
Building Decision Procedures in the Calculus of Inductive Constructions

Fréd́eric Blanqui
LORIA, UMR CNRS 7503
INRIA Lorraine, BP 101

54506 Villers-l̀es-Nancy, FRANCE

J.-P. Jouannaud and P.-Y. Strub∗

LIX, UMR CNRS 7161
École Polytechnique

91128 Plaiseau, FRANCE

1. Introduction

Background. It is commonly agreed that the success of
future proof assistants will rely on their ability to incorpo-
rate computations within deductions in order to mimic the
mathematician when replacing the proof of a proposition P
by the proof of an equivalent proposition P’ obtained from
P thanks to possibly complex calculations.

Proof assistants based on the Curry-Howard isomor-
phism such as Coq [8] allow to build the proof of a proposi-
tion by applying appropriate proof tactics generating a proof
term that can be checked with respect to the rules of logic.
The proof-checker, also called thekernelof the proof as-
sistant, implements the inference and deduction rules of the
logic on top of a term manipulation layer. Trusting the ker-
nel is a vital need since the mathematical correctness of a
proof development relies entirely on the kernel.

The (intuitionist) logic on which Coq is based is the Cal-
culus of Constructions (CC) of Coquand and Huet [9], an
impredicative type theory incorporating polymorphism, de-
pendent types and type constructors. As other logics, CC
enjoys a computation mechanism called cut-elimination,
which is nothing but theβ-reduction rule of the underlying
λ-calculus. But unlike logics without dependent types, CC
enjoys also a powerful type-checking rule, calledconver-
sion, which incorporates computations within deductions as
done by the working mathematician: for example, rather
than proving that1 + 3 is a even number, any math under-
grad will prove instead that4 is an even number. With such
a rule, decidability of type-checking becomes a non-trivial
property of the calculus.

The traditional view that computations coincide withβ-
reductions suffers several drawbacks. A methodological
one is that the user must encode other forms of compu-
tations as deductions, which is usually done by using ap-
propriate, complex tactics. A practical consequence is that
proofs become much larger than necessary, up to a point that

∗Project LogiCal, P̂ole Commun de Recherche en Informatique du
Plateau de Saclay, CNRS,École Polytechnique, INRIA, Univ. Paris-Sud.

they cannot be type-checked anymore. These questions be-
come extremely important when carrying out complex de-
velopments involving a large amount of computation as the
formal proof of the four colour (now proof-checked) the-
orem completed by Gonthier and Werner using Coq [13].
The lack of computing power lead Gonthier to use sophis-
ticated detours for specifying the enumeration of all basic
maps to be coloured by the system.

The Calculus of Inductive Constructions of Coquand
and Paulin was a first attempt to solve this problem by
introducing inductive types and the associated elimination
rules [10]. The recent versions of Coq are based on a slight
generalization of this calculus [12]. Besides theβ-reduction
rule, they also include the so-calledι-reductions which are
recursors for terms and types. While the kernel of CC is ex-
tremely compact and simple enough to make it easily read-
able -hence trustable-, the kernel of CIC is much larger and
quite complex. Trusting it would require a formal proof,
which was done once [3]. Updating that proof for each new
release of the system is however unrealistic.

A more general attempt was carried out since the early
90’s, by adding user-defined computations as rewrite rules,
resulting in the Calculus of Inductive Constructions [5]. Al-
though conceptually quite powerful, since CAC captures
CIC [6], this paradigm does not yet fulfill all needs, be-
cause the set of user-defined rewrite rules must satisfy sev-
eral strong assumptions. No implementation of CAC has in-
deed been released because making type-checking efficient
would require compiling the user-defined rules, hence re-
sulting in a kernel too large to be trusted anymore.

The proof assistant PVS uses a potentially stronger
paradigm than Coq by combining its deduction mecha-
nism1 with a notion of computation based on the powerful
Shostak’s method for combining decision procedures [16], a
framework dubbedlittle proof enginesby Shankar [15]: the
little proof engines are the decision procedures, required to
be convex, combined by Shostak’s algorithm. A given deci-

1PVS logic is not based on Curry-Howard and proof-checking not even
decidable making both frameworks very different and difficult to compare.

sion procedure encodes a fixed set of axiomsP . But an im-
portant advantage of the method is that the relevant assump-
tionsA present in the context of the proof are also used by
the decision procedure to prove a goalG, and become there-
fore part of the notion of computation. For example, in the
case where the little proof engine is the congruence closure
algorithm, the fixed set of axiomsP is made of the axioms
for equality,A is the set of algebraic ground equalities de-
clared in the context, while the goalG is an equalitys = t
between two ground expressions. The congruence closure
algorithm will then processA ands = t together in order
to decide whether or nots = t follows from P ∪ A. In the
Calculus of Constructions, this proof must be constructed
by a specific tactic called by the user, which applies the in-
ference rules of CC to the axioms inP and the assumptions
in A, and becomes then part of the proof term being built.
Reflexion techniques allow to omit checking this proof term
by proving the decision procedure itself, but the soundness
of the entire mechanism cannot be guaranteed [11].

A further step in the direction of integrating decision
procedures into the Calculus of Constructions is Stehr’s
Open Calculus of Constructions OCC [17]. Implemented in
Maude, OCC is too general to make type checking decid-
able. In a preliminary work, we also designed a new frame-
work, the Calculus of Congruent Constructions (CCC),
which incorporates the congruence closure algorithm in
CC’s conversion [7], while preserving the good properties
of the calculus, including the decidability of type checking.

Problem. The main question investigated in this paper is
the incorporation of a general mechanism calling a decision
procedure for solving conversion-goals in the Calculus of
Inductive Constructions which uses the relevant informa-
tion available from the current context of the proof.

Contributions. Our main contribution is the definition
and the meta-theoretical investigation of the Calculus of
Congruent Inductive Constructions (CCIC), which incorpo-
rates arbitraryfirst-order theoriesfor which entailment is
decidable into deductions via an abstract conversion rule of
the calculus. A major technical innovation of this work lies
in the computation mechanism: goals are sent to the de-
cision procedure together with the set of user hypotheses
available from the current context. Our main result shows
that this extension of CIC does not compromise its main
properties: confluency, strong normalization, coherence and
decidability of proof-checking are all preserved.

As a second key contribution, we show how a goal to be
proved in the Calculus of Inductive Constructions can ac-
tually be transformed into a goal in a decidable first-order
theory. Based on this transformation, we are currently de-
veloping a new version of Coq implementing this calculus.

Finally, we explain why the new system is still trustable,
by leaving decision proceduresout of its kernel, assuming
that each procedure delivers a checkablecertificatewhich
becomes part of the proof. Certificate checkers become
themselves part of the kernel, but are usually quite small
and efficient and can be added one by one, making this ap-
proach a good compromise between CAC and CIC.

We assume some familiarity with typed lambda cal-
culi [2] and the Calculus of Inductive Constructions.

2. The calculus

For ease of the presentation, we restrict ourselves to
CCN, a calculus of constructions with a type nat of natu-
ral numbers generated by its two constructors0 andS and
equipped with its weak recursor RecW

N . Adding the strong
recursor in order to have the full Calculus of Inductive Con-
structions is discussed in Section 5. The calculus is also
equipped with a polymorphic equality symbol, written=̇.

LetS = {?,�,4} the set of CCN sorts. Fors ∈ {?,�},
X s denotes a countably infinite set ofs-sorted variabless.t.
X ? ∩ X� = ∅. The unionX ? ∪ X� will be writtenX . Let
A = {u, r} a set of two constants calledannotations, totally
ordered byu ≺A r . We usea for an arbitrary annotation.
Annotations are necessary for subject reduction.

Definition 2.1 (Pseudo-terms ofCCN). We define the
pseudo-termsof CCN by the grammar rules:

t, T := x ∈ X | s ∈ S | nat | =̇ | 0 | S | + | Eq(t) | t u

| λ[x :a T]t | ∀(x :a T). t | RecWN (t, T){t0, tS}
We useFV(t) for the set of free variables oft.

Definition 2.2 (Pseudo-contexts ofCCN). The typing en-
vironmentsof CCN are defined asΓ,∆ := [] | Γ, [x :a T].
We usedomΓ for the domain ofΓ.

Definition 2.3 (Syntactic classes).The pairwise disjoint
syntactic classes ofCCN, calledobjects(O), predicatesor
types(P), kinds(K), externs(E) and4 are defined as:

O := X ? | 0 | S | OO | OP | [λX ? :a P]O |
:= [λX� :a K]O | RecWN (O, ·){O,O}

P := X� | nat | P O | P P | [λX ? :a P]P | =̇ |
:= [λX� :a K]P | (∀X ? :a P)P | (∀X� :a K)P

K := ? | KO | KP | [λX ? :a P]K |
:= [λX� :a K]K | (∀X ? :a P)K | (∀X� :a K)K

E := � | (∀X ? :a P)E | (∀X� :a K)E
4 := 4

This enumeration defines a postfixed successor function
+1 on classes. We also defineClass(t) = D if t ∈ D and
D ∈ {O,P,K, E ,4}. Otherwise,Class(t) =⊥.

2

Our typing judgments are classically written asΓ ` t :
T , meaning that theterm t is a proof of the propositionT
under the assumptions in thewell-formedenvironmentΓ.
Typing rulesare those of CIC restricted to the single induc-
tive type of natural numbers, with one exception, [CONV],
based on an equality relation calledconversiondefined in
Section 2.1.

Definition 2.4 (Typing judgements). Typing rules ofCCN
are defined in Figure 1.

2.1. Computation by conversion

Our calculus has a complex notion of computation re-
flecting its rich structure made of three different ingredi-
ents, the typed lambda calculus, the type nat with its weak
recursor and the Presburger arithmetic.

Our typed lambda calculus comes along with the beta-
rule. The eta-rule raises known technical difficulties,
see [18].

The type nat is generated by the two constructors0 andS
whose typing rules are given in Figure 1. We use RecW

N for
its recursor whose typing rule is given in Figure 1 as well.
Following CIC’s tradition, we separate its arguments into
two groups, using parentheses for the first two, and curly
brackets for the two branches. The type of the second ar-
gumentQ : nat → s ∈ ? indicates that we restrict our-
selves here to theweakversion of the recursor. Including
the strong version for whichQ : nat→ s ∈ � is discussed
later. The computation rules of nat are given below:

Definition 2.5 (ι-reduction). The (weak)ι-reduction is de-
fined by the following rewriting system:

RecWN (0, Q){t0, tS} →ι t0

RecWN (St,Q){t0, tS} →ι tS t (RecWN (t,Q){t0, tS})

wheret0, tS ∈ O.

These rules are going to be part of the conversion∼Γ. Of
course, we dot not want to type-check terms at each single
step of conversion, we want to type-check only the starting
two terms forming the equality goal in [Conv]. But inter-
mediate terms could then be non-typable and strong nor-
malization be lost. Checking in theι-rules thatt0 and tS
are objects is enough for ensuring strong normalization.

The constructors0 and S, as well as the additional
higher-order constant+ arealso used to build up expres-
sions in the algebraic world of Presburger arithmetic, in
which function symbols have arities. We therefore have two
different possible views of terms of type nat, either as a term
of the calculus of inductive constructions, or as an algebraic
term of Presburger arithmetic. We now define precisely this
algebraic world and explain in detail how to extract alge-
braic information from arbitrary terms of CCN.

[A XIOM -1]
Γ ` ? : �

[A XIOM -2]
Γ ` � : 4

[=̇-INTRO]
` =̇ : ∀(T :u ?). T → T → ?

[PRODUCT]
Γ ` T : sT Γ, [x :a T] ` U : sU

Γ ` ∀(x :a T). U : sU

[L AMDA]
Γ ` ∀(x :a T). U : s Γ, [x :a T] ` u : U

Γ ` λ[x :a T]u : ∀(x :a T). U

[WEAK]

Γ ` V : s Γ ` t : T
s ∈ {?,�} x ∈ X s − dom(Γ)

Γ, [x :a V] ` t : T

[VAR]
Γ ` T : sx x ∈ dom(Γ)

Γ ` x : xΓ

[A PP]
Γ ` t : ∀(x :a U). V Γ ` u : U

Γ ` t u : V {x 7→ u}

where
if a = r andU →∗

β t1 =̇ t2 with t1, t2 ∈ O
thent1 ∼Γ t2

[0-INTRO]
` 0 : nat

[S-INTRO]
` S : nat→ nat

[EQ-INTRO]

Γ ` t1 : T Γ ` t2 : T
Γ ` p : ∀(P : T → ?). P t1 → P t2

Γ ` Eq(p) : t1 =̇T t2

[ι-ELIM]

Γ ` t : nat Γ ` Q : nat→ s ∈ ? Γ ` f0 : nat
Γ ` fS : ∀(n :u nat). Q n → Q (Sn)

Γ ` RecWN (t, Q){f0, fS} : Qt

[CONV]
Γ ` t : T Γ ` T ′ : s′ T ∼Γ T ′

Γ ` t : T ′

[NAT]
` nat : ?

[+-INTRO]
` + : nat→ nat→ nat

Figure 1. Typing judgment of CCN

3

Let T be the theory ofPresburger arithmeticdefined on
the signatureΣ = {0, S(), + } andY a set of variables
distinct fromX . Note that we syntactically distinguish the
algebraic symbols from the CCN symbols by using a differ-
ent font (this shows up for the successor symbol only!).

Definition 2.6 (Algebraic terms). The setAlg of CCN al-
gebraic termsis the smallest subset ofO s.t. i)X ? ⊆ Alg,
ii) 0 ∈ Alg, iii) ∀t ∈ CCN. St ∈ Alg, iv) ∀t, u ∈
CCN. t + u ∈ Alg.

Definition 2.7 (Algebraic cap and aliens).Given a rela-
tion R on CCN, letR be the smallest congruence onCCN
containingR, andπR a function fromCCN toY ∪X ? such
that t R u ⇐⇒ πR(t) = πR(u).

Thealgebraic cap oft moduloR, capR(t), is defined by:

• capR(0) = 0, capR(Su) = S(capR(u)), capR(u +
v) = capR(u) + capR(v),

• otherwise,capR(t) = t if t ∈ X ∗ and elseπR(t).

We callalienssubterms oft abstracted by a variable inY.

Observe that a term not headed by an algebraic symbol
is abstracted by a variable from our new set of variablesY
in such a way thatR-equivalent terms are abstracted by the
same variable.

We can now glue things together to defineconversion:

Definition 2.8 (Conversion relation). The family{∼Γ}Γ
of Γ-conversionsis defined by the rules of Figure 2.

This definition is technically complex.
Being a congruence,∼Γ includes congruence rules.

However, all these rules are not quite congruence rules since
crossing a binder increases the current contextΓ by the new
assumption made inside the scope of the binding construct,
resulting in a family of congruences. More questions are
raised by the three different kinds of basic conversions.

First,∼Γ includes the rules→β and→ι of CCN. Unlike
the beta rule,→ι interacts with first-order rewriting, and
therefore the CONV rule of Figure 2 cannot be expressed by
T ↔∗

βι∼Γ↔∗
βι T ′ as one would expect.

Second,∼Γ includes the relevant assumptions grabbed
from the context, this is rule EQ. These assumptions must
be of the form[x :r T], with the appropriate annotation
r, andT must be an equality assumption or otherwisere-
duceto an equality assumption. Note that we use only→β

here. Using∼Γ recursively instead is indeed an equivalent
formulation under our assumptions. Without annotations,
CCN does not enjoy subject reduction. Generating appro-
priate annotations is discussed in Section 5.

Third, with rule [DED], we can also generate new as-
sumptions by using Presburger arithmetic. This rule here
uses the property that two algebraic terms are equivalent in

∼Γ if their caps relative to∼Γ are equivalent in∼Γ (the
converse being false). This is so because the abstraction
function π∼Γ abstracts equivalent aliens by the same vari-
able taken fromY. It is therefore the case that deductions on
caps made in Presburger arithmetic can be lifted to deduc-
tions on arbitrary terms via the abstraction function. As a
consequence, the two definitions of the abstraction function
π∼Γ and of the congruence∼Γ are mutually inductive: our
conversion relation is defined as a least fixpoint. One may
therefore wonder whether∼Γ is decidable. The answer is
positive as shown in Section 3.

2.2 Two simple examples

More automation - smaller proofs. We start with a sim-
ple example illustrating how the equalities extracted from a
contextΓ can be use to deduce new equalities in∼Γ.

[βι]
t ↔∗

βι u

t ∼Γ u

[EQ]
[x :r T] ∈ Γ T →∗

β t1 =̇ t2 t1, t2 ∈ O
t1 ∼Γ t2

[DED]

t1, t2 ∈ O
{cap∼Γ

(u1) = cap∼Γ
(u2) | u1 ∼Γ u2} `T

cap∼Γ
(t1) = cap∼Γ

(t2)
t1 ∼Γ t2

[SYM]
t ∼Γ u

u ∼Γ t
[TRANS]

t ∼Γ u u ∼Γ v

t ∼Γ v

[A PP]
t1 ∼Γ t2 u1 ∼Γ u2

t1 u1 ∼Γ t2 u2

[PROD]
T ∼Γ U t ∼Γ,[x:aT] u

∀(x :b T). t ∼Γ ∀(x :b U). u [b ≺ a]

[L AM]
T ∼Γ U t ∼Γ,[x:aT] u

λ[x :b T]t ∼Γ λ[x :b U]u [b ≺ a]

[ELIM]
u ∼Γ t P ∼Γ Q t0 ∼Γ u0 tS ∼Γ uS

RecWN (t, P){t0, tS} ∼Γ RecWN (u, Q){u0, uS}

[CCN-EQ]
t ∼Γ u

Eq(t) ∼Γ Eq(u)

Figure 2. Conversion relation ∼Γ

4

Γ = [x y t :u nat], [f :r nat→ nat],
[p1 :r t =̇ 2], [p2 :r (f (x + 3)) =̇ x + 2],
[p3 :r (f (y + t)) + 2 =̇ y], [p4 :r y + 1 = x]

From p1 andp4 (extracted from the context by [EQ]),
[DED] will deduce thaty + t ∼Γ x+3, and by congruence,
f (y+t) ∼Γ f (x+3). Therefore,π∼Γ will abstractf(x+3)
andf(y + t) by the same constantc, resulting in two new
equations:c = x + 2 andc + 2 = y. Now, c = x + 2,
c+2 = y andy+1 = x form a set of unsatisfiable equations
and we deduce0 ∼Γ 1 by the DED rule: contradiction has
been obtained. This shows that we can easily carry out a
proof by contradiction inT .

More typable terms. We continue with a second example
showing that the new calculus can type more terms that CIC.
For the sake of this example we assume that the calculus is
extended by dependent lists on natural numbers. We denote
by list (of type nat→ ?) the type of dependent lists and
by nil (of type list 0) and cons (of type∀(n : nat). list n →
nat→ list (Sn)) the lists constructors. We also add a weak
recursor RecWL such that, givenQ : ∀(n : nat). list n →
?, l0 : P 0 nil and lS : ∀(n : nat)(l : list n). P n l →
∀(x : nat). P (Sn) (consn x l), then RecWL (l, Q){l0, lS}
has typeP n l for any listl of type list n.

Assume now given a dependentreverse function2 (of
type ∀(n : nat). list n → list n) and the list concatena-
tion function :: (of type∀(n n′ : nat), list n → list n′ →
list (n + n′)). We can simply express that a listl is a palin-
drome:l is a palindrome ifreverse l =̇ l.

Suppose now that one wants to prove that palindromes
are closed under substitution of letters by palindromes. To
make it easier, we will simply consider a particular case:
the list l1l2l2l1 is a palindrome ifl1 and l2 are palin-
dromes. The proof sketch is simple: it suffices to ap-
ply as many times as needed the lemmareverse(ll′) =
reverse(l′) :: reverse(l) (∗). What can be quite surpris-
ing is that Lemma(∗) is rejected by Coq. Indeed, ifl andl′

are of lengthn andn′, it is easy to check thatreverse(ll′)
is of typelist (n + n′) andreverse(l′) :: reverse(l) of type
list (n′+n) which are clearly notβι-convertible. This is not
true in our system:n + n′ will of course be convertible to
n′+n and lemma(∗) is therefore well-formed. Proving the
more general property needs of course an additional induc-
tion on natural numbers to apply lemma(∗) the appropriate
number of times, which can of course be carried out in our
system.

2It is somewhat surprising that this function cannot be written in the
current version of Coq! On the other hand, It is easy to write it in our
calculus by using the weak recursor on lists.

3. Metatheorical properties

3.1. Basic properties of term classes

Definition 3.1. We define an order� on typing environ-
ments as the smallest order s.t.:

1. Γ ⊆ ∆ =⇒ Γ � ∆,

2. a � b =⇒ Γ1, [x :a T],Γ2 � Γ1, [x :b T],Γ2.

Lemma 3.2. AssumeΓ ` t : T . Then,

1. FV(t) ∪ FV(T) ⊆ dom(Γ),

2. All subterm oft are well-formed,

3. ∆ ` t : T if Γ � ∆, where∆ is well-formed,

Lemma 3.3. Assume thatΓ1, [x :a T],Γ2 is a well-formed
environment. ThenΓ1 ` T : sx.

Lemma 3.4. Let T a CCN term andθ an arbitrary substi-
tution. ThenClass(Tθ) = Class(T).

Lemma 3.5. Assume thatΓ ` t : T . ThenClass(t) 6=⊥,
Class(T) 6=⊥ andClass(T) = Class(t) + 1.

3.2. Properties of algebraic caps

Lemma 3.6 (Cap inversion). Letv = capR(t).
i) If v ∈ X ? thent = v ; ii) if v = 0 thent = 0 ; iii) if v =
S(u), thent = Su′ with capR(u′) = u ; iv) if v = t1 + t2
thent = u1 + u2 with capR(ui) = ti ; v) if v ∈ Y thent
does not have an algebraic cap andπR(t) = v.

Lemma 3.7. 1. Assume thatcapR(t) = capR(u). Then
i) APos(t)∪APos(u) ⊆ Pos(t)∩Pos(u) and ii)∀p ∈
APos(t) ∪ APos(u), p is either an alien position oft
(resp. u), or a leaf-position in the algebraic cap oft
(resp.u) andt|p R u|p.

2. Assume thatR andR′ are two relations s.t.R ⊆ R′

andcapR(t) = capR(u). Thencap′R(t) = cap′R(u)
andt R′ u in caseR′ is a congruence.

We now come to a key technical property of caps. Since
caps are syntactic expressions of the first-order theoryT ,
we use here the vocabulary of FOL with its usual meaning.

Lemma 3.8. Letθ be a well-formed substitution of domain
included inX such thatRθ ⊆ R′ for some congruencesR
andR′ on terms ofCCN. Then, for anyT -modelM and
T -interpretationI, there exists aT -interpretationIθ s.t.

∀t ∈ CCN. JcapR(t)KIθ

M = Jcap′R(tθ)KIM.

5

Proof. We defineIθ by i) if x ∈ Y, Iθ(x) = I(π′R(tθ))
where t ∈ π−1

R (x), ii) if x ∈ dom(θ), Iθ(x) =
Jcap′R(xθ)KIM and iii) Iθ(x) = I(x) otherwise.

We show first thatIθ(x) does not depend upon the
choice oft ∈ π−1

R (x) in case i). Assumingt, u ∈ π−1
R (x),

then t R u, and by assumption ,tθ R′ uθ. Thus,
π′R(tθ) = π′R(uθ).

Let now t ∈ CCN. We prove thatJcapR(t)KIθ

M =
Jcap′R(tθ)KIM by induction on the definition ofcapR(t):

• If t = t1 + t2 (or t = 0 or t = Su), the result is ob-
tained by applying the induction hypothesis after un-
folding the definition ofJtKIM.

• If t = x ∈ dom(θ), JcapR(x)KIθ

M = Iθ(x) =
Jcap′R(xθ)KIM.

• If t = x ∈ X − dom(θ), JcapR(x)KIθ

M = Iθ(x) =
I(x) = Jcap′R(x)KIM = Jcap′R(xθ)KIM.

• If t does not have an algebraic cap, then
JcapR(t)KIθ

M = Iθ(πR(t)) = I(π′R(tθ)) (since
t ∈ π−1

R (πR(t))). Sincetθ does not have an algebraic
cap either,I(π′R(tθ)) = Jcap′R(tθ)KIM.

3.3 Properties of conversion

Lemma 3.9 (Sort compatibility). 1. Assume thatt ∼Γ

u with Class(t) 6=⊥. ThenClass(t) = Class(u).

2. ∀s ∈ S, s ∼Γ t impliest →∗
β s

3. If t ∼Γ t1 =̇ t2 with t1, t2 ∈ O, thent →∗
β u1 =̇ u2

with ti ∼Γ ui.

4. If t ∼Γ ∀(x :a U)V , thent →∗
β ∀(x :a U ′)V ′ with

U ∼Γ U ′ andV ∼Γ,[x:aU] V ′.

Note that distinct sorts are not convertible to each other.

Definition 3.10. We define a conversion relation∼ on typ-
ing environments as the smallest equivalence relation s.t.:

T ∼Γ1 U =⇒ Γ1, [x :a T],Γ2 ∼ Γ1, [x :a U],Γ2.

Lemma 3.11 (Monotonicity). If Γ ∼ ∆, then∼Γ=∼∆.

Proof. We provet ∼∆ u by induction on the definition of
t ∼Γ u. We consider all rules in turn:

• [EQ]. Γ = Γα, [x :r T],Γβ with T →∗
β t =̇ u and

Class(t) = Class(u) = O.

The proof is by a induction onΓ ∼ ∆. The only in-
teresting case is whenΓ = Γα, [x :r T],Γβ , ∆ =
Γα, [x :u U],Γβ with T ∼Γ1 U . By compatibility,
U →∗

β t′ =̇ u′ with t ∼Γ1 t′ andu ∼Γ1 u′. Since
Γ1 � ∆, t ∼∆ t′ andu ∼∆ u′. By application of the
EQ-rule, t′ ∼∆ u′, and thus,t ∼∆ u.

• [DED]. E∼Γ � cap∼Γ
(t) = cap∼Γ

(u) whereE∼Γ =
{cap∼Γ

(u1) = cap∼Γ
(u2) | u1 ∼Γ u2} andt, u ∈ O.

Thus, there existsE1, . . . , En ∈ E∼Γ s.t. T �
∀x.E1 ∧ · · · ∧ En =⇒ cap∼Γ

(t) = cap∼Γ
(u) (∗).

Then, by induction hypothesis and application of
Lemma 3.8, we can show thatT � ∀y. E′

1 ∧
· · ·E′

n =⇒ cap∼∆
(t) = cap∼∆

(u) where
E′

i = (cap∼∆
(w1,i) = cap∼∆

(w2,i)) with Ei =
(cap∼Γ

(w1,i) = cap∼Γ
(w2,i)). (See the DED-case of

Lemma 3.12 which is similar).

• Other cases follow from the induction hypothesis.

Lemma 3.12 (Substitutivity). Let T, T ′,Γ = Γ1, [w :a

W],Γ2 such thatT ∼Γ T ′. Assume further that ifa = r
andW →∗

β u1 =̇ u2, thenu1 ∼Γ1 u2.
ThenTθ ∼∆ T ′θ whereθ = {w 7→ W} and∆ = Γ1,Γ2θ.

Proof. By induction on the definition ofT ∼Γ T ′:

• [βι]. By property of↔∗
βι.

• [EQ]. Γ = Γα, [x :r U],Γβ , with U →∗
β T =̇ T ′ and

T, T ′ ∈ O.

If [x :r U] is [w :a W], thenT ∼Γ1 T ′ by assumption.
Sincew cannot appear free inT andT ′, Tθ = T ∼Γ1

T ′ = T ′θ. By Lemma 3.2-3,Tθ ∼∆ T ′θ.

Otherwisex 6= w and x∆ →∗
β Tθ =̇ T ′θ. Ei-

ther x ∈ dom(Γ1) and in this casew 6∈ FV(U) and
x∆ = U →∗

β (T =̇ T ′) = (Tθ =̇ T ′θ) ; or x ∈
dom(Γ2), thusx∆ = xΓ2θ = Uθ →∗

β Tθ =̇ T ′θ. By
Lemma 3.4,Class(Tθ) = Class(T) = Class(T ′) =
Class(T ′θ) = O, henceTθ ∼∆ T ′θ by [EQ],

• [DED]. E∼Γ � cap∼Γ
(T) = cap∼Γ

(T ′), T, T ′ ∈ O
with E∼Γ = {cap∼Γ

(u1) = cap∼Γ
(u2) | u1 ∼Γ u2}.

By definition, there existsEi = (cap∼Γ
(w1,i) =

cap∼Γ
(w2,i)) ∈ E∼Γ , for i ∈ [1..n], such thatT �

∀x.E1 ∧ · · · ∧En =⇒ cap∼Γ
(T) = cap∼Γ

(T ′) (∗).
We show first thatT � ∀y.F (∗∗), whereF is the for-
mulaEθ

1 ∧ · · ·Eθ
n =⇒ cap∼∆

(Tθ) = cap∼∆
(T ′θ),

with Eθ
i = (cap∼∆

(w1,iθ) = cap∼∆
(w2,iθ)). Let

M be a T -model andI a T -interpretation. If
JEθ

1 ∧ · · · ∧ Eθ
nKIM =⊥, thenJF KIM = >. Otherwise,

assume thatJcap∆(Tθ)KIM 6= Jcap∆(T ′θ)KIM. By in-
duction hypothesis∼Γ ⊆ ∼∆θ, thus by Lemma 3.8
there existsIθ s.t. JE1 ∧ · · · ∧ EnKIθ

M = > and
Jcap∼Γ

(T)KIθ

M 6= Jcap∼Γ
(T ′)KIθ

M, contradicting(∗).
Therefore Jcap∆(Tθ)KIM = Jcap∆(T ′θ)KIM, and
JF KIM = >, ending the proof of(∗∗).
By induction hypothesis,∀i. w1,iθ ∼∆ w2,iθ. Hence,
∀i. Eθ

i ∈ E∼∆ = {cap∼∆
(u1) = cap∼∆

(u2) |
u1 ∼∆ u2}. ThereforeT , E∼∆ � cap∼∆

(Tθ) =
cap∼∆

(T ′θ) by (∗∗). HenceTθ ∼∆ T ′θ by DED.

6

• Other cases follow from the induction hypothesis.

As usual, the substitutivity lemma is used in the proof
of subject reduction (for beta) to come later. Because it re-
quires a specific typing property for the equality assump-
tions annotated byr , we need to ensure this property in
the application case of the coming inversion lemma used
in combination with substitutivity in the subject reduction
proof. This is indeed the origin of the similar condition ap-
pearing in the typing rule [APP].

Lemma 3.13 (Inversion). Assume thatΓ ` t : T .

1. if t ∈ X s, thenΓ ` T : s andxΓ ∼Γ T

2. if t ∈ S, thent = ? andT = � or t = � andT = ∆;

3. if t = 0 (resp t = S, t = +), thenT ∼Γ nat (resp.
T ∼Γ nat→ nat, T ∼Γ nat→ nat→ nat)

4. if t = uv, then i)Γ ` u : ∀(x :a V).W , ii) Γ ` v : V
and iii) W{x 7→ v} ∼Γ T . Moreover, ifa = r and
V ↔∗

β t1 =̇ t2 with t1, t2 ∈ O, thent1 ∼Γ t2

5. if t = ∀(x : aU). V , then i)Γ ` U : sU , ii) Γ, [x :a

U] ` V : sV and iii) T ∼Γ sV

6. if t = λ[x : aU]v, then i)Γ ` U : sU , ii) Γ, [x :a U] `
v : V , iii) Γ, [x :a U] ` V : sV , iv) Γ ` T : sV and
v) ∀(x : aU). V ∼Γ T wheresV is the sort ofx.

Lemma 3.14 (Type unicity). If Γ ` t : T1 andΓ ` t : T2,
thenT1 ∼Γ T2.

Proof. By structural induction ont and Lemma 3.13.

3.4. Conversion as rewriting

We now turn conversion into a rewriting relation in order
to prove that our system is logically coherent by analyzing
a proof in normal form of∀(x :u ?). x. The notion of a nor-
mal proof is of course more complicated than in CIC, since
we must account for the congruence∼Γ associated to an ar-
bitrary contextΓ. The difficulty is that the set of equalities
assumed in a given environmentΓ together with the axioms
of the theoryT may be incoherent, making all first-order
terms equal in∼Γ which could break strong normalization
of our rewriting relation. Solving this problem is possible
because coherence is decidable.

Definition 3.15 (Coherent environment). A typing envi-
ronmentΓ is T -coherentif there exist two termst, u ∈ O
s.t.¬(t ∼Γ u).

Lemma 3.16. If Γ is T -cohenrent then¬(0∼Γ St) for any
termt.

Definition 3.17 (Weak conversion).We inductively define
a family of weak conversion relations{∼=Γ}Γ on O2 de-
fined as: t ∼=Γ u iff Eq(Γ) ` cap∅(t) = cap∅(u), where
Eq(Γ) = {cap∅(w1) = cap∅(w2) | [x :r w1 =̇ w2] ∈ Γ}.

Definition 3.18. We inductively define a family{→Γ}Γ of
rewriting relations modulo weak-conversion as the smallest
rewriting relations satisfying the rules of Figure 3.

The first rule shows that rewriting is modulo weak con-
version in a coherent environment. The second equates all
object terms when the environment is incoherent, replacing
them by the new constant•. The other are as expected.

[RW-MOD]
Γ is T -coherent t ∼=Γ t′ →Γ u′ ∼=Γ u

t →Γ u

[RW-•]
Γ is T -incoherent t ∈ O t 6= •

t →Γ •

[RW-β]
t →β u

t →Γ u
[RW-ι]

t →ι u

t →Γ u

[RW-FORWARD]
t →∆ u Γ →β ∆

t →Γ u

[W-∀]
t →Γ,[x:aT] u

∀(x :b T). t →Γ ∀(x :b T). u [b � a]

[W-λ]
t →Γ,[x:aT] u

λ[x :b T]. t →Γ λ[x :b T]. u [b � a]

Figure 3. Conversion as a rewriting system

Lemma 3.19. The rewriting relation→Γ is confluent.

Proof. This proof is classically done by showing commuta-
tion lemmas.

Lemma 3.20. 1. If t ∼Γ u thent ↔∗
Γ u.

2. If t ↔∗
Γ u with • 6∈ t and• 6∈ u thent ∼Γ u.

Lemma 3.21. If Γ ` t : T with Γ T -coherent andt ∼=Γ u,
thenΓ ` u : T .

Lemma 3.22 (Subject reduction).If Γ ` t : T andt →Γ u
with • 6∈ u, thenΓ ` u : T .

Proof. The proof is standard, by induction on the type
derivation of the left-hand side. The interesting case is that
when a beta-reduction applies to the top of a term of the

7

form (λ[x :a U]v) w and the typing rule used is [APP]. The
inversion Lemma 3.13 (case 4) then provides us with the
property needed by the substitutivity lemma 3.12.

Lemma 3.23. The rewriting relation→Γ is strongly nor-
malizing for well formed terms.

Proof. The proof is a direct application of proof irrele-
vance [4], because∼Γ is a congruence generated by equali-
ties between object terms, apart from beta-reduction. What
makes this true is that RecWN is a weak recursor, working at
the object level. Including strong elimination rules invali-
dates this argument.

We finally conclude that CCN is coherent:

Theorem 3.1. There is no proof of` t : ∀(x :u ?). x.

Proof. If Γ ` t : ∀(x :u ?). x wheret is →Γ normal and
minimal for the subterm order. By typing constraints,t is
either an applicationu v or an abstraction.

If t = u v, t is necessarily a symbolc ∈ {S,+}, sincet
has no free variables and is normal. Therefore, the type of
t is either nat or nat→ nat, which is not convertible to a
product type. So this case is impossible.

Otherwise,t = λ[x :u ?]w. Applying t to the proposition
0 =̇ 1 yields a proof of0 = 1 is the empty environment,
which is impossible by consistency ofT .

4. Deciding type checking inCCN

Decidability of type checking needs two ingredients.
First-of-all, eliminating [CONV], which is non-structural,
by incorporating it to [APP]. This is classical, and it is
easy to prove decidability of the transformed set of rules
for type-checking, assuming∼Γ is decidable. We therefore
concentrate now on the proof of decidability of conversion.

Unfortunately, we cannot use the rewrite system→Γ for
that purpose since the first two rules use theT -coherence
of Γ as a perequisite. Instead we will use a saturation based
algorithm. The method ressembles very much the one used
for combining first-order decision procedures operating on
disjoint alphabets [14, 1]. Basic ingredients are: purifica-
tion of formulae (here equations) by abstracting aliens by
new variables; deriving new equalities among variables by
using the appropriate decision procedure for pure formulae;
propagating these new equalities to the other formulae. It
is easy to see that the method terminates, since the set of
variables is entirely determined by the first phase and more
and more variables become identified.

In our case, there are two different vocabularies, that of
nat and the lambda-calculus one. We will purify terms (for
convenience, more than needed) by associating a variable
to each subterm. There is a difficulty which complicates

[A,N]
[A,N{c1 →C c2} ∪ {c1 →C N(c2)}]

where
A|C �T c1 = c2 (c1 →C N(c2)) 6∈ N
c1, c2 ∈ Var(A) ∪Var(N) c1 �C N(c2)

[A,N ⊇ {c1 →C t1, c2 →C t2}]
[A ∪ {c1 =C c2}, N]

where
c1 =C c2 6∈ A A|C is T -satisfiable
N ` {t1 ≡C t2} ⇒∗ >

[A,N ⊇ {c1 →C t1, c2 →C t2}]
[A ∪ {c1 =C c2}, N]

where
c1 =C c2 6∈ A A|C is T -unsatisfiable
||t1|| ↔∗

β ||t2||

[A,N] {c →C RecWN (cι, cQ){c0, cS}}]
[A′, N ′]

where
A|C is satisfiable
A|C ∧ cι 6= 0 is unsatisfiable
(A′, N ′) = purify({c =C c0}, A, N)

[A,N] {c →C RecWN (cι, cQ){c0, cS}}]
[A′, N ′]

where

A|C is satisfiable
A|C ∧ cι 6= S(v) is unsatisfiable withv fresh
E = {cι =C Sv, c =C cS v RecWN (v, cQ){c0, cS}}
(A′, N ′) = purify(E,A, N)

[A,N ⊇ {c →C (d1 =̇ d2)}]
[A ∪ {d1 =C d2}, N]

where d1 =C d2 6∈ A

[A,N] {c →C A B, A →C λ[x :a T]D}]
[A{x 7→ B}, N{x 7→ B} ∪ {c →C B}]

[A,N]
⊥ [A|∅ is T -unsatisfiable]

Figure 4. Saturation

8

the derivation of new equalities: the binders which may in-
crease the current set of available equalities when crossed.
Besides, new (possibly heterogeneous) terms may be built
by beta reductions, generating new variables. Our termina-
tion argument will therefore be less straightforward.

Let C a new set of variables totally ordered by�C . A
annotated equation (resp. annotated inequation) will be any
triple t =C u (resp. t 6=C u) with t, u ∈ CCN(X ∪ C)
andC a sequence overC. An annotated literal is either an
annotated equation or annotated inequation writtent 1C u.

If E is a set of annotated literals, we writeE|C for the
set{t 1C′ u ∈ E | C ′ is a prefix ofC}.

A term is pure if it is algebraic (without any alien) or if
none of its subterms has an algebraic cap.

We first describe (omitting the straightforward rules)pu-
rification at Figure 5. Purification aims at describing literals
by two sets of pure equations belonging either toA, made
of pure algebraic literals, or toN , made of equations writ-
tenc → t wherec ∈ C andt is a pure non-algebraic term of
depth one.

Definition 4.1. We say that[A,N] reduce to[A′, N ′] (writ-
ten [A,N] ⇒ [A′, N ′]) if [A′, N ′] can be derived from
[A,N] by one of the rules of Figure 4.

Lemma 4.2. LetΓ a well formed environment,t andu two
well formed terms underΓ. Thent ∼Γ u if and only if

purify(Eq(Γ) ∪ {t 6= u}, ∅, ∅) ⇒∗⊥

whereEq(Γ) = {[x :r t =̇ u] ∈ Γ↓β | t, u ∈ O}.

Proof. The proof is in three steps: i) the rules preserve
the T -models; ii) the rules are terminating: the problem
is interpreted by a pair made of the multiset of terms in
N and the number of different classes of variables inA
with respect to equality. Pairs are compared in the order-
ing (→Γmul, >N)lex; iii) if ¬([A,N] ⇒⊥) then there is a
T -model showing that the initial goal is satisfiable.

5 Conclusion and discussion

CCN is an extension of CIC (restricted to the weak elim-
ination rules of the inductive type nat) by a fragment of
Presburger arithmetic (without the strict order< on nat) in
which conversion incorporates Presburger arithmetic, beta-
reduction and higher-order primitive recursion into a single
mechanism. We now discuss in more details how this can
be generalized to full CIC, how this can be used in prac-
tice, how useful that is, and whether the obtained kernel is
trustable.

[E] {c1 1C c2}, A, N]
[E,A ∪ {c1 1C c2}, N]

[E] {t 1C CA[u1, . . . , un]}, A, N] c, c1, . . . , cn fresh

[E ∪ {t 1C c, ui =C ci}, A ∪ {c =C CA[c1, . . . , cn]}, N]

where CA is an algebraic context

[E] {t 1C u1 u2}, A, N] u1 u2 6∈ Alg c, c1, c2 fresh

[E ∪ {t 1C c, ci =C ui}, A, N ∪ {c →C c1 c2}]

[E] {t 1C λ[x :a T]t}, A, N] c, cT , ct fresh

[E ∪ E′, A, N ∪ {c →C λ[x :a cT]ct}]
where C ′ = C, cT E′ = {t 1C c, cT =C T, ct =C′ t}

Figure 5. Purification

Extension to CIC. Building decision procedures in a
type-theoretic framework is not that easy. The main diffi-
culty lies in the adequate definition of the congruence∼Γ.
Once the definition is obtained, carrying out the technical
development is easy in the case of the pure Calculus of Con-
structions (the congruence becomes quite simpler in this
case), difficult in the present case of CCN (because of the
presence of the weak recursor for nat), no more difficult
when other decidable theories are introduced such as lists
with their associated weak recursor, but much harder when
including strong elimination rules which interact with the
first-order theories. In this case, it is necessary to block
the congruence below the strong recursor in order to avoid
lifting an incoherence from the object level to the predicate
level, which would immediately yield paradoxes.

Arbitrary decision procedures. So far, we have consid-
ered only decidable equality theories. But is is well-known
that a decidable non-equality theory can always be trans-
formed into a decidable equality theory over the type Bool
of truth values equipped with its usual operations. This is
so because of the decidability assumption.

Relevance. Our second example shows very clearly the
expressivity of our calculus with respect to CIC. However,
what is done here by a typing rule could be done alterna-
tively in CIC by a tactic. Besides, if one wants to avoid
building a proof term which can be quite large and slow
down the type-checker, it is possible to prove the tactic
and then use a reflection mechanism in order to avoid type-
checking the proof each time the tactic is called. In both
cases, however, the user must call the tactic explicitly. In
our approach, this is completely transparent, and would re-

9

N ` E] {d ≡C d}
N ` E

N ` ∅
>

N ` E] {d1 ≡C d2}
N ` E ∪ {N(d1) ≡C N(d2)}
where N(d1) 6= d1 or N(d2) 6= d2

N ` E] {A B ≡C A′ B′}
N ` E ∪ {A ≡C B,A′ ≡C B′}

N ` E] {λ[x :a T1]D1 ≡C λ[x :a T2]D2}
N ` E{x 7→ y} ∪ {T1 ≡C T2, D1 ≡C,T1 D2}

N ` E] {∀[x :a T1]D1 ≡C ∀[x :a T2]D2}
N ` E{x 7→ y} ∪ {T1 ≡C T2, D1 =C,T1 D2}

Figure 6. Propagation

main transparent in case of a succession of uses of the de-
cision procedure separated by eliminations, since conver-
sion incorporates both, or in case of different decision pro-
cedures called successively.

Trusting the kernel. Decision procedures require com-
plex coding. It took a lot of time to get a correct tactic
for Presburger arithmetic in Coq. Including a tactic into
the kernel of the system is therefore unrealistic, unless it is
itself proved correct with a trustable proof assistant. On
the other hand, most decision procedures can provide a
certificate that is quite compact and can be verified by a
certificate-checkerwhich is usually small, and easy to write
and read, and is therefore a trustable piece of code. The
reason is that the proceduresearchesfor a proof, while the
certificate-checkerverifiesthat the certificate is correct. A
certificate checker looks indeed like a proof-checker. It is
then easy to modify the conversion rule so as to output a
certificate each time a decision procedure is used. The ker-
nel of CCN therefore includes a certificate-checker for Pres-
burger arithmetic. In case of CCIC with several decision
procedures, the kernel would include one proof-checker for
each decision procedure. Besides, the process is incremen-
tal: the procedures and the associated proof-checkers can be
included one by one, because decision procedures for differ-
ent inductive types operate on disjoint vocabularies, hence
can be combined [14, 1].

An implementation of CCIC has started and should be
available soon as a prototype in a version without certificate
generation and checking.

References

[1] F. Baader and K. Schulz. Unification in the union of dis-
joint equational theories: Combining decision procedures.
In D. Kapur, editor,Proc. 11th Int. Conf. on Automated De-
duction, Saratoga Springs, NY, LNAI 607, 1992.

[2] H. Barendregt. Lambda calculi with types, volume 2 of
Handbook of logic in computer science. Oxford University
Press, 1992.

[3] B. Barras. Auto-validation d’un système de preuves avec
familles inductives. PhD thesis, University of Paris VII,
1999.

[4] G. Barthe”. The relevance of proof irrelevance. InProc.
24th Int. Coll. on Automata, Languages and Programming,
LNCS 1443, LNCS, 1998.

[5] F. Blanqui. Definitions by rewriting in the calculus of con-
structions. Mathematical Structures in Computer Science,
15(1):37–92, 2005. Journal version of LICS’01.

[6] F. Blanqui. Inductive types in the calculus of algebraic con-
structions.Fundamenta Informaticae, 65(1-2):61–86, 2005.
Journal version of TLCA’03.

[7] F. Blanqui, J.-P. Jouannaud, and P.-Y. Strub. A Calculus of
Congruent Constructions. Unpublished draft, 2005.

[8] Coq-Development-Team.The Coq Proof Assistant Refer-
ence Manual - Version 8.0. INRIA, INRIA Rocquencourt,
France, 2004. At URLhttp://coq.inria.fr/ .

[9] T. Coquand and G. Huet. The Calculus of Constructions.
Information and Computation, 76(2-3):95–120, 1988.

[10] T. Coquand and C. Paulin-Mohring. Inductively defined
types. In Martin-L̈of and G. Mints, editors,Colog’-88, In-
ternational Conference on Computer Logic, volume 417 of
LNCS, pages 50–66. Springer-Verlag, 1990.

[11] P. Corbineau.Démonstration automatique en Théorie des
Types. PhD thesis, University of Paris IX, 2005.

[12] E. Giménez. Structural recursive definitions in type theory.
In Proceedings of ICALP’98, volume 1443 ofLNCS, pages
397–408, July 1998.

[13] G. Gonthier. The four color theorem in coq. InTYPES 2004
International Workshop, 2004.

[14] M. Schmidt-Schauß. Unification in a combination of arbi-
trary disjoint equational theories.J. Symbolic Computation,
8:51–99, 1989. Special issue on Unification.

[15] N. Shankar. Little engines of proof. In G. Plotkin, edi-
tor, Proceedings of the Seventeenth Annual IEEE Symp. on
Logic in Computer Science, LICS 2002. IEEE Computer So-
ciety Press, 2002. Invited Talk.

[16] R. E. Shostak. An efficient decision procedure for arithmetic
with function symbols.J. of the Association for Computing
Machinery, 26(2):351–360, 1979.

[17] M. Stehr. The Open Calculus of Constructions: An equa-
tional type theory with dependent types for programming,
specification, and interactive theorem proving (part I and II).
To appear in Fundamenta Informaticae, 2007.

[18] B. Werner.Une Th́eorie des Constructions Inductives. PhD
thesis, University of Paris VII, 1994.

10

