Church-Rosser Properties of Terminating

First-Order and Higher-Order Rewriting
Relations

Jean-Pierre Jouannaud
LIX, Ecole Polytechnique, Palaiseau

Joint work with Femke van Raamsdonk
Faculty of Sciences, Vrije Universiteit, Amsterdam

ICMS, Edinburgh, May 26-28, 2007

© Rewriting review
@ Confluence review
© Rewriting modulo
© Normal rewriting
© Abstract properties

@ Conclusion

Examples and questions

Plain first-order rewriting

rule (associativity):
X+y)+z—=x+(y+2)
rewrite step:

(1+2)+3—1+(2+3)

this is called plain rewriting

First-order rewriting modulo

rule (inverse):
X+ (—x)—0
equations (commutativity and associativity):

X+y = Yy+X
x+y)+z = x+(y+2)

rewrite step:
—X+(X+y) = (=x+x)+y = (X+=x)+y — O0+y

this is called class rewriting

Plain Higher-Order Rewriting

rules (recursor and beta):

rec(O,u,f) — u
rec(s(y),u,f) — Q(f,y,rec(y,u,f))
©(A\z.u,v) — u{z—v}

rewrite step:

rec(s(0), 1, Axy. + (x,y)) —
Q(Axy. + (x,y),0,rec(0,1, Axy. + (x,y))) —
O(A\xy.+ (x,y),0,1) — +(0,1) — 1

Uses plain pattern matching in presence of
binders

Plain Higher-Order Rewriting continued

[Barendregt and Klop]:

wl = (AX.xx)(As.\z.52)
— (AS.\z2.52)(AS.\2.5Z)

— AZ.(AS.\z.52)z

L Nz (As.Az.52)Z

«

% AZ2'.(\z.2' Z)

Plain HOR is a form of
class rewriting modulo a-conversion

Higher-order rewriting

rules (differentiation):

diff (Ax.sin(f(x))) — Ax.cos(f(x)) = diff (f)
diff(Ax.x) — 1

rewrite step:
diff (Ax.sin(x)) «— diff (Ax.sin(@(Ax.x,x)))

— AX.C0S(X) * diff (AX.X)
— AX.C0S(X) x* diff (AX.X)
— AX.CO0S(X)

Higher-order rewriting is another form of
class rewriting modulo alpha, beta and eta.

@ is my calculus terminating ?
@ is my calculus confluent ?

We focus on
e Confluence assuming termination
e General abstract results
e A treatment of binders as a particular case
e Application to higher-order rewriting

Confluence of plain first-order rewriting

A Review

Example of confluence

rule:
X+y)+z—=x+(y+2)

converging divergence:

l

1+(2+(3+4))
(1+2)+(3+4)

l

(1+2)+3)+4

l

1+(2+4+3)+4
1+((2+3)+4)
— 1+ (2+(3+4))

l

Example of non-confluence

rules:

xX+y)+z — x+(y+2)
X+0 — X

Non-converging divergence:

— 1+ (0+3)
(1+0)+3
— 143

Divergence: t;+—*s—"*t,
Local divergence: tij+—s—t
Joinability: t; —*u+«—*t,

Confluence:
every divergence is joinable.

Local confluence:
every local divergence is joinable.

Proving confluence

@ via orthogonality (see [Terese])

@ via local confluence and termination:
(i) confluence reduces to local confluence
(i) local confluence reduces to the joinability
of critical pairs

Example of critical pairs for plain first-order rewriting

rules:

(X+y)+z — X+ (y+2)
X+0 — X

critical pair: most general divergence

X+0+2z)—(x+0)+2z2—-x+2

Critical pairs for plain first-order rewriting

Critical pairs for plain first-order rewriting

Assume
rules| —randg — d
non-variable position p in |
mgu o such that lo|, = go

then:

o™ lg = lo[go]p -+, lo[do]p

Critical pairs for plain first-order rewriting

Assume
rules| —randg — d
non-variable position p in |
mgu o such that lo|, = go

then:
o™ lg = lo[go]p -+, lo[do]p

o is the mgu of ||, = g because
lo|p = l|po in the absence of binders

Critical pairs for plain first-order rewriting

Assume
rules| —randg — d
non-variable position p in |
mgu o such that lo|, = go

then:

o™ lg = lo[go]p -+, lo[do]p

o is the mgu of ||, = g because
lo|p = l|po in the absence of binders

With binders, discard mgus of [|, = ¢
such that lo|, # go.

Rewriting modulo

Rewriting modulo given:

Proof: t;«—F% ot

Joinability: t; —f{g U s Ve—pgsho

Church-Rosser: every proof is joinable.

Rewriting modulo given: S, R, —gg

Proof: t;«—F% ot

Joinability: t; —f{g U s Ve—pgsho
Church-Rosser: every proof is joinable.

Local confluence: every local divergence
t1 «—RrgS —rst2 IS]joinable

Local coherence: every local semi-divergence
t1 «—Rs S st isjoinable

Rewriting modulo given:

Proof: t;«—F% ot

Joinability: t; —f{g U s Ve—pgsho
Church-Rosser: every proof is joinable.

Local confluence: every local divergence
t1 «—RrgS —rst2 IS]joinable

Local coherence: every local semi-divergence
t1 «—Rs S st isjoinable

Church-Rosser reduces to both local properties

Class rewriting

S —Rs t
if there is some s’ such that
S«—¢s/ _>pR t

Set of rules R = {x + (—x) — 0}

Set of equations S = {(x +y)+z =x+(y +2)}
Rewrite step:

L4) 25140
s R

The equality step occurs above the rewrite step

Class rewriting continued

rule b—c
equation a="f(b)
rewrite step a«——"f(b) —1f(c)

Is it a rewrite at position 1 ina ?

Class rewriting continued

rule b—c
equation a="f(b)
rewrite step a«——"f(b) —1f(c)

Is it a rewrite at position 1 ina ?

Makes sense for very specific theories :
@ permutative equations

@ associativity

@ alpha-conversion

© their combinations

Plain higher-order rewriting

Is class rewriting modulo alpha-conversion
[Barendregt and Klop]:

wl = (AX.xx)(As.\z.52)
— (AS.\z2.52)(AS.\2.5Z7)

— AZ.(As.\z.52)z

L 2z (As.Az.52)Z

o
1

— A2’ (A\z2.2'2)
Binders: requires a non-variable capturing
substitution and unification modulo the theory of

binders for computing critical pairs;

Plain higher-order rewriting

Is class rewriting modulo alpha-conversion
[Barendregt and Klop]:

wl = (AX.xx)(As.\z.52)
— (AS.\z2.52)(AS.\2.5Z7)

— AZ.(As.\z.52)z

L 2z (As.Az.52)Z

o
1

— A2’ (A\z2.2'2)

Binders: requires a non-variable capturing
substitution and unification modulo the theory of
binders for computing critical pairs;

General case: complete sets of S-unifiers needed;

Plain higher-order rewriting

Is class rewriting modulo alpha-conversion
[Barendregt and Klop]:

wl = (AX.xx)(As.\z.52)
— (AS.\z2.52)(AS.\2.5Z7)

— AZ.(As.\z.52)z

L 2z (As.Az.52)Z

o
1

— A2’ (A\z2.2'2)

Binders: requires a non-variable capturing
substitution and unification modulo the theory of
binders for computing critical pairs;

General case: complete sets of S-unifiers needed;
All previous theories have finite CSUIs.

Plain rewriting modulo

s —botiffs —ht

Restrictions to reduce local properties to critical
(confluence and coherence) pairs:

e rewrite rules must be left-linear
e equations must be linear

Does not apply to plain higher-order rewriting
because renaming is only possible at the end.

Rewriting modulo

Equalities must occur below the rewrite step:

S—>Est
iff
>
s &g Pt
S |—r
that is
Slp «—%§ o

t = s[ro)p

Rewriting modulo

Equalities must occur below the rewrite step:

S—>Est
iff

>
s <% ¢ Pt

S |—r

that is

S|p —g lo
t = s[ro)p

S-matching has replaced plain matching.

S = {X+y=y+x,(x+y)+z=x+(y +2)}
R = {x+(—x)—0}

Rewrite step:
(—2)+2 & 24 (—2) %0
AC R
Non-rewrite step:

(X +Y) +(-Y) = X+ +(-Y) —x +0

Extensions

(x+-x)+y — O+y
to resolve the local semi-divergences:
(x+Y) +(=Y) < (7 +(—y) +x—x+0
X+ (%) +2) <> (X + (X)) +2 =X +0

Extensions

(X+-—x)+y — O0+y
to resolve the local semi-divergences:

(X +Y) + (=y) < (v + (=y) + X 22X +0
X+ (%) +2) <> (X + (X)) +2 =X +0

Theorem

Assuming class-rewriting terminates,
S-equivalence classes are size-bounded,
and R is closed under extensions,
Church-Rosser reduces to joinability of all
S-critical pairs. [Jouannaud and Kirchner]

Plain higher-order rewriting as rewriting modulo
- e _—

(As.\z.sz)(As.\2.52)
Az.(AS.\z.52)z

o
—
11 / /
—= Az.(A\s.\2'.sZ')z
«
1
—
B

Az.(\z'.zZ)

Plain higher-order rewriting as rewriting modulo
— i _—

(As.\z.sz)(As.\2.52)
Az.(AS.\z.52)z

o
—
11 / /
—= Az.(A\s.\2'.sZ')z
«
1
—
B

Az.(\z'.zZ)

e Non-variable capture taken care of by
pattern-matching

e Alpha-extensions are not needed for plain
HOR: they are joinable;

e Critical pairs use mgu modulo alpha;
e Yields a clean handling of alpha-conversion.

Normalized rewriting

bt

iff
x p
S S t
S—E> lSE R—E>
e Marché’s normalized rewriting normalizes
with respect to Sg and rewrites with Rg,
where E is C or AC.

e Higher-order rewriting [Nipkow] needs
normalizing terms (with respect to beta, eta
modulo alpha) before rewriting modulo
alpha, beta and eta.

Normal rewriting

Abstract normal rewriting with

e a set of rules R,

e a set of rules S and a set of equations E
such that S is Church-Rosser modulo E.

Abstract normal rewriting with

e a set of rules R,

e a set of rules S and a set of equations E
such that S is Church-Rosser modulo E.

Assuming s = s|s, thens -t iff
Rlsg

|
sLu—»ulSE:t
Rse Se

Abstract normal rewriting with

e asetofrules R,

e a set of rules S and a set of equations E
such that S is Church-Rosser modulo E.

Assuming s = s|s, thens -t iff
Rlsg

|
sLu—»ulSE:t
Rse Se

For Nipkow’s higher-order rewriting, E is alpha,
S is made of beta and eta, and R is made of
rules | — r such that | and r have the same
base type and | is a pattern [Miller].

R={x+x1-0}
S={x+0—-x}
E={x+y)+z=x+(y+2), x+y=y+x}

R = {diff (A\x.sin(f(x)),y) — cos(f(y)) = diff(f,y)
diff (A\x.x,y) — 1}
S ={u— MX.0(u,x) | x £ Var(u),
O(MX.u,v) — u{x — v}}
E={&u=XNu{x—y}|y¢Var(x.u)}

R = {diff (Ax.sin(f(x)),y) — cos(f(y)) * diff (f,y)
diff (A\x.x,y) — 1}
S = {x.0(u,x) —u|x ¢&Var(u),
O(Mx.u,v) — u{x — v}}
E={&u=XNu{x—y}|y¢Var(x.u)}

R = {diff (sin o f) — cos * diff ()
diff (Ax.x) — .1}
S = {X.0(u,x) —u|x & Var(u),
O(MX.u,v) — u{x — v}}
E={&u=XNu{x—y}|y¢Var(x.u)}

Abstract normal rewriting

Abstract normal rewriting

Definition

I
S = SLSE _)p u — UlSE: t
Rse Se

General Assumptions
e (@) S is a Church-Rosser set of rules mod E
e (b) Rsg U SE is terminating,
e (€¢) Rules in R are Sg-normalized,
e (d) Equations in E are regular.
e () S US, = S is asplitting of S, that is
t—g, tls, —s, tls

From now on, E is alpha-conversion.

Properties of normal rewriting modulo given: R, S, E

Proof: t; «—— t,
RUSUE

Joinability: t; — U s Vv ' 1,
Se Rls, E Rls, Se

Church-Rosser: every proof is joinable.

Properties of normal rewriting modulo given:

Proof: t; «—— t,
RUSUE

Joinability: t; — U s Vv ' 1,
Se Rls, E Rls, Se

Church-Rosser: every proof is joinable.

Local confluence: every local divergence
th g, S —R, 2 isjoinable

Local coherence: every local semi-divergence
th —g, etz isjoinable

R,S,E

Abstract results

Let (R, S, E) satisfying (a,b,c,d).

Assuming local confluence and local coherence,
normal rewriting is Church-Rosser.

Local-coherence

reduces to the joinability (at the root) of
S-extensions:

Giveng —d € S, p € FPos(g) \ {r} and
| — r € R such that | and g|, ES-unify:

(9(l]p)lse— (alrlp)lse

Local-coherence

reduces to the joinability (at the root) of
S-extensions:

Giveng —d € S, p € FPos(g) \ {r} and
| — r € R such that | and g|, ES-unify:

(9(l]p)lse— (alrlp)lse

Nipkow’s rewriting:

No n-extension because the lefthand side of eta
is a variable

No j-extension because rules are of basic type

Higher-order rewriting at higher types

Nipkow’s counter example:
R ={Xx.a — Xx.b}

Higher-order rewriting at higher types

Nipkow’s counter example:
R ={Xx.a — Xx.b}

A 1 A
a——(MX.au)——(MX.bu)«——Db
L au) (b u)

The Church-Rosser property is lost!

Higher-order rewriting at higher types

Nipkow’s counter example:
R ={Xx.a — Xx.b}

a%()\x.a u) %(Ax.b u) %b
The Church-Rosser property is lost!

Explanation: a beta-extension is needed
obtained by unifying Ax.a with the |hs of beta:

O(M.a,u) — ©(Ax.b,u)
and by -normalization, we get
a—Db

Local-confluence

This is where splittings come in play. Reducing
local-confluence to critical pairs requires three
different ingredients:

e Forward extensions;
e Shallow pairs;
e Crirical pairs.

Explain the proof sketch on white board.

Forward extensions

Definition

Givenaruleg —d € S,,arulel —r € R, and
a position p € #Dom(d) \ {A} such that |
S-unifies with d|,, then the rule d[l], — d[r]p is
a forward extension of R with S,.

Forward extensions

Definition

Givenaruleg —d € S,,arulel —r € R, and
a position p € #Dom(d) \ {A} such that |
S-unifies with d|,, then the rule d[l], — d[r]p is
a forward extension of R with S,.

v

Rules of the form g — x or g — f(X) have none.

Forward extensions

Definition

Givenaruleg —d € S,,arulel —r € R, and
a position p € #Dom(d) \ {A} such that |
S-unifies with d|,, then the rule d[l], — d[r]p is
a forward extension of R with S,.

Rules of the form g — x or g — f(X) have none.
Forward extensions satisfy their purpose: if o is
unifies the equation | = d|p, then

go RL; dofro]p

Shallow pairs

Definition

| - reR, pe FPos(l)andg —-d €S;, g¢ X
l|, = g has a most general plain unifier o

then (ro,lo[do]p) € SCP(S1,R) is a shallow
critical pair of g — d onto | — r at position p.

A shallow pair (a, b) is strongly joinable if

b —§ —f € and the pair (a, ¢) is joinable.

A pair (ro,lo[do]p) € CPs(R) is reducible if lo is
S-reducible.

Local Confluence

Theorem

Assume that

(i) Si-irreducible pairs in CPs(R) are joinable,
(i) Normal S-extensions are joinable

(iii) Sz-irreducible pairs in SCP(S;,R) are
strongly joinable,

(iv) Forward extensions with S, are joinable,
then local confluence holds.

Abstract normal rewriting

Theorem

Let R, S, E satisfying properties (a), (b), (c), (d)
and (S, S2) be a splitting of S. Assuming that
(i) normalized extensions are joinable,

(if) forward pairs with S, are joinable,

(iii) Sz-irreducible pairs in CPs(R) are joinable,
(iv) Si-irreducible shallow pairs in SCP (R, S)
are strongly joinable,

then normal rewriting is Church-Rosser.

Conclusion

A general clean framework for normal rewriting
which applies to

e First-order rewriting (commutative groups)
e Plain higher-order rewriting (such as in Coq)
e Nipkows rewriting
e Variations of Nipkow’s rewriting:
— orienting eta as a reduction (in Sy) or
expansion (in Sp)
— allowing for rules of arrow type (needs

(-extensions)
— allowing for associativity and commutativity

	Outline
	Rewriting review
	Confluence review
	Rewriting modulo
	Normal rewriting
	Abstract properties
	Conclusion

