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Rewriting

Examples and questions



Plain first-order rewriting

rule (associativity):

(x + y) + z → x + (y + z)

rewrite step:

(1 + 2) + 3→ 1 + (2 + 3)

this is called plain rewriting



First-order rewriting modulo

rule (inverse):

x + (−x)→ 0

equations (commutativity and associativity):

x + y = y + x
(x + y) + z = x + (y + z)

rewrite step:

−x+(x+y) = (−x+x)+y = (x+−x)+y → 0+y

this is called class rewriting



Plain Higher-Order Rewriting

rules (recursor and beta):

rec(0, u, f ) → u
rec(s(y), u, f ) → @(f , y , rec(y , u, f ))

@(λz.u, v) → u{z 7→ v}

rewrite step:

rec(s(0), 1, λxy . + (x , y))→
@(λxy . + (x , y), 0, rec(0, 1, λxy . + (x , y)))→
@(λxy . + (x , y), 0, 1)→ +(0, 1)→ 1

Uses plain pattern matching in presence of
binders



Plain Higher-Order Rewriting continued

[Barendregt and Klop]:

ω 1 = (λx . x x)(λs.λz.s z)
−→ (λs.λz.sz)(λs.λz.s z)
−→ λz.(λs.λz.s z)z

Λ←→
α

λz ′.(λs.λz.s z)z ′

1−→
β

λz ′.(λz.z ′ z)

Plain HOR is a form of
class rewriting modulo α-conversion



Higher-order rewriting [Nipkow]

rules (differentiation):

diff (λx .sin(f (x))) → λx .cos(f (x)) ∗ diff (f )
diff (λx .x) → 1

rewrite step:

diff (λx .sin(x))
Λ←→
β

diff (λx .sin(@(λx .x , x)))

−→ λx .cos(x) ∗ diff (λx .x)
−→ λx .cos(x) ∗ diff (λx .x)
−→ λx .cos(x)

Higher-order rewriting is another form of
class rewriting modulo alpha, beta and eta.



Questions

1 is my calculus terminating ?
2 is my calculus confluent ?

We focus on

Confluence assuming termination

General abstract results

A treatment of binders as a particular case

Application to higher-order rewriting



Confluence of plain first-order rewriting

A Review



Example of confluence

rule:
(x + y) + z → x + (y + z)

converging divergence:

→ 1 + (2 + (3 + 4))
→ (1 + 2) + (3 + 4)

((1 + 2) + 3) + 4
→ (1 + (2 + 3)) + 4
→ 1 + ((2 + 3) + 4)
→ 1 + (2 + (3 + 4))



Example of non-confluence

rules:

(x + y) + z → x + (y + z)
x + 0 → x

Non-converging divergence:

→ 1 + (0 + 3)
(1 + 0) + 3

→ 1 + 3



Definitions

Divergence: t1←−∗ s−→∗ t2

Local divergence: t1←− s−→ t2

Joinability: t1−→∗ u←−∗ t2

Confluence:
every divergence is joinable.

Local confluence:
every local divergence is joinable.



Proving confluence

1 via orthogonality (see [Terese])

2 via local confluence and termination:
(i) confluence reduces to local confluence
(ii) local confluence reduces to the joinability
of critical pairs



Example of critical pairs for plain first-order rewriting

rules:

(x + y) + z → x + (y + z)
x + 0 → x

critical pair: most general divergence

x + (0 + z)← (x + 0) + z → x + z



Critical pairs for plain first-order rewriting



Critical pairs for plain first-order rewriting

Assume
rules l → r and g → d

non-variable position p in l
mgu σ such that lσ|p = gσ

then:

rσ Λ←− lσ = lσ[gσ]p
p−→ lσ[dσ]p

σ is the mgu of l |p = g because
lσ|p = l |pσ in the absence of binders

With binders, discard mgus of l |p = g
such that lσ|p 6= gσ.
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Rewriting modulo



Rewriting modulo given: S, R, −→RS

Proof: t1←→∗R∪S t2

Joinability: t1−→∗RS u ←→∗S v←−∗RS t2

Church-Rosser: every proof is joinable.

Local confluence: every local divergence
t1←−RS s−→RS t2 is joinable

Local coherence: every local semi-divergence
t1←−RS s←→S t2 is joinable

Church-Rosser reduces to both local properties
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Class rewriting [Lankford & Ballantyne]

s →RS t
if there is some s′ such that

s←→∗S s′−→p
R t

Set of rules R = {x + (−x)→ 0}

Set of equations S = {(x + y) + z = x + (y + z)}

Rewrite step:

(1 + 2) + (−2)
Λ←→
S

1 + (2 + (−2))
2−→
R

1 + 0

The equality step occurs above the rewrite step



Class rewriting continued

rule b → c
equation a = f (b)

rewrite step a←→Λ f (b)−→1 f (c)

Is it a rewrite at position 1 in a ?

Makes sense for very specific theories :
1 permutative equations
2 associativity
3 alpha-conversion
4 their combinations
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Plain higher-order rewriting

is class rewriting modulo alpha-conversion
[Barendregt and Klop]:

ω 1 = (λx . x x)(λs.λz.s z)
−→ (λs.λz.sz)(λs.λz.s z)
−→ λz.(λs.λz.s z)z

Λ←→
α

λz ′.(λs.λz.s z)z ′

1−→
β

λz ′.(λz.z ′ z)

Binders: requires a non-variable capturing
substitution and unification modulo the theory of
binders for computing critical pairs;
General case: complete sets of S-unifiers needed;
All previous theories have finite CSUs.
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Plain rewriting modulo [Huet]

s−→p
RS t iff s−→p

R t

Restrictions to reduce local properties to critical
(confluence and coherence) pairs:

rewrite rules must be left-linear

equations must be linear

Does not apply to plain higher-order rewriting
because renaming is only possible at the end.



Rewriting modulo [Peterson and Stickel]

Equalities must occur below the rewrite step:

s−→p
RS

t
iff

s
≥p←→
S

s′
p−→

l→r
t

that is
s|p ←→∗S lσ
t = s[rσ]p

S-matching has replaced plain matching.



Rewriting modulo [Peterson and Stickel]

Equalities must occur below the rewrite step:

s−→p
RS

t
iff

s
≥p←→
S

s′
p−→

l→r
t

that is
s|p ←→∗S lσ
t = s[rσ]p

S-matching has replaced plain matching.



Example

S = {x + y = y + x , (x + y) + z = x + (y + z)}
R = {x + (−x)−→ 0}

Rewrite step:

(−2) + 2 Λ←→
AC

2 + (−2)
Λ−→
R

0

Non-rewrite step:

(x + y) + (−y)
Λ←→
A

x + (y + (−y))
2−→
R

x + 0



Extensions [Stickel, Jouannaud-Kirchner]
(x +−x) + y → 0 + y

to resolve the local semi-divergences:

(x + y) + (−y)
Λ2

←→
S

(y + (−y)) + x Λ−→
R

x + 0

x + ((−x) + z)
Λ←→
S

(x + (−x)) + z Λ−→
R

x + 0

Theorem
Assuming class-rewriting terminates,
S-equivalence classes are size-bounded,
and R is closed under extensions,
Church-Rosser reduces to joinability of all
S-critical pairs. [Jouannaud and Kirchner]
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Plain higher-order rewriting as rewriting modulo
ω 1 = (λx . x x)(λs.λz.s z)

−→ (λs.λz.sz)(λs.λz.s z)
−→ λz.(λs.λz.s z)z
1·1←→
α

λz.(λs.λz ′.s z ′)z
1−→
β

λz.(λz ′.z z ′)

Non-variable capture taken care of by
pattern-matching

Alpha-extensions are not needed for plain
HOR: they are joinable;

Critical pairs use mgu modulo alpha;

Yields a clean handling of alpha-conversion.
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Normalized rewriting [Marché]

s−→p
RS

t
iff

s ∗−→
SE

s↓SE

p−→
RE

t

Marché’s normalized rewriting normalizes
with respect to SE and rewrites with RE ,
where E is C or AC.

Higher-order rewriting [Nipkow] needs
normalizing terms (with respect to beta, eta
modulo alpha) before rewriting modulo
alpha, beta and eta.



Normal rewriting



Abstract normal rewriting with

a set of rules R,

a set of rules S and a set of equations E
such that S is Church-Rosser modulo E .

Assuming s = s↓SE then s
p−→

R↓SE

t iff

s
p−→

RSE

u !−→
SE

u↓SE = t

For Nipkow’s higher-order rewriting, E is alpha,
S is made of beta and eta, and R is made of
rules l → r such that l and r have the same
base type and l is a pattern [Miller].
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Examples

Commutative groups:

R = {x + x−1 → 0}
S = {x + 0→ x}

E = {(x + y) + z = x + (y + z), x + y = y + x}

Differentiation:

R = {diff (λx .sin(f (x)), y)→ cos(f (y)) ∗ diff (f , y)
diff (λx .x , y)→ 1}

S = {u → λx .@(u, x) | x 6∈ Var(u),
@(λx .u, v)→ u{x 7→ v}}

E = {λx .u = λy .u{x 7→ y} | y 6∈ Var(λx .u)}



Examples

Differentiation 2:

R = {diff (λx .sin(f (x)), y)→ cos(f (y)) ∗ diff (f , y)
diff (λx .x , y)→ 1}

S = {λx .@(u, x)→ u | x 6∈ Var(u),
@(λx .u, v)→ u{x 7→ v}}

E = {λx .u = λy .u{x 7→ y} | y 6∈ Var(λx .u)}

Differentiation 3:

R = {diff (sin ◦ f )→ cos ∗ diff (f )
diff (λx .x)→ λx .1}

S = {λx .@(u, x)→ u | x 6∈ Var(u),
@(λx .u, v)→ u{x 7→ v}}

E = {λx .u = λy .u{x 7→ y} | y 6∈ Var(λx .u)}



Abstract normal rewriting



Abstract normal rewriting

Definition

s = s↓SE

p−→
RSE

u !−→
SE

u↓SE = t

General Assumptions

(a) S is a Church-Rosser set of rules mod E

(b) RSE ∪ SE is terminating,

(c) Rules in R are SE -normalized,

(d) Equations in E are regular.

(e) S1 ∪ S2 = S is a splitting of S, that is
t −→∗S1

t↓S1 −→∗S2
t↓S

From now on, E is alpha-conversion.



Properties of normal rewriting modulo given: R, S, E

Proof: t1
∗←→

R∪S∪E
t2

Joinability: t1
!−→

SE

∗−→
R↓SE

u ∗←→
E

v ∗←−
R↓SE

!←−
SE

t2

Church-Rosser: every proof is joinable.

Local confluence: every local divergence
t1←−RSE

s−→RSE
t2 is joinable

Local coherence: every local semi-divergence
t1−→RSE

←→E t2 is joinable
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Abstract results

Let (R, S, E) satisfying (a,b,c,d).

Theorem

Assuming local confluence and local coherence,
normal rewriting is Church-Rosser.



Local-coherence

reduces to the joinability (at the root) of
S-extensions:

Given g → d ∈ S, p ∈ FPos(g) \ {Λ} and
l → r ∈ R such that l and g|p ES-unify:

(g[l ]p)↓SE→ (g[r ]p)↓SE

Nipkow’s rewriting:
No η-extension because the lefthand side of eta
is a variable
No β-extension because rules are of basic type
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Higher-order rewriting at higher types

Nipkow’s counter example:

R = {λx .a→ λx .b}

a Λ←→
β

(λx .a u)
1←→
R

(λx .b u)
Λ←→
β

b

The Church-Rosser property is lost!

Explanation: a beta-extension is needed
obtained by unifying λx .a with the lhs of beta:

@(λx .a, u)→ @(λx .b, u)

and by β-normalization, we get

a→ b
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Local-confluence

This is where splittings come in play. Reducing
local-confluence to critical pairs requires three
different ingredients:

Forward extensions;

Shallow pairs;

Crirical pairs.

Explain the proof sketch on white board.



Forward extensions

Definition
Given a rule g → d ∈ S2, a rule l → r ∈ R, and
a position p ∈ FDom(d) \ {Λ} such that l
S-unifies with d |p, then the rule d [l ]p → d [r ]p is
a forward extension of R with S2.

Rules of the form g → x or g → f (x) have none.
Forward extensions satisfy their purpose: if σ is
unifies the equation l = d |p, then

gσ
Λ−→

RS

dσ[rσ]p
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Shallow pairs

Definition
l → r ∈ R, p ∈ FPos(l) and g → d ∈ S1, g 6∈ X
l |p = g has a most general plain unifier σ

then (rσ, lσ[dσ]p) ∈ SCP(S1, R) is a shallow
critical pair of g → d onto l → r at position p.
A shallow pair (a, b) is strongly joinable if
b−→∗S −→Λ

R c and the pair (a, c) is joinable.
A pair (rσ, lσ[dσ]p) ∈ CPS(R) is reducible if lσ is
S-reducible.



Local Confluence

Theorem
Assume that
(i) S1-irreducible pairs in CPS(R) are joinable,
(ii) Normal S-extensions are joinable
(iii) S1-irreducible pairs in SCP(S1, R) are
strongly joinable,
(iv) Forward extensions with S2 are joinable,
then local confluence holds.



Abstract normal rewriting

Theorem

Let R, S, E satisfying properties (a), (b), (c), (d)
and (S1, S2) be a splitting of S. Assuming that
(i) normalized extensions are joinable,
(ii) forward pairs with S2 are joinable,
(iii) S1-irreducible pairs in CPS(R) are joinable,
(iv) S1-irreducible shallow pairs in SCP(R, S)
are strongly joinable,
then normal rewriting is Church-Rosser.



Conclusion



Summary

A general clean framework for normal rewriting
which applies to

First-order rewriting (commutative groups)

Plain higher-order rewriting (such as in Coq)

Nipkows rewriting

Variations of Nipkow’s rewriting:
– orienting eta as a reduction (in S2) or
expansion (in S1)
– allowing for rules of arrow type (needs
β-extensions)
– allowing for associativity and commutativity
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