
Associative-commutative rewriting via flattening

Jean-Pierre Jouannaud?

LIX, École Polytechnique
91400 Palaiseau, France

Email: jouannaud@lix.polytechnique.fr
http://www.lix.polytechnique.fr/Labo/jouannaud

Abstract. AC-rewriting is simulated by using flattened terms, flattened rewrite
rules, extensions and specializations with respect to the AC-operators, therefore
allowing us to reduce AC-pattern matching and AC-unification to permutative
matching and permutative unification respectively.

1 Introduction

In this paper, we reduce AC-rewriting and checking AC-rewriting for
confluence to the problem of rewriting flattened terms modulo permuta-
tions and checking permutative-rewriting for confluence. Moreover, we
give a simple proof of modularity for AC-rewriting.

2 Preliminaries

We assume given asignature(or vocabulary) F of function symbols.
T (F ,X) denotes the set oftermsbuilt up fromF andX . We assume fa-
miliarity with the basic concepts and notations of term rewriting systems
and refer to [1] for supplementary definitions and examples.

Terms are identified with finite labelled trees as usual.Positionsare
strings of positive integers, the root position corresponding to the empty
string Λ. We usePos(t) (resp.FPos(t)) to denote the set of positions
(resp. non-variable positions) oft, t|p for the subtermof t at position
p, andt[u]p for the result of replacingt|p with u at positionp in t. This
notation is also used to indicate thatu is a subterm oft. Var(t) denotes
the set of variables occuring int.

Substitutions are written as inσ = {x1 7→ t1, . . . , xn 7→ tn} where
ti 6= xi. The domainof σ is Dom(σ) = {x1, . . . , xn}. We use greek

? Project LogiCal, P̂ole Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
École Polytechnique, INRIA, Université Paris-Sud.

letters for substitutions and postfix notation for their application. Com-
position is denoted by juxtaposition. Bijective substitutions are called
variable renamings.

A rewrite rule is a pair of terms, writtenl → r, such thatl 6∈ X
andVar(r) ⊆ Var(l). A term rewriting systemis a set of rewrite rules
R = {li → ri}i. A term t rewrites to a termu at positionp with the
rule l → r ∈ R and the substitutionσ, written t

p−→
l→r

u if t|p = lσ and

u = t[rσ]p. Such a termt is calledreducible. An irreducible term is called
a normal form. A term rewriting systemR is confluent(resp.Church-
Rosser) if t →∗ u andt →∗ v (resp.u↔∗ v) impliesu →∗ s andv →∗ s
for somes.

The reflexive transitive closure of a relation→, denoted by→∗, is
calledderivation, while its symmetric, reflexive, transitive closure, de-
noted by↔∗. ↔∗R or =R, is calledequationnal theorygenerated by the
rules inR considered as equations (that is, oriented both ways).

3 AC rewriting

This section collects and combines various techniques found in the lit-
erature [6, 8, 3–5, 7, 2]. Assuming that some binary function symbols in
FAC = {+1, . . . , +p | p ≥ 0} ⊆ F are associative and commutative, we
define classicalyAC-rewriting ass−→p

R t iff s|p =AC lσ andt = s[rσ]p
for some rulel → r ∈ R and substitutionσ. The Church-Rosser property
becomess =R∪AC t iff s−→∗R u, t−→∗R v andu =AC v for some terms
u, v. We reserve the letters+ and∗ for AC symbols.

3.1 Flattened terms.

It is usual to handle terms with associative-commutative symbols by
flattening, writing s ↓flat for the flattened normal form of the terms.
Associative-commutative symbols become varyadic, and cannot have as
argument a term headed by the same varyadic symbol. This can be en-
forced by a simple type system. Our grammar of raw terms is :

T → X | f(T, . . . , T) | +i (T, . . . , T)

The type system ensuring flattening is based on typing judgements of the
form ` s : Ti, for i ∈ [0..p], whereT0 denotes the set of flattened terms
not headed by a function symbol inFAC , andTi∈[1..p] the set of flattened

2

terms headed by+i. We useT for the whole set of flattened terms :

Variables:
x : σ ∈ Γ

Γ ` x ∈ T0
Terms:

` t ∈ Ti i ∈ [0..p]
` t ∈ T

Plain terms:
f : n ∈ F \ FAC ` t1 ∈ T . . . ` tn ∈ T

` f(t1, . . . , tn) ∈ T0

AC-terms:
+i : AC ∈ F n ≥ 2 ∀j ∈ [1..n] ` tj ∈ T andtj(ε) 6= +i

` +i(t1, . . . , tn) ∈ Ti

We writeFflat for the varyadic signature, andT (Fflat,X) for the set
of flattened terms. It is well known that two terms inT (F , X) are AC-
equivalent iff their flattened forms are equivalent under thepermutative
congruence=P generated by the equations in the set

{+i(x1, . . . , xn) = +i(xσ(1),...,σ(n)) | σ ∈ Σn≥2}

whereΣn is the permutation group of ordern. Commutative and other
kinds of permutative symbols can be accomodated by adding the asso-
ciated permutative equations, but keeping the arity fixed. Our results in-
clude all such combinations of theories. Permutative theories enjoy many
properties: matching is decidable and equivalent terms have the same
size, a property that we may use without mentionning.

A flattened terms is a subtermof a flattened termt at positionp if
t|p =P s or elses = +(s1, . . . , sm) andt|p =P +(s1, . . . , sm, t1, . . . , tn).
Given a termt and a positionp ∈ Pos(t), Flat(t, p) shall denote the
positionq ∈ Pos(t↓flat) such thatt|p↓flat is a subterm oft↓flat |q.

3.2 Safe rewriting.

A remaining problem is that flattened terms are not closed under both
context application and instantiation, since a variable argument of a
varyadic operator can be replaced by a term headed by this very same
operator. This makes it impossible to rewrite flattened terms withR↓flat.

Definition 1. A pair (u[]p, γ) is safewith respect to the terms if u[sγ]p
is a flattened term.

The problem with rewriting on flattened terms is to compute contexts
and substitutions which are safe with respect to both the lefthand and

3

righthand side of rules. For this, we assume that the rewrite system oper-
ating on flattened terms is closed under the following inference rules:

Left-extension:
+(l) → g(r) ∈ R x 6∈ Var(l) g 6= +

+(l, x) → +(g(r), x) ∈ R

Right-extension:
f(l) → +(r) ∈ R x 6∈ Var(l) f 6= +

+(f(l), x) → +(r, x) ∈ R

Left-Right-extension:
+(l) → +(r) ∈ R x 6∈ Var(l)

+(l, x) → +(r, x) ∈ R

Specialization:
l → r ∈ R x below + in l or r y 6∈ Var(l)

l{x 7→ +(x, y)}↓flat→ r{x 7→ +(x, y)}↓flat∈ R

wherex below+ in s iff +(x,
→
s) is a subterm ofs for some vector

→
s

Note thatl{x 7→ +(x, y)} is a raw term that must be possibly flattened
(at all places immediately above an occurence ofx in l) to become a term.
Extension rules appeared first in [8] and specializations in [5]. Combin-
ing both ensures safe rewriting. Rules originating from a rulel → r in R
are called itsvariants.

Let Rflat be the closure ofR ↓flat under the above inference rules.
Rflat is normally infinite, but only a finite part of it is needed to rewrite
a term, since a given flattened term has only finetely many subterms and
the permutative theory is size-preserving. AC-rewriting becomes:

Definition 2. Given two flattened termst andu, we say thatt rewritesto
s, written t

p−→
l→r∈Rflat

u if t|p↔(≥p)∗

P lσ andu = t[rσ]p.

Note that botht andu must be flattened terms: rewriting a termt at
positionp with a rulel → r ∈ Rflat and a substitutionσ requires that the
pair (t[]p, σ) is safe with bothl andr.

Example 1.Let R = {∗(x, x) → +(g(+(x, 0)), x)}. Then,

Rflat =


∗(x, x, y)→ ∗(+(g(+(x, 0)), x), y) . . .

(+(x, y), +(x, y))→ +(g(+(x, y, 0)), x, y) . . .
(+(x, y), +(x, y), z)→ ∗(+(g(+(x, y, 0)), x, y), z) . . .

s = ∗(+(0, 0), +(0, 0))−→Λ
∗(+(x,y),+(x,y))→+(g(+(x,y,0)),x,y) +(g(+(0, 0, 0)), 0, 0),

buts does not rewrite withR, since the result would not be flattened.

3.3 Church-Rosser properties.

The question arises whether the flattened form of a term rewritable mod-
ulo AC with R is indeed rewritable withRflat.

4

Lemma 1. Assume thats−→p
RAC

t with a rule l → r. Then, there exists
a positionp′ ∈ Pos(s↓flat), a variant l′ → r′ of l → r ∈ R and a
substitutionσ′ such that

(i) the pair (s↓flat []p′ , σ
′) is safe for bothl andr;

(ii) s↓flat=P s↓flat [l′σ′]P and t↓flat=P s↓flat [r′σ′]P , hences↓flat

−→l′→r′ v =P t↓flat.

Proof. We define first the positionp′, then the variantl′ → r′ and the
substitutionσ′. Two steps are needed.

Step 1. There are two cases:
(i) If s(p) 6∈ FAC or l(Λ) 6= s(p) and r(Λ) 6= s(p), then p′ =

Flat(s, p) andl′ → r′ = l → r.
(ii) If s(p) ∈ FAC andl(Λ) = s(p) or r(Λ) = s(p), let p′ = Flat(t, q)

whereq is the smallest position ins such that∀q ≤ o ≤ p s(o) = s(p).
Let nown = |p| − |q|. Thenl′ → r′ is then-times extension ofl → r. It
is a Left-extension ifl(Λ) = s(p), a Right-extension ifr(Λ) = s(p), and
a Left-Right-extension if bothl(Λ) andr(Λ) are equal tos(p).

Step 2. The substitutionσ is first flattened, yieldingσ′. Then, in case
xσ = +(s1, . . . , sn) with + ∈ FAC for some variablex such that
+(l1, . . . , lm, x) is a subterm ofl, then the rulel′ → r′ must be special-
izedn times. This createsn new variablesy1, . . . , yn such thatyiσ

′ = si.
This process is applied to each variablex satisfying the above property.
The triple(p′, l′ → r′, σ′) satisfies properties (i) and (ii) of the lemma.2

Lemma 2. Let s, t, u ∈ T (F ,X) such thats =AC u−→RAC
t. Then,

s↓flat −→Rflat
v =P t↓flat.

Proof. By assumption,u|p =AC lσ for some rulel → r, positionp ∈
FPos(t) and substitutionσ. By lemma 1,u↓flat −→p′ v′ =P t↓flat for
some variantl′ → r′ of l → r, positionp′ and substitutionσ′ such that
t↓flat []p′ , σ is safe forl′ andr′.

Sinces↓flat=P u↓flat, there exists a positionq ∈ Pos(s↓flat) such
that s↓flat |q =P u↓flat |p′, and therefores↓flat −→q

l′→r′ v =P v′ =P

t↓flat, and we are done. 2

Lemma 3. Let s, t ∈ T (F ,X). Thens−→n
RAC

t iff s↓flat −→n
Rflat

v =P

t↓flat.

Proof. By induction on the numbern of rewrite steps froms to t. The
casen = 0 is clear. Otherwise, lets−→∗RAC

u−→RAC
t. By the induction

hypothesis,s↓flat −→∗Rflat
=P u↓flat. We conclude with Lemma 2. 2

5

We now come to the main new result of this section:

Theorem 1. Let R be a rewrite system over the signatureF which
is Church-Rosser moduloAC, and Rflat the associated rewrite sys-
tem on flattened terms. Let nows, t ∈ T (F ,X). Then s↔∗R∪AC iff
s↓flat −→∗Rflat

u, t↓flat −→∗Rflat
v andu↔∗P v.

Proof. The only if part is clear. The if part follows easily from the as-
sumption thatR is Church-Rosser modulo AC and Lemma 3. 2

4 Modularity of AC-rewriting.

As a corollary, we get a simple proof of modularity of AC-rewriting:

Theorem 2. The Church-Rosser property of AC-rewriting is modular.

Proof. Given a rewriting systemR over a signatureF containing
associative-commutative function symbols, we consider the rewrite sys-
tem Rflat ∪ P→ ∪ P← over the new signatureFflat, whereP→ de-
notes the rewrite system obtained by orienting the rules inP from left
to right, and byP← for the converse. By Theorem 1,R is Church-Rosser
moduloAC iff Rflat is confluent moduloP , which is itself the case iff
Rflat ∪ P→ ∪ P← is confluent.

Let now R1 andR2 be two such Church-Rosser rewriting systems,
P1 and P2 be the respective permutative equations, andR and P be
their respective unions. By Toyama’s theoremcitetoyama87,Rflat ∪ P is
confluent iff this is the case ofR1flat∪P1→∪P1← andR2flat∪P2→∪
P1←. The result follows. 2

5 Conclusion

Our treatment of AC-rewriting does not use AC-pattern matching. How-
ever, the extensions and specializations must be precomputed. And in-
deed, computing themby needis the same as using AC-pattern matching
with a rule of the original system, making it extremely similar the ap-
proach advocated by Steven Ecker in [2].

As a result, AC-unification and AC-matching do not seem necessary
for implementations. It would be interesting to put this method into prat-
ice and compare it with traditionnal implementations.

Acknowledgment: we thank Yoshito Toyama for suggesting this
short proof of the modularity result for AC-rewriting.

6

References

1. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243–309. North-Holland, 1990.

2. Stephen Ecker Efficient rewriting modulo AC.
3. Jieh Hsiang and Michaël Rusinowitch. On Word Problems in Equational Theories. In Proc.

ICALP, 1987.
4. Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a Set of Rules Modulo a Set of

Equations. InSiam Journal of Computing 15:4(1155–1194), 1984.
5. Claude Kirchner, H́elène Kirchner and Jośe Meseguer. Operational Semantics of OBJ-3. In

Proc. ICALP, 1988.
6. Dallas Lankford.and A. M. Ballantyne. Decision procedures for simple equational theories

with commutative-associative axioms: Complete sets of commutative-associative reductions.
In ”Memo ATP-39”, Department of Mathematics and Computer Science, University of Texas,
Austin, Texas, 1977.

7. Claude March́e. On ground AC-completion. Proceedings RTA, 1991.
8. Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational

theories. InJACM 28(2):233–264, 1981.
9. Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.

Journal of the ACM, 34(1):128–143, April 1987.

7

