
Formal Mathematics and Application to
Software Safety and Internet Security

Jean-Pierre Jouannaud
École Polytechnique

91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr
http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, Pôle Commun de Recherche en
Informatique du Plateau de Saclay, CNRS, École

Polytechnique, INRIA, Université Paris-Sud.

November 5, 2004



Outline
Theorems and proofs in mathematics

Four celebrated examples
Deductions and Computations

Proof Assistants
Coq

Conclusion

Outline

1 Theorems and proofs in mathematics
2 Four celebrated examples

Examples from mathematics
Examples from computer science

3 Deductions and Computations
Foundations from mathematical logic
Integrating deductions and computations

4 Proof Assistants
5 Coq
6 Conclusion

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.plain



Theorems and proofs in mathematics



Theorems and Proofs in mathematics

A theorem is a mathematical statement
whose proof consists in a succession of
deductions following the rules of logic.

One rule allows using any existing theorem.

To be sure a proof is correct, mathematicians
require that it can be entirely read and
understood by other mathematicians.

Some proofs do not follow this schema: they
involve computations that cannot be done or
followed by a mathematician in a lifetime.



Theorems and Proofs in mathematics

A theorem is a mathematical statement
whose proof consists in a succession of
deductions following the rules of logic.

One rule allows using any existing theorem.

To be sure a proof is correct, mathematicians
require that it can be entirely read and
understood by other mathematicians.

Some proofs do not follow this schema: they
involve computations that cannot be done or
followed by a mathematician in a lifetime.



Theorems and Proofs in mathematics

A theorem is a mathematical statement
whose proof consists in a succession of
deductions following the rules of logic.

One rule allows using any existing theorem.

To be sure a proof is correct, mathematicians
require that it can be entirely read and
understood by other mathematicians.

Some proofs do not follow this schema: they
involve computations that cannot be done or
followed by a mathematician in a lifetime.



Theorems and Proofs in mathematics

A theorem is a mathematical statement
whose proof consists in a succession of
deductions following the rules of logic.

One rule allows using any existing theorem.

To be sure a proof is correct, mathematicians
require that it can be entirely read and
understood by other mathematicians.

Some proofs do not follow this schema: they
involve computations that cannot be done or
followed by a mathematician in a lifetime.



Four examples from mathematics and computer
science

Four colors theorem: 1200 hours of
computations by Appel and Haken in 1976.

Kepler’s conjecture: over ten years of
computations with more than 105

polynomials having over 100 variables and
over 1000 constants by Hales in 1998.

Primality: 44052638 + 26384405 is the biggest
(15071 digits) proved “ordinary prime”: 720
days of computation by Morain at al in 2003.

Authentication: Needham-Schröder protocol
shown wrong by machine in 1996 by Lowe.



Four examples from mathematics and computer
science

Four colors theorem: 1200 hours of
computations by Appel and Haken in 1976.

Kepler’s conjecture: over ten years of
computations with more than 105

polynomials having over 100 variables and
over 1000 constants by Hales in 1998.

Primality: 44052638 + 26384405 is the biggest
(15071 digits) proved “ordinary prime”: 720
days of computation by Morain at al in 2003.

Authentication: Needham-Schröder protocol
shown wrong by machine in 1996 by Lowe.



Four examples from mathematics and computer
science

Four colors theorem: 1200 hours of
computations by Appel and Haken in 1976.

Kepler’s conjecture: over ten years of
computations with more than 105

polynomials having over 100 variables and
over 1000 constants by Hales in 1998.

Primality: 44052638 + 26384405 is the biggest
(15071 digits) proved “ordinary prime”: 720
days of computation by Morain at al in 2003.

Authentication: Needham-Schröder protocol
shown wrong by machine in 1996 by Lowe.



Four examples from mathematics and computer
science

Four colors theorem: 1200 hours of
computations by Appel and Haken in 1976.

Kepler’s conjecture: over ten years of
computations with more than 105

polynomials having over 100 variables and
over 1000 constants by Hales in 1998.

Primality: 44052638 + 26384405 is the biggest
(15071 digits) proved “ordinary prime”: 720
days of computation by Morain at al in 2003.

Authentication: Needham-Schröder protocol
shown wrong by machine in 1996 by Lowe.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Four colors theorem

1852 Guthrie remarks that 4 colors suffice to draw
the county map of England.

1878 Conjecture published by Cayley.

1879 First proof by Kempe, but unfortunately ...

1890 it only shows that five colors suffice.

1913 Birkhoff: reducible configurations

1969 Heesch: finding irreducible configurations

1976 Appel and Haken: enumerate and check the
1478 irreducible configurations on computer.

1995 Robertson et al: 633 configurations suffice.



Face-centered cubic packing



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



Packing spheres

1610 Sir Raleigh asks Harriot how to compute the
number of canon balls in a stack.

1610 Harriot solves it, wonders which packing is
best in space, and writes to Kepler.

1611 Kepler conjectures that best is “face centred
cubic packing” ... used daily by fruit sellers.

1910 Thue solves the circles packing problem.

... After numerous wrong proofs in 388 years,

1998 Hales solves the spheres packing problem.

Dimension 4: networks of cristals.

Higher dimensions: error correcting codes.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



RSA

Encryption: Given message m and public
key K , compute message m′ = K (m).
Decryption: Given message m′ and private
key K−1 compute m = K−1(m′).
Requirements:
Encryption and decryption must be fast.
Computing K−1 from K should be unfeasible.
RSA private key: pair (p, q) of two primes.
RSA public key: product pq of these primes.
Primality testing: can be made fast enough
and bug free (certificate).
Factoring: computing p, q from key= pq is
very hard for large enough keys.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Primality and Factoring

Erathostenes: First algorithm for primality.

1975 Pratt Primality is in NP.

1985 Rivest, Shamir, Addleman propose the use
of primes for public key crytosystems.

2002 Agrawal, Kayal, Saxena: primality is in P.

2003 Morain: primality is in n3 under a conjecture
about the density of prime numbers.

Factoring is subexponential, but not (yet)
polynomial.

2003 A 155 digits RSA key broken by Morain.



Needham-Schröder

1978 Publication by Needham-Schröder of a
protocol for mutual authentication. Used
over 15 years ...

1996 A “middle man” attack is found by Lowe who
gave a modification of the protocol.

The protocol had been proved correct under
implicit hypotheses not satisfied in pratice.

The new version has ben proved correct for
the Dolev-Yao model.



Needham-Schröder

1978 Publication by Needham-Schröder of a
protocol for mutual authentication. Used
over 15 years ...

1996 A “middle man” attack is found by Lowe who
gave a modification of the protocol.

The protocol had been proved correct under
implicit hypotheses not satisfied in pratice.

The new version has ben proved correct for
the Dolev-Yao model.



Needham-Schröder

1978 Publication by Needham-Schröder of a
protocol for mutual authentication. Used
over 15 years ...

1996 A “middle man” attack is found by Lowe who
gave a modification of the protocol.

The protocol had been proved correct under
implicit hypotheses not satisfied in pratice.

The new version has ben proved correct for
the Dolev-Yao model.



Needham-Schröder

1978 Publication by Needham-Schröder of a
protocol for mutual authentication. Used
over 15 years ...

1996 A “middle man” attack is found by Lowe who
gave a modification of the protocol.

The protocol had been proved correct under
implicit hypotheses not satisfied in pratice.

The new version has ben proved correct for
the Dolev-Yao model.



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Protocol

Agents A, B, I

Emails A, B, I

Nonce Nx is a fresh random number

Public encryption keys: KA, KB, KI

Secret decription keys: K−1
A , K−1

B , K−1
I

Run: sequence of 3 authentication messages

A → B : A, B, {NA, A}KB

B → A : B, A, {NA, NB}KA

A → B : A, B, {NB}KB



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Attack: man in the middle

α− 1 A → I : A, I, {NA, A}KI

β − 1 I → B : I, B, {NA, A}KB

β − 2 B → I : B, I, {NA, NB}KA

α− 2 I → A : I, A, {NA, NB}KA

α− 3 A → I : A, I, {NB}KI

β − 3 I → B : I, B, {NB}KB

B believes he has carrried out a run with A.



Moral

Mathematicians attack the encryption
algorithm

Computer scientists attack the cryptographic
protocol

Physicists attack the transmission material

Thieves attack the man-machine interface



Moral

Mathematicians attack the encryption
algorithm

Computer scientists attack the cryptographic
protocol

Physicists attack the transmission material

Thieves attack the man-machine interface



Moral

Mathematicians attack the encryption
algorithm

Computer scientists attack the cryptographic
protocol

Physicists attack the transmission material

Thieves attack the man-machine interface



Moral

Mathematicians attack the encryption
algorithm

Computer scientists attack the cryptographic
protocol

Physicists attack the transmission material

Thieves attack the man-machine interface



Mathematical logic



Undecidability of Proof-Search

Given: a statement about arithmetic.

Question: is it a theorem?

Hilbert’s program: finding an algorithm to
answer this question is the most important
task for a mathematician.

Gödel’s answer: no program can answer this
question.



Undecidability of Proof-Search

Given: a statement about arithmetic.

Question: is it a theorem?

Hilbert’s program: finding an algorithm to
answer this question is the most important
task for a mathematician.

Gödel’s answer: no program can answer this
question.



Undecidability of Proof-Search

Given: a statement about arithmetic.

Question: is it a theorem?

Hilbert’s program: finding an algorithm to
answer this question is the most important
task for a mathematician.

Gödel’s answer: no program can answer this
question.



Undecidability of Proof-Search

Given: a statement about arithmetic.

Question: is it a theorem?

Hilbert’s program: finding an algorithm to
answer this question is the most important
task for a mathematician.

Gödel’s answer: no program can answer this
question.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decision procedures

Decision procedures are programs able to
answer specific instances of the question.

For example, reachability is decidable
in PSPACE for finite state systems.

Shostak: combine decision procedures.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Decidability of Proof-Checking

Given: a statement S about arithmetic and a
proof P of S.

Question: is the proof correct?

Gentzen: There is a program able to answer
this question.

Such a program is called a proof assistant.

Our target: a proof assistant which
- is garanteed to construct correct proofs,
- performs automatically in case of a
decidable verification problem.



Intagrating deductions and computations



Deductions and computations

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Deductions and computations

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Deductions and computations

In general, a proof requires deduction as
well as computation steps:

A proof of Even(2+2) is made of
- the computation of 2 + 2 resulting in 4
- a proof of Even(4)
- a mechanism to integrate both

Three ingredients are needed in proofs:

deductions: Γ ` p : P

computations: Γ ` P → Q

conversion:
Γ ` p : P Γ ` P → Q

Γ ` p : Q



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x) + y , ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x) + y , ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x) + y , ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example: 2 + 2 is even

Representing natural numbers in Peano
notation with 0 and s, 4 is s(s(s(s(0)))).

Γ = {p : E(0), q : ∀x .E(x) =⇒ E(s(s(x))),
∀xy .x + s(y) → s(x) + y , ∀x .x + 0 → x}
Computation:
Γ ` E(2+2) → E(3+1) → E(4+0) → E(4)

Conversion:

Γ ` ?? : E(4) Γ ` E(2 + 2) −→ E(4)

Γ ` ?? : E(2 + 2)



Example continued

Deduction:

...

` q(0, p) : E(2)

` q : ∀x .E(x) =⇒ E(s(s(x)))

` q(2) : E(2) =⇒ E(4)

` q(2, q(0, p)) : E(4)

` p : E(0)

q : ` ∀x .E(x) =⇒ E(s(s(x)))

` q(0) : E(0) =⇒ E(2)

` q(0, p) : E(2)



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Proof checking

Assuming computations terminate, then it
becomes possible to check if a given proof p
of the proposition A is correct or not.

The algorithm works by induction on the size
of A, except for the conversion rule, where it
must verify that A −→ B.

This algorithm constitutes the kernel of a
proof assistant.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Proof assistant

A logic programming language dedicated to
processing mathematics

A set of deduction and computation rules
which characterize the chosen logic.

An proof-checking algorithm, kernel of the
proof assistant.

Proof tactics helping the user building proofs.

A tactic language for writing new tactics.

Libraries of proved theorems.



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Major proof assistants

Coq, PCRI, France.

PVS, Stanford Research Institute, California.

HOL, UK, and Isabelle, Germany.

NuPRL (Cornell University), SVC, (Stanford),
ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh),
Twelf (Carnegie-Mellon), Alf (Sweden), Mizar
(Poland), B (Abrial’s company in France), ...



Outline
Theorems and proofs in mathematics

Four celebrated examples
Deductions and Computations

Proof Assistants
Coq

Conclusion

The proof assistant Coq

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.plain



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
A rewriting engine by Blanqui
small proof engines by Strub



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
A rewriting engine by Blanqui
small proof engines by Strub



Coq’s logical foundations

Kernel based on
the Calculus of Inductive Constructions of
Coquand and Paulin
Interactive Modules and Fonctors of
Chrzaczsz
Compiler of Grégoire

Comes with
a code extracter by Letouzey
a tactic language of Delahaye
a graphic proof interface of Monate

Prototype version includes
A rewriting engine by Blanqui
small proof engines by Strub



Coq’s interactive module system

Module OrderedTypeFacts [O : OrderedType].
Lemma lt not gt : (x,y:O.t)(O.lt y y ) → ¬ (O.lt y x).
Proof. Intros; Intro; Absurd (O.eq x x); EAuto.
Qed.

. . . many other lemmas. . .

End OrderedTypeFacts.



Coq’s interactive module system

Module Type Orderedtype.
Parameter t : Set.
Parameter eq : t → t → Prop.
Paremeter eq refl : (x:t)(eq x x ).
Paremeter eq sym : (x,y:t) (eq x y) → (eq y x).
Paremeter eq trans : (x,y,z:t) (eq x y) → (eq y z) → (eq x z).
Paremeter lt trans : (x,y,z:t) (lt x y) → (lt y z) → (lt x z).
Paremeter lt not eq : (x,y:t) (lt x y) → ¬ (eq x y).
Parameter compare : (x,y:t) (Comp lt eq x y).
End OrderedType.



Coq’s interactive module system

Inductice Comp [X:Set; lt,eq:X→ X → Prop; x,y:X] : Set:=
| Lt : (lt x y) → (Comp lt eq x y)
| Eq : (eq x y) → (Comp lt eq x y)
| Gt : (lt y x) → (Comp lt eq x y).



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



The proof assistant Coq

Kernel: 10K lines of Objective Caml

Tactics: 100K lines of Objective Caml and
Coq tactic language, outputing a proof term.

Libraries of checked proof developments and
tactics,

Academic as well as industrial users.

User’s group, hotline, website, LGPL licence.



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Using Coq

Load Coq from http://coq.inria.fr

Read the Coq primer and user’s manual

Load the platform suited to your application

Calife: timed automata (telecommunications)

Why: annotated imperative programs
translated into functional programs +
verification conditions

Krakatoa: JAVA/JAVACARDS programs

Caduceus: prototype platform for C
programs

Build your own platform otherwise



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Calife

XML-based input format for timed automata

Interactive graphic support

Graphic simulation tools

Testing tools

Code generators for
Coq, Chronos, Hytech, and Prism

Applications to telecommunication protocols:
ABR, PGM, PIM, CSMA/CA

Funded by RNRT, RNTL and France
Telecom



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Krakatoa

For JAVA/JAVACARDS programs

Trusted Logics: security properties of
crytographic protocols: highest level of
security for their methodology

Schlumberger: security properties of their
ATM, an entire model proved in Coq, over
500K lines of Coq

Few interactions with both companies



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Current developments

Verification of probabilistic statements about
deterministic processes

Specification and verification of probabilistic
protocols

Extend Grégoire’s abstract machine for
handling rewriting

Small proof engines and their combination

Extraction of complexity information from
proofs

More experiments



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Conclusion

Proof assistants are very powerful
specification languages
Proof assistants should be at the heart of
any verification tool
Proof assistants should incoporate decision
procedures in a transparent way
Proof assistants are hard to use without
dedicated platforms
Software, unlike theorems, has a short life
time, but may involve human’s life, money, or
image.
Current market is very small (electronic
commerce), but will grow slowly (critical
software).



Acknowledgments to

G. Huet, T. Coquand, C. Paulin, G. Dowek
for their vision and early implementations;
Barras, Filliatre, Grégoire, Herbelin,
Blanqui, Chrzaczsz, Monate, Strub
for their theoretical and software contributions;
LogiCal for its extreme dedication to Coq;
Trusted Logics for putting forward their use of
Coq and Why;
France-Telecom, EADS, Thalès for funding us;
INRIA, CNRS for their continuous support.



Outline
Theorems and proofs in mathematics

Four celebrated examples
Deductions and Computations

Proof Assistants
Coq

Conclusion

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France [2mm] email: jouannaud@lix.polytechnique.fr http: //w3.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud[3mm] Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.plain


	Outline
	Theorems and proofs in mathematics
	Four celebrated examples
	Examples from mathematics
	Examples from computer science

	Deductions and Computations
	Foundations from mathematical logic
	Integrating deductions and computations

	Proof Assistants
	Coq
	Conclusion

