Formal Mathematics and Application to Software Safety and Internet Security

> Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France

email: jouannaud@lix.polytechnique.fr http://w³.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud

Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.

November 5, 2004

<ロ> (四) (四) (三) (三) (三) (三)

Outline Theorems and proofs in mathematics Four celebrated examples Deductions and Computations Proof Assistants Coq Conclusion

Outline

- Theorems and proofs in mathematics
- 2 Four celebrated examples
 - Examples from mathematics
 - Examples from computer science
- Objections and Computations
 - Foundations from mathematical logic
 - Integrating deductions and computations

CHNIOUE

- Proof Assistants
- 5 Coq6 Conclusion

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, Fi plain

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

- A theorem is a mathematical statement whose proof consists in a succession of deductions following the rules of logic.
- One rule allows using any existing theorem.
- To be sure a proof is correct, mathematicians require that it can be entirely read and understood by other mathematicians.
- Some proofs do not follow this schema: they involve computations that cannot be done or followed by a mathematician in a lifetime.

- A theorem is a mathematical statement whose proof consists in a succession of deductions following the rules of logic.
- One rule allows using any existing theorem.
- To be sure a proof is correct, mathematicians require that it can be entirely read and understood by other mathematicians.
- Some proofs do not follow this schema: they involve computations that cannot be done or followed by a mathematician in a lifetime.

- A theorem is a mathematical statement whose proof consists in a succession of deductions following the rules of logic.
- One rule allows using any existing theorem.
- To be sure a proof is correct, mathematicians require that it can be entirely read and understood by other mathematicians.
- Some proofs do not follow this schema: they involve computations that cannot be done or followed by a mathematician in a lifetime.

- A theorem is a mathematical statement whose proof consists in a succession of deductions following the rules of logic.
- One rule allows using any existing theorem.
- To be sure a proof is correct, mathematicians require that it can be entirely read and understood by other mathematicians.
- Some proofs do not follow this schema: they involve computations that cannot be done or followed by a mathematician in a lifetime.

- Four colors theorem: 1200 hours of computations by Appel and Haken in 1976.
- Kepler's conjecture: over ten years of computations with more than 10⁵ polynomials having over 100 variables and over 1000 constants by Hales in 1998.
- Primality: 4405²⁶³⁸ + 2638⁴⁴⁰⁵ is the biggest (15071 digits) proved "ordinary prime": 720 days of computation by Morain at al in 2003.
- Authentication: Needham-Schröder protocol shown wrong by machine in 1996 by Lowe.

《曰》 《聞》 《臣》 《臣》 三臣 …

- Four colors theorem: 1200 hours of computations by Appel and Haken in 1976.
- Kepler's conjecture: over ten years of computations with more than 10⁵ polynomials having over 100 variables and over 1000 constants by Hales in 1998.
- Primality: 4405²⁶³⁸ + 2638⁴⁴⁰⁵ is the biggest (15071 digits) proved "ordinary prime": 720 days of computation by Morain at al in 2003.
- Authentication: Needham-Schröder protocol shown wrong by machine in 1996 by Lowe.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Four colors theorem: 1200 hours of computations by Appel and Haken in 1976.
- Kepler's conjecture: over ten years of computations with more than 10⁵ polynomials having over 100 variables and over 1000 constants by Hales in 1998.
- Primality: 4405²⁶³⁸ + 2638⁴⁴⁰⁵ is the biggest (15071 digits) proved "ordinary prime": 720 days of computation by Morain at al in 2003.
- Authentication: Needham-Schröder protocol shown wrong by machine in 1996 by Lowe.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Four colors theorem: 1200 hours of computations by Appel and Haken in 1976.
- Kepler's conjecture: over ten years of computations with more than 10⁵ polynomials having over 100 variables and over 1000 constants by Hales in 1998.
- Primality: 4405²⁶³⁸ + 2638⁴⁴⁰⁵ is the biggest (15071 digits) proved "ordinary prime": 720 days of computation by Morain at al in 2003.
- Authentication: Needham-Schröder protocol shown wrong by machine in 1996 by Lowe.

1852 Guthrie remarks that 4 colors suffice to draw the county map of England.

- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.1995 Robertson et al: 633 configurations suffice.

1852 Guthrie remarks that 4 colors suffice to draw the county map of England.

- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.1995 Robertson et al: 633 configurations suffice.

1852 Guthrie remarks that 4 colors suffice to draw the county map of England.

- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.
- 1995 Robertson et al: 633 configurations suffice.

- 1852 Guthrie remarks that 4 colors suffice to draw the county map of England.
- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.
- 1995 Robertson et al: 633 configurations suffice.

- 1852 Guthrie remarks that 4 colors suffice to draw the county map of England.
- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.
- 1995 Robertson et al: 633 configurations suffice.

- 1852 Guthrie remarks that 4 colors suffice to draw the county map of England.
- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.1995 Robertson et al: 633 configurations suffice.

- 1852 Guthrie remarks that 4 colors suffice to draw the county map of England.
- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.
- 1995 Robertson et al: 633 configurations suffice.

- 1852 Guthrie remarks that 4 colors suffice to draw the county map of England.
- 1878 Conjecture published by Cayley.
- 1879 First proof by Kempe, but unfortunately ...
- 1890 it only shows that five colors suffice.
- 1913 Birkhoff: reducible configurations
- 1969 Heesch: finding irreducible configurations
- 1976 Appel and Haken: enumerate and check the 1478 irreducible configurations on computer.
 1005 Department at all C22 configurations outfield.
- 1995 Robertson et al: 633 configurations suffice.

Face-centered cubic packing

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

<ロ> (四) (四) (三) (三) (三)

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

《曰》 《聞》 《臣》 《臣》 三臣 …

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

《曰》 《聞》 《臣》 《臣》 三臣 …

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

- 1610 Harriot solves it, wonders which packing is best in space, and writes to Kepler.
- 1611 Kepler conjectures that best is "face centred cubic packing" ... used daily by fruit sellers.
- 1910 Thue solves the circles packing problem.
 - ... After numerous wrong proofs in 388 years,
- 1998 Hales solves the spheres packing problem.
 - Dimension 4: networks of cristals.
 - Higher dimensions: error correcting codes.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:
 - Encryption and decryption must be fast. Computing K^{-1} from K should be unfeasible.
- RSA private key: pair (p, q) of two primes.
- RSA public key: product *pq* of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:
 - Encryption and decryption must be fast. Computing K^{-1} from K should be unfeasible.
- RSA private key: pair (p, q) of two primes.
- RSA public key: product pq of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:

- RSA private key: pair (p, q) of two primes.
- RSA public key: product pq of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:

- RSA private key: pair (p, q) of two primes.
- RSA public key: product pq of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:

- RSA private key: pair (p, q) of two primes.
- RSA public key: product *pq* of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:

Encryption and decryption must be fast. Computing K^{-1} from K should be unfeasible.

- RSA private key: pair (p, q) of two primes.
- RSA public key: product pq of these primes.
- Primality testing: can be made fast enough and bug free (certificate).

 Factoring: computing p, q from key= pq is very hard for large enough keys.

- Encryption: Given message m and public key K, compute message m' = K(m).
- Decryption: Given message m' and private key K^{-1} compute $m = K^{-1}(m')$.
- Requirements:

- RSA private key: pair (p, q) of two primes.
- RSA public key: product pq of these primes.
- Primality testing: can be made fast enough and bug free (certificate).
- Factoring: computing p, q from key= pq is very hard for large enough keys.

Primality and Factoring

• Erathostenes: First algorithm for primality. 1975 Pratt Primality is in NP.

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

2003 A 155 digits RSA key broken by Morain.
- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

<ロ> (四) (四) (三) (三) (三)

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
 2003 Morain: primality is in n³ under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

《曰》 《聞》 《臣》 《臣》 三臣 …

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

- 1985 Rivest, Shamir, Addleman propose the use of primes for public key crytosystems.
- 2002 Agrawal, Kayal, Saxena: primality is in P.
- 2003 Morain: primality is in n^3 under a conjecture about the density of prime numbers.
 - Factoring is subexponential, but not (yet) polynomial.
- 2003 A 155 digits RSA key broken by Morain.

- 1978 Publication by Needham-Schröder of a protocol for mutual authentication. Used over 15 years ...
- 1996 A "middle man" attack is found by Lowe who gave a modification of the protocol.
 - The protocol had been proved correct under implicit hypotheses not satisfied in pratice.
 - The new version has ben proved correct for the Dolev-Yao model.

<ロ> (四) (四) (三) (三) (三)

- 1978 Publication by Needham-Schröder of a protocol for mutual authentication. Used over 15 years ...
- 1996 A "middle man" attack is found by Lowe who gave a modification of the protocol.
 - The protocol had been proved correct under implicit hypotheses not satisfied in pratice.
 - The new version has ben proved correct for the Dolev-Yao model.

- 1978 Publication by Needham-Schröder of a protocol for mutual authentication. Used over 15 years ...
- 1996 A "middle man" attack is found by Lowe who gave a modification of the protocol.
 - The protocol had been proved correct under implicit hypotheses not satisfied in pratice.
 - The new version has ben proved correct for the Dolev-Yao model.

《曰》 《聞》 《臣》 《臣》 三臣 …

- 1978 Publication by Needham-Schröder of a protocol for mutual authentication. Used over 15 years ...
- 1996 A "middle man" attack is found by Lowe who gave a modification of the protocol.
 - The protocol had been proved correct under implicit hypotheses not satisfied in pratice.
 - The new version has ben proved correct for the Dolev-Yao model.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Agents A, B, I

- Emails A, B,
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $A \rightarrow B : A, B, \{N_A, A\}_{\kappa_B}$ $B \rightarrow A : B, A, \{N_A, N_B\}_{\kappa_B}$ $A \rightarrow B : A, B, \{N_B\}_{\kappa_B}$

Agents *A*, *B*, *I* Emails A, B, I

- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $A \rightarrow B : A, B, \{N_A, A\}_{\kappa_B}$ $B \rightarrow A : B, A, \{N_A, N_B\}_{\kappa_B}$ $A \rightarrow B : A, B, \{N_B\}_{\kappa_B}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $A \rightarrow B : A, B, \{N_A, A\}_{\kappa_B}$ $B \rightarrow A : B, A, \{N_A, N_B\}_{\kappa_B}$ $A \rightarrow B : A, B, \{N_B\}_{\kappa_B}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $A \rightarrow B : A, B, \{N_A, A\}_{\kappa_B}$ $B \rightarrow A : B, A, \{N_A, N_B\}_{\kappa_B}$ $A \rightarrow B : A, B, \{N_B\}_{\kappa_B}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}

Run: sequence of 3 authentication messages

 $A \rightarrow B : A, B, \{N_A, A\}_{\kappa_B}$ $B \rightarrow A : B, A, \{N_A, N_B\}_{\kappa_A}$ $A \rightarrow B : A, B, \{N_B\}_{\kappa_B}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $\begin{array}{rcl} A \rightarrow B & : & \mathsf{A}, \mathsf{B}, \{N_{\mathsf{A}}, \mathsf{A}\}_{\mathsf{K}_{\mathsf{B}}} \\ B \rightarrow A & : & \mathsf{B}, \mathsf{A}, \{N_{\mathsf{A}}, N_{\mathsf{B}}\}_{\mathsf{K}_{\mathsf{A}}} \\ A \rightarrow B & : & \mathsf{A}, \mathsf{B}, \{N_{\mathsf{B}}\}_{\mathsf{K}_{\mathsf{B}}} \end{array}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $\begin{array}{rcl} A \rightarrow B & : & \mathsf{A}, \mathsf{B}, \{N_{\mathsf{A}}, \mathsf{A}\}_{\mathsf{K}_{\mathsf{B}}} \\ B \rightarrow A & : & \mathsf{B}, \mathsf{A}, \{N_{\mathsf{A}}, N_{\mathsf{B}}\}_{\mathsf{K}_{\mathsf{A}}} \\ A \rightarrow B & : & \mathsf{A}, \mathsf{B}, \{N_{\mathsf{B}}\}_{\mathsf{K}_{\mathsf{B}}} \end{array}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

 $\begin{array}{l} \boldsymbol{A} \rightarrow \boldsymbol{B} : \ \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{A}\}_{\boldsymbol{K}_{\boldsymbol{B}}} \\ \boldsymbol{B} \rightarrow \boldsymbol{A} : \ \boldsymbol{B}, \boldsymbol{A}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{A}}} \\ \boldsymbol{A} \rightarrow \boldsymbol{B} : \ \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{B}}} \end{array}$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

$$\begin{array}{rcl} \boldsymbol{A} \rightarrow \boldsymbol{B} & : & \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{A}\}_{\boldsymbol{K}_{\boldsymbol{B}}} \\ \boldsymbol{B} \rightarrow \boldsymbol{A} & : & \boldsymbol{B}, \boldsymbol{A}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{A}}} \\ \boldsymbol{A} \rightarrow \boldsymbol{B} & : & \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{B}}} \end{array}$$

- Agents A, B, I
- Emails A, B, I
- Nonce N_x is a fresh random number
- Public encryption keys: K_A , K_B , K_I
- Secret decription keys: K_A^{-1} , K_B^{-1} , K_I^{-1}
 - Run: sequence of 3 authentication messages

$$\begin{array}{rcl} \boldsymbol{A} \rightarrow \boldsymbol{B} & : & \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{A}\}_{\boldsymbol{K}_{B}} \\ \boldsymbol{B} \rightarrow \boldsymbol{A} & : & \boldsymbol{B}, \boldsymbol{A}, \{\boldsymbol{N}_{\boldsymbol{A}}, \boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{A}}} \\ \boldsymbol{A} \rightarrow \boldsymbol{B} & : & \boldsymbol{A}, \boldsymbol{B}, \{\boldsymbol{N}_{\boldsymbol{B}}\}_{\boldsymbol{K}_{\boldsymbol{B}}} \end{array}$$

 $A \rightarrow I$: $A, I, \{N_A, A\}_{\kappa}$ $\alpha - 1$ $I \rightarrow B$: I, B, $\{N_A, A\}_{K_B}$ $\beta - 1$ $B \rightarrow I$: B, I, $\{N_A, N_B\}_{K_A}$ $I \rightarrow A$: $I, A, \{N_A, N_B\}_{K_A}$ $A \rightarrow I$: A, I, $\{N_B\}_{K_I}$

 $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $\alpha - 1$ $I \rightarrow B$: $I, B, \{N_A, A\}_{\kappa_P}$ $\beta - 1$ $I \rightarrow A$: $I, A, \{N_A, N_B\}_{K_A}$ $A \rightarrow I$: A, I, $\{N_B\}_{K_I}$

 $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $\alpha - 1$ $I \rightarrow B$: $I, B, \{N_A, A\}_{\kappa_P}$ $\beta - 1$ $\beta - 2$ $B \rightarrow I : B, I, \{N_A, N_B\}_{\kappa_A}$ $I \rightarrow A$: I, A, $\{N_A, N_B\}_{K_A}$ $A \rightarrow I$: A, I, $\{N_B\}_{K_I}$

 $\alpha - 1$ $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $I \rightarrow B$: $I, B, \{N_A, A\}_{\kappa_P}$ $\beta - 1$ $B \rightarrow I$: B, I, $\{N_A, N_B\}_{\kappa_A}$ $\beta - 2$ $\alpha - 2$ $I \rightarrow A$: I, A, $\{N_A, N_B\}_{\kappa_A}$ $A \rightarrow I : A, I, \{N_B\}_{K_I}$

 $\alpha - 1$ $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $I \rightarrow B$: $I, B, \{N_A, A\}_{\kappa_P}$ $\beta - 1$ $B \rightarrow I$: B, I, $\{N_A, N_B\}_{\kappa_A}$ $\beta - 2$ $\alpha - 2$ $I \rightarrow A$: I, A, $\{N_A, N_B\}_{\kappa_A}$ $A \rightarrow I$: $A, I, \{N_B\}_{K_I}$ $\alpha - 3$

 $\alpha - 1$ $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $I \rightarrow B$: $I, B, \{N_A, A\}_{\kappa_P}$ $\beta - 1$ $B \rightarrow I$: B, I, $\{N_A, N_B\}_{\kappa_A}$ $\beta - 2$ $I \rightarrow A$: I, A, $\{N_A, N_B\}_{K_A}$ $\alpha - 2$ $A \rightarrow I$: $A, I, \{N_B\}_{K_I}$ $\alpha - 3$ $\beta - 3$ $I \rightarrow B$: I, B, $\{N_B\}_{\kappa_B}$

 $\alpha - 1$ $A \rightarrow I$: A, I, $\{N_A, A\}_{\kappa}$ $I \rightarrow B$: I, B, $\{N_A, A\}_{K_B}$ $\beta - 1$ $B \rightarrow I$: B, I, $\{N_A, N_B\}_{\kappa_A}$ $\beta - 2$ $I \rightarrow A$: I, A, $\{N_A, N_B\}_{K_A}$ $\alpha - 2$ $\alpha - 3$ $A \rightarrow I$: $A, I, \{N_B\}_{K_i}$ $\beta - 3$ $I \rightarrow B$: I, B, $\{N_B\}_{\kappa_B}$

Mathematicians attack the encryption algorithm

- Computer scientists attack the cryptographic protocol
- Physicists attack the transmission material
- Thieves attack the man-machine interface

<ロ> (四) (四) (三) (三) (三) (三)

- Mathematicians attack the encryption algorithm
- Computer scientists attack the cryptographic protocol
- Physicists attack the transmission material
- Thieves attack the man-machine interface

<ロ> (四) (四) (三) (三) (三) (三)

- Mathematicians attack the encryption algorithm
- Computer scientists attack the cryptographic protocol
- Physicists attack the transmission material
- Thieves attack the man-machine interface

<ロト <回ト < 国ト < 国ト < 国ト 三 里

- Mathematicians attack the encryption algorithm
- Computer scientists attack the cryptographic protocol
- Physicists attack the transmission material
- Thieves attack the man-machine interface

《曰》 《聞》 《臣》 《臣》 三臣 …

Mathematical logic

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● → ○ へ ○

• Given: a statement about arithmetic.

- Question: is it a theorem?
- Hilbert's program: finding an algorithm to answer this question is the most important task for a mathematician.
- Gödel's answer: no program can answer this question.

<ロト <回ト < 国ト < 国ト < 国ト 三 里

- Given: a statement about arithmetic.
- Question: is it a theorem?
- Hilbert's program: finding an algorithm to answer this question is the most important task for a mathematician.
- Gödel's answer: no program can answer this question.

- Given: a statement about arithmetic.
- Question: is it a theorem?
- Hilbert's program: finding an algorithm to answer this question is the most important task for a mathematician.
- Gödel's answer: no program can answer this question.

《曰》 《聞》 《臣》 《臣》 三臣 …

- Given: a statement about arithmetic.
- Question: is it a theorem?
- Hilbert's program: finding an algorithm to answer this question is the most important task for a mathematician.
- Gödel's answer: no program can answer this question.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで
- Decision procedures are programs able to answer specific instances of the question.
- For example, reachability is decidable in *PSPACE* for finite state systems.
- Shostak: combine decision procedures.

- Decision procedures are programs able to answer specific instances of the question.
- For example, reachability is decidable in *PSPACE* for finite state systems.
- Shostak: combine decision procedures.

- Decision procedures are programs able to answer specific instances of the question.
- For example, reachability is decidable in *PSPACE* for finite state systems.
- Shostak: combine decision procedures.

Decidability of Proof-Checking

Given: a statement S about arithmetic and a proof P of S.

- Question: is the proof correct?
- Gentzen: There is a program able to answer this question.
- Such a program is called a proof assistant.
- Our target: a proof assistant which
 - is garanteed to construct correct proofs,

<ロ> (四) (四) (三) (三) (三)

Decidability of Proof-Checking

- Given: a statement S about arithmetic and a proof P of S.
- Question: is the proof correct?
- Gentzen: There is a program able to answer this question.
- Such a program is called a proof assistant.
- Our target: a proof assistant which
 - is garanteed to construct correct proofs,

<ロ> (四) (四) (三) (三) (三)

- Given: a statement S about arithmetic and a proof P of S.
- Question: is the proof correct?
- Gentzen: There is a program able to answer this question.
- Such a program is called a proof assistant.
- Our target: a proof assistant which
 - is garanteed to construct correct proofs,

- Given: a statement S about arithmetic and a proof P of S.
- Question: is the proof correct?
- Gentzen: There is a program able to answer this question.
- Such a program is called a *proof assistant*.
- Our target: a proof assistant which
 - is garanteed to construct correct proofs,

- Given: a statement S about arithmetic and a proof P of S.
- Question: is the proof correct?
- Gentzen: There is a program able to answer this question.
- Such a program is called a proof assistant.
- Our target: a proof assistant which
 - is garanteed to construct correct proofs,

Intagrating deductions and computations

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ○ ■ | の < ♡

Deductions and computations

- In general, a proof requires deduction as well as computation steps:
- A proof of Even(2+2) is made of
 the computation of 2 + 2 resulting in 4
 a proof of Even(4)
 - a mechanism to integrate both
- Three ingredients are needed in proofs:

deductions: $\Gamma \vdash p : P$

computations: $\Gamma \vdash P \rightarrow Q$

conversion:
$$\frac{\Gamma \vdash p : P \quad \Gamma \vdash P \rightarrow Q}{\Gamma \vdash p : Q}$$

Deductions and computations

- In general, a proof requires deduction as well as computation steps:
- A proof of Even(2+2) is made of
 - the computation of 2+2 resulting in 4
 - a proof of Even(4)
 - a mechanism to integrate both
- Three ingredients are needed in proofs:

deductions: $\Gamma \vdash p : P$

computations: $\Gamma \vdash P \rightarrow Q$

conversion: $\frac{\Gamma \vdash p : P \quad \Gamma \vdash P \rightarrow Q}{\Gamma \vdash p : Q}$

Deductions and computations

- In general, a proof requires deduction as well as computation steps:
- A proof of Even(2+2) is made of
 - the computation of 2+2 resulting in 4
 - a proof of Even(4)
 - a mechanism to integrate both
- Three ingredients are needed in proofs:

deductions: $\Gamma \vdash p : P$

computations: $\Gamma \vdash P \rightarrow Q$

conversion:
$$\frac{\Gamma \vdash p : P \quad \Gamma \vdash P \rightarrow Q}{\Gamma \vdash p : Q}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Representing natural numbers in Peano notation with 0 and s, 4 is s(s(s(s(0)))).
- $\Gamma = \{ p : E(0), q : \forall x.E(x) \implies E(s(s(x))), \forall xy.x + s(y) \rightarrow s(x) + y, \forall x.x + 0 \rightarrow x \}$
- Computation: $\Gamma \vdash E(2+2) \rightarrow E(3+1) \rightarrow E(4+0) \rightarrow E(4)$
 - Conversion:

 $\frac{\Gamma \vdash ??: E(4) \qquad \Gamma \vdash E(2+2) \longrightarrow E(4)}{\Gamma \vdash ??: E(2+2)}$

- Representing natural numbers in Peano notation with 0 and s, 4 is s(s(s(s(0)))).
- $\Gamma = \{ p : E(0), q : \forall x.E(x) \implies E(s(s(x))), \forall xy.x + s(y) \rightarrow s(x) + y, \forall x.x + 0 \rightarrow x \}$
- Computation: $\Gamma \vdash E(2+2) \rightarrow E(3+1) \rightarrow E(4+0) \rightarrow E(4)$ • Conversion:

 $\frac{\Gamma \vdash ??: E(4) \qquad \Gamma \vdash E(2+2) \longrightarrow E(4)}{\Gamma \vdash ??: E(2+2)}$

- Representing natural numbers in Peano notation with 0 and s, 4 is s(s(s(s(0)))).
- $\Gamma = \{ p : E(0), q : \forall x.E(x) \implies E(s(s(x))), \forall xy.x + s(y) \rightarrow s(x) + y, \forall x.x + 0 \rightarrow x \}$
- Computation: $\Gamma \vdash E(2+2) \rightarrow E(3+1) \rightarrow E(4+0) \rightarrow E(4)$ • Conversion:

 $\frac{\Gamma \vdash ??: E(4) \qquad \Gamma \vdash E(2+2) \longrightarrow E(4)}{\Gamma \vdash ??: E(2+2)}$

 Representing natural numbers in Peano notation with 0 and s, 4 is s(s(s(s(0)))).

•
$$\Gamma = \{p : E(0), q : \forall x.E(x) \implies E(s(s(x))), \forall xy.x + s(y) \rightarrow s(x) + y, \forall x.x + 0 \rightarrow x\}$$

- Computation: $\Gamma \vdash E(2+2) \rightarrow E(3+1) \rightarrow E(4+0) \rightarrow E(4)$
- Conversion:

 $\frac{\Gamma \ \vdash \ ??: E(4) \qquad \Gamma \ \vdash \ E(2+2) \longrightarrow E(4)}{\Gamma \ \vdash \ ??: E(2+2)}$

Example continued

Deduction:

$$\begin{array}{c|c} \dots & \hline \vdash q : \forall x. E(x) \implies E(s(s(x))) \\ \hline \vdash q(0,p) : E(2) & \vdash q(2) : E(2) \implies E(4) \\ \hline \vdash q(2,q(0,p)) : E(4) \end{array}$$

$$\begin{array}{c|c} & \begin{array}{c} q: \ \vdash \ \forall x. E(x) \implies E(s(s(x))) \\ \hline & \vdash \ q(0): E(0) \implies E(2) \\ \hline & \vdash \ q(0, p): E(2) \end{array} \end{array}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Assuming computations terminate, then it becomes possible to check if a given proof p of the proposition A is correct or not.
- The algorithm works by induction on the size of A, except for the conversion rule, where it must verify that A → B.

• This algorithm constitutes the kernel of a proof assistant.

- Assuming computations terminate, then it becomes possible to check if a given proof p of the proposition A is correct or not.
- The algorithm works by induction on the size of A, except for the conversion rule, where it must verify that A → B.

• This algorithm constitutes the kernel of a proof assistant.

- Assuming computations terminate, then it becomes possible to check if a given proof p of the proposition A is correct or not.
- The algorithm works by induction on the size of A, except for the conversion rule, where it must verify that A → B.

This algorithm constitutes the kernel of a proof assistant.

Proof assistant

A logic programming language dedicated to processing mathematics

- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

- A tactic language for writing new tactics.
- Libraries of proved theorems.

Proof assistant

- A logic programming language dedicated to processing mathematics
- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

- A tactic language for writing new tactics.
- Libraries of proved theorems.

- A logic programming language dedicated to processing mathematics
- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

《曰》 《聞》 《臣》 《臣》 三臣 …

- A tactic language for writing new tactics.
- Libraries of proved theorems.

- A logic programming language dedicated to processing mathematics
- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

- A tactic language for writing new tactics.
- Libraries of proved theorems.

- A logic programming language dedicated to processing mathematics
- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

- A tactic language for writing new tactics.
- Libraries of proved theorems.

- A logic programming language dedicated to processing mathematics
- A set of deduction and computation rules which characterize the chosen logic.
- An proof-checking algorithm, kernel of the proof assistant.
- Proof tactics helping the user building proofs.

- A tactic language for writing new tactics.
- Libraries of proved theorems.

Coq, PCRI, France.

- PVS, Stanford Research Institute, California.
- HOL, UK, and Isabelle, Germany.
- NuPRL (Cornell University), SVC, (Stanford), ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh), Twelf (Carnegie-Mellon), Alf (Sweden), Mizar (Poland), B (Abrial's company in France), ...

- Coq, PCRI, France.
- PVS, Stanford Research Institute, California.
- HOL, UK, and Isabelle, Germany.
- NuPRL (Cornell University), SVC, (Stanford), ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh), Twelf (Carnegie-Mellon), Alf (Sweden), Mizar (Poland), B (Abrial's company in France), ...

- Coq, PCRI, France.
- PVS, Stanford Research Institute, California.
- HOL, UK, and Isabelle, Germany.

 NuPRL (Cornell University), SVC, (Stanford), ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh), Twelf (Carnegie-Mellon), Alf (Sweden), Mizar (Poland), B (Abrial's company in France), ...

- Coq, PCRI, France.
- PVS, Stanford Research Institute, California.
- HOL, UK, and Isabelle, Germany.
- NuPRL (Cornell University), SVC, (Stanford), ACL2 (Arg. Nat. Lab.), LEGO(Edinburgh), Twelf (Carnegie-Mellon), Alf (Sweden), Mizar (Poland), B (Abrial's company in France), ...

Outline Theorems and proofs in mathematics Four celebrated examples Deductions and Computations Proof Assistants Cog

Conclusio

The proof assistant Coq

Coq's logical foundations

Kernel based on

the Calculus of Inductive Constructions of Coquand and Paulin Interactive Modules and Fonctors of Chrzaczsz Compiler of Grégoire

Comes with

a code extracter by Letouzey a tactic language of Delahaye a graphic proof interface of Mona

 Prototype version includes
 A rewriting engine by Blanqui small proof engines by Strub

Coq's logical foundations

Kernel based on

the Calculus of Inductive Constructions of Coquand and Paulin Interactive Modules and Fonctors of Chrzaczsz Compiler of Grégoire

Comes with

a code extracter by Letouzey a tactic language of Delahaye a graphic proof interface of Monate

Prototype version includes
 A rewriting engine by Blanqui
 small proof engines by Strub
 Interference in the second second

Coq's logical foundations

Kernel based on

the Calculus of Inductive Constructions of Coquand and Paulin Interactive Modules and Fonctors of Chrzaczsz Compiler of Grégoire

Comes with

a code extracter by Letouzey a tactic language of Delahaye a graphic proof interface of Monate

 Prototype version includes
 A rewriting engine by Blanqui small proof engines by Strub
 Module OrderedTypeFacts [O : OrderedType]. Lemma lt_not_gt : (x,y:O.t)(O.lt y y) $\rightarrow \neg$ (O.lt y x). Proof. Intros; Intro; Absurd (O.eq x x); EAuto. Qed.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

... many other lemmas...

End OrderedTypeFacts.

Module Type Orderedtype. Parameter t : Set. Parameter eq : t \rightarrow t \rightarrow Prop. Paremeter $eq_refl : (x:t)(eq x x)$. Paremeter eq_sym : (x,y:t) (eq x y) \rightarrow (eq y x). Paremeter eq_trans : (x,y,z:t) (eq x y) \rightarrow (eq y z) \rightarrow Paremeter It_trans : (x,y,z:t) (It x y) \rightarrow (It y z) \rightarrow (It x z) Paremeter It_not_eq : (x,y:t) (It x y) $\rightarrow \neg$ (eq x y). Parameter compare : (x,y:t) (Comp It eq x y). End OrderedType.

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ▲ ● ● ● ● ●
$\begin{array}{l} \mbox{Inductice Comp [X:Set; lt,eq:X \rightarrow X \rightarrow Prop; x,y:X] :} \\ | \ \mbox{Lt : (lt x y) } \rightarrow (\mbox{Comp lt eq x y}) \\ | \ \mbox{Eq : (eq x y) } \rightarrow (\mbox{Comp lt eq x y}) \\ | \ \mbox{Gt : (lt y x) } \rightarrow (\mbox{Comp lt eq x y}). \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• Kernel: 10K lines of Objective Caml

- Tactics: 100K lines of Objective Caml and Coq tactic language, outputing a proof term.
- Libraries of checked proof developments and tactics,
- Academic as well as industrial users.
- User's group, hotline, website, LGPL licence.

<ロ> (四) (四) (三) (三) (三)

- Kernel: 10K lines of Objective Caml
- Tactics: 100K lines of Objective Caml and Coq tactic language, outputing a proof term.
- Libraries of checked proof developments and tactics,
- Academic as well as industrial users.
- User's group, hotline, website, LGPL licence.

<ロ> (四) (四) (三) (三) (三)

- Kernel: 10K lines of Objective Caml
- Tactics: 100K lines of Objective Caml and Coq tactic language, outputing a proof term.
- Libraries of checked proof developments and tactics,
- Academic as well as industrial users.
- User's group, hotline, website, LGPL licence.

<ロ> (四) (四) (三) (三) (三) (三)

- Kernel: 10K lines of Objective Caml
- Tactics: 100K lines of Objective Caml and Coq tactic language, outputing a proof term.
- Libraries of checked proof developments and tactics,
- Academic as well as industrial users.
- User's group, hotline, website, LGPL licence.

<ロト <回ト < 国ト < 国ト < 国ト 三 里

- Kernel: 10K lines of Objective Caml
- Tactics: 100K lines of Objective Caml and Coq tactic language, outputing a proof term.
- Libraries of checked proof developments and tactics,
- Academic as well as industrial users.
- User's group, hotline, website, LGPL licence.

<ロト <回ト < 国ト < 国ト < 国ト 三 里

Load Coq from http://coq.inria.fr

- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

<ロ> (四) (四) (三) (三) (三)

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)
- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs

《曰》 《聞》 《臣》 《臣》 三臣 …

- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)
- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

- Load Coq from http://coq.inria.fr
- Read the Coq primer and user's manual
- Load the platform suited to your application
- Calife: timed automata (telecommunications)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Why: annotated imperative programs translated into functional programs + verification conditions
- Krakatoa: JAVA/JAVACARDS programs
- Caduceus: prototype platform for C programs
- Build your own platform otherwise

XML-based input format for timed automata

- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

<ロ> (四) (四) (三) (三) (三)

• Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

<ロ> (四) (四) (三) (三) (三)

• Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

<ロ> (四) (四) (三) (三) (三) (三)

 Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Plane
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

<ロ> (四) (四) (三) (三) (三) (三)

• Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

<ロト <回ト < 国ト < 国ト < 国ト 三 里

• Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

《曰》 《聞》 《臣》 《臣》 三臣 …

 Funded by RNRT, RNTL and France Telecom

- XML-based input format for timed automata
- Interactive graphic support
- Graphic simulation tools
- Testing tools
- Code generators for Coq, Chronos, Hytech, and Prism
- Applications to telecommunication protocols: ABR, PGM, PIM, CSMA/CA

《曰》 《聞》 《臣》 《臣》 三臣 …

 Funded by RNRT, RNTL and France Telecom

For JAVA/JAVACARDS programs

- Trusted Logics: security properties of crytographic protocols: highest level of security for their methodology
- Schlumberger: security properties of their ATM, an entire model proved in Coq, over 500K lines of Coq

Few interactions with both companies

- For JAVA/JAVACARDS programs
- Trusted Logics: security properties of crytographic protocols: highest level of security for their methodology
- Schlumberger: security properties of their ATM, an entire model proved in Coq, over 500K lines of Coq

<ロ> (四) (四) (三) (三) (三)

• Few interactions with both companies

- For JAVA/JAVACARDS programs
- Trusted Logics: security properties of crytographic protocols: highest level of security for their methodology
- Schlumberger: security properties of their ATM, an entire model proved in Coq, over 500K lines of Coq

<ロ> (四) (四) (三) (三) (三) (三)

Few interactions with both companies

- For JAVA/JAVACARDS programs
- Trusted Logics: security properties of crytographic protocols: highest level of security for their methodology
- Schlumberger: security properties of their ATM, an entire model proved in Coq, over 500K lines of Coq

<ロ> (四) (四) (三) (三) (三) (三)

Few interactions with both companies

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

<ロ> (四) (四) (三) (三) (三)

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

<ロ> (四) (四) (三) (三) (三) (三)

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

(日) (四) (王) (王) (王)

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

《曰》 《聞》 《臣》 《臣》 三臣 …

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

- Verification of probabilistic statements about deterministic processes
- Specification and verification of probabilistic protocols
- Extend Grégoire's abstract machine for handling rewriting
- Small proof engines and their combination
- Extraction of complexity information from proofs

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Proof assistants are very powerful specification languages

- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).

- Proof assistants are very powerful specification languages
- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).

- Proof assistants are very powerful specification languages
- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).

- Proof assistants are very powerful specification languages
- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).

- Proof assistants are very powerful specification languages
- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).
Conclusion

- Proof assistants are very powerful specification languages
- Proof assistants should be at the heart of any verification tool
- Proof assistants should incoporate decision procedures in a transparent way
- Proof assistants are hard to use without dedicated platforms
- Software, unlike theorems, has a short life time, but may involve human's life, money, or image.
- Current market is very small (electronic commerce), but will grow slowly (critical software).

G. Huet, T. Coquand, C. Paulin, G. Dowek for their vision and early implementations; Barras, Filliatre, Grégoire, Herbelin, Blangui, Chrzaczsz, Monate, Strub for their theoretical and software contributions; LogiCal for its extreme dedication to Coq; Trusted Logics for putting forward their use of Cog and Why; France-Telecom, EADS, Thales for funding us; INRIA, CNRS for their continuous support.

Outline Theorems and proofs in mathematics Four celebrated examples Deductions and Computations Proof Assistants Coq Conclusion

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, Fi plain