left to right yields the beta-
reduction (resp. eta-reduction) rule. Orienting the third equation from
right to left yields the eta-expansion rule. Since this rule may not termi-
nate, its use is restricted by spelling out in which context it is allowed:

{u : σ1 → . . .→ σn → σ} `
s[u]p −→p

η s[λx1 : σ1, . . . , xn : σn.@(u, x1, . . . , xn)]p

if
{

σ is a data type, x1, . . . , xn 6∈ Var(u),
u is not an abstraction and s|q is not an application in case p = q · 1

The last condition means that the first argument of an application cannot
be recursively expanded on top. A variant requires in addition that p 6= Λ.

Typed lambda-calculi are confluent modulo alpha-conversion, and ter-
minating with respect to beta-reductions and either eta-expansion or eta-
reduction, therefore defining normal forms up to the equivalence gener-
ated by alpha-conversion. Our notations for normal forms use down ar-
rows for reductions: u↓β and u ↓βη; up arrows for expansions: u↑η; and
their combined version for eta-long beta-normal forms: u lηβ. We use u↓
for a normal form of some unspecified kind.

We can now introduce most general substitutions. Given Γ `F s, t :
σ, a solution (resp. higher-order solution) of the equation s = t is a
substitution γ such that sγ = t (resp. sγ =βη t) for a plain (resp.
higher-order) pattern-matching problem, and sγ = tγ (resp. sγ =βη tγ)
for a plain (resp. higher-order) unification problem. Solutions are called
plain/higher-order matches/unifiers, depending on which case is consid-
ered. A unifier γ is most general if any unifier θ satisfies θ = γϕ (resp.
θ =βη γϕ) for some substitution ϕ.

15

Normal higher-order rewriting. Normal higher-order rewriting is
based upon higher-order pattern matching, rules must be normalized,
and their lefthand sides must be patterns. Our definition of patterns spe-
cializes to Nipkow’s [24] when variables have arity zero:

Definition 6. A higher-order term u is a pattern if for every variable
occurrence of some variable X : σ1 → . . . σm ⇒ τ1 → . . . τn ∈ Var(u)
with n > 1 and τn a data type, there exists a position p ∈ Pos(u) such
that

(i) u|p = @(X(x1, . . . , xm), xm+1, . . . , xm+n),
(ii) ∀i, j ∈ [1..m + n], xi 6= xj or i=j,
(iii) ∀i ∈ [1..m + n], there exists a position q < p in Pos(u) and a

term v such that u|q = λxi.v.

Assuming X : α⇒ β → γ, λxy.@(X(x), y) is a pattern while λx.X(x),
λx.@(X(x), x) and λxy.Y (@(X(x), y) are not.

Computing the normal form of a pattern instance is done by normal-
izing first the pattern u then the substitution γ, before to reduce every
subexpression @(Xγ(x1, . . . , xm), xm+1, . . . , xm+n). This simple schema
in which the third step is a development shows that Nipkow’s and Klop’s
notions of rewriting coincide when lefthand sides of rules are patterns.
We believe that this is the very reason why higher-order pattern match-
ing and higher-order unification are decidable for patterns, suggesting a
more general notion of pattern. A related observation is made in [13].

Definition 7. A normal higher-order rewrite system is a set of rules
{Γi ` li → ri : σi}i such that conditions (i) and (ii) of Definition 5 are
satisfied, (iii) li and ri are in normal form and li is a pattern.

Normal higher-order rewriting operates on terms in normal form:

Σ ` u
p−→

Γ ` l→r
v if u = u↓, u|p

∗←→
βη

lσ and v = u[rσ]p↓

There are several variants of normal higher-order rewriting, which use
different kinds of normal forms.

In [26] and [24], eta-long beta-normal forms are used. The higher-order
rewrite rules must satisfy the following additional condition:

(iv) type constructors are constants, there are no type variables, func-
tion symbols and variables have arity 0, and rules are of basic type.

In [21], the framework is generalized, and condition (iv) becomes:
(v) type constructors may have a non-zero arity, type variables are

allowed, function symbols have aritypes, variables have arity 0, terms

16

are assumed to be in eta-long beta-normal form except at the top (eta-
expansion is not applied at the top of rules, but beta-normalization is),
rules can be of any (possibly polymorphic) type.

In [22], beta-eta-normal forms are used, and condition (iv) becomes:
(vi) type constructors have arities, type variables are allowed, con-

stants and variables have aritypes, lefthand sides of rules are of the form
f(l1, . . . , ln) for some function symbol f , and rules are of any type.

The use of beta-eta-normal forms allows us to restrict the lefthand
sides of rules by assuming they are headed by a function symbol. Were
eta-long beta-normal forms used instead, this assumption would imply
Nipkow’s restriction that rules are of basic type. We will see some advan-
tage of beta-eta-normal forms for proving confluence and termination.

Mixed higher-order rewriting. There is no reason to restrict ourselves
to a single kind of higher-order rules. It is indeed possible to use both,
by pairing each rule with the pattern-matching algorithm it uses, as done
with the keywords Prr,Hor used in the examples of Section 2. Of course,
we need to have all lefthand sides of both kinds of rules to be patterns,
and need using the same kind of normal form when rewriting terms. The
choice of beta-eta-normal forms is dictated by its advantages.

One can wonder whether there is a real need for two different keywords
for higher-order rules. As we have seen, higher-order pattern matching is
needed if and only if beta-redexes can be created by instantiation at non-
variable positions of the lefthand sides (eta-redexes cannot). This requires
a subterm F (u1, . . . , um) in the lefthand side of the rule, where F is a
free variable of aritype σ1 → . . . σm ⇒ σ with m > 0, an easily decidable
property.

Mixed higher-order rewriting has not yet been studied in the literature
although it is explicitely alluded to in [22]. However, all known results can
be easily lifted to the mixed case. In the sections to come, we will present
the results known for both plain and higher-order rewriting, and formulate
their generalization as a conjecture when appropriate.

4 Confluence

In this section, we restrict our attention to terminating relations. Conflu-
ence will therefore be checked via critical pairs, whose kind is imposed by
the mecanism for searching redexes.

Definition 8. Given two rules l→ r and g → d, a non-variable position
p ∈ Pos(l) and a most general unifier (resp. most general higher-order

17

unifier) σ of the equation l|p = g, the pair (rσ, l[dσ]p) is called a critical
pair (resp., a higher-order critical pair) of g → d on l→ r at position p.

A critical pair (s, t) is joinable if there exists v such that s−→∗
R v

and t−→∗
R v. It is higher-order joinable (joinable when clear from the

context) if there exist v, w such that s−→∗
R v, t−→∗

R w and v←→∗
βη w.

Plain higher-order rewriting. Using plain pattern matching leads to
plain critical pairs computed with plain unification. The following result
follows easily from Newman’s Lemma [15]:

Theorem 1. [7]. Given a set R of higher-order rules such that
(a) R ∪ {beta, eta} is terminating;
(a) all critical pairs in R ∪ {beta, eta} are joinable;

then plain higher-order rewriting with R ∪ {beta, eta} is confluent.

It can easily be checked that Examples 1, 2 and 3 are confluent because
they do not admit any critical pair.

Higher-order rewriting. Replacing joinability by higher-order joinabil-
ity does not allow us to get a similar result for higher-order rewriting [24].
It is indeed well-known, in the first-order case, that the natural general-
ization of confluence of a set of rules R in presence of a set of equations
E:

∀s, t, u in normal form such that u−→∗
R s and u−→∗

R t
∃v, w such that s−→∗

R v, t−→∗
R w and v←→∗

E w

is not enough for ensuring the Church-Rosser property :

∀s, t such that s←→∗
R∪E t

∃v, w such that s−→∗
R v, t−→∗

R w and v←→∗
E w

when searching for a redex uses E-matching. An additionnal coherence
property is needed:

∀s, t, u such that u−→∗
R s and u←→∗

E t
∃v and w such that s−→∗

R v, t−→∗
R w and v←→∗

E w.

Coherence can be ensured for an arbitrary equational theory E by us-
ing so-called Stickel’s extension rules [29, 16]. In the case of higher-order
rewriting, E is made of alpha, beta and eta. Then, rules headed by an
abstraction operator on the left, that is, of the form

λx.l→ r need as beta-extension the rule l→ @(r, x)↓

18

obtained by putting both sides of λx.l → r inside @([], x), the minimal
context generating a beta redex on top of its lefthand side. Normalizing
the result yields the extension. Note that a single extension is generated.

For example, the rule λx.a → λx.b, where a, b are constants has a →
b as extension. Indeed, a←−Λ

β @(λx.a, x)−→1
λx.a→λx.b @(λx.b, x)−→Λ

β b.
However, a 6=βη λx.a since a and λx.a have different types. Therefore,
a and b are different terms in normal-form, although they are equal in
the theory generated by eta, beta, and the equation λx.a = λx.b. Adding
the extension a→ b solves the problem.

This explains Nipkow’s restriction that rules must be of basic type:
in this case, no lefthand side of rule can be an abstraction. Generalizing
Nipkow’s framework when this assumption is not met is not hard: it
suffices to close the set of rules with finitely many beta-extensions for
those rules whose lefthand side is an abstraction. This covers rules of
arbitrary polymorphic functional type. Notice also that no beta-extension
is needed for rules whose lefthand side is headed by a function symbol.
Finally, because of the pattern condition, it is easy to see that no extension
is needed for the eta-rule. We therefore have the following result:

Theorem 2. [22] Given a set R of higher-order rules satisfying assump-
tions (i,ii,iii) and (v) such that

(a) R ∪ {beta, eta−1} is terminating;
(b) R is closed under the computation of beta-extensions;
(c) irreducible higher-order critical pairs of R are joinable;

then, higher-order rewriting with R is Church-Rosser.

Nipkow’s result stating confluence of higher-order rewriting when as-
sumption (iv) is met appears then as a corollary. The fact that it is a corol-
lary is not straightforward, since the termination assumption is different:
Nipkow assumes termination of higher-order rewriting with R. The fact
that this coincides with assumption (i) is however true under assumptions
(i,ii,iii,iv) [22]. We can easily see that Examples 4 and 5 (first version) do
not admit higher-order critical pairs, hence are Church-Rosser. Adding
the other rules for differentiation would clearly not change this situation.

Adding beta-extensions is not such a burden, but we can even dispense
with by using the variant of eta-long beta-normal forms in which eta-
expansion does not apply at the top of terms. Then, we can assume that
the lefthand side of a higher-order rule is headed by an application or
by a function symbol of non-zero arity if they are allowed, and no beta-
extension is needed anymore.

We now turn to the second kind of normal form:

19

Theorem 3. [22] Given a set R of higher-order rules satisfying assump-
tions (i,ii,iii) and (vi) such that

(a) R ∪ {beta, eta} is terminating;
(b) irreducible higher-order critical pairs of R are joinable;

then, higher-order rewriting with R is Church-Rosser.

Example 5, as modified at the end of its paragraph, has no higher-
order critical pairs, hence is Church-Rosser.

Altogether, the framework based on βη-normal forms appears a little
bit more appealing.

Mixed higher-order rewriting. We end up with the general case of
a set of higher-order rules R split into disjoint subsets R1 using plain
pattern matching, and R2 using higher-order pattern matching for terms
in beta-eta-normal form. We assume that R satisfies assumptions (i,ii),
that lefthand sides of rules in R1 are headed by a function symbol, and
that R2 satisfies assumption (iii,vi). When these assumptions are met, we
say that R is a mixed set of higher-order rules. Rewriting then searches for
R1-redexes with plain pattern-matching, and uses beta-eta-normalization
before to search for R2-redexes with higher-order pattern matching.

Our conjecture follows a similar analysis made for the first-order case,
with left-linear rules using plain pattern matching, and non-left-linear
ones using pattern matching modulo some first-order theory E [16]:

Conjecture. Given a mixed set R = R1] R2 of higher-order rules
such that

(i) R ∪ {βη} is terminating;
(ii) irreducible plain critical pairs of R1 are joinable;
(iii) irreducible higher-order critical pairs of R2 are joinable;
(iv) irreducible higher-order critical pairs of R2 with R1 are joinable;

then, mixed higher-order rewriting with R is Church-Rosser.

5 Termination of plain higher-order rewriting

Given a rewrite system R, a term t is strongly normalizing if there is no
infinite sequence of rewrites with R issuing from t. R is strongly normal-
izing or terminating if every term is strongly normalizing.

Termination of typed lambda calculi is notoriously difficult. Termina-
tion of the various incarnations of higher-order rewriting turns out to be
even more difficult. There has been little success in coming up with gen-
eral methods. The most general results have been obtained by Blanqui [5,
6], as a generalization of a long line of work initiated by Jouannaud and

20

Okada [18, 17, 1, 4, 7]. We will not describe these results here, but base
our presentation on the more recent work of Jouannaud and Rubio [19,
20] which is strictly more general in the absence of dependent types. The
case of dependent types is investigated in [33], but requires more work.

Higher-order reduction orderings. The purpose of this section is to
define the kind of ordering needed for plain higher-order rewriting. To a
quasi-ordering �, we associate its strict part � and equivalence '. Typing
environments are usually omitted to keep notations simple.

Definition 9. [20] A higher-order reduction ordering is a quasi-ordering
� of the set of higher-order terms, which (i) well-founded, (ii) monotonic
(i.e., s � t implies u[s] � u[t] for all contexts u[]), (iii) stable (i.e., s � t
implies sγ � tγ for all compatible substitutions γ) and (iv) includes alpha-
conversion (i.e. =α ⊆ ') and beta-eta-reductions (i.e., −→βη ⊂ �).
It is polymorphic if s � t implies sξ � tξ for any type instantiation ξ.

Note that the above definition includes the eta-rule, and not only the
beta-rule as originally. This extension does not raise difficulties.

Theorem 4. [20] Assume that � is a higher-order reduction ordering,
and let R = {Γi ` li → ri}i∈I be a plain higher-order rewrite system such
that li � ri for every i ∈ I. Assume in addition that � is polymorphic if
so is R. Then the relation −→R ∪−→βη is terminating.

The proof of the previous result is not difficult: it is based on lifting
the property li � ri to a rewrite step u−→p

li→ri
v by using the properties

of the ordering. A simple induction allows then to conclude.

Higher-order recursive path ordering. We give here a generalization
of Derhowitz’s recursive path ordering to higher-order terms. Although
the obtained relation is transitive in many particular cases, it is not in gen-
eral, hence is not an ordering. We will nevertheless call it the higher order
recursive path ordering, keeping Dershowitz’s name for the generalization.
We feel free to do so because the obtained relation is well-founded, hence
its transitive closure is a well-founded ordering with the same equivalence,
taken here equal to alpha-conversion for simplicity. We are given:

1. a partition Mul] Lex of F ∪ S;
2. a quasi ordering ≥FS on F ∪ S, the precedence, such that

(a) >F is well-founded (F ∪ S is not assumed to be finite);
(b) if f =FS g, then f ∈ Lex iff g ∈ Lex;

21

(c) >FS is extended to F ∪ X ∪ S by adding all pairs x ≥FS x for
x ∈ X (free variables are only comparable to themselves);

3. a set of terms CC(s) called the computability closure of s: in the coming
definition, CC(f(s)) = s, but will become a richer set later on.

The definition compares types and terms in the same recursive manner,
using the additional proposition (assuming that s and f(t) are terms)

A = ∀v ∈ t s �
horpo

v or u �
horpo

v for some u ∈ CC(s)

Definition 10.

s : σ �
horpo

t : τ iff (σ = τ = ∗ or σ �
horpo

τ) and

1. s = f(s) with f ∈ F ∪ S, and u �
horpo

t for some u ∈ CC(s)

2. s = f(s) and t = g(t) with f >FS g, and A (see definition below)
3. s = f(s) and t = g(t) with f =FS g ∈Mul and s(�

horpo
)mult

4. s = f(s) and t = g(t) with f =FS g ∈ Lex and s(�
horpo

)lext, and A

5. s = @(s1, s2) and u �
horpo

t for some u ∈ {s1, s2}

6. s = λx : σ.u, x 6∈ Var(t) and u �
horpo

t

7. s = f(s), @(t) a left-flattening of t, and A
8. s = f(s) with f ∈ F , t = λx : α.v with x 6∈ Var(v) and s �

horpo
v

9. s = @(s1, s2), @(t) a left-flattening of t and {s1, s2}(�
horpo

)mult

10. s = λx : α.u, t = λx : β.v, α '
horpo

β and u �
horpo

v

11. s = @(λx.u, v) and u{x 7→ v} �
horpo

t

11bis. s = λx.@(u, x) with x 6∈ Var(u) and u �
horpo

t

12. s = α→ β, and β �
horpo

t

13. s = α→ β, t = α′ → β′, α '
horpo

α′ and β �
horpo

β′

14. s = X(s) and t = X(t) and s(�horpo)mult

We assume known how to extend a relation on a set to n-tuples of
elements of the set (monotonic extension -comparing terms one by one
with at least one strict comparison-, or lexicographic extension -comparing
terms one by one until a strict comparison is found) or to multisets of
elements of the set (multiset extension).

22

The computability closure was called computational closure in [19].
Case 14 does not exist as such in [20], but follows easily from Case 9.

Neither does Case 11bis, used for proving the eta-rule. An immediate
subterm u of s is type-decreasing if the type of u is smaller or equal to the
type of s. Condition A differs from its first-order version ∀v ∈ t s�horpov,
but reduces to it when all immediate subterms of s are type-decreasing,
because �horpo enjoys the subterm property for these subterms. Indeed,
the restriction of the ordering to subterm-closed sets of terms whose all
immediate subterms are type-drecreasing, as are types, is transitive.

A more abstract description of the higher-order recursive path order-
ing is given in [20], in which the relation on terms and the ordering on
types are separated, the latter being specified by properties to be satis-
fied. The version given here, also taken from [20], shows that the same
mecanism can apply to terms and types, a good start for a generalization
to dependent type structures.

Theorem 5. (�horpo)∗ is a polymorphic higher-order reduction ordering.

The proof is based on Tait and Girard’s computability predicate technique
(Girard’s candidates are not needed for weak polymorphism) [20].

We go on checking the examples of Section 2, making appropriate
choices when using property A.

The higher-order recursive path ordering at work.

Example 1. Let us first recall the rules for rec:

rec(0,U,Y)→ U
rec(s(X),U,Y)→ @(Y, X, rec(X,U,Y))

We assume a multiset status for rec.
Since both sides of the first equation have the same (polymorphic)

type α, the comparison rec(0,U,Y)�horpo U proceeds by Case 1 and suc-
ceeds easily since Y belongs to the computability closure of rec(0,U,Y)
as one of its subterms.

As it can be expected, both sides of the second equation have again
the same type. The comparison rec(s(X),U,Y)�horpo @(Y,X, rec(X,U,Y))
proceeds this time by Case 7, generating three subgoals (we use here prop-
erty A, chosing a subterm when possible). The first subgoal Y�horpo Y
is solved readily since Y is a subterm of the lefthand side. The second
subgoal s(X)�horpo X is solved by Case 1. The third subgoal, namely
rec(s(X),U,Y)�horpo rec(X,U,Y) is solved by Case 3, which generates the
three easy comparisons s(X)�horpo X, U�horpo U and Y�horpo Y.

23

Example 2. Let us recall the rules:

map(nil,F)→ nil
map(cons(H,T),F)→ cons(@(F,H),map(T,F))

We assume the precedence map >FS cons and membership of map to
Mul. The first rule being easy, let us consider the second. Our goal is
(i) map(cons(H,T),F)�horpo cons(@(H,F),map(T,F))
which first checks types and then reduces to two new goals by Case 2:
(ii) map(cons(H,T),F)�horpo @(F,H)
(iii) map(cons(H,T),F)�horpo map(T,F)
Goal (ii) reduces by Case 7 to three new goals
(iv) list(β)�horpo β
(v) F�horpo F, which disappears
(vi) cons(H,T)�horpo H
Goal (iv) is taken care of by Case 1 while Goal (vi) reduces by Case 1 to
(vii) list(α)�horpo α
(viii) H�horpo H, which disappears.
Goal (vii) is taken care of by Case 2. We are left with goal (iii) which
reduces by Case 3 to
(iv) {cons(H,T),F}(�horpo)mul{T,F}
which yields one (last) goal by definition of (�horpo)mul:
(x) cons(H,T)�horpo T, which is taken care of by Case 1.

Example 3. The example of parametric insertion sort raises a difficulty.
Let us recall the rules:

max(0,X) → X max(X, 0) → X
max(s(X), s(Y))→ s(max(X,Y))

min(0,X) → 0 min(X, 0) → 0
min(s(X), s(Y))→ s(min(X,Y))

insert(N, nil,X,Y)→ cons(N, nil)
insert(N, cons(M,T),X,Y)→ cons(@(X,N,M), insert(@(Y,N,M),T,X,Y))

sort(nil,X,Y)→ nil
sort(cons(N,T),X,Y)→ insert(N, sort(T,X,Y),X,Y)

ascending sort(L)→ sort(L, λxy.min(x, y), λxy.max(x, y))
descending sort(L)→ sort(L, λxy.max(x, y), λxy.min(x, y))

The reader can check that all comparisons succeed with appropriate prece-
dence and statuses, but the last two:

ascending sort(L) �horpo sort(L, λxy.min(x, y), λxy.max(x, y))
descending sort(L) �horpo sort(L, λxy.max(x, y), λxy.min(x, y))

24

This is because the subterm λxy.min(x, y) occuring in the righthand side
has type α→ α→ α, which is not comparable to any lefthand side type.

Computability closure Our definition of �horpo is parameterized by
the definition of the computability closure. In order for Theorem 5 to
hold, it suffices to make sure that the closure is made of terms which are
all computable in the sense of Tait and Girard’s computability predicate
(termed reducibility candidate by Girard). Computability is guaranteed
for the immediate subterms of a term by an induction argument in the
strong normalization proof, and we can then enlarge the set of computable
terms by using computability preserving operations.

Definition 11. Given a term t = f(t) of type σ, we define its computable
closure CC(t) as CC(t, ∅), where CC(t,V), with V ∩ Var(t) = ∅, is the
smallest set of well-typed terms containing all variables in V, all terms in
t, and closed under the following operations:

1. subterm of minimal data-type: let s ∈ CC(t,V) with f ∈ F , and u : σ be
a subterm of s such that σ is a data-type minimal in the type ordering
and Var(u) ⊆ Var(t); then u ∈ CC(t,V);

2. precedence: let g such that f >FS g, and s ∈ CC(t,V); then g(s) ∈
CC(t,V);

3. recursive call: let s be a sequence of terms in CC(t,V) such that the
term f(s) is well typed and t(�horpo ∪��)statf s; then f(s) ∈ CC(t,V);

4. application: let s : σ1 → . . . → σn → σ ∈ CC(t,V) and ui : σi ∈
CC(t,V) for every i ∈ [1..n]; then @(s, u1, . . . , un) ∈ CC(t,V);

5. abstraction: let x /∈ Var(t) ∪ V and s ∈ CC(t,V ∪ {x}); then λx.s ∈
CC(t,V);

6. reduction: let u ∈ CC(t,V), and u�horpo v; then v ∈ CC(t,V);
7. weakening: let x 6∈ Var(u, t) ∪ V. Then, u ∈ CC(t,V ∪ {x}) iff u ∈
CC(t,V).

The new definition of the computability closure uses the relation
�horpo, while the new relation is denoted by �chorpo. Whether this no-
tational difference introduced in [19] is necessary is doubtful, but allows
to define the ordering in a hierachical way rather than as a fixpoint. The
proofs would otherwise be surely harder than they already are.

We can now show termination of the two remaining rules of Example 3:
(i) ascending sort(L)�chorpo sort(L, λxy.min(x, y), λxy.max(x, y))
(ii) descending sort(L)�chorpo sort(L, λxy.max(x, y), λxy.min(x, y))

Since both proofs are almost identical, we only consider goal (i). We
assume the precedence ascending sort >FS sort,min,max. First, note that

25

using rule 2 does not work, since we would generate the goal
ascending sort(L)�chorpo λxy.max(x, y)
which fails for typing reason. Instead, we immediately proceed with Case 1
of the ordering definition, showing that the whole righthand side is in the
computability closure of the lefthand one:
(iii) sort(L, λxy.max(x, y), λxy.min(x, y)) ∈ CC(ascending sort(L), ∅)
By precedence Case 2 of the computability closure, we get three goals:
(iv) L ∈ CC(ascending sort(L), ∅)
(v) λxy.max(x, y) ∈ CC(ascending sort(L), ∅)
(vi) λxy.min(x, y)) ∈ CC(ascending sort(L), ∅)
Goal (iv) is easily done by the basic case of the inductive definition of the
computability closure. Goal (v) is similar to goal (vi), which we do now.
By weakening Case 7 applied twice, we get the new goal:
(vii) min(x, y)) ∈ CC(ascending sort(L), {x, y})
Applying now precedence Case 2 of the closure, we get the new goals
(viii) x ∈ CC(ascending sort(L), {x, y})
(ix) y ∈ CC(ascending sort(L), {x, y})
which are both solved by basic case of the inductive definition.

6 Termination of normal higher-order rewriting

The situation with normal higher-order rewriting is a little bit more del-
icate because of the definition in which rewritten terms are normalized.
Lifting a comparison from a rule l � r to an instance lσ↓ � rσ↓ may
not be possible for a given higher-order reduction ordering, but may be
for some appropriate subrelation.

Definition 12. A subrelation �β of � is said to be ↓-stable if s �β t
implies sγ ↓β � tγ ↓β for all normalized terms s, t and normalized
substitution γ.

Theorem 6. [20] Assume that � is a higher-order reduction ordering
and that �β is a ↓-stable subrelation of �. Let R = {Γi ` li → ri}i∈I be
a normal higher-order rewrite system such that li �β ri for every i ∈ I.
Assume in addition that � is polymorphic if so is R. Then normal higher-
order rewriting with R is strongly normalizing.

The proof of this result is quite similar to that of Theorem 4. Let us
remark that �horpo is not ↓-stable. The following example shows the kind
of problematic term:

26

Example 8. @(X, f(a))�horpo @(X, a)�horpo a, while instantiating these
comparisons with the substitution γ = {X 7→ λy.a} yields
X(f(a))γ↓ = X(a)γ↓ = a, contradicting ↓-stability. 2

It turns out that only the beta rule may cause a problem for the
higher-order recursive path ordering, hence our notation �β, by turning
a greater than comparison into an greater than or equal to comparison.
As a consequence, the coming discussion applies to all kinds of normal
higher-order rewriting, using eta either as a reduction or as an expansion,
and with or without arities.

Definition 13. The relation (�horpo)β , called normal higher-order re-
cursive path ordering is defined as the relation �horpo, but restricting
Cases 5 and 9 as follows:

5. . . . if s1 is not an abstraction nor a variable, and u = s2 otherwise.
9. . . . if s1 is not an abstraction nor a variable, and {s2}((�horpo)β)mult

otherwise.

Although the main argument of the proof is that this definition yields
a (well-founded) subrelation of the higher-order recursive path ordering,
showing that it is beta-stable happens to be a painful technical task,
especially when using eta-expansions. Note that we could think adding
two new cases, by incorporating the cases removed from (�horpo)β in the
equivalence part of the new relation:

14. @(X(s), u)(�horpo)β @(X(t), v) if s u((�horpo)β)montv

The study of this variant should be quite easy.
It is unfortunately not enough to modify the ordering as done here

in presence of a computational closure which is not reduced to the set of
subterms: the definition of the closure itself needs cosmetic modifications
to ensure that the ordering is stable. Since they do not impact the example
to come, we simply refer to the original article for its precise definition [21].
Let us denote the obtained relation by (�chorpo)β .

Theorem 7. ((�horpo)β)∗ and ((�chorpo)β)∗ are polymorphic ↓-stable
higher-order reduction orderings.

We now test the ordering (�chorpo)β against our remaining examples.
We shall refer to Definition 10 for the cases of Definition 13 that did not
change, and to the modifications for the changed ones.

27

Example 4. Differentiation 1. Let us recall the goal, writing all appli-
cations on left, and flattening them all on the right:
(i) @(@(diff, λx.@(sin, (@(F, x)))), y) (�chorpo)β

@(mul,@(cos,@(F, y)),@(diff, λx.@(F, x), y))
We take D >F {mul, sin, cos} for precedence and assume that the

function symbols are in Mul. By Case 9 applied to the goal (i), we get
(ii) {@(diff, λx.@(sin, (@(F, x)))), y}((�chorpo)β)mul

{mul,@(cos,@(F, y)),@(diff, λx.@(F, x), y)}
Because y occurs free in the term @(cos,@(F, y)) taken from the multiset
on the right and because y is the only term in the left multiset in which
y occurs free, there is no possibility to solve the previous goal and the
whole comparison fails. There might be a way out by using the closure
mechanism for applications, but this variant has not been studied yet.

Example 5. Differentiation 2. Let us recall this applications-free goal:
(i) diff(λx. sin(F(x)))(�chorpo)β mul(λx. cos(F(x)), diff(λx.F(x)))
We take the precedence diff >FS mul >FS sin =FS cos and assume that
all function symbols are in Mul. By Case 2 applied to goal (i), we get:
(ii) λx. sin(F(x))(�chorpo)β λx. cos(F(x))
(iii) diff(λx. sin(F(x)))(�chorpo)β diff(λx.F(x))
Goal (ii) reduces successively to
(iv) sin(F(x))(�chorpo)β cos(F(x)) by Case 10
(v) F(x)(�chorpo)β F(x) by Case 3, which disappears.
We proceed with goal (iii) which reduces successively to
(vi) λx. sin(F(x))(�chorpo)β λx.F(x) by Case 3
(viii) sin(F(x))(�chorpo)β F(x) by Case 10
(ix) F(x) ∈ CC(sin(F(x))) by Case 1,
which disappears by base case of the closure definition.

With the same precedence, the reader can now try the modified ver-
sion of Example 5: the computation goes as if using Dershowitz’s recursive
path ordering. We observe the influence of seemingly equivalent defini-
tions on the computation, suggesting that some work is still necessary to
improve the higher-order recursive path ordering in the normalized case.

7 Termination of mixed higher-order rewriting

Conjecture. Given a mixed set R = R1] R2 of higher-order rules, a
polymorphic higher-order ordering � and a ↓βη-stable subrelation �βη of
� such that l � r for any rule l → r ∈ R1 and l �βη r for any rule
l→ r ∈ R2, then mixed rewriting with R is terminating.

The proof follows from the fact� decreases along beta-eta-reductions.

28

8 Conclusion

We have shown here how the various versions of higher-order rewriting
relate to each other, and can be enriched so as to yield a new framework
in which they coexist. We have also shown how the classical properties of
rewriting can be checked with the help of powerful tools, like higher-order
critical pairs, beta-extensions, the higher-order recursive path ordering,
and the computing closure. We left out sufficient completeness, which has
been only recently adressed in the case of plain rewriting [8].

Acknowledgments: This paper would not exist without the pionneering
work of Klop on higher-order rewriting and the work I have done myself
with my coauthors Femke van Raamsdonk and Albert Rubio, my col-
league Mitsuhiro Okada with who I started getting into that subject, and
my students Maribel Fernandez, Frederic Blanqui and Daria Walukiewicz
who investigated some of these questions within the framework of the cal-
culus of constructions. An anonymous referee and Femke van Raamsdonk
deserve special thanks for their help in shaping the initial draft.

References

1. Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of strong
normalization and confluence in the algebraic-λ-cube. In Proc. of the 9th Symp.
on Logic in Computer Science, IEEE Computer Society, 1994.

2. Henk Barendregt. Handbook of Logic in Computer Science, chapter Typed lambda
calculi. Oxford Univ. Press, 1993. eds. Abramsky et al.

3. Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science 55, Marc Bezem, Jan Willem Klop and Roel de Vrijer eds., Cambridge
University Press, 2003.

4. Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. The Calculus of
Algebraic Constructions. In Narendran and Rusinowitch, Proc. RTA, LNCS 1631,
1999.

5. Frédéric Blanqui. Inductive Types Revisited. Available from the web.
6. Frédéric Blanqui. Definitions by rewriting in the Calculus of Constructions, 2003.

To appear in Mathematical Structures in Computer Science.
7. Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive Data

Types. Theoretical Computer Science 277, 2001.
8. Jacek Chrzaczsz and Daria Walukiewicz-Chrzaczsz. Consistency and Completeness

of Rewriting in the Calculus of Constructions. Draft.
9. Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer

Science, 17(3):279–301, March 1982.
10. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–
309. North-Holland, 1990.

11. Gilles Dowek. Higher-Order Unification and Matching. Handbook of Automated
Reasonning, A. Voronkov ed., vol 2, pages 1009–1062.

29

12. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Christine Paulin-Mohring,
and Benjamin Werner. The Coq proof assistant user’s guide version 5.6. INRIA
Rocquencourt and ENS Lyon.

13. Gilles Dowek, Thérèse Hardin, Claude Kichner and Franck Pfenning. Unification
via explicit substitutions: The case of Higher-Order Patterns. In JICSLP:259–273,
1996.

14. Jean-Yves Girard, Yves Lafont, and Patrick Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

15. Gérard Huet. Confluent reductions: abstract properties and applications to term
rewriting systems. In Journal of the ACM 27:4(797–821), 1980.

16. Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a Set of Rules Modulo
a Set of Equations. In Siam Journal of Computing 15:4(1155–1194), 1984.

17. Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems. Theo-
retical Computer Science, 173(2):349–391, February 1997.

18. Jean-Pierre Jouannaud and Mitsuhiro Okada. Higher-Order Algebraic Specifica-
tions. In Annual IEEE Symposium on Logic in Computer Science, Amsterdam,
The Netherlands, 1991. IEEE Comp. Soc. Press.

19. Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path order-
ing. In Giuseppe Longo, editor, Fourteenth Annual IEEE Symposium on Logic in
Computer Science, Trento, Italy, July 1999. IEEE Comp. Soc. Press.

20. Jean-Pierre Jouannaud and Albert Rubio. Higher-order recursive path orderings.
Available from the web.

21. Jean-Pierre Jouannaud and Albert Rubio. Higher-order orderings for normal
rewriting. Available from the web.

22. Jean-Pierre Jouannaud and Albert Rubio and Femke van Raamsdonk. Higher-
order Rewriting with Types and Arities. Available from the web.

23. Jan Willem Klop. Combinatory Reduction Relations. Mathematical Centre Tracts
127. Mathematisch Centrum, Amsterdam, 1980.

24. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-
ence. Theoretical Computer Science, 192(1):3–29, February 1998.

25. Dale Miller. A Logic Programming Language with Lambda-Abstraction, Func-
tion Variables, and Simple Unification. In Journal and Logic and Computation
1(4):497–536, 1991.

26. Tobias Nipkow. Higher-order critical pairs. In 6th IEEE Symp. on Logic in Com-
puter Science, pages 342–349. IEEE Computer Society Press, 1991.

27. Tobias Nipkow, Laurence C. Paulson and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. LNCS 2283, Springer Verlag, 2002.

28. Tobias Nipkow and Christian Prehofer. Higher-Order Rewriting and Equational
Reasonning. In Automated deduction — A basis for Applications. Volume I: Foun-
dations, Bibel and Schmitt editors. Applied Logic Series 8:399–430, Kluwer, 1998.

29. Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some
equational theories. In JACM 28(2):233–264, 1981.

30. Franck Pfenning. Logic Programming in the LF Logical Framework. In Logi-
cal Frameworks, Gérard Huet and Gordon D. Plotkin eds., Cambridge University
Press, 1991.

31. Femke van Raamsdonk. Confluence and Normalization for Higher-Order Rewrite
Systems. phd thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1996.

32. Femke van Raamsdonk. Higher-order rewriting. In [3].
33. Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the Calculus of Con-

structions. In Proceedings of the Workshop on Logical Frameworks and Meta-
languages, Santa Barbara, California, 2000.

30

