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Abstract. AC-rewriting is simulated by using flattened terms, flattened rewrite
rules, extensions and specializations with respect to the AC-operators, therefore
allowing us to reduce AC-pattern matching and AC-unification to permutative
matching and permutative unification respectively.

1 Introduction

In this paper, we reduce AC-rewriting and checking AC-rewriting for
confluence to the problem of rewriting flattened terms modulo permuta-
tions and checking permutative-rewriting for confluence. Moreover, we
give a simple proof of modularity for AC-rewriting.

2 Preliminaries

We assume given signature(or vocabulary F of function symbols
T(F, X) denotes the set @érmsbuilt up fromF andX’. We assume fa-
miliarity with the basic concepts and notations of term rewriting systems
and refer to [1] for supplementary definitions and examples.

Terms are identified with finite labelled trees as uskabkitionsare
strings of positive integers, the root position corresponding to the empty
string A. We usePos(t) (resp.FPos(t)) to denote the set of positions
(resp. non-variable positions) of ¢|, for the subtermof ¢ at position
p, andt[u], for the result of replacing|, with « at positionp in ¢. This
notation is also used to indicate thats a subterm of. Var(t) denotes
the set of variables occuring in

Substitutions are written as in = {x; — ty,...,z, — t,} where
ti # z;. Thedomainof o is Dom(o) = {z1,...,z,}. We use greek
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letters for substitutions and postfix notation for their application. Com-
position is denoted by juxtaposition. Bijective substitutions are called
variable renamings

A rewrite ruleis a pair of terms, writteri — r, such that ¢ X
andVar(r) C Var(l). A term rewriting systens a set of rewrite rules
R = {l; — r;};. Atermt rewrites to a termu at positionp with the

rule! — r € R and the substitution, wrlttent—>u if ¢t|, = lo and

u = t[ro],. Such atermis calledreducible An |rredu0|ble term is called
a normal form A term rewriting systenR is confluent(resp.Church-
Rosseyif t —* v andt —* v (resp.u «* v) impliesu —* s andv —* s
for somes.

The reflexive transitive closure of a relatien, denoted by—*, is
calledderivation while its symmetric, reflexive, transitive closure, de-
noted by—*. <7}, or =g, is calledequationnal theorgenerated by the
rules in R considered as equations (that is, oriented both ways).

3 AC rewriting

This section collects and combines various techniques found in the lit-
erature [6, 8, 3-5, 7, 2]. Assuming that some binary function symbols in
Fac ={+1,...,+p | p > 0} C F are associative and commutative, we
define classicalylC-rewriting ass —%, t iff s|, =1¢ lo andt = s[ro],

for some ruld — r € R and substitutiom. The Church-Rosser property
becomes =gyac t iff s —%u, t — ;v andu =4 v for some terms
u,v. We reserve the letters andx for AC symbols.

3.1 Flattened terms.

It is usual to handle terms with associative-commutative symbols by
flattening writing s | s; for the flattened normal form of the term
Associative-commutative symbols become varyadic, and cannot have as
argument a term headed by the same varyadic symbol. This can be en-
forced by a simple type system. Our grammar of raw terms is :

T — X|f(T,....,T)| +:(T,...,T)

The type system ensuring flattening is based on typing judgements of the
formt s : T;, for ¢ € [0..p], whereT denotes the set of flattened terms
not headed by a function symbol ¢, andT;c; ) the set of flattened
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terms headed by-;. We us€T” for the whole set of flattened terms :

. . xr:0€l . FteT; ie0.p]
Variables: TrzcTy Terms: FIeT

fineF\Fac FtHeT ... Ft,eT
Ff(ty, ... ty) €T

Plain terms:

+; CACeF n>2 V]E []_TL] I—tj eTand%(E)#—f—l

AC-terms: F+i(ty, ... ty) €T;

We write Fy,, for the varyadic signature, aril(Fy,q., X') for the set
of flattened terms. It is well known that two termsii{F, X ) are AC-
equivalent iff their flattened forms are equivalent undergbenutative
congruence=p generated by the equations in the set

{+i(x17 cee ,ZL'n) = +i($o(1) ..... o'(n)) | (S 27122}

where Y, is the permutation group of order Commutative and other
kinds of permutative symbols can be accomodated by adding the asso-
ciated permutative equations, but keeping the arity fixed. Our results in-
clude all such combinations of theories. Permutative theories enjoy many
properties: matching is decidable and equivalent terms have the same
size, a property that we may use without mentionning.

A flattened terms is a subtermof a flattened ternt at positionp if
t|, =p sorelses = +(sq,...,sy,) andt|, =p +(s1,..., Sm, t1, ..., tn).
Given a termt and a positiorp € Pos(t), Flat(t,p) shall denote the
positiong € Pos(t] s1a.) Such that|,]| s, is a subterm of| 7,4, |-

3.2 Safe rewriting.

A remaining problem is that flattened terms are not closed under both

context application and instantiation, since a variable argument of a

varyadic operator can be replaced by a term headed by this very same
operator. This makes it impossible to rewrite flattened terms Rt

Definition 1. A pair (u[],, ) is safewith respect to the term if u[sv],
is a flattened term.

The problem with rewriting on flattened terms is to compute contexts
and substitutions which are safe with respect to both the lefthand and



righthand side of rules. For this, we assume that the rewrite system oper-
ating on flattened terms is closed under the following inference rules:

+() —g(r)e R z¢&Var(l) g#+
+(l,z) — +(g(r),z) € R

fl) =+(r)e R x&Var(l) f#+

+(f(l),z) —» +(r,z) € R

+(1) = +(r)e R x ¢ Var(l)
+(l,z) = +(r,z) € R

l—reR xzbelow+ inlorr y¢&Var(l)

Ha = (2, )} prar— {2 = +(2,9)H 1€ B

wherez below+ in s iff 4+(x, s) is a subterm of for some vectos

Left-extension:

Right-extension:

Left-Right-extension:

Specialization:

Note that/{z — +(z,y)} is a raw term that must be possibly flattened
(at all places immediately above an occurenceiofl) to become a term.
Extension rules appeared first in [8] and specializations in [5]. Combin-
ing both ensures safe rewriting. Rules originating from atuler in R
are called itsariants

Let Ry, be the closure of? | s, under the above inference rules.
R4 1s normally infinite, but only a finite part of it is needed to rewrite
a term, since a given flattened term has only finetely many subterms and
the permutative theory is size-preserving. AC-rewriting becomes:

Definition 2. Given two flattened termsandu, we say that rewritesto

s,writtent > wif t|, -5 lo andu = t[rol,,.

l—=r€R¢1qt

Note that botht andu must be flattened terms: rewriting a tetmat
positionp with a rulel — r € Ry, and a substitutionr requires that the
pair (t[],, o) is safe with botH andr-.

Example 1.Let R = {x(z,2) — +(g(+(x,0)),z)}. Then,

*(x, 2, y) = #(+(9(+(x,0)), 2),9)
Rpar = (Hz,9), +(2,9)) = +(9(+(z,9,0)),2,9) ...
(+(z, ), +(=, ) z2) = *#(+(g(+(2,9,0)),2,9),2) - ..

JZ,Y) +( (_‘_(O’ 07 0))7 07 O):

0)
e, ) *(Hw’y)#(m’y»_}ﬂi e l% not be flattened

but s does not rewrite withz, since the result

3.3 Church-Rosser properties.

The question arises whether the flattened form of a term rewritable mod-
ulo AC with R is indeed rewritable witlR ;.
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Lemma 1. Assume that —; ¢ with arule/ — r. Then, there exists
a positionp’ € Pos(s] fia), @ variant!’ — " of | — r € R and a
substitutions’ such that

(i) the pair (s| fa¢ [],, o) is safe for both andr;

(i) slpiw=p slpiat (I'0']p @andt] pr=p slpae [r'0']p, hENCES ] f10s
— o U =p t] flas-

Proof. We define first the positiop/, then the variant’ — ' and the
substitutions’. Two steps are needed.

Step 1. There are two cases:

() If s(p) & Fac ori(a) # s(p) andr(a) # s(p), thenp’ =
Flat(s,p)andl’ - 1" =1 —r.

(i) If s(p) € Fac andl(4) = s(p) orr(a) = s(p), letp’ = Flat(t,q)
wheregq is the smallest position ik such that’q < o < p s(0) = s(p).
Let nown = |p| — |¢|. Thenl!’ — r’ is then-times extension of — 7. It
is a Left-extension if(4) = s(p), a Right-extension if (1) = s(p), and
a Left-Right-extension if bot#(4) andr(4) are equal ta(p).

Step 2. The substitution is first flattened, yielding’. Then, in case

ro = +(s1,...,8,) With + € F,c for some variabler such that
+(ly,...,ln, z) is a subterm of, then the ruld’ — ' must be special-
izedn times. This creates new variablegy,, .. ., y, such that,o’ = s,.

This process is applied to each variablsatisfying the above property.
The triple(p’, I’ — 1, o’) satisfies properties (i) and (ii) of the lemnia.

Lemma?2. Lets,t,u € T(F,X) such thats =4c u—p, . t. Then,
Sl fiat = R0 ¥ =P U flat-

Proof. By assumptiony|, =a¢ lo for some rulel — r, positionp €
FPos(t) and substitutiorr. By lemma 1,u| s —P 0y =p t] f1ae fOr
some variant’ — ' of [ — r, positionp’ and substitutionr’ such that
tl fiat [, o is safe forl’ andr’.

Sinces | pai=p ul 10, there exists a position € Pos(s| fiq:) SUch
thatslflat |q =p ulflat |p/, and therefor@lﬂat —>?/HT/U =p v =p
t! r1ae, and we are done. O

Lemma 3. Lets,t € T(F,X). Thens —% _ tiff s fi4 R V=P
tlflat-

Proof. By induction on the numbet of rewrite steps froms to ¢. The
casen = O is clear. Otherwise, let—7%  u—p  t. By the induction
hypothesiss| fiq: —>}}ﬂat =p ul s14.. We conclude with Lemma 2. O
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We now come to the main new result of this section:

Theorem 1. Let R be a rewrite system over the signatufé which
is Church-Rosser moduldC', and Ry, the associated rewrite sys-
tem on flattened terms. Let nowt € T(F,X). Thens—p o iff
5| flat _)*szat U, t] flar —>*Rflat vandu <} uv.

Proof. The only if part is clear. The if part follows easily from the as-
sumption that? is Church-Rosser modulo AC and Lemma 3. O

4 Modularity of AC-rewriting.

As a corollary, we get a simple proof of modularity of AC-rewriting:
Theorem 2. The Church-Rosser property of AC-rewriting is modular.

Proof. Given a rewriting systemR over a signatureF containing
associative-commutative function symbols, we consider the rewrite sys-
tem Ry, U P~ U P~ over the new signaturé,,,, where P~ de-
notes the rewrite system obtained by orienting the ruleB iinom left

to right, and byP for the converse. By Theorem R,is Church-Rosser
modulo AC' iff Ry, is confluent modulaP, which is itself the case iff
Ry U P~ U P is confluent.

Let now R1 and R2 be two such Church-Rosser rewriting systems,
P1 and P2 be the respective permutative equations, &hdnd P be
their respective unions. By Toyama’s theoremcitetoyam&gy,; U P is
confluent iff this is the case @t1,, U P1~ U P1~ andR2,, U P27 U
P1—. The result follows. O

5 Conclusion

Our treatment of AC-rewriting does not use AC-pattern matching. How-
ever, the extensions and specializations must be precomputed. And in-
deed, computing theny needs the same as using AC-pattern matching
with a rule of the original system, making it extremely similar the ap-
proach advocated by Steven Ecker in [2].

As a result, AC-unification and AC-matching do not seem necessary
for implementations. It would be interesting to put this method into prat-
ice and compare it with traditionnal implementations.

Acknowledgment: we thank Yoshito Toyama for suggesting this
short proof of the modularity result for AC-rewriting.
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