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Chapitre 1

Introduction

En cryptographie moderne, nous distinguons deux principales teclsniguehffrement. La
plus ancienne est la cryptographie $tnique, ou encora cke secete, qui repose sur le prin-
cipe que deux parties doivenéi@nir un secret commun pour pouvéthanger de I'information
chiffrée. La deux@me, la cryptographie asytrique, est parue en 1976, quandfi@i et Hell-
man [30] proposent pour la preéme fois un scema de cHfrement ne écessitant pas la connais-
sance pgalable d’un rBme secret. Aujourd’hui, dans un Syste €curi®, la cryptographia cke
secete et cellea ck publique sont utilises conjointement, afin dfwir un chiffrement rapide de
l'information. Dans un premier temps, un §chaa clé publique est utilis pouréchanger une
clé commune seete. Ensuite, cette &lsecete est utili&e pour écuriser,a I'aide d’'un sckma
symeétrique, la communication entreetnetteur et le destinataire.

Nous ccrivons le protocole échange de clef propegar Difie et Hellman, pour un groupe
abstraitG, nott additivement, qui est engeiédpar unélementP. Deux parties Alice (A) et Bob
(B) détiennent les paragtres publics@, +, P) et veulent se mettre d’accord sur uné cbommune,
qui est unélement du groupe. A choisit € N et calculeP = aP, tandis queB choisitb € N et
calculePg = bP. lls @échangent publiguement ces valeurs. Ayant figguA calcule

Py = aPg = abP
De la méme margre, B recoitPp et calcule
Pk = bPy = abP

La stcuri€ de ce protocole repose sur ldfidulté du probéme du logarithme discret dans le
groupeG. Cette dificulté signifie quétant doné un pointP et xP, un multiple scalaire du point
P, il est calculatoirement €icile de retrouvex. La difficulté de ce prolime @épendevidemment
du choix du groupeG, +). En dfet, si le probkme du logarithme discrétait facile dans le groupe
G, un attaquant Charliegussissana intercepteiPs ou Pg, pourrait calculerl ou b et retrouver
Pk.

Afin de pouvoir ébvelopper des cryptosygshes comme celui de fiie et Hellman, il est donc
indispensable de trouver des groupes dans lesquels leeprebdiu logarithme discret semble
difficile. Notons qu'il existe des attaques, ditésgriques, qui fonctionnent dans tous les groupes.
Les meilleures attaqueg&reriques contre le logarithme discret sont les attaques de Shanks [85] et
de Pollard [79]. Leur complexétestO(+/r), our est le plus grand facteur premier de la cardigalit
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de la courbe. Ofie et Hellman [30] ont prop@de groupe multiplicatif d’'un corps fini. 8anmoins,
dans ces groupes, il existe degtimodes dites de "calcul d’'indice”, quésolvent le proldime du
logarithme discret avec une compléxgous-exponentielle [52,53]. Pour @iorer la £curig, le
logarithme discret sur les courbes elliptiques ou sur les jacobiennes utbesdyperelliptiques
a éte ensuite prop@s[58, 59, 69]. Cependant, dans le cas des courbes de ge@nesug 3, des
attaques contre le logarithme discret avec une compglaxitis-exponentielle obté trouvees [2,
41,42).

Les premeres attaques épifiques contre le logarithme discret sur les courbes elliptiques ont
été donrées par Menezes, Okamoto et Vanstone [1] et FreyiekRB7]. Ces attaques utilisent les
couplages de Weil ou de Tate poéduire le prol#me du logarithme discret sur la courbe ellip-
tique au prok®me du logarithme discret dans un corps fiti des attaques plusteaces de type
calcul d’indice sont connues. Ceéssultats sont aussi la prezné utilisation des couplages en cryp-
tographie. Par ailleurs, il existe des attaques utilisant le descente de Wgitlgisent le prodme
du logarithme discret sur la courbe elliptique au peoié du logarithme discret sur une courbe de
genre suprieur. Ces attaques [29, 39] s’appliquent seuleraatds courbeséadinies sur des corps
compogesF, avecq = pY. Les courbes de trace 1 sont elles, plus geeodseilées [81].

Malgré ces attaques, il n’existe aujourd’hui aucun algorithme sous-expiehgour esoudre
le probEme du logarithme discret sur une courbe elliptigagegque.

La r éduction MOV/Frey-Ruck contre le logarithme discret sur les courbes elliptiquesCette
attaque refrsente aussi la preare utilisation des couplages en cryptographie. SuppoRdds
deux points sur une courbe elliptigie d’ordrer, tels queQ = AP, aveca € N. Supposons qu'il
existe un couplage sur la courbe elliptique, calculable en un tempsigh et que ce couplage
soit non-agerérg, c'esta dire qu'il existe un poinR sur la courbee tel que

eP.R) # 1.
Alors, un attaguant peut calculer
f1=ePR) etz =e¢QR).
Pour retrouven il suffit de soudre Equation
{4 =0,

en utilisant un algorithme de calcul d'indice dans le corpskjpi

1.1 Couplages et cryptographie

SoientG; et G, deux sous-groupes cycliques d’ordresur une courbe elliptique. A l'aide
des couplages de Weil ou de Tate, applications &dlires @finies sur la courbe elliptique, nous
consicerons le couplage cryptographique

e:G1xGy,—>H (1.1)

ou H est un sous-groupe multiplicatif d’ordredans un corps finFy. Nous appelonk le dege
de plongement relativemeat et nous verrons au chapitre 6 gkiest un paramtre important de
la curié du systme.
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Le premier scmaa base de couplages estdhange tripartite Hie-Hellman, propds par
Joux en 2000 [51]. Un an plus tard, Boneh et Franklin [16] propdsen sclema de cHirement
a base d’identé utilisant des couplages. Ce &aha Eponda une question pée par Shamir [84]
ala conérence CRYPTQ'84, concernant un &yt de chifrement @i la clé publique est obtenue
a partir de l'identié. De nos jours, la cryptographiebase de couplages est un domaigs tiaste,
gui comprend des centaines de &ctas. Cependant, le éliementa base d’'identé de Boneh et
Franklin [16] reste sans doute I'application la plus remarquable des gmséan cryptographie.

Dans un prengire temps, laécurieé de ces sysmes repose sur laficulté du logarithme
discret sur la courbe elliptique et dans le corpsffigi Dans un deuxieme temps, d’autres hy-
potheses deéscurige sontétudi'ees, comme les prabhes Dffie-Hellman calculatoire (CDH) et
Diffie-Hellman @cisionnel (DDH).

Le probléme Dffie-Hellman calculatoire (CDH) : Etant don@ un groupeG et unélement
P € G il est difficile, a partir deaP etbP, de calculerabP.

Le probléme Difie-Hellman décisionnel (DDH): Etant don@ un groupeG, P € G, et un
triplet (aP,bP,cP), il est difficile de decider sicP = abP.

Enfin, I'étude de la&curi€ des scemasa base de couplages a permis l'introduction d’autres
variantes de ces prashes, comme le Mie-Hellman calculatoire bilisaire (CBDH) et Dffie-
Hellman cecisionnel bilirgaire (DBDH).

Le protocole de Dffie Hellman a trois parties. Soit P le gérérateur deG ete : G x G — H.
Supposons que nous ayo(®, P) # 1. Les pararatres publics sont®,P,H,e).

L'utilisateur A choisitap € N et calculePp = [aa]P, qu'il envoiea B et C. De la r@me margére,
B et C choisissertig etac et envoient aux deux autr&s = [ag]P et Pc = [ac]P. Alors, A, B et
C obtiennent la @ commune& deH car

K = &(Pg, Pc)® = &(Pa, Pc)® = &(Pa, Pg)* = (P, P2,

Chiffrement a base d'identit. En regle ¢grérale, les algorithmes existants pour des &ysts
de type logarithme discret demandent que le destinataire d’'un mess#ge ahiétabli sa cd
publique par avance. Le concept de cryptograghimse de I'identd introduit par Shamir [84]
permettrait de@soudre le proime de d’envoyer un messageffii@a une personne qui n’est pas
encore dans le sy@mne. Dans le s@maa base d'identé de Boneh et Franklin, la&publique est
calcuke de marire ceterministea partir des paragtres de I'identi de I'utilisateur, mais pour
déchitrer le message ce dernier doit faire apgpahe autoré de confiance, le centre dergration
de clef (CGC), qui partir d'une @@ madtre peut calculer la é secete de chaque utilisateur. Ce
schema est dcrit par quatre algorithmes.

Initialisation. Le CGC choisit un group& avec une application bileairee versH et calcule la
clé publiquePta = sP. Il choisit aussi deux fonctions de hachdge: {0,1}* —» G*,h, : H —
{0, 1}". Les parargtres @G, H, P, Pt a, h1, hp) sont publics, I'enties est la cé secete du CGC.
Géneération de clef.Etant donge l'identi& Id € {0, 1}*, le CGC calculeQ g = hy(ld) et aussi la
clé secete deld, soitQ = sQg.

Chiffrement. Pour chifrer on message que I'on veut envoyea Id, on chaisitr € N. On calcule
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Qig = h1(Id). Alors le chitré est

C = (rP,m@ hy(&(Qid. Pcc)")).
Déchiffrement. Pour dechiffrer un messag€ = (C1, Cy), Id utilise sa ck secete@ pour calculer
Coehy(e(@,Cq)) =m.
En dfet, siC est le chifré du message avec la cé publiqueld, alors

&(Q.C1) = &(sQqd.rP) = &Qid, SP" = &Qid, Pcco)"

Cela montre que I'algorithme dexdhifrement renvoie biem.

1.2 Motivation des travaux et objectifs de la these

Le probEme du logarithme discret estfiittile sur une courbe elliptiquesgérique, mais il faut
tout de néme s'assurer que la cardinéldu groupe de la courbe n’est pas friable p@&sistera la
reduction de Polhig et Hellman [78]. Il est doneaessaire de calculer le nombre de points d’'une
courbe elliptique. Le premier algorithme qui calcule la cardigalitine courbe elliptique en temps
polyndmial aéte donreé par R. Schoof [82] en 1985. Schoof utiliséduation caraétistique de
I'endomorphisme de Frobeniuas

m—tr+q=0,

et, en congquence, l'action de I'endomorphismesur le sous-groupe detorsion d’'une courbe

pour ceterminer la trace du Frobeniusodulo?. En épétant ce progde pour plusieurs nombres
premiers petitg, il peut ensuite utiliser le #oeme du reste chinois pouétérminer la valeur de

la trace du morphisme de Frobeniust donc la cardinal@ de la courbe, gcea la formule

HE(Fg) = q+1-t. (1.2)

Des antliorations importantea cet algorithme oréte trouvees ulérieurement par Elkies [33] et
Atkin [5].

Le probEme du calcul de I'anneau d’endomorphismes d’une courbe elliptiqueatstte-
ment lié au probdme du calcul du nombre de points. Par (1.2), cttinmée nombre de points sur
une courbe elliptiqgue egtquivalent au fait de conitee I'équation caraétistique de I'endomor-
phisme de Frobenius et donca la cetermination de&Z[x], qui est un sous-anneau de lI'anneau
EndE). De plus, H. Lenstra [55¢tablit un isomorphisme de Erg)-modules entre le groupe
défini sur la courbe elliptique ordinaire, BdE(K), et le quotient de EndH) parm — 1 :

EndE)/(x — 1) = E(K). (1.3)

Ainsi, le fait de conntire I'anneau d’endomorphismes de la courbe permettraitéderichiner
ensuite la structure du groupe de la courbe elliptique.

Notons que deux courbes ont l&me nombre de points si et seulement si elles sonéises)
donc la cardinalé de la courbe est un invariant par igoies. Elle étermine en fait une classe
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de courbes isanes, que nous notolsl(E). Pour un nombré, Kohel [61] cecrit la structure du
graphe de-isogenies @fini surEll;(Fy). L étude de cette structure permet d'une part&teminer
I'anneau d’endomorphismes de chaque courbe dans ce graphe, sgidegonridre la relation
entre deux courbes iséges et leurs anneaux d'’endomorphismes. En utilisant lesgrokys mo-
dulaires pour le parcours du graphe @&sogenies et en supposant la cardiralide la courbe
connue, Kohel montre qu'il est possible de calculer la valuatiadique du conductedrde I'an-
neau d’endomorphismes pour des petits valeuré dlautilise cette néthode dans un algorithme
déterministe permettant de calculer 'anneau d’endomorphismes d’uneecelligtique.

Fouquet et Morain [35] appellent les graphes d'isaigsvolcans d’isogéniesfyant comme
motivation I'optimisation de I'algorithme de Schoof, Fouquet et Morain montyatitest possible
de ceterminer la valuatiodi-adique def sans conrigre la cardinalié de la courbe.

Cette these s’inscrit dans la continuation des travaux de Kohel et de FougmetiM Nous
nous sommes iBtesgsa la structure du groupe detorsion des courbes sur un volcan fle
isogenies. Cette approclétait ceja propoge par Miret et al. [71, 72], qui ont moltque dans
de nombreux cas, grtudiant la structure de latorsion sur deux courbds et E’ reliées par une
arretel : E —» E’ dans le graphe d'is@mies, il est possible de savoir si nous sommes &ont
descendu dans le volcan, ou si nous avons fait un pas sur éeer@eleetait tes ineressant car,
en utilisant seulement les polymes modulaires, il @tait pas possible, ags avoir fait un pas sur
le volcan, de conrire simplement la direction de ce pas. Du coup, dans les algorithmes de Kohel
et de Fouquet-Morain, afin d&tkrminer la direction prise, il esénessaire de faire de nombreux
pas successifs. Neanmoinsgme utilisant I'information suppmentaire venant de la structure du
groupe de la/-torsion, le cdit de ces algorithmes n’est pasduit de maréire significative. Le
déesavantage de lagthode de Miret et al. est que lorsqu’on veut prendre une certametioin sur
le volcan en partant d’'un noeug] nous sommes oblég de calculer tous les voisins Beet de
déterminer la structure du groupe pour chacun d’entre eux, avantdéeisker sur le noeud qui se
trouve dans la bonne direction.

Nous nous sommes alors propssdetudier un modle plus complexe, en construisant un
couplage sur l&-torsion des courbes sur un volcan @l&sogenies. Dans ce cadre, nous avons
obsene que le comportement du couplage sur les courbes du volffaredil’'un niveaw I'autre
et est strictementd au type d’isognies qui apparaissent dans le graphe. En utilisant le couplage
définit sur la¢-torsion de la courbe, nous avons mému'il est possible de&terminer la direction
d’'une isognie dont le noyau est engegdrar un point dé-torsion fixe. Notre objectigtait alors
de donner des nouveaux algorithmes, permettant de parcourir leegrdjgognies de magire
trés dficace.

Dans un second temps, nous nous sommé&saags aux algorithmes qui calculent le cou-
plage sur une courbe elliptique. La motivation de ce travail est @@mpartie par le fait que
nos algorithmes de parcours de graphes utilisent les couplages, maig partinterét d’avoir,
en cryptographié base de couplages, des algorithmes rapides pour le calcul de ceatapic
bilinéaires.

L'algorithme le plus utili€ pour le calcul des couplages de Weil et de Ta#eadonre par
Miller [70] en 1985. Cet algorithme est en fait une extension dedshodeégyptienne (double-
and-add) pour le calcul du multiple scalaire d’un point sur la courbe elliptiDepuis I'apparition
de la cryptographia base de couplages, un des objectifs majeurs de la recherche damsiealo
est I'optimisation de I'algorithme de Miller. Nos travaux s’inscrivent dartteceoie de recherche.
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Le point de @part est donmpar les gsultats sur le raccourcissement de la boucle de I'algorithme
de Miller, obtenus par Barreto et al. [6] et par Hess et al. [47]. Cettentque, qui a comme
résultat un algorithme de calcul du couplage de type double-and-add neaisiae boucle &s
courte, utilise le fait que I'endomorphisme du Frobenius a un noyau trivigteNdee est cétudier
d’autres endomorphismes, de petit degqui auront eux un noyau d’ordre petit.

1.3 Contributions et organisation de cette tlese

L'objectif de ce manuscrit est de donner un apercu de l'algorithmiqsecdeplages, en
présentant la fois les aspects constructifs et calculatoires de ces applicationsaiidia. Afin
de rendre ce texte plus accessible, nous commencons par rappalda @amtie | I'arithnétique
classique des courbes elliptiques ainsi que des notionsdeidides nombresiementaire. Cette
partie s'articule en trois chapitres. Le detixie chapitre @sente la loi de groupe sur une courbe
elliptique. Le chapitre 3 @sente bevement quelquegsultats importants de laébrie de la mul-
tiplication complexe. Au chapitre 4, nous donnons quelques algorithmes imsod@ns la cryp-
tographiea base de couplages, notamment I'algorithme de Miller et les algorithmes ¢sastru
des courbea multiplication complexe.

La Partie 1l est édieea I'étude du modle de volcans d’isagnies. Nous commencons par
présenter d’abord les techniques de Kohel et de Fouquet-Morain pqard®urs des volcans
d’isogénies. Nougtudions ensuite la structure defkorsion sur les dférents niveaux du volcan,
ce qui nous ranea consi@rer des couplages nogbrerés sur cette structure de groupe. Nous
étudions le couplage d’'un point par lueme et nous montrons que les points ayant des couplages
non-cegeréres engendrent les noyaux des isoigs descendantes, tandis que les points dont le
couplage est &gnréré engendrent les noyaux des iéags ascendantes ou horizontales. Dans
certains cas, qu'on appelle deslcans irréguliers notre moeéle est comgtement égeréré et
I"étude de lal-torsion sur le corps de badg ne sufit pas pour édterminer les directions des
isogénies. Dans ce cas, nous devons carsidla courbe dans une extension de @égiuF,. On
conclit cette partie par nos algorithmes de parcours des volcans élfissg

Enfin, la Partie Il porte sur 'im@mentation de I'algorithme de Miller sur des courbes ellip-
tiques dfrant une mise en oeuvréauri€e des protocoles cryptographig@elsase de couplages.
Dans cette partie, nous proposons I'utilisation desésiogps pour le calculf@cace de couplages.

Le chapitre 6 regroupe plusieurs aspects de I'enpgntation fficace des couplages sur les
courbes elliptiques. Nous donnons d’abord les formules pour le catcwlodplages en coor-
donrées jacobiens. Nous nous attardons particathent sur le cas des courbes elliptiques ayant
un degé de plongement pair. Nous expliquons quégcega I'existence des tordues, dans ce cas une
bonne partie des calculs se fait dafyset dans un sous-corps @g.. Nous avons doré dans ce
cas, des formules rapides pour le calcul de la partie doublement deifatgerde Miller, pour des
courbes ayant un degde plongement pair [50]. Une fois la prébiatique sur I'im@mentation
du couplage expligee, nous donnons un algorithmg&eace pour le calcul du couplage sur des
courbes dont le discriminant de I'anneau d’endomorphismes est petit tdoatrons que notre
algorithme est plus rapide que I'algorithme de Miller, si la courbe a unéddgmplongement,3
ou 4. Nous donnons aussi une construction de courbmaltiplication complexe ayant degdu
plongement 1 et un couplage noagdreré d'un point par lui néme.

Au chapitre 7, nougtudions I'impEmentation des couplages sur les courbes d’'Edwards. Les
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courbes d’Edwards or&t introduites en cryptographie par Bernstein et Lange [12] en 2007,
qui ont doni@ ainsi des formules és dficaces pour I'addition et le doublement des points sur
une courbe elliptique. Cette loi d’addition est coetpl i.e. s’applique dans tous les cas, si le
parangtre d de la courbe n'est pas un cardans le corps fini. Ces courbes permettenine
implémentation ts dficace de la multiplication scalaire d’un point de la courbe, qui se montre
aussi ésistante aux attaques par canaux éaclC’est dans ce contexte que nous nous sommes
intéresgésa I'implémentation flicace du couplage sur les courbes d’Edwards, ce qui permettrait
I'impl @émentation des protocoles en cryptogragtii@se de couplages enttment en coordodes
d’Edwards. En utilisant une iségie de dedr 4 d’'une courbe d’Edwards vers une autre courbe
de genre 1, nous avons ddnta premére impEmentation flicace du couplage sur des courbes
gérériques en coordoi@es d’Edwards [50]. Notre @thode a des performances comparables
celles d’une imgmentation du couplage sur la forme Weierstrass d’'une courbe elliptiqus. No
donnons aussi un algorithméieace pour la multiplication scalaire dans le cas des courbes d’Ed-
wards dont le paragtred est un ca dans le corps fini.
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Notations

Throughout this work, we use the standard notations
Z,Q,R,C

to represent integers, rational numbers, real numbers and complexerainWe denote biK a
perfect field (i.e. every algebraic extensionkofs separable) and bi its algebraic closure. We
denote byF, a finite field, withp a prime number and by, a finite field withq = p".
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Chapter 2

Arithmetic of elliptic curves

In this chapter we define elliptic curves, which are the main object of studyisrditsertation.
We first give some the basic notions of algebraic geometry and then ingraallijgtic curves
and present their arithmetic. Finally, we study algebraic maps for thesescand define the
Weil pairing and the Tate pairing. We assume that the reader is familiar with basaepts
in commutative algebra such as rings, ideals, fields, modules. All these satiergiven, for
example, in Lang'?lgebra[62] or in Atiyah and Macdonald’s book [4]. Oalgebraic geometry
dictionary follows the exposition of Silverman [86] and Hartshorne [46}.tRe proofs of results,
we refer to these two books.

2.1 Algebraic varieties

Let K be a field andK its algebraic closure. For some positive integewe define theaffine
n-spaceA" as the set ofi-tuples i, X2, ..., Xn) With X, € K. We denote byA"(K) the set of
K-rational points inA":

A"K)={P=(Xg,...,%) € A"lx € K}.

The projective n-spac@" is the set of all i + 1)-tuples &o, X1, ..., X)) € A™?! such that at least
onex; is non-zero, modulo the equivalence relation given by

(XO, X1, eees Xn) ~ (YO, Yi,... 9Yn)7

if there is ad € K* with x; = Ay; for all i. We denote the equivalence class &f,(. ., X,) by
[Xo, ..., Xn]. The dfinen-spaceA" can be embedded into the projectivspaceP” by identifying
(X1, ..., Xn) With [X1, ..., X, 1].

We also denote by"(K) the set ofK-rational points inP":

P(K) = {P = [Xo, ..., Xn] € P"|x € K}.
An elementr of the Galois grougii i« acts onP" as follows
[X0, ..., %n]” = [Xg..... %71
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Let K[Xy, ..., Xn] be a polynomial ring im variables and let ¢ K[Xu, ..., X,] be an ideal.
We denote by, the subset

Vi ={PecA"f(P)=0 forall f l}.

We call a set of the fornv, an dfine algebraic set To any algebraic s&t we associate thigeal
of V by

(V) = {f € K[X]|f(P) = 0 forall P € V}.

We say that an algebraic setdsfined over Kf its ideal can be generated by polynomialddpX].
If V is defined oveK, theset of K-rational points ofs the set

V(K) =V n A"(K)
We may now define anfiane variety.

Definition 2.1. An affine algebraic sé¥ is called an fiine variety if the ideal (V) associated to
it is prime.

For a varietyV defined oveK, we also define itfunction field

Definition 2.2. LetV be a variety defined ové¢. Then the &ine coordinate ring oY is defined
by

K[X4, ..., Xn]
vy

K[V]is an integral domain and its quotient field, denokgd), is called the function field oV.

K[V] =

Thedimensiorof a variety is actually its dimension as a topological space. For details on the
topology of a variety, the reader is referred to [45]. We give herelgebaaic definition of the
dimension.

Definition 2.3. Let V be a variety. The dimension dfis the transcendence degreekdlv) over
K.

We denote the dimension of a variatyby dimV.

Example2.1 The dimension ofo" is n, sinceK(A") = K(Xu,...,Xn). V c A" has dimension
n— 1 if and only if it is given by a single non-constant polynomial equati¢X;,...,X,) = 0
(see [45, 1.1.3]).

We shall now define the notion emoothor non-singularalgebraic variety. This notion corre-
sponds to the notion of manifold in topology. It is thus natural to introduce thismo terms of
the derivatives defining the variety. But before doing that, note thatéytibert basis theorem

(see [4, Theorem 7.6]) all ideals K[ Xy, ..., Xs] andK[ Xy, ..., X,] are finitely generated, which
explains the fact that we may consider a finite number of generators inlkwifay definition.
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Definition 2.4. LetV be a varietyP € V, andfy,..., fn € K a set of generators fofV). We say
thatV is non-singular (or smooth) & if the mx n matrix

(01i/0Xj(P))1cismis<j<n
has rankn — dimV. If V is non-singular at every point, then we say tias non-singular.
Example2.2 LetV be the following variety inA?
ViYZ=x3
The singular points ol satisfy
Y=X=0.

ThusV has one singular point, namely, (1).

One can easily show that this definition of the notion of non-singular variétglependent of
the set of generators of the ideal\dfthosen. However, this definition apparently depends on the
embedding o¥ in the dfine space\". We will now show that the notion of non-singular variety
can be described intrinsically in terms of functions on the vahétyVe first define the idead\lp
of K[V] by

Mp = {f € K[V]|f(P) = O}.
It is easy to see thad#lp is a maximal ideal, due to the fact that the map

KIV]/Mp — K
f - f(P)

is an isomorphism.
Proposition 2.1. Let V be a variety. A poinP € V is non-singular if and only if
dimgMp/M3 = dimV.
Proof. See [45], Theorem 1.5.1. m|

Definitions similar to those we have presented fifina spaces can be given for projective spaces.
But before doing that, we need to explain what it means that a projectineé isoa zero of a
polynomial. Let us first introduce the notion lmdmogeneous polynomials

Definition 2.5. A polynomial P(x, ..., Xn) is homogeneous of degréef for all 1 € K,
P(AX1, ..., %) = A9P(X4, . . ., Xn).

Note that for a homogeneous polynomialit makes sense to say the{P) = 0 for a point
P € P". Anideal ofK[X] is calledhomogeneous it is generated by homogeneous polynomials.
To any homogeneous idelglwe associate

V| = {P e P"| f(P) = 0 for all homogeneous < I}.
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A set of the formV, is called aprojective algebraic setTo any projective algebraic sstwe
associaté(V), the homogeneous ideal K X1, . . ., Xp] generated by

{f € K[Xg,...,Xq]| f is homogeneous ant{P) = 0 for all P € V}.

We say thatV is defined over Kif its ideal can be generated by homogeneous polynomials in
K[X]. If V is defined ovekK, the set oK-rational points of Vis the set

V(K) =V NP".
Just like in the fiine case, we definerieties

Definition 2.6. A projective algebraic set is a projective variety if its homogeneous idgais a
prime ideal inK[X].

For 1<i < n, we define the following inclusion
gi t A" — P"
(yl,---,yn) - [yl’y2,---,yi—l,l,Yi,---,Yn]

and we also denotd; = {(Xo, ..., Xn) € P"|x; # 0}. Note thatP" = Uij<,U;j. Now there is also a
natural bijection

otiUp > A

Xo X1 Xi-1 Xi+1 Xn

B ’ IR ]

XTxTTTTT % T X X

[X0,..., %] —

If V is a projective algebraic set defined by an homogenous i@¢glwe designate by n A"
any of the setfpi‘l(v N Uj). This set is actually anflaine algebraic set, whose ideal is given by

IV AAN = (f(Ye, ..., Yie, LY. ., Ya) | F(Xo, -, Xn) € (V).

SinceUy, ..., U, cover allPy, it follows that a projective variety is covered by thiirme varieties
V nUo,...,V N Uy, viathe corresponding mapgl.
In reverse, given anfline algebraic sef and its ideal (V), we may associate to it a projective
algebraic set, in the following way. For dile 1(V), we consider polynomials of the form
Xo X1 Xi—1 X1 Xn
f* LX) = XOF (22 L B e )
%o 0 =X ( X" X X X Xi )
whered = deg(f) is the smallest integer for which® is a polynomial. We call th@rojective
closure of \, denotedV, the projective algebraic set whose homogenous ideal is generatee by th
set

{F I € (V).

The following result allows us to define the properties of projective vas@tieerms of properties
of affine varieties.
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Proposition 2.2. (a) LetV be an &ine variety. ThelV is a projective variety, and

V=VnA"

(b) LetV be a projective variety. Thevi n A" is an dfine variety, and either
VNA"=0 or V=VnNAN

Proof. See [45, 1.2.3]. m|

Consequently, we call the function field ¥f denoted byK(V), the function field oV n A". For
some pointP € V, takeA" c P" with P € A". We say thaV is non-singular(or smooth at P if

V N A" is non-singular aP. We end this section by defining algebraic maps between projective
varieties, i.e. maps defined by rational functions.

Definition 2.7. LetV; andV, c P" be two projective varieties. A rational map frovh to V, is a
map of the form
¢:Vi—-> Vo
¢ =[fo,..., fl,

wherefy,..., fn € K(Vl) verify the property that for every poiR € V; at which fo, ..., f, are
defined,
¢(P) = [fo(P),..., fa(P)] € V2.

If there isA € K such thattfo, ..., AT, € K(V1), we say that is defined over K

Definition 2.8. A rational mapp = [fo, ..., fn] is regular (or defined at a pointP € V; if there is
a functiong € K(V1) such that

(a) gfi is defined at poinP, for all i
(b) there is g such thagf;(P) # 0.

If such ag exists, we set
#(P) = [(gT)(P)..... (g f)(P)].
A rational map which is regular at every point is callesharphism

2.2 Algebraic curves

A curveis a projective smooth variety of dimension 1. In this section we describe fiocgs of
curves and then study rational maps on curves and their local properties

Example2.3. Consider the variet€ in P2 given by the zeros of the polynomial equation
y2 =X+ X

(with the convention tha€ € P2 is actually given by the homogenization of the polynomial
y? — x3 — x). ThenC is a curve.
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The local ring ofC at P, denotedk[C]p, is the localization oK[C] at Mp. It can be described
as follows

K[C]p = {F € K(C)|F = f/g for somef,g e K[C] with g(P) # 0}.

This ring is a discrete valuation ring. We briefly remind thadiscrete valuation ring Rs a
principal ideal domain with only one non-zero maximal ideal. On the fractidd Keof such a
ring, we usually define a function: K — Z U {eo} such thatR = {x]| x € K,v(x) > 0}. This
function is called aliscrete valuationFor details on discrete valuation rings, we refer the reader
to [62].

Proposition 2.3. K_[C]p is a discrete valuation ring, whose the valuation is given by:
orde : K[C]p — {0,1,2, ...} U {co}
ordp(f) = max{d € Z|f € M3},
Proof. See [86], Prop. II.1.1. m]
Using ordb(f /g) = orde(f) — orde(g), we extend orgl to K(C),
ordp|K(C) — Z U {oo}.

A uniformizerof C at P is a functiont € K(C) such that orgl(t) = 1 (i.e. a generator dflp). If
f € Cis as above, then the valuationRtorde(f), is called theorder of f at P If ordp(f) > O,
we say thatf has a zero at Pif ordp < 0 we say thaff has a pole at P

Proposition 2.4. Let C be a smooth curve ande K(C). Then there are only finitely many points
of C at which f has a zero or a pole. Further,filhas no poles, theh € K.

Proof. [45, 1.6.5] and [45, 1.3.44a] m|

We will now give some important results about rational maps on smooth curves

Theorem 2.1. (a) Lety : C; — C, a rational map between two curves. Suppose, moreover,
thatC; is smooth. Thew is a morphism.

(b) If ¢ : C; — Cyis a non-constant morphism of curves, then it is surjective.

Proof. See [86, Prop. 11.2.1] for (a) and [45, Prop. 11.6.8] for (b). m]

Now consider a non-constant rational m@apC; — C, defined oveK. Then composition witlp
induces an injection of function fields:

¢" 1 K(C) — K(Cy)
f > fog.

Theorem 2.2.1f ¢ : C; — C, is a morphism defined ové¢, thenK(C,) is a finite extension of
K(Cy).

Proof. [45, Prop. 11.6.8]. m|
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Definition 2.9. Let¢ : C1 — C, be a map of curves defined oué€r If ¢ is constant, we define its
degree to be 0. Otherwise, the degree i given by

dege = [K(C1) : ¢"K(C2)].

We say that is separablginseparable purely inseparablgif the extensiorK(C1)/¢*K(Cz) has
the corresponding property.

We denote the separable and inseparable degrees of the ext&ii€idrp*K(C,) by dege
and degp, respectively. We shall now take a look at the behavior of a map of smaontles
locally, in the neighborhood of a point.

Definition 2.10. Let ¢ : C; — C, be a non-constant map of smooth curves andletC;. The
ramification index ofp at P, denotedg,(P), is given by

es(P) = ordp(¢"t4p)),
wheret,p) € K(Cy) is a uniformizer at poing(P).

Note thatey(P) > 1. We say thap is unramified at point Bf e,(P) = 1 and that is unramified
if it is unramified at every point of;.

2.3 Divisors

In this section we shall associate an abelian group to each non-singutar Eor elliptic curves,
which are the main object of study in this thesis, one can attach a group strtetthe set of
points of the curve. However, this is not possible for all smooth curveshd general case, the
way out is to consider formal finite sums of points, callibdisors as group elements. We present
this construction here, and explain later that for elliptic curves, this grouptare coincides with
the one obtained considering points as elements. Nevertheless, in the fgllesdtions it will
become clear that divisors are important tools in studying of the geomettypicecurves.

Let C be a smooth curve. Thdivisor groupof C, denoted by DiVC) is the free abelian group
generated by the points of the curve. This means tttivigor D € Div(C) is a formal sum of

points
D = > np(P)
PeC

with np € Z andnp = 0, for all but finitely manyP € C. Thedegreeof the divisorD is defined by

degD = Z Np.
PeC

It follows that the divisors of degree 0 form a subgroup of Biy(that we denote by
Div%(C) = {D € Div(C)|degD = O}.
If fe }Z(C)*, then we associate tbthe following divisor

div(f) = Z orde(f)(P).

PeC



28

Note that this makes sense, as the sum of points above is finite by Propositidiesay that a
divisor D is principal if it is of the form div(f), for somef € K(C). Itis a fact that iff € K(C)*,
then deg(divf)) = O (see [86, Prop. 11.3.1]). Hence, the set of principal divisors istaysoup of
Div®(C). The quotient of Di¥(C) by the subgroup of principal divisors is called ttieisor class
groupPic’(C).

If Cis defined oveK, we let the Galois group d /K acton DivC) in an obvious way, given
thatGg k acts on points:

D7 = > ny(P7).

PeC

We say thaD is defined over Kf D7 = D for all o € Gg k. In particular, it is obvious that if
f € K(C), then div(f) is defined oveK. The following example is taken from [86] and will be
useful in the remainder of this dissertation:

Example2.4. Assume that chaK) # 2. Lete;, ey, 63 € K be distinct, and consider the curve
C:y? = (x—e)(x— e)(X— &3).

This curve has only one point with = 0 that we denote b® = (0, 1, 0). Note that the function
Z = 0 intersects the curve at poi@with multiplicity 3. We denote by; = (g,0) € C. Then

div(x_az) 2(P;) - 2(0)

()

Let¢ : C; — Cy be a non-constant map of smooth curves. We sawglivaduces the map:

(P1) + (P2) + (P3) — 3(0).

¢ 1 K(C2) = K(Co)-
Similarly, we define maps for the divisor groups. We denote

¢* : Div(Cy) — Div(Cy)

@ - D e®®),
Peg~1(Q)

which we extendZ-linearly to Div(C,).
Proposition 2.5. Let C; andC, be two smooth curves ard: C; — C; a rational map.
(a) degp*D) = (dege)(degD), for all D € Div(Cy);
(b) ¢*(div f) = div(¢*f) for f e K(Co)*;
(c) If y : C2 — Csis another such map, thes ¢ ¢)* = ¢* o ™.
Proof. See [86, 11.3.6] m|
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2.4 Elliptic curves and Weierstrass equations

An elliptic curveis a smooth curve ajenusl, with a specified basepoint. In order to simplify our
exposition, we give a definition of elliptic curves, which is in fact a consege of the Riemann-
Roch theorem for curves of genus 1. For details on the genus of a aa/the Riemann-Roch
theorem, the reader should refer to [86].

Definition 2.11. An elliptic curveE is a non-singular projective curve whose equation is a Weier-
strass equation, i.e. an equation of the form:

Y2Z + agXYZ+ azgYZ? = X3 + apX?Z + ayXZ? + agZ®

with ay, ap, as, as, ag € K.

The curve is defined ovéd if a1, ay, az, as, as € K. The only point on the curve with = 0 is
=[0:1:0]. We call it the point at infinity. By using non-homogeneous co@tésx = X/Z
andy = Y/Z, the other points can be identified with points on tiea Weierstrass curve

E:V? +aiXy+agy = X + apX® + asX + as.

Now suppose that chat) # 2. We may then substitute,(y) for (x,y + %(alx + az)). We obtain a
new equation for the curve

by bs
E:y?=x +—x Xt
whereb, = a2 + 4ap, by = 2a4 + ayaz, bg = a3 + 4ag. If further charK) # 2,3, we may replace

(%, y) by (X‘S%bz, 108) and we get a simple equation for the curve

E:y? = X — 27cax — 54cs,
called the short Weierstrass form. We also define

bg = afas — ayagay + 4aas + apas — as,
= —b3bg — 80} — 27b% + 9bsbabg and j = c}/A.
The constanA is called thediscriminantof the Weierstrass equation. We will see that the constant
j is actually an invariant of the curve that we call jiiavariant of the curve. Note that the defini-

tions of A and | are also correct for chat) = 2, 3. The proofs of the following two propositions
are essentially given in Section 111.1 and Appendix A of [86].

Proposition 2.6. (a) The curve given by a Weierstrass equation is non-singular if alydifon
A #0.

(b) Two elliptic curves are isomorphic (ovi) if and only if they have the samjeinvariant.

(c) Letjpe K. Then there exists an elliptic curve (defined oKéfo)) with j-invariant equal to
jo-
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Proposition 2.7. Let E be an elliptic curve defined ovét, with charK) # 2, 3 andj-invariantj.
ThenE is isomorphic to a curve given by the following equation

(@) y? = X% + a, for somea e K if j = 0.
(b) y? = x3 + ax, for somea e K if j = 1728.

(€) ¥* = x® — ;=3535X — =7z UP to a quadratic twist, if # 0,1728.

2.5 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. As stated in Sectiow& &fach to
the elliptic curve a group, whose set of elements is the set of points of the etlitie. We then
show that this group is actually isomorphic to RE).

Definition 2.12. Let P, Q € E, L the line connectindg® andQ (tangent line tcE if P = Q), andR
the third point of intersection df with E. LetL" be the line connectin andO. Let P+ Q be the
point such that.” intersectsE atR, O, andP + Q.

This rule is illustrated in Figure 2.5. The fact tHath E, taken with multiplicities, consists
of three points, is a special case of Bezout's theorem (see [45, |. B addition law defined
above makeg into an abelian group (see [86, 111.2.2] for the proof). We give bela¥escription
of this addition law for curves defined over a fislddwith charK) # 2, 3, having a the Weierstrass
equation of the forny? = x® + ax+ b.

Proposition 2.8. Let E be an elliptic curve defined over a fiekdwith charK) # 2,3, given in
short Weierstrass form. The addition law in definition 2.12 has the followinggaties:

(@) We haveP+ O =0+ P =P, forall P € E, i.e. Ois the neutral element of the addition law.
(b) If P = (xp,yp), then its inverse with respect to the addition law-B = (—xp, yp).
(c) If P=(xp,yp) andQ = (Xq, Yo) With Q # —P, we denote by

. e fFP#Q
- if P=0Q.

2
3X5+a
2yp

The coordinates dP + Q are then

XpyQ = pa- Xp — XQ,
Yp+Q@ = A(Xp+Q — Xp) + Yp.
Proof. See [86, IlI.2.2] and [86, I11.2.3]. C

Notation 2.1. For P € E andm € Z, we denote

mP=P+.--+P (mterms) for m> 0, OP = O, andmP= (-m)(-P) for m< 0.
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-(P+Ql/

X
T

Figure 2.1: Addition on an elliptic curve

P+QN

Proposition 2.9. Let E be an elliptic curve over a field andO its point at infinity. For every
divisor D € Div®(E) there exists a unique poifte E so thatD ~ (P)—(0). LetA : Div%(E) — E
be the map given with this association. This map is surjective. Moreovd, D, € DivO(E),
then

A(D1) = A(Dy) if and only if D1 ~ Da.
ThusA induces a bijection of sets (which we also denote\py
o : Pid(E) - E.

The group law orE defined in definition 2.12 and the group law induced fronP &} by using
A are the same.

Proof. [86, I11.3.4]. O

An important consequence of this proposition is the following corollary.

Corollary 2.1. Let E be an elliptic curve an® = Y np(P) € Div(E). ThenD is principal if and
onlyif > np =0and} npP =0.

Proof. [86, 111.3.5] O

2.6 Isogenies

Definition 2.13. Let E; andE; two elliptic curves. AnsogenybetweerE; andE; is a morphism
¢ . E1 — E; satisfyingg(O) = O. E; andE; areisogenousf there is an isogeny between them
with ¢(Ez) # {O}.

From Theorem 2.1 we have thatsatisfies eithep(E1) = {O} or ¢(E1) = Ep. Since there
is a group structure on an elliptic curve, it is natural to investigate isogeraesité also group
homomorphisms. It turns out that all isogenies are group homomorphisms.
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Theorem 2.3. Let¢ : E; — E, be anisogeny. Then

d(P + Q) = ¢(P) + ¢(Q) for all pointsP, Q € E;
Proof. [86, 111.4.8] i
We denote by Honl, E») the set of all isogenies froif,; to E;. Theendomorphism ringf E
is defined as End) = Hom(E, E). The invertible elements of Endj are calledautomorphisms
and the set of automorphisms is denoted by But(We also denote by Hog{E1, E2) the set
of isogenies fronkE; to E, defined ovelK and Eng (E) the set of endomorphisms &f defined

over K. An isogeny defined oveK is calledK-rational or simply rational. We give now some
important properties of isogenies.

Theorem 2.4. Let¢ : E; — E; be a non-constant isogeny.
(a) For every poinQ € E,, #~1(Q) = degg. Further, for everyp ¢ Ej, es(P) = deg(¢).
(b) If ¢ is separable, thefris unramified and #Kep = deg ¢.
Proof. [86, 111.4.10] m|

Example2.5. Let K be a perfect field of characteristc> 0, q = p', E an curve defined ovef
given by the Weierstrass equation

E:y2 +aiXy+agy = X + apX? + auX + a.
We defineE@ the elliptic curve given by the following equation
E@:y? +axy+aly =3 +alx® + ajx + ag.
We define the Frobenius morphism

7 E — EO
(xy) = (3,y9.

If K = Fq, thenr is an endomorphism : E — E, which commutes with all elements of Bo(E).
Proposition 2.10. The Frobenius endomorphism has the following properties

(a) ¢ is purely inseparable.

(b) deg¢ = q.

(c) If K =Fg, thenr is an endomorphism : E — E and 1- r is a separable isogeny.

Proof. [86, 11.2.11 and 111.5.5] ]
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Corollary 2.2. Every mapy : E; — E; of elliptic curves over a field of characteristic> 0
factors as

E1 5 EQ L E,
whereq = deg(y), r is theq-power Frobenius map antis separable.
g

Proof. Also [86, Cor. 11.2.12]. m|

Example2.6. Let E be an elliptic curve. For eaal € Z we can define thenultiplication by m
map

[mM:E - E
P —» mP

It can be shown (see [86, 111.4.1] and [86, 111.4.2]) thai][is a non-constant isogeny. Moreover,
degm] = n? and[m] = [m].

An important property of an isogeny is the existence of its dual.

Theorem 2.5.Let¢ : E; — E» be a non-constant isogeny of degrmeeThen there exists a unique
isogenye : E; — Ej such thatp o ¢ = [m] and¢ o ¢ = [m.

Proof. [86, 111.6.1] O

If ¢ : E; — E; is an isogeny, we call the isogedy: E, — E; given in Theorem 2.5 itslual
isogeny

Theorem 2.6. Let ¢, ¢ : E; — E» be two isogenies.
@ goy=iog.
(b) F+v =9+
(c) degd = degsp.
(@ ¢=9.
Proof. See [86, Theorem I11.6.2]. m|

We call Kerjm] the mtorsion groupof E. We denote this group b[m]. More precisely, we
have

E[m] = {P € E(K)|[m]|P = O}

Usingdivision polynomialsthat we define below, we derive explicit formulae for the computation
of [m].



34

Definition 2.14. Using the notations from Section 2.4, the m-th division polynomial of an elliptic
curve, that we note by, is given by:

fo(X) = 0, f1(X) = 1, f2(X) = 1, fa(X) = 3X* + by X3 + 3bs X2 + 3bgX + bg,
fa(X) = 2X° + bpX® + 5y X* + 1006 X> + 1005 X? + (bobg — babe)X + (babg — bY),

and, by lettingF (X) = 4X3 + byX? + 24X + b,

fom = fm( fmi2 fnzq_l — fm2 ferl),
¢ F2fmofe— fna £, if mis pair,
2 fr2 3 — fmeaf3,,F2  otherwise.

The degree of the polynomidl, is (m? — 1)/2 if mis odd and smaller tham® — 2)/2, if mis
even.

Theorem 2.7. Let E be an elliptic curve defined over a figkd P a point ofE andm e N*, Then
O if Pe E[m],
[MI(P) =1 (onxy) wntn) ¢ p_ <
(254, <8bh) i P = (xy) € E(K)\ELM,

where the polynomialém, vm andwp, are given by

| @Y +a X +ag)fy if mis pair,
Ym = fm otherwise,

and

dm = X‘//rzn —YUm-1¥mi1, 2mWm = Yom — '»l’zm(alébm + a-3'7”2m)

If the characteristic oK is different from 2, this theorem gives an explicit construction of
[m]. Moreover, an important consequence of theorem 2.7 is that-tuordinates of non-trivial
m-torsion points of the curve are actually zeros of tireivision polynomial.

Theorem 2.8. Let P € E(K). ThenP e E[m] if and only if P = O or thex-coordinate of the point
P verifiesfn(X) = 0

From the computation of deg| we deduce immediately the group structurespim).
Corollary 2.3. Let E be an elliptic curve anthe Z, m # 0.

(a) If charK) = 0 or if mis prime to charK), then

E[m] = (Z/mZ) x (Z/mZ).
(b) If charK) = p, then either

E[p°]
E[p°]

13

{Ojoralle=1,2,3,..., or
Z/p°Z foralle=1,2,3,...

13



35

2.7 Endomorphisms and automorphisms of an elliptic curve

It is obvious that the multiplication by € Z gives an injective ring homomorphism:
[l:Z - EndE).

It follows that the endomorphism ring of an elliptic curve always contins

Definition 2.15. An elliptic curveE hascomplex multiplicationf End(E) is larger tharZ.

Automorphisms of the curv& are very rare. Actually, we can easily check that an auto-
morphism is necessarily of the form,§) — (u?x, udy), with u € K*. Further, this observation
determines the group structure of Alj(

Theorem 2.9. Let E be an elliptic curve defined over a fiekd with charK) # 2,3. Then
Aut(E) = up,
whereu,, is the group oh-th roots of unity and

2if  j(E) ¢1{0,1728,
n:{ 4if  j(E)=1728
6if j(E)=0.

2.8 Twists of elliptic curves

Let E, E’ be elliptic curves defined ové¢ and¢ an isomorphism : E — E’, in the sense of
definition 2.13, i.e.¢(0O) = O’. ThenE’ is calledthe twistof E. The degreal of the minimal
extension field oK over whichg is defined is callethe degree of the twist’/EWe denote the set
of twists of E by Twist((E, O)/K).

Theorem 2.10. Assume chai{) # 2,3 and thatE is an elliptic curve given by a Weierstrass
equation

E:y?=x>+ax+h.
Let n be given by
4if j(E)=1728
6if j(E)=0.

Then Twist(E, O)/K) is isomorphic toK*/K*" and for everyD € K* the corresponding elliptic
curveEp € Twist(E, O)/K) is given by the following equation

(@) Ep : y? = x3 + D%ax+ D3bif j(E) # 0,1728:;
(b) Ep : y? = x3 + Daxif j(E) = 1728;
(c) Ep :y? = x3+ Dbif j(E) = 0.
The corresponding isomorphisms aig: E — Ep are:
(xy) = (D%, D~%2) if j(E)#0,1728
(x,y) > (D™Y2x, D~¥/4y) if j(E)=1728
(x,y) ~ (D7Y3x, DY2y) if j(E)=0.

{ 2if  j(E) ¢1{0,1728,
n=
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2.9 The Weil pairing

Let E be an elliptic curve defined over a fietkland| € Z such that is prime top = charK)
(p > 0). LetP andQ be twol-torsion points on the curve arfdp and Dg two divisors with
disjoint supports such that

Dp ~ (P) - (O) and Dq ~ (Q) - (O).
From Corollary 2.1 we deduce that there are two functifjpsand fi o such that
div(fip) = IDp and div(fig) = IDg.

We denote by c K the group of-th roots of unity. Given a functiofiand a divisoD = ) a(P;),
we denote byf (D) = [T; f(P;)#. The Weil pairing is a map

& : E[I] xE[l] = m

given by
_ fir(Dq)

fi.o(Dp)
Note that the functiond; p and f| g are unique up to a constant. It is easy to check that the value
of the pairing does not depend on the choice of these functions. Thin&dhe Weil pairing is
well defined, i.e. it does not depend on the choice of divisors, follagdyefrom the following
result.

a(P.Q)

Proposition 2.11. (Weil's reciprocity) IfC is a curve and & f, g € K(C) have disjoint supports,
then

f(div(g)) = g(div(f)).
Proof. See Exercice 2.11 from [86]. m|

Suppose than is a divisor such than ~ Dq, i.e. there is a functiorf such thatDb =
Dg + div(f). We denote byfl’Q the function such that di\f(Q) = IDG. Then we have

fir(Dg)  fip(Do)fip(div(f))  fip(Dg)
f'oDp) ~ fia@p)f(IDp) ~ fiq(Dp)’

This proves that the Weil pairing is well defined, independently of the elaficepresentatives of
the divisor classes. Using Weil's reciprocity, we also check that the Velgihgs has values ia.

Proposition 2.12. The Weil pairing has the following properties:

(a) Bilinear:

a(P1+P2,Q)
a(P.Q1+ Q)

&(P1, Qea(P2,Q),
a(P. Quea(P. Q2).

(b) Alternating:e(P, Q) = (Q, P)™L. In particularg(P, P) = 1.
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(c) Non-degenerate: H(P, Q) = 1 for all Q € E[l], thenP = O.
(d) Galois invariant: For all- € Gg k, &(P, Q)7 = a(P’, Q%).
(e) Compatible: IfP € E[lI’] andQ € E[l], then

ar(R,Q =a(l'lPQ).

Proof. See [86, 111.8.1]. m|

Definition 2.16. A non-zero functionf on E is normalized if the leading cdiécient in the expres-
sion of f as a Laurent series i, a uniformizer ap, is 1.

Remark2.1 There are two equivalent definitions for the Weil pairing. We presenteel the one
that is used most in cryptography. For the other, we refer the read@élto [

In [70], it was shown that by choosing normalized functidns and fi o such that div{p) =
[(P) - 1(O) and div(f| q) = I(Q) - I(O), the computation of the Weil pairing can be simplified.
Proposition 2.13. Let E/K be an elliptic curve, leP, Q € E(K)[I], and letP # Q. Then

fi.p(Q)

— (_1\
SGIORICHE =

2.10 The Tate pairing

The Tate pairing was introduced by Tate in [92] as a pairing on abelian waoiier local fields.
Lichtenbaum gave in [66] an interpretation in the case of Jacobians wéswver local fields
which gives an explicit computation of the pairing. In this dissertation, weakginterested in
pairings over elliptic curves defined over finite fields. We will thereforeoithiice directly the Tate
pairing for these curves. For more details on the Tate pairing on Jacalfi@usves of higher
genus, we refer the reader to [31].

Let E be an elliptic curve defined over some finite figiglandl a number prime t@ such
that[[#E(Fq) andk € N minimal with l|(gk - 1). We callk the embedding degree with respect to
l. Let P € E[l](Fg) andQ € E(Fy)/IE(Fy). Let fi p be the function whose divisor is difip) =
I(P) — 1(O). TakeR a random point irE(Fq) such as the support of the divisbr= (Q + R) — (R)
is disjoint from the support ofi p. Then we define the Tate pairing as follows

t: EFGI] X EE)/IEFg) — Fye/(Fy)
(PQ - fip(Q+R)/fip(R)

Theorem 2.11. Let E be an elliptic curve defined over some finite figlgl | a number prime to
g, such that[#E(F,) andk the embedding degree with respect.td’he Tate pairing satisfies the
following properties:

(a) Bilinearity: For allP, P1, P2 € E(Fy)[n] and for allQ, Q1, Q2 € E(Fy)/IE(Fy),

ti(P1+ P2, Q) t1(P1, Q)ti(P2, Q)
(P, Q1 + Q2) (P, Q) (P, Q2).



38

(b) Non-degeneracy: For at € E(Fy)[l], P # O, there is som& € E(F)/IE(Fg) such
thatt(P. Q) # 1. Similarly, for allQ € E(Fy)/IE(Fy), there is aP € E(Fy) such that
u(R Q) # 1.

(c) Galois invariance: I € Gal(Fq/F), ti(P7, Q) = ti(P, Q).

Proof. While the proofs of (a) and (c) are easy and can be found for instarjt8], the proof of
non-degeneracy is more complicated and implies either Galois cohomolod@$eer Kummer
theory on function fields over finite fields (see [46]). m|

The following result has important consequences in cryptography.

Theorem 2.12. (Balasubramanian, Koblitz) LdE be an elliptic curve defined ové such that
E(Fg) contains a point of orddr with | prime withqg. Letk > 1 be the embedding degree with
respect td. ThenE[l] ¢ E(F).

Remark2.2. From theorem 2.12 it follows thatk> 1 and nd?-torsion point is defined OVéfy,
we can actually define the Tate pairing as a bilinear non-degenerate map

t i E[] X E[l] > Fe/(F)

Note that, ifk > 1, tj(P,P) € (Fqk)', for all pointsP € E[l]. However, ifk = 1, the value
of (P, P) is not necessarily &th power of an element if¥y. If only one subgroup of orddr
is defined oveify, then due to the non-degeneracy of the paitifg P) ¢ (Fq)'. Otherwise, if
E[l] c E(Fg), both cases can occur. The case of curves with embedding degndd&ll pc E(Fy)
will be explained in chapter 5.

For cryptographic purposes, we prefer working with a pairing whasgavis unique. We therefore
introduce theeduced Tate pairingf two I-torsion pointsP andQ:

T(RQ =t(P.Q"T.

Proposition 2.14. Let E be an elliptic curve defined over a finite fiefig, P € E[l], k the embed-
ding degree with respect tandQ € E(Fy). If the functionf, p is normalized, then the reduced
Tate pairing is given by

T(P.Q) = fip(Q .

Proof. See [43, Lemma 1]. m|



Chapter 3

Complex Multiplication

Most elliptic curves overC have endomorphism ring isomorphic o An elliptic curve with
complex multiplicationi.e. with extra endomorphisms, has interesting properties. The endomor-
phism ring of an elliptic curve with complex multiplication is an order in a quadratic inzag
field, and via Deuring’s reduction theorem [27], this structure is pueskover the finite field. In
cryptography, this property is heavily exploited, as we will show in the falhgvehapters.

In this chapter, we briefly review some concepts from the complex multiplicatEoryh To
begin, in section 3.1 we review some basic facts on number fields, factonipditeals and orders
in quadratic imaginary fields. A key role in the study of elliptic curves with compiakiplication
is played by the equivalence between elliptic curves @vand lattices ove€, which is explained
in section 3.2. This leads us to consider in section 3.3{imgariant of a lattice and hence the
invariant of an order in a quadratic imaginary field. In section 3.3, we ghawif O is an order in
a quadratic imaginary field, thieinvariant ofQ is an algebraic number. In section 3.4 we give the
analytic properties of th¢-function and we define the modular equation. Finally, in section 3.6.2
we give Deuring’s reduction theorems, which are the basis for all algasittonstructing elliptic
curves with complex multiplication over finite fields.

Our exposition is strongly based on results presented in Silverman’s P@@kEB7] and in
Cox’s book [25]. Some notions, such as Dedekind domains or ring cklds, fiare not defined.
For a more complete treatment of the subject the reader is referred to tke dioloang [63] or
Cox [25].

3.1 Orders in quadratic imaginary fields

A number fieldis a subfield ofC which has a finite degree ov&. We usually denote a number
field by K and the degree of the extensignQ by [K : Q]. GivenK, we may considefk the ring
of algebraic integer®f K, i.e. numbersr € K which are roots of monic integer polynomials. We
briefly recall that the field of fractions @ is K and thatOk is a freeZ-module of rankK : Q]
(see [19] for more detalils).

Suppose now tha is a quadratic field, i.eK = Q(VN), whereN # 0,1 is a squarefree
integer. We define thdiscriminantof K, denoted by, to be

de = N if N=1 (mod 4)
K= 4N otherwise

39
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Note thatdx = 0,1 (mod 4) and thaK = Q(+dk). The ring of integergy of K is given by

Z[VN]  if N1 mod 4
Ok = z| 258 it N = 1 mod 4

(as shown in [25, Ex. 11.E.5.7.]). Using the discriminant we may also v@ijte= Z M .
The following result tells us how prime numbers decompose in quadratic fields.
Proposition 3.1. Let K be a quadratic field of discriminadi andp a prime inZ.

() If (%K) = 0, thenpOk = p?, for some prime ideap of Ok.
(b) If (%K) =1, thepOk = pv’, wherep # p’ are prime ideals idx.

(c) If (%K) = -1, thenpOk is prime inOk.
Proof. See [25, Prop. 11.B.5.16]. m|

If p satisfies the condition in (a), we say that irénified Otherwise, we say that is split if it
satisfies the condition irbf andinertif it is like in case (c). We now introduce orders in quadratic
imaginary fields, which constitute our object of study in this chapter.

Definition 3.1. An orderO in a quadratic field is a subsétc K such that
(a) Ois asubring oK.
(b) Ois a freez-module of rank 2.

The ringOk of integers is obviously an order. Moreovergife O, whereO is an order ok,
thena is an algebraic integer ¢€. Hencea € Ok. It follows that for every orde©, O c Ok. In
order to describe orders in quadratic fields, we wilieas follows

dk + Vdk

5 (3.1)

OK = [1a CUK], WK =

where [1 wk] represents a basis for t@emodule.

Lemma 3.1. LetO be an order in a quadratic fieki of discriminantdk. ThenO has a finite index
in Ok, and if we setf =[Ok : O], then

O=7Z+ fOk =[1, fwk],
wherewg is as in equation (3.1).

Proof. See [25, Lemme 7.7.2]. m|

Given an ordeiO as above, the index = [Ok : O] is called theconductorof the order. We
also define thaliscriminantof the orderQ, which is another important invariant of the order.
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Leta — o« be the nontrivial automorphism ¢f and take ¢, 8] a basis for the order. Then the
discriminantis given by

2
a
D_det( o B ) .
The discriminant is independent from the basis used; by computing théndisant in the basis
[1, fwk] we get

D = f2dk.

The discriminant o0, dk, is called undamental discriminant
We will now study the properties of ideals of an order

Lemma 3.2. Let O be an order oK. If a is a nonzero ideal o, then the quotient rin@/a is
finite.
We can therefore define tmormof the ideala as the cardinal of the quotient rirgy a
N(a) = |O/q].

However, orders with the conductdr > 1 are not Dedekind domains. This means that ideals
of O do not have unique factorization, and consequently the theory of idéalslers is more
complicated (see [25] for more details). While in the case of the ring of irde@erwe work
directly with ideals, in the case of orders kfwe need to restrain to a smaller class of ideals.
Consequently, we defin@operideals.

Definition 3.2. An ideala of an orderO is calledproper if
O={peK|Bacal

A fractional idealof O is a subset oK which is a nonzero finitely generatédmodule. We can
show that a fractional ideal is of the foram, wherea € K* anda is anO-ideal. Extending the
terminology, we also say that a fractional ideas proper if

O ={BeK|BbcChbl.

A fractional ideak is invertibleif there is another fractional idealuch thatb = O. Principal
fractional ideals, i.e. ideals of the foraO, o € K*, are obviously invertible. The basic result is
that for orders in quadratic fields, the notions of proper and invertiblecte.

Lemma 3.3. Let O be an order in a quadratic fiel, and leta be a fractionab-ideal. Thera is
proper if and only ifa is invertible.

Given an orde0, let I (O) be the set of proper fraction@ideals. Using Lemma 3.3, it is easy
to show that (O) is a group under the multiplication law. The princigaideals form a subgroup
P(O) c 1(0). We may consequently define tlieal class group

C(0) = 1(0)/P(0).

The cardinal ofC(0) is called theclass numbeof the orderO and is usually denoted ByO).
The following result will be useful in this dissertation.

Proposition 3.2. Let O be an imaginary quadratic field. Given a nonzero intdgethen every
ideal class irC(O) contains a proped-ideal whose norm is relatively prime id.
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3.2 Lattices overC and the Weierstrassp-function

We define datticeto be an additive subgroupof C which is generated by two complex numbers
w1 andwy, which are linearly independent ovBr The scope of this section is to establish an
equivalence of categories between elliptic curves @vend lattices ove€. We show that both
the algebraic and analytic study of elliptic curves o&ds reduced to the study of lattices.

For every latticeA andz € C, we define the Weierstragsfunction as follows

pzA) =22+ Y ((z-w)?-w).

weA—{0}

The Weierstrasg-function is anelliptic function i.e. a meromorphic function defined @ in-
variant to translation with alb € A. When the lattice\ is fixed, we simply denote the Weierstrass
function byp(2).

Theorem 3.1. Let p(2) be the Weierstrags-function for the lattice\.

(a) (2 is an elliptic function forA whose singularities consist of double poles at the points of
A.

(b) p(2) satisfies the dierential equation

0’ (2% = 49(2)° - G2(A)9(2) - ga(A), 3.2)

where the constantp(A) andgs(A) are defined by

1
g2(A) = 60 — (3.3)
weA—-{0}
1
gs(A) = 140 > = (3.4)
w
weA—{0}
Proof. See [25, Theorem 10.1]. i

Remark3.1 The series defined at equations (3.3) and (3.4) are absolutely centetdis means
that we may define the constamgtgA) andgs(A).

We also define
A(A) = g2(A)* - 27g3(A)>.

We can show thaA(A) # 0 ( [25, Prop.10.7]), hence we may also define jhevariant of the
lattice A as the complex number

N 92(A)? 3 02(A)?
) = T2y - 2mgany = 2% Ay

Thus Theorem 3.1 shows thgi(), ¢(2)’) are the coordinates of a point on an elliptic cuBg
given by the Weierstrass equation

Y2 = X3 = go(A)X — ga(A).
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Let E/C be an elliptic curve. Since the group ld&wx E — E is given by locally defined rational
functions (as seen in Section 2.5), we conclude thét acomplex Lie groupi.e. a complex
manifold with a group law given locally by complex analytic functions. Similarly it Cis a
lattice, thenC/A with the natural addition fron€ is a complex Lie group.

Theorem 3.2. Let g, andgz be the quantities associated to a latticeandE/C be an elliptic
curve given by the equation

E:y’=x—goX-0s.
Then there is a complex analytic isomorphism
¢ :C/AN—-E,  ¢(2=I[pzA).9'(zA)1]
of complex Lie groups.
Proof. See [86, Prop. VI.3.6] m|
Let A; andA; be lattices inC. If @ € Cis such thattA1 C Ay, the scalar multiplication by

$a :C/A1 — C/Az,
z(modA;) — az(modAy).

is obviously a holomorphic homomorphism. The following theorem shows thaé thee essen-
tially the only holomorphic maps.

Theorem 3.3. (a) With notation as above, the association
{a e ClaA1 C A2} — {holomorphic map® : C/A; — C/A» with ¢(0) = 0}
@ = ¢
is a bijection.

(b) LetE; andE> be the elliptic curves corresponding to lattidesandA, as in Theorem 3.2.
Then the map, induces a map of elliptic curves

Ei. - B
[p(z A1), 9'(Z A1), 1] — [plaz A2),9'(az A2), 1].
which gives a bijection
{holomorphic map% : C/A1 — C/A» with ¢(0) = 0} — {isogeniesp : E; — E}
Proof. See [86, Thm. VI.4.1]. m]

Theuniformization theorerfor elliptic curves states that every elliptic curve ogeis parameter-
ized by elliptic functions.

Theorem 3.4. Let A, B € C satisfyA? — 27B? # 0. Then there exists a unique lattiaes C such
thatgo(A) = Aandgs(A) = B.
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Proof. See [86, Theorem VI.5.1]. m|

In other words, Theorem 3.4 states that every elliptic curve Qvir parameterized by elliptic
functions, via a latticé\. In this dissertation, we denote B4 the elliptic curve corresponding to
a given latticeA, up to an isomorphism.

To sum up, in this section we have shown that the following categories areatant [86,
Corollary VI.5.3]:

(a) The category of elliptic curves ov€rwith morphisms given by isogenies.
(b) The category of latticea c C, with the morphism set
MOI‘(Al,Az) = {a € ClaA1 C Ap}.

(c) The category of complex tofi/A with holomorphic maps taking 0 to 0 for morphisms.

3.3 Thej-invariant and the class equation

We say that two lattices af@mothetidf there is a nonzero complex numbesuch thaiA” = AA.
The j-invariant j(A) defined in Section 3.2 allows us to characterize lattices up to homothety.

Theorem 3.5. If A and A’ are lattices inC, then j(A) = j(A’) if and only if A and A’ are
homothetic.

Proof. See [25, Theorem 10.9] o

Consider nowO an order in a imaginary quadratic fidkdand leta be a proper fractional ideal
of O. It follows from 3.1 thata = [a, 8] for somea, 8 € K. Sincea andg are linearly independent
overR (because is imaginary quadratic), we have that [, ] is a lattice inC; therefore we
may define thg-invariant j(a).

If ais an ideal in the ring of integer@x, the main result of complex multiplication theory
states that the extension figkd j(a)) is the maximal abelian extension of the fiddd(we briefly
recall that in Galois theory, an extension is abelian if its Galois group is apel&a also call
this fieldthe Hilbert class field of KIf O is an order, dierent from the maximal ord&dy, it is
also possible to associate to it an abelian extensidf, dfy generalizing the construction of the
Hilbert class field. The field obtained in this way is called the ring class field of0. For the
construction of the ring class field, which is beyond the scope of themtrdssertation, we refer
the reader to the book of Cox [25]. We state here the result relgtido the ring class field of
0.

Theorem 3.6. Let O be an order in an imaginary quadratic figdand leta be a proper fractional
ideal of0. Then thej-invariantj(a) is an algebraic integer an€i( j(a)) is the ring class field of the
orderO. Moreover, if we denote by;, i = 1,...,hthe ideal class representatives (so thet the
class number aiathca({O)), the minimal polynomial ofi(a) is given by the formula

h
Ho(X) = [ [(X = i(a).
i=1
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Proof. See [25, Theorem 11.1, Proposition 13.2]. O

We call the minimal polynomial of(a) the class equationr the Hilbert class polynomialSince

an order in a quadratic imaginary field is given by its discriminant, we oftemtdetme class
equation byHp(X), whereD is the discriminant of the order. We also denotehf) the degree
of the polynomialHp, which is also the class number@f

Example3.1 We give as an the example the class equation for the discriminant -56.

Hoss = X*—28.19.937.35593 + 213.25142177698%2 +
220.3.115.19. 21323 + (28 - 112 - 17 41)°.

In this dissertation we also need the following result.

Theorem 3.7.LetO be an order of discriminantn in a quadratic imaginary field andp a prime
number such thato(n) = 1. Thenpis a norm of an element i@, i.e. 4p = x2 + ny?, if and only
if the class polynomiaH_,, (mod p) has only simple roots and they are allAnpZ.

Proof. See [25, Theorem 9.4] m|

3.4 Thej-function and the modular equation

We saw that an elliptic curv&/C is given by a latticeA = [w1, w2]. We may suppose that the
imaginary part ofr = w»/w; is positive (by interchanging; and w-, if necessary). We may
therefore consider thginvariant of the curve ag(r) = j([1, 7]). We will study this function on
the upper half plané{ = {r|Im(7) > 0}.

We denote by

SLg(Z)z{( 3 z)|a,b,c,deZsuchthatad—bc=1}.

Moreover, we denote blyo(m) the subgroup o8 L,(Z) defined as follows:

To(m) = {( i 2 ) € SLp(Z)|a,b,c,d € Z such thatc = 0 (mod m)}.

We will now introduce modular functions. We will be interested in modular funstidefined over
I'o(m) (even though they can be defined for any subgroup 6{Z)).

Definition 3.3. A modular functionfor T'o(m) is a functionf defined onH with values inC,
which satisfies three conditions:

(a) f(r) is meromorphic orH.
(b) f(r)is invariant undefp(m).

(c) For everyy € Sl»(Z), thee? -Laurent expansion has only finitely many nonzeroftioe
cients for negative exponents.
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We state thaj(r) is a modular function fof Ly(Z) = T'o(1). The reader is referred to Theorem
11.9in [25] for the details of the proof of this fact. Moreover, modularctions forl'o(m) can be
described in function of thg¢-function. We consider the functioj, given byt — j(mr) for all
TeH.

Theorem 3.8. The modular functions farp(m) form a field. This field i<C(], jm).
Proof. See [25, Theorem 11.9]. o
There exists a polynomian (X, Y) such that
@r(]j, jm) = 0.

This polynomial is calledhe modular polynomial
Theorem 3.9. Let mbe a positive integer.

(@) om(X,Y) € Z[X, Y].

(b) ®m(X,Y) is irreducible when regarded as a polynomiaKin

(€) (X Y) = dy(Y, X) if m> 1.

(d) If mis not a perfect square, tham, (X, X) is a polynomial of degree 1 whose leading
codficient is 1.

(e) Ifmis a primep, then®,(X,Y) = (XP - Y)(X - YP) mod pZ[X, Y].

Proof. See [25, Theorem 11.18]. m|

Example3.2 We give here two examples of modular equations.

(X +Y)3 = X2Y? 4 1485XY(X + Y) — 162000 + Y)?

+ 4109737XY + 8748000000 + Y) — 1574640000000Q0

X4 = X3Y® 4+ Y4 4+ 2232(0¢3Y2 + X2Y3) — 1069956K3Y + XY?)
+36864000K° + Y°3) + 25879180882Y? + 8900222976000¢?Y + XY?) +
452984832000000€ + Y?) — 770845966336000000¢
+1855425871872000000000¢ Y).

D2(X,Y)

D3(X)Y)

The size of cofficients of modular polynomials increases exponentially withso computing
these polynomials is afiicult task.

In order to use modular polynomials for curves with complex multiplication, wel heen-
derstand these polynomials in terms jeinvariants of lattices. IfA is a lattice, the roots of
Om(X, j(A)) = 0 are given by thg-invariants of those sublattices’ ¢ A which satisfy the
following properties:

1. A’ is asublattice of indermin A,i.e. [A: A’'] =m.
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2. The quotient\/A’ is a cyclic group.
If these conditions are satisfied, we say thats acyclic sublatticeof indexm.

Theorem 3.10. Let m be a positive integer. i, v € C, then®,(u,v) = 0 if and only if there is a
lattice A and a cyclic sublatticA’ c A of indexm such thau = j(A”) andv = j(A).

Proof. See [25, Theorem 11.23]. m|

As a consequence of the equivalence between elliptic curves@wead lattices, we have the
following corollary.

Corollary 3.1. Let E andE’ be two elliptic curves ove€. The two curves are isogenous via an
isogeny of degreenif and only if ®y,(j(E), j’(E)) = O.

3.5 Elliptic curves overC
Let O be an order in a quadratic imaginary field. We denoteEtiyO) the set of isomorphism

classes of elliptic curves, with endomorphism ring BE)d€ O. By applying results in Section 3.2,
we have

Ell(o) - [elitic curvesE /C with EndE) = 0} _ latticesA with EndE,) = O}
- isomorphism ovefC - homothety )

Suppose that we want to construct an elliptic curve with complex multiplicatio@.blf a is a
nonzero fractional proper ideal 6f, considelE,, the elliptic curve whose endomorphism ring is

EndE,) ={aeClaaca}={aeK|aaca} =0.

Note that ifA is a lattice withEIl(O), anda is a nonzero fractional proper ideal ©f we can form
the product
aA ={ardr1 + ... + o ] @ € a, Aj € A}

The following result shows that there is a simply transitive action of the idass groupC(O) on
Ell(O).

Proposition 3.3. (a) LetA be a lattice withE, € ElI(O), and leta andb be nonzero fractional
proper ideals 0.

(1) aAis alattice inC.
(2) The elliptic curveE, satisfies Endf,) = O.
(3) Eap = Epa if and only if @ = b in C(O).

Hence there is a well-defined action@®fO) on Ell(O) determined by
a* Ex = Ej1x.
(b) The action of2(0) on EIll(O) described at (a) is simply transitive. In particular,
#C(0) = #EI(0).
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Proof. See [87, Prop. 11.1.2]. m|

Let E be an elliptic curve with endomorphism riidgy For an ideah of O, we define theggroup of
a-torsion points of E

E[a] = {P € E[[«]P =0 for all « € a}.
Note that we have c a~A, because c A. This means that there is a natural homomorphism
C/A - C/a‘lA, 0 Z
which induces naturally an isogeny
Er — axEp

Proposition 3.4. Let E € Ell(O), and leta be an ideal oD.

(a) E[q] is the kernel of the natural mdp — a = E.

(b) E[a] is a freeO/a-module of rank 1.

Proof. See [87, Proposition 11.1.4]. i

We can use Proposition 3.4 to compute the degree of the isdgeny « E and, in particular, the
degree of an endomorphisa][: E — E.

Corollary 3.2. LetE € EI(O).
(a) For allintegral ideals c O, the natural majE — a = E has degre®(a).
(b) Foralla € O, the endomorphisny] : E — E has degreiN(«)|.
Proof. See [87, Corollary 11.1.5]. i

3.6 Elliptic curves over finite fields

3.6.1 Hasse’s theorem and the endomorphism ring

Let E be an elliptic curve defined over a finite figfg, for q = p", with p prime andn € Z. Then
the Frobenius morphism is an endomorphism and its characteristic equati®s isr + q = 0
(see [86, Section V.2]). We cdllthe trace of the Frobenius endomorphism. Theis related to
the cardinality of the curve. The following result, due to Hasse, givead®on the cardinality of
the curve.

Theorem 3.11. (Hasse) LeE/Fq be an elliptic curve defined ovég. Then
#E(Fq) = g+ 1-t, wherelt| < 2+/0.

Theorem 3.12. Let F be a (perfect) field of characteristcand E/Fq an elliptic curve.
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(a) The following properties are equivalent:

() E[p']=0forone(al)r > 1.
(i) mis (purely) inseparable.
(iif) The trace ofr is divisible byp.
(iv) The endomorphism ring EnHj is an order in a quaternion algebra.

(b) If the equivalent conditions in (a) do not hold, then
(@) E[p]=2Z/p'Zforallr > 1,
(b) 7 is separable.
(c) The trace ofr is prime top.
(iv) The endomorphism ring EnHj is an order in a quadratic imaginary field.

Proof. [86, V.3.1] m]

If E has the properties in case (a) of the theorem, we say thatstigexsingulacurve. Otherwise,
we say that is ordinary. The following result relates the structure of the abelian group on the
elliptic curve to the structure of the ring of endomorphisms.

Theorem 3.13. (Lenstra) LetE be an elliptic curve defined ovéfy. Let 7 be the Frobenius
endomorphism oE.

(@) Letr ¢ Z. Then for all finite fields of the forn¥y, Ends, (E) is aZ-module of rank 2 and
there is an isomorphism @-modules

End:, (E)
E(qu) = m

(b) Suppose that € Z. Then End, (E) is aZ-module of rank 4 and we have

z 7
2 -0 2 1)

E(qu) =

Proof. [55, Theorem 1]. m|

As a consequence, we get the following result on the group structame elfiptic curve.

Theorem 3.14. The abelian groufE(Fy) has rank 1 or 2. It is isomorphic ©/nZ x Z/nZ,
wheren, dividesn; and moreoven, dividesq — 1.

3.6.2 Reduction and lifting of curves

Let H be a number field and I& be an elliptic curve defined by

y? = 4% — goX — g3, ,Where @, gz € H.
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If pis a prime inOy lying over some prime (i.e. Z N Oy = pZ), we are interested in reducing
the curve module. If g, andgs can be written ag/B, with a, 8 € Oy andg ¢ p, we can define
02 andgg in Oy /p and we obtain the equation of a curve defined over a finite field:

E:y? =43 - X - Ga.
Assume that we also have
_ =3 —2
A=g°—-2793° #0€On/p.

ThenE is an elliptic curve defined ova®y/p and we say thaE hasgood reductionmodulo
p. WhenE has complex multiplication and good reduction, Deuring [27] showed thae ihex
relation between the complex multiplicationBfand the number of points & overOy /p = Fy,.

Theorem 3.15.Let E/Q be an elliptic curve with endomorphism ring Efg(= O, whereO is an
order in an imaginary quadratic fieKl. Let p be a prime ofQ, over a prime numbep, at which
E has good reductio&. The curveE is supersingular if and only ip has only one prime oK
above it. Assume that splits inK asp = =z and denote byf the conductor 0O. If (f,p) = 1
then we have

(a) EndE_) = End(E) and the isomorphism is given by the reduction morphism.
(b) #E(Fp) = p+1— (n + 7).

Proof. See [62, Theorem 13.4.12]. m]

Theorem 3.16. Let Eg be an elliptic curve defined over a finite figfig, of characteristip andgg
an endomorphism dE. Then there exists an elliptic cungdefined over a number field, an
endomorphisng of E and a primep over p in H such thateg is isomorphic to the reductioi of
E atp and¢o corresponds, under this isomorphism, to the redugtiof.

Proof. See [62, Theorem 13.5.14]. m|

3.6.3 Modular polynomials over finite fields

Let E be an elliptic curve defined over a finite figdg. There ard + 1 isogenies of degrdevhose
kernels correspond to tHe+ 1 subgroups of orderof E[I]. As explained in Section 3.4, the
j-invariants of thd + 1 curves isogenous t are roots of the polynomiab,(X, j(E)) = 0. The
following proposition relates the factorization of this polynomial to the degfabebextension
field over which thd-torsion points are defined.

Proposition 3.5. Let E be an elliptic curve oveFg with j-invariantj # 0,1728. Then

(a) The polynomiatb|(X, j) has a zerg’ € Fq if and only if the kerneF of the corresponding
isogeny is a one-dimensional eigenspace’ah E[l].
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(b) The polynomialP(X, j) splits completely irFy [X] if and only if z" acts as a scalar matrix
on EJl].

Atkin [5] showed that only certain factorizations can occur for the modadérnomial.

Theorem 3.17. (Atkin) Let E be an ordinary elliptic curve defined ovég with j-invariantj #
0,1728. Letd((X, j) = f1f>... fs be the factorization ob|(X, j) € Fq as a product of irreducible
polynomials. Then there are the following possibilities for the degreds, of., fs:

(@ (Lhor(L1,...,1). Ineither case we haté— 4q = 0 modl.

(b) (L 1,r,r,...r). Inthis casd? — 4qis a square modulg r dividesl — 1 andr acts onE[l] as

a diagonal matri>€ é 2 ),with A p R,
(€) (r,r,...,r) for somer > 1. In this case?® — 4q is not a square modulor divides| + 1 and
the restriction ofr to E[I] has an irreducible characteristic polynomial o¥er

Let E be an elliptic curve and suppose we have a cliisegenous td, denoted byE, given by
its j-invariant]j. Elkies [33] proved the following theorem, which provides a Weierstrgaation
for E.

Theorem 3.18.Let E be an ordinary elliptic curve over a large prime finite figjdwvith j-invariant

j different from 01728. Assume thdE is given by the Weierstrass equatiBn y? = x° + ayx+ ag
and thatE is |-isogenous td& overFy. Let i be thej-invariant ofE. The Weierstrass equation of
E is given by

E:y? =+ &ux+ 3,
with

1 L

%= 18I 1729) - 86472(]- 1728)

a6:

where] € Fq is given by

- 18asDix(j.]) .

J —_

| a4 @ v(], ])

and®, x (resp.®,y) denotes the partial derivative & (X, Y) with respect toX (resp.Y).
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Chapter 4

Computational preliminaries

In this chapter we present a small number of algorithms, of great imporfane#liptic curve
cryptography. In Section 4.1, we present Miller's algorithm to compute thié &We the Tate
pairings on elliptic curves. Since its discovery in 1985, this algorithm has beavily utilized
in the implementation of pairings on elliptic curves. In Section 4.2 we presemntexrigenethod
to construct curves with complex multiplication over a finite figld Sections 4.3 and 4.4 illus-
trate this method, by presenting two algorithms which construct curves with aprioge group
order and curves with a subgroup of large prime order and small emlgedegree, respectively.
Section 4.5 presents formulae to compute an isogenyl&yemhose kernel is known. Finally, in
Section 4.6, we give a brief account of Schoof’s algorithm for countiregnumber of points on
an elliptic curve ovel.

4.1 Miller’s algorithm

The first algorithm for pairing computation was given by Miller [70]. Milleepented his method
for the computation of the Weil pairing, but a similar idea gives an algorithm ctingpthe Tate
pairing. Since it is generally acknowledged that in cryptographic applitstibe Tate pairing is
to be preferred to the Weil pairing, we present Miller's method for the Taibéng. LetE be an
elliptic curve given by a Weierstrass equation:

y? =X +ax+bh, (4.1)

defined over a finite fiel&#,. Consider a large prime dividing E(F,) andk the corresponding
embedding degree. L& be anr-torsion point and for any integeéy denote byf; p the function
with divisor

div (fip) = i(P) — (iP) — (i — 1)(O).

Note thatf, p is such that div{ p) = r(P) — r(O), hence the notation is consistent with the one in
Section 2.10. Miller’s algorithm heavily relies on the double and add methoiihiding a point
multiple.

Suppose we want to compute the sunP&nd P fori, j > 1. Letl be the line througiP and
jP. Thenl intersects the cubic cunke at one further point that we denote By We takev the line
betweerR andO (which is a vertical line whemR is notO). The linev intersectsE at one more

53
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point which is defined to be the sumiéf and jP, that is { + j)P. The linesl andv are functions
on the curve and the corresponding divisors are:
div (1)
div (V)

(iP) + (iP) + (R) - 3(0),
(R + ((i + )P) - 2(0).

One can then easily check the following relation

[
firjp= fi,Pfj,P\—/- (4.2)

In the sequel, we will call this relatioMiller's equation Turning back to Miller’s algorithm,

suppose that we want to compute>(Q). We compute at each stemf the algorithm on one

sidemP, wherem is the integer with binary expansion given by thimpmost bits of the binary
expansion of, and on the other sidé,p evaluated aQ, by exploiting the formula above. The
complexity of this algorithm i€©(log r).

Algorithm 1 Miller’s algorithm
INPUT: An elliptic curve E defined over a finite fieldy, P anr-torsion point on the curve and
Qe E(Fqk).
OUTPUT: the Tate pairing, (P, Q).
Leti = [log,(r)], K« P, f « 1
whilei > 1do
Compute equations dfandyv arising in the doubling oK
K « 2K andf « f2(Q)/v(Q)
if thei-th bit of r is 1then
Compute equations éfandv arising in the addition oK andP
K« P+Kandf « fl(Q)/v(Q)
end if
Leti —«i-1
end while
return f

4.2 The Complex Multiplication Method for Elliptic Curves

Using the results presented in chapter 3, we derive a method to condtiptit eurves with
complex multiplication (CM) over finite fields. In this section, our exposition igrigted to
the case of a finite field,, with p a prime number. IE/F, is an elliptic curve with complex
multiplication by an orde0, there is an element € O such thatp = zr andt = 7+, i.e. «
corresponds to the Frobenius endomorphism on the curve. We denetethg discriminant of
0. By Deuring’s theorems 3.15 and 3.16 and Theorem 3.7, in order to ob&ijpitiariant of
this curve, it sifiices to factorizeH_,(X) (mod p). If j is a root of this polynomial j(# 0, 1728),
the curve withp + 1 —t points is given by:

36 1
)yt = - [—1728" " j-1728
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or by a twist of this curve. Suppose now we want to construct an elliptieeowrhose number of
points has a fixed propergr. Common examples in cryptography of such a property are the fact
that E has a subgroup of large prime ordeor that the number of points is a prime number. In
pairing based cryptography, we are looking for curves whose envipdégree with respect to

r is small. The fact thap = n7r means that we need to look for primes that satisfy the equation
t2+ny? = 4p. The number of points of the curve will be eith@s 1—t or p+1+t. The pseudocode

of the algorithm is given in Algorithm 2.

Algorithm 2 Construction of elliptic curves via complex multiplication
INPUT: n, H_,(X), and the propertf?r.
OUTPUT: A prime p and a curveE defined oveif

1: repeat

2:  Choosep a prime satisfying p = t2 + ny?, fort,y e Z

3 Npe—p+l-tandNy < p+1+t
4: until N1 or N satisfies propertr

5. Compute a roof of H_n(X) (mod p)
6: ComputeE;/Fp and its twistE;/Fp.
7: while truedo

8: TakeP € Ej(Fp) and compute « [N;]P
9: if Q=0and Ny]P # Othen

10: return pandE;.

11: else

12: if Q# Othen

13; return p andg;

14: end if

15:  end if

16: end while

The algorithm terminates if the conditidtr is satisfied. This method works also for discriminants

-3 and-4, with the only diference that in these cases all the twists need to be examinated in order
to find the curve with the good number of points. The formulae computing the ewoflpoints

for twists in these cases are given in [47, Proposition 2].

4.3 A method to construct curves with almost prime group order

For use in cryptography we need curves with almost prime order, i.e.entnosber of points is

of the formcr, with ¢ small andr a large prime number. In this section we explain how to find a

curve having a prescribed number of poihts We only give a solution for certain values Nf

For algorithms in the general case, the reader is referred to [22] andB@ker’s thesis [21].
Considern = 1 (mod 4), anch > 0. Our objective is to find a curve defined over a finite

field having exactlyN points, whereN is a number with a large prime factor Assume that the

following equation has roots

X2 —2x+1+n=N.
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Then by lettingp = x* + nandt = 2x, we get
4p —t? = 4n.

This means that, fop is prime, there is an elliptic curve ovEp, of discriminant—4n and having
group ordeN = p + 1 —t. Algorithm 3 finds values ok for which p = x? + nis a prime number
andx? - 2x+1+n=2r,withr a large prime number.

Algorithm 3 Finding curves with almost prime group order

INPUT: A discriminant—4n, integersa andb, with a < b.

OUTPUT: A prime numberp and an elliptic curve havingrgoints, withr prime.
1. for x=atobdo
2: if X2+ nis primethen

3: Ne—x2—2x+1+n;
4: if N/2 is primethen
5: returnp;

6: end if

7. endif

8: end for

9: Compute a roof of H_4,(X) (mod p)
10: ComputeE;/F, and its twistE;/Fp.
11: Returnp andE; or its twist.

Exampled.1 With the notations above, our computations with PARR [77] produced the fol-
lowing example of curve:

= 13;

= 1208925819614629174706204;
1461501637330902918203752532562181438889716089629;
= 730750818665451459101875057355271104815683338611

= T X 3
Il

The equation of the curve is

Y +xy=x + 697259408412535233735138061329584168410027227826
+ 912508206380344428728269271602710439555105033324

and its number of points is2

Suppose now that = 3 (mod 4). Our search produces valuessfich that 4% — 4x+1+n =
4r, with r large. We letp = 4x? +n, t = 4xandN = 4r. The following equations are then verified
4p= t?>+4n
N= p+1-t

The lines of the pseudocode for this algorithms are similar to those of Algoritimi8ed, it
suffices to replace the condition in line 2 bif 4x? + nis prime” and the condition in line 4 by
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"if N/4 is prime”. Thej-invariant of the curvet is given by a root oH_,, (mod p). Our search
with PARI/GP for values of satisfying the conditions mentioned before produced easily a large
number of curves.

Example4.2 Our computations with PARGP found the following example

= 3

= 65674,
17252297107,
= 4313008603

= T X 35
Il

The equation of the curve is

y? =X +5.

4.4 The Cocks-Pinch method

An ordinary curve is suitable for pairing based cryptography if the elliptrv&group over the
ground field has a subgroup of large prime order andfaciently computable pairing. Pairing
implementation is ficient if the embedding degrdeis not too large. Unfortunately, picking
just any curve with a large prime order subgroup will not work, sinceegaly such a curve has
very large embedding degree. Since the invention of first pairing baséatpls, the problem of
finding curves with small embedding degree has had sevetatat approaches. In this section
we present the method of Cocks and Pinch [15] to construct curves wédtga prime order
subgroup and a small value of the embedding degree. Chronologicallyn¢tied is one of the
first algorithms on this subject. For a survey of all existing methods to caistneh curves, the
reader is referred to [36]. To begin, we look for suitable values ofdhevwing parameters

¢ p, the cardinality of the ground field,
¢ r, the order of the elliptic curve subgroup,
¢ k, its embedding degree.

Given the fact that curve must have a subgroup of large ardad that the number of points
on the curve is E(Fg) = p+ 1 -t we write

p+1-t=hr
Furthermore, the fact that the Frobenius is an element of an order indaatigamaginary field
Q(v-n) (n > 0) gives:
ny = 4p — t? = 4hr — (t — 2)%.

To sum up, in order to generate a pairing friendly curve, we are looking,, k, d,t andy
verifying the following conditions

o pk-1

rl Ny +(t—2)72
{t2+ ny? = 4p
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Cocks and Pinch gave an algorithm which finds, givand a smalk, parameterp prime and
t satisfying the equations above. The pseudocode of their algorithm is detaiddgorithm 4.

Algorithm 4 The Cocks Pinch algorithm
INPUT: Kk, r a prime number, a discriminantandk|(r — 1)
OUTPUT: p, t such that there is a curve ovép with p + 1 — t points wherer|(p + 1 - t) and

ri(p - 1)

1: Choose a primitivéth root of unityg in F,
2: Choose an integér= g+ 1 (modr)

3: if gedg, n) # 1then

4:  exit (or choose anothey)

5. end if

6: Choose an integgp = +(t — 2)/ vV-n(modr)
7. >0

8: repeat

9 pe (t2+n(yo+ jr)?)/4

100 jej+1

11: until pis prime

[EnY
N

: return pandt

Example4.3. A toy example
We take 519 and

r=79811;
Our implementation of the Cocks-Pinch method in MAGMA [68] found the followéagve
Y2 + Xy = XC + 141312404721642+ 30297319882664
over the prime field, with
p = 158231851842377

This method produces ordinary curves o¥fgr where the prime is too large compared to
More precisely, the ratid—ﬁ%’ is close to 2. This does not give an optimal implementation of the
pairing. We will further detail this idea in chapter 6. We only note that Breaing Weng [20]
generalized this method, by parameteriziyrgand p as polynomials. They obtained an algorithm
which produces curves with small embedding degree and also smalle%gﬁtio

4.5 Velu's formulae

Let E be an elliptic curve defined over a fiekdand suppose the Weierstrass equation of the curve
is

+agxXy+ agy = X° + apX® + asX + as.
Y + a1 Xy + agy



59

In this section we explain how to compute an isogeny whose kernel is a fikggaupF of finite
order. In his article [93], ¥lu gave the following isogeny which obviously has kerael

I'E > E/F
P {OE/F ifPEF,
(Xp + X oer—{0g}(XP+Q = XQ), YP + X oer—og}(YP+Q — YQ)) if P ¢ F.

We denote by, = (E[2]NF)\{Og} and byRa subset oF \ ({Og}UF>) such that \ ({Og}UF>) =
RU (-R) and—Ris the set of inverses of the pointsRfvith respect to the addition law such that
RN (-R) = 0. We denote bys = RU F»,. By applying the addition law formulae for points on the
elliptic curve, we obtain algebraic expressions for the isogeny.

Theorem 4.1. (Vélu) An isogenyl : E — E/F mapsP = (xp,yp) ¢ F to the pointl (P) whose
coordinates are

lQ uQ
X = Xp+ +
o a9 (XP -Xq  (xp- XQ)Z)

2yp + 1 Xp + a3 Q611(XF> —XQ) +(p—Yg) AU~ 959
(xp — XQ)® (Xp — Xq)? (Xp — Xq)?

Yi(p)

2

|
5
+
M
c
O

with the following notations

gQ = 3Xé + 2&2XQ + a4 — 1Yo,
g = —2Vo-auXq-as,
gx if Q € Fop,
fQ 2QX—a Y =6x3 +boxo+by if QgF
Jg — &g = 0Xg + D2XqQ + D4 2,
U = (gé)z = 4X% + bzXé + 2b4XQ + bg.

Theb; are those defined at Section 2.4. Letting

t= Z to, W= Z(UQ + Xoto),

QeS QeS

the equation oE/F is
V2 + Aoxy+ Agy = X3 + ApxZ + Asx + As,
with
Al =a;, Ao =ap, Az =az, Ay = ag — 5t, Ag = ag — bot — 7w.

Suppose now thdtis an isogeny of degree oddand denotel = (¢ — 1)/2. Dewaghe [28]
and, independently, Kohel [61] rewrote these formulae in a more usefulWe define

H(X) = Mger(X — Xg) = X4 — hyXI1 4 X942 4. 4+ (=1)%hg.
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and the following quantities

Sl:ZXQ’ SZZZXZQ, S3=ZX%.

QeR QeR QeR

With these notations, it follows easily that

t
W

6S2 + Sy + bad = 6(h — 2hy)
10S3 + 20,S5 + 304S1 + bed = 10(h3 — 3h1h, + 3hg) + 2by(h? — 2hy) + 3bshy + bed,

which gives us the cdicients ofE/F.
In the case of isogenies of degree 2, the isogeny can be easily compuatsihiple application
of Veélu's formulae. The computation is detailed, for example, in [64]. See aldo [6

4.6 Counting the number of points on an elliptic curve

In 1985, Schoof [82] gave the first polynomial time algorithm allowing to ¢dbe number of
points on an elliptic curve. LeE be an elliptic curve oveFg, with g > 3, given by the equation

E:y>=x>+ax+b.

We know that #(Fg) = q+ 1 —t, with t the trace of the Frobenius and that 2+/q, by The-
orem 3.11. Schoof’s idea is to determinenodulo many small prime numbefs,..., ¢, such
that[]{_, & > 4/, and to use the Chinese Remainder Theorem to conimfterwards. More
precisely, for the computation ¢fmodulo some prime numbér we use division polynomials
and the fact that the Frobenius morphism verifies the equatientr + g = 0. So for any point
P € E[¢] we have

7*(P) - [t]P +[q/]P = O,
wheret, =t (mod ¢) andg, = g (mod ¢). It follows that the equation
(XF,YF) + [pA(X Y) = [t](X7, Y9 (4.3)

holds modulo the division polynomidl(X) and modulo the polynomidFg(X,Y) = Y2 - X3 —
aX — b. Hence we check all possible valuestpin {0, ..., ¢ — 1} to find the unique value such
that equality (4.3) holds modulo gcid(X), Fe(X, Y)). The complexity of this algorithm critically
depends on the degree of division polynonfiglwhich isﬁz‘l.

Elkies [33] found a method to replace the division polynomial by a factdy,adf degree%l.
Depending on whether the discriminaiyt = t> — 4q is a square or a non-squarehip, the roots
of the polynomialF(X) = X? — tX + q are defined oveF, or overF... In the former case, we
say that/ is anElkies prime and in the latter case, that it is &tkin prime Of course, since we
do not knowt, we cannot decide whethers an Elkies or an Atkin prime. By Theorem 3.17,we
have a criterion to decide whether a prime is of the Elkies or of the Atkin typkda, ifd/(X, |)
factorizes as in cases (a) and (b) of Theorem 3¢1i8,an Elkies prime. If the factorization of
@,(X, ]) is like in case (c) of the theorem, théiis an Atkin prime.
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If £is an Elkies prime, there is a subgroGof order¢ that is stable under, i.e. ¢(P) = AP
for all P € G. Elkies determines an elliptic cund&; which is £-isogenous td. This gives a
polynomialh,

=[] X-x).

+PeG\{O}

wherexp is the x-coordinate ofP. Note thath, has degreef(-— 1)/2 and thath, is a factor of
the division polynomialf,. We do not detail the computation bf, which is given, for example,
in [65]. Elkies computes an eigenvaluesmoivhich verifies

(X%, Y9) = [](X. Y) mod gedbi(X), Fe(X, Y)).

He then computes= A + q/1 (mod ¢). If, on the other hand; is an Atkin prime, we limit the
number of possibilities for (mod ¢) by computingr. We compute

gcd@g, X9 - X),

fori = 1,2,3,... until the computation give®,(X, j). We setr to i and look forg such that
(92;4‘]) = —1 and such that the ratio of the roots of the polynon¥al 6X + q = 0 inF. is a root
of unity of orderr. For a complete description of the SEA algorithm, the reader is referre@}o [6




62



Part |l

Pairings and Isogeny Volcanoes

63






Chapter 5

Isogeny Volcanoes

An isogeny volcano is a graph whose vertices are elliptic curves andevdumges aré-isogenies.
In his thesis [61], Kohel explains how this graph is related to orders inaaratic imaginary
field. Moreover, he shows that a depth-first search in this graphrdietes thef-adic valuation
of the conductor of EndK), for small values of. In view of optimizing point counting, Fouquet
and Morain [35] give other algorithms for traveling on isogeny volcand®@ther more recent
applications of isogeny volcanoes are: the computation of the Hilbert agsgmial [8,91], that
of modular polynomials [90] and that of the endomorphism ring of the cur&g More precisely,
the methods enumerated above make use of algorithms that aim at trav@lkigenty on the
volcano by either walking on the crater, descending from the crater todbedt, conversely,
ascending from the floor to the crater.

As explained in [71, 72], the structure of tiieSylow subgroup of the elliptic curve may, in
many cases, help deciding whether we have taken a step on the craterhavevdescended or
ascended in the volcano. However, no known method can predict,ebifing a step on the
volcano, the direction of this step. In this chapter, we describe a methoddordee, given
a pointP of order?, the type of the isogeny whose kernel is generatedPbyrhe immediate
consequences of this method are very simple algorithms to travel on the eoloaBection 5.1,
we give definitions and main theorems about isogeny volcanoes. SectioreSehts algorithms to
travel on the volcano using modular polynomials. Section 5.3 presents oundangthng pairings
to determine the direction of an isogeny whose kernel is generated by eigbamnder ¢ and
concludes by showingicient algorithms to travel on the volcano. In Section 5.4 we compare the
complexities of our methods to the complexities of algorithms using modular polynomiaéko
through the volcano. Section 5.5 presents two volcano-based algoritomputing the Hilbert
polynomial and the modular polynomial, respectively.

5.1 Isogeny volcanoes

Let E be an elliptic curve defined over a finite figlg, whereq = p is a prime power. Let be
the Frobenius endomorphism, i&Xx,y) — (x4, y%) and denote by its trace. We further assume
that E is an ordinary curve, and its endomorphism ring, which we denot@g)yis an order in a
quadratic imaginary fiel&k (Theorem 3.12). Letl, = t?> — 4q be the discriminant ok. We can
write d, = g°dk, whered is the discriminant of the quadratic fiekl andg is the conductor of

65
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Ok Ok
Ok
b :
(Lf (Le Ok = 0g
E/ E ;
N
[7] [n]
descending  ascending horizontal

Figure 5.1: Types of Isogenies

Z[n]. There are only a finite number of possibilities g, since
Z[n] € O C Oy .

This also means that the conductoiy dividesg.

In his thesis, Kohel shows that the computation of the endomorphism ringedfigtic curveE is
closely related to the computation &fsogenies starting frork. The following lemma explains
the relation between the endomorphism rings of fwisogenous curves.

Lemma5.1. Letl : E — E’ anisogeny of degreg Then either@e : O¢] = ¢, or [O¢ : Og] = ¢,
or OE = O/E

Proof. See [61, Proposition 21]. m]

If Og is properly contained i, we say that is adescendingsogeny. Otherwise, iDg is
properly contained D, we say thatl is aascendingsogeny. IfOg andOg are equal, then
we call the isogenforizontal Figure 5.1 illustrates this classification. Note that if an isogeny is
descending, its dual is ascending and vice-versa.

The following proposition follows essentially from Proposition 23 in [61].

Proposition 5.1. Let E be an elliptic curve defined ovéfy with endomorphism ringe with
discriminantD # -3, —4. Let¢ a prime number, dierent from the characteristic of the fiefg.

() If € £ [Ox : O], then there ar€2) + 1 horizontal isogenies defined ovgy.
(b) If £][Ok : Og], then there are no horizontal isogenies.

(c) If there exist more tha(@) + 1 isogenies defined ové, then allf-isogenies are defined
overFq and among them, there are exadtly (%) descending isogenies.

Proof. See [61, Prop. 23]. m|

For technical reasons, we exclude the cases of discrimiiants—3, —4, even though similar
results hold in these cases (see [61]).

Suppos¢ is such that | [Ok : Z[x]]. Then there are three possible cases.
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1. If Og is such that t [Og : Z[x]], then there cannot be any descending isogenies defined
over Fq and, by Proposition 5.1, there are no horizontal ones. Hence theradtyegne
isogeny defined ovefy, which is ascending.

2. Suppose now divides both Pk : Og] and [Og : Z[x]]. Then there are descending
isogenies and the remaining one is ascending. We pick one of the desgésulienies,
that we denote by. The duall of this isogeny is ascending and is necessarily defined over
Fq. This implies that is defined oveify. We conclude that all descending isogenies from
E are defined oveF,.

3. When( 1 [Ok : Og] and? | [Ok : Z[n]], there are at most 2 horizontal isogenies (depending
on the value o(%)), and the remaining ones are descending isogenies.

This leads to the following definition.

Definition 5.1. An ¢-volcano is a connected undirected graph with vertices partitioned into levels
Vo, ..., Vh, in which a subgraph oN, (the crater) is a regular connected graph whose vertices
have all degree at most 2 and:

(a) Fori > 0, each vertex it¥; has exactly one edge leading to a verte¥iin, and every edge
not on the crater is of this form.

(b) Fori < h, each vertex ifv; has degreé + 1.

We call the leveV, the floorof the volcano.
We denote b¥EIl;(Fq) the set of elliptic curves defined ovg with tracet. Using this definition,
Proposition 5.1 can be then reformulated as follows.

Proposition 5.2. Let p be a prime numbeq = p', andd, = t? — 49. Takef # p another prime
number. LeG be the undirected graph with vertex &l;(Fy) and edgeg-isogenies defined over
Fq. Suppose thaElli(Fg) does not contain curves withinvariant 0 or 1728. We denote "
the largest power of dividing the conductor ofl,. Then the connected componentsGfre
¢-volcanoes of height and for each componekt

(a) The elliptic curve whosginvariants lie inVg have endomorphism rings isomorphic to some
O, 2 Oq4, Whose conductor is not divisible @y

(b) The elliptic curve whosg-invariants lie inV; have endomorphism rings isomorphicdag,
whered; = 2 dp.

We call the connected components of the graph defined in Propositiéasageny volcanoes
We will refer to a vertex of an isogeny volcano either by naming the cunis grinvariant. The
degree of a vertek on the volcano is denoted by dég(or deg((E)).

The number of horizontal isogenies of curves on the crater depenitie ealue o(d—;). This
also determines the shape of the crater, as described in Figure 5.1. \Bingltbat to each level
on the volcano we can associate an ord&djiy Proposition 5.2 shows that determining thadic
valuation endomorphism ring of an elliptic curizeis equivalent to determining the level Bfin
the¢-volcano. In the following section, we will give algorithms allowing to compute linel.
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AT NN
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Figure 5.2: Crater shape

5.2 The modular polynomial approach

5.2.1 Using modular polynomials to travel on volcanoes

In Section 3.5 (Corollary 3.1), we saw that given two elliptic curzeandE’, there is &-isogeny
defined ovelfy if and only if #E(Fq) = #E'(Fq) and®.(j(E), j(E")) = 0 (j(E) and j(E’) are the
j-invariants of curve& andE’). Hence in order to find the curves related&wia a/-isogeny, we
need to solve the equatidy (X, j(E)) = 0. As stated in Theorem 3.17, this polynomial may have
1, 2 or¢ + 1 roots inFq. So in order to find an edge on the volcano, iffises to find a roof’ of

this polynomial. Note that thginvariant determines the curve up to a twist. In order to compute
the equation of the curvé’ e Ell(F), we use the formula in Theorem 3.18.

Remark5.1 As explained in Section 3.4, classical modular polynomiiéX, Y) have some
important drawbacks: the size of their dgients increases badly &screases and their degree in
Y is too high. In practice we use polynomials with fewer and smalleff@ents, which have been
obtained as minimal polynomials offtkrent modular functions. One possibility is the canonical
modular polynomiatb?(X, Y) (see [65] for more details). To illustrate theffdrence between the
classical modular polynomial and the canonical one, we give béigiX, Y) and®g(X, Y):

D3(X,Y) = X*—X3Y3 4 Y4+ 2232(K3Y? + X2Y®) — 1069956K°3Y + XY3)
+36864000K° + Y3) + 25879180882Y? + 8900222976000¢%Y + XY?)
+452984832000000€ + Y?) — 770845966336000000¢
+1855425871872000000000¢ Y)

DX Y) = X°+30X°+315x* + 1300K3 + 1575¢% + (=Y + 750)X + 125

5.2.2 Walking the volcano

In this section we present algorithms that use modular polynomials to traveéardph of iso-
genies. More precisely, we show algorithms allowing to descend to the ffadbe wolcano, to
ascend one level in the volcano or to walk on the crater. As explained lo8é&c2.1 modular
polynomials are diicult to handle and the algorithms presented in this section may be applied
only for small values of.

We present first an algorithm given by Kohel [61] which, given avelE in a ¢-volcano of
heighth, finds a path descending to the floor, determining in this way the le\elmthe volcano.
This gives the/-adic valuation of the conductor &.

If deg(E) # ¢ + 1, then we are already on the floor and the levdi.iSOtherwise we start
walking two paths, that we extend as far as possible, but whose resplectgthsk; andks, will



69

not be greater thah. Moreoverk, < k;. If E is on the surface, these paths have both lehgth
otherwise at least one of them is a descending path of ldagtm both casesk is on the level

h — k. The number of visited vertices @&(2h). The pseudocode for this algorithm is detailed in
Algorithm 5.

Algorithm 5 Finding the level of a curve in a volcano of height
INPUT: An vertexE in a¢-volcano of heighh and itsj-invariant, j.
OUTPUT: The level ofE in the ¢-volcano.

1: if deg(j) # | + 1 then

2:  returnh.

3. elselet j; # j» be neighbours of.

4: end if

5. Walk a path of lengthk; < h extending {, j1)
6: Walk a path of length, < k; extending {, j2)
7: return h—ko.

There is a second approach to this problem given by Fouquet andriM8E. The idea is
to start walking three paths in parallel and extend them as far as possibte &iteast one of
them is descending, we stop when we have reached the floor for thenfiesand returrh — Kk,
wherek is the length of the path that descended to the floor. The number of visitéckgein the
worst case, i©(3h). This algorithm is obviously slower, but it has the advantage that it wiorks
volcanoes whose height is not necessarily known. The pseudoootiad algorithm is given in
Algorithm 6.

Algorithm 6 Finding the level
INPUT: A vertexE in a¢-volcano and itg-invariantj
OUTPUT: The level ofE in the £-volcano

1 j1 < j,jo< |, ja< jandk < 0

2: while deg(j1) # 1 and degj>) # 1 and degf3) # 1 do

3:  Extend paths starting from, j» andjz by adding edgesj{, j}), (j2. j5) and (s, j3)
4 Letji— i 2 Jh iz 5

5 kek+1

6: end while

7: return h-k.

In view of application to point counting, Fouquet and Morain give an dilgar allowing to
ascend one level in the volcano or to take one step on the crater. Folld®dhgne present an
algorithm allowing to ascend one level in the volcano. If we are on the floordggE) = ¢ + 1),
we take the curve given by the only ratiorfailsogeny. Otherwise, we start walking descending
paths for each of thé + 1 curves isogenous t&. We then compare all lengths and pick among
the neighbours oE the curve which gave the longest path. The number of visited vertices is, in
the worst caseQ(¢h). This is Algorithm 7.

Note that alternatively, one could walk in parallel all of the 1 paths starting from the initial
curve and keep the (two) longest as horizontal or ascending. As fae &now, this has not been
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Algorithm 7 Ascendingwalking on the crater
INPUT: A vertexE in a volcanoV and itsj-invariant
OUTPUT: A curveE’ lying one level up or on the same levekHfis on the crater

1. if deg() = 1then

2. return E’ whosej-invariant isj1, the neighbour of

3 else

4:  Extend the path, j; as far as possible and complitehe length of the path and mexl|,
5. end if

6: Takejo,..., je+1 the other neighbours gf

7. fori=2tof+1do

8: Walk a path of length; extending as far as possiblg |;)
9: if l; > maxthen
10: return a curvekE’ whosej-invariant isj’ = j;
11:  endif
12: end for

[Eny
w

. return E’ whosej-invariant isj;

proposed in the literature, but this variant of existing algorithiffare a slightly better asymptotic
time complexity. For completeness, we give an pseudo-code descriptiois patallel variant of
Kohel and Fouquet-Morain algorithms as Algorithm 8.

5.3 Our approach

5.3.1 The group structure of the elliptic curve on the volcano

Let E be an elliptic curve defined over a finite fieky. Given P a point of orderf on E, the
¢-isogenyl : E — E’ whose kerne( is generated by can be found by using &u’s formulae
(Section 4.5)). It follows that we can use these formulae in order to tcavéte volcano. If we
want to use this approach, we are interested in explicitly computing the catedinf points of
orderf onE.

We denote by5;, 1 <i < g, theg subgroups of ordef of E that represent the kernels of the
isogenies of degreedefined oveify. In [72] Miret and al. computed the degmneef the smallest
extension field offq such thaiG; c E(Fyi), foralli, 1 <i < g. The value of; is related to the
order ofg in the groupFy, that we denote by of).

Proposition 5.3. Let E defined oveify be an elliptic curve with exactlg ¢-isogenies defined
overFq. Assume that > 2. LetGj, 1 <i < g, be the kernels of thg isogenies, and let be the
minimum value for whictG; c E(Fqi).

(a) Ifg=1thenry = ordy/(q) orri = 20rd(q).
(b) If g = ¢+ 1then either; = ordy(q) for all i, orr; = 2ordy(q) for all i.

(c) If g=2thenr|(¢-1),i =1,2.
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Algorithm 8 Parallel variant of ascendiyttprizontal step (using modular polynomials)

INPUT: A j-invariantjo in Fq, a prime¢, the modular polynomiab.(X, Y).
OUTPUT: The j-invariants lying on the same leyapper level of &-volcano

1:

2:
3:
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:

Let f(X) = D.(X, jo)

ComputeJ the list of roots off (x) in Fq
if #Jo = Oreturn: “Trivial volcano”exit
if #Jp = Lreturn: “On floor, step leads to:"Jo[1] exit
if #Jo = 2return: “On floor, two horizontal steps to:'Jp[1] and Jo[2] exit
LetJ = Jo. Let J’ andK be empty lists. Let Done false
repeat
Perform multipoint evaluation ab,(X, j), for eachj € J. Store in listF.
for i from1tof+ 1do
Perform partial factorization d¥[i], computing at most two rootg andr.
if F[i] has less than two roothen
Let Done= true. Append. to K (Reaching floor)
else
if ry € J' then
appendq toK
else
Appendr; to K. (Don't backtrack)
end if
end if
end for
LetJ = J, J = K andK be the empty list.
until Done

23: for eachi from 1 to¢ + 1 such thatl[i] # L append]g[i] to K

24

return “Possible step(s) lead toK (One or two outputs)
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Proof. See [72, Prop. 2]. m|

The following corollary [72] shows that in some situations, if possible, it isergiicient to
replacek with its twist, which has points of ordérover an extension field of smaller degree.

Corollary 5.1. Let E/Fq be an elliptic curve oveFy and denote b its quadratic twist. IfE/Fq
has 1 orf + 1 rational¢-isogenies, thenB(F jorq.q) Or #E£(Forqq) is @ multiple of¢. Moreover, if

E/Fgoraa has¢ + 1 rational isogenies, then it is also a multipleféf
Proof. See [72, Cor. 4].

Proposition 5.4. On a¢-volcano the structure of the elliptic curve group is the same for all curves
in a given level.

Proof. Proposition 3.13 relates the structure of the curve to the endomorphismyrigigibg the
following isomorphism ofDg-modules

E(Fg) = Og/(m - 1). (5.1)
We writerr = a + gw, with:
— 1+\/& i =
_ { (t-9)/2 ande = \/d_z !f d«=1 (mod 4) (5.2)
t/2 X ifdc=0 (mod 4)

whered is the discriminant of the quadratic imaginary field containihg t is the trace of the
curve E andg is the conductor oZ[r]. Note thatN is maximal such thaE[N] c E(Fy) and

by [80, Lemma 1] we get thatl = gcd@— 1, g/f), wheref is the conductor o®g. This shows

that the value oN is the same at a given level in the volcano. Due to the fact that isogenous
curves have the same cardinality, we deduce that curves at the samal$evehve the samma

and consequently the same group structure. m|

In the sequel, we denote lwy the £-adic valuation. The following lemma was given by Miret et
al. [72] in the casé€ = 2. We state the same result in the general case.

Lemma 5.2. Let E be an elliptic curve oveFy. We considen as in equation 5.2. Then we have
ve(@ - 1) = min{v,(g), ve(#E(Fq))/2}.

Proof. If dx = 0 (mod 4), thera = t/2 and we have 4&(- 1)? = g?dk + 4A, where byA = #E(F).
Otherwisea = (t—g)/2 and, sincet(-2)>—g?dx = 4Awe have 44-1)? = 4A+g?(dx—1)—g(a-1).
We consider thé-adic valuation of these expressions and we get the claimed inequality. O

Notations. Let n > 0. In the sequel, we denote IBf¢"](K) the subgroup of points of ordéf
defined oveK and byE[£*](K) the £-Sylow subgroup oE(K).

Let E be a curve whose group structureBéFy) = Z/MZ x Z/NZ. This curve lies on an
£-isogeny volcano and two cases may occur foréersion subgroup of.
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Figure 5.3: An irregular volcano

In the first case, we hawa(N) < v/(M). Note that in this case,(N) < v/(#E(Fqg))/2. As
we descend frone down to the floor, the structure &[¢*](Fg) changes. More precisely, the
valuation of the corresponding decreases by 1 at every level, while the valuatioMdhcreases
by 1. Note thatN is maximal such thaE[N] c E(Fy) and by [80, Lemma 1] we get th&t =
gcd@— 1,9/ f). Suppose now that miw(g), v¢(#¥E(Fq))/2} = v¢(9). Thenv,(a—1) > v,(g) and
sinceN = gcd@ - 1,9/f), we getv,(N) = vg(g/f). Otherwise, if mifv,(g), v/(#E(Fq))/2} =
V¢(#E(Fq))/2, we get

V[(a.— 1) > V[(#E(Fq))/z > Vg(N).

FromN = gcd@ - 1,g/f), it follows again that,(N) = v,(g/f). As we descend, the valuation
at ¢ of the conductorf increases by 1 at each level (by Proposition 5.2b). This implies that the
¢-valuation ofN for curves at each level decreases by 1 and is equal to O for clyimgson the
floor.

In the second case&;(#E(Fy)) is even and/,(M) = v,(N). Then the structure of thetorsion
groupE[¢*](Fg) may be unaltered from the crater down to a certain level. From that lewel,do
the structure of thé-torsion group starts changing as explained above. In the sequelitieeca
lowest level at which/,(M) = v,(N) thefirst stability levet. The volcanoes whosgtorsion is
different at each level are calleshular volcanoes (see Figure 2.5). Their first stability level is on
the crater. This terminology is taken from [72].

In the remainder of this chapter, we will work with points of order a powermiime numbef.

Letn > 0. Given a poinP € E[{"](Fg), we also need to determine the degree of the extension field
in which there is @"*1-torsion point such thatP = P. The following result is taken from [34].

Proposition 5.5. Let E/Fq be an elliptic curve which lies on &volcano whose height(V) is
different from 0. Then the height &f, the-volcano of the curveé /Fgs is

h(V’") = h(V) + ve(9).

From this proposition, it follows easily that if the structure of subgr&{3°](Fy) on the curve
EisZ/tMZ xZ/™Z, then the smallest extensi#hof Fq such thaE[¢*](K) is not isomorphic to
E[¢*](Fq) isFy. Firstof all, note thak lies on a/-volcanoV/Fq of height at least,. We consider

IMiret et al. [72] call it the stability level.
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a curveE’ lying on the floor ofV/Fq such that there is a descending path of isogenies between
E andE’. Obviously, we havd'[¢*](Fq) ~ Z/(™*™Z. By Proposition 5.5V/Fy has one extra
down level, which means that the curiZéis no longer on the floor, but on the level just above the
floor. Consequently, we have thét[¢] c E’(Fy) and, moreoverE'[¢](Fy) =~ VAR A
Z/€Z. We now show thaA = 1. Note first that™|q— 1 and thaw,(qf — 1) = v,(q—1)+1. Suppose
now thatA = 0. We denote by a point of order™ on the curveE’. Then, without restraining

the generality, we may assume that

-1
T (P, P) = fomp(P)?2 € puyma, (5.3)

and
For) a1

q
TP P = £yt gy 1p(P) 7T € ptmpet i

[n2+1
By using the bilinearity of the pairing and the fact tHat.1 p = 1‘{)‘;2’P (up to a constant), we get

l
=
ffnz’[nlp(P) M2+ € U2,

which contradicts Equality (5.3). A similar reasoning leads to a contradictianzf 1. Hence
A = 1. By ascending on the volcano froii to E, we deduce that the structure of thorsion of
E overFy is necessarily

E[¥)(Fy) = 2/ Z x 2/¢™17.

5.3.2 Preliminary results. Determining directions on the wlcano

In this section, we describe a model using pairings, allowing to predetermérgirgction of an
isogeny constructed usingéW’s formulae. LetE be an elliptic curve defined over a finite field
Fq and assume th&[("] C E(Fy), and thaE[¢"!] ¢ E[F,]. Now let P andQ be two{"-torsion
points onE. We define the following symmetric pairing [54]

S(P.Q) = (Tn(P.Q) Tm(Q. P))2. (5.4)

Note that for any poinP, Tm(P,P) = S(P, P). In the sequel, we calB(P, P) the self-pairing
of P. We focus on the case where the pairfigs non-constant. Suppose now thiatand Q
are two linearly independeidf-torsion points. Then ali"-torsion pointsR can be expressed as
R = aP + bQ. Using bilinearity and symmetry of th&-pairing, we get

log(S(R, R)) = a?log(S(P, P)) + 2ab log(S(P, Q)) + b?log(S(Q, Q)) (mod "),

where log is a discrete logarithm functiongig. We denote b the largest integer such that the
polynomial

P(a, b) = a®log(S(P, P)) + 2ab log(S(P. Q)) + b*log(S(Q, Q) (5.5)

is identically zero modul@® and nonzero modulé<*. Obviously, sinceS is non-constant we
have 0< k < n. Dividing by £, we may thus viewP as a polynomial ifF,[a, b]. When we want
to emphasize the choice Bfand¢", we writePg » instead ofP.
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Since® is a non-zero quadratic polynomial, it has at most two homogeneous rdaitsh w
means that that from all thé+ 1 subgroups oE[¢"]/E[¢"] ~ (Z/¢Z)?, at most 2 have self-
pairings inu. (see also [54]). In the sequel, we denoteNyy,» the number of zeros oPg .
Note that this number does not depend on the choice of the two genePatmdQ of the M-
torsion subgroufiE[¢"]. Moreover, we say that aff'-torsion pointR hasdegenerate self-pairing
if T,n(R R) is a*th root of unity and thaR hasnon-degenerate self-pairin§ T,(R,R) is a
primitive £<*1-th root of unity. Also, ifT»(R R) is a primitive£"-th root of unity, we say thaR
hasprimitive self-pairing

Note that it is also possible to haV¥en(R, R) = 1, for all pointsR € E[¢"]. This happens if and
only if the polynomialPg m is zero, which implies that

S(RQ =1,

for every two pointd andQ generatindg=[¢"]. Equivalently, all self-pairings are degenerate if the
Tate pairingT,» and the Weil pairingVy, are equal.

We give some lemmas, meant to explain the relations between pairings on tves,cowhenever
there exists an isogeny between the two curves.

Lemma 5.3. SupposeE/Fq is an elliptic curve and?, Q are points inE(Fg) of order(", n > 1.
Suppose there aré, Q € E[F] such thattP = P and¢Q = Q. Then we have the following
relation for the Tate pairing:

(@) 1f P, Q € E[Fg], then

Tma(P, Q) = Ti(P.Q).
(b) Supposé€ > 3. If Q € E[Fq]\E[Fg], then

Tri(P, Q) = Tm(P. Q).

Proof. (a) By writing down the divisors of the functiorfg... s, fm s, fm p, ONe can easily check
that

fovip = (fr5)" - fmp.
We evaluate these functions at some pof@ts R andR (whereR is carefully chosen) and raise
the equality to the poweng(- 1)/¢".
(b) Due to the equality on divisors difj.1 p) = d|v(ft,n p), We have

Tra(B Q) =T (P.6).

F
whereT{En ¢) is the£"-Tate pairing forE defined oveiy. It suffices then to show that

T (P.6) = Tr(P.Q).

We have

(IFq[) ~ (L+qr- +qf bg-1)

(P.Q frmp([Q+ R - [R])
fmnp(Q+R +((Q) + R + (7*(Q) +R) +...
(“4Q) + R) - ((R) ™ (5.6)

+
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whereR s a random point defined ovEy. It is now easy to see that fér> 3,

Q+n(Q+7%(Q)+...+7H(Q=Q=0Q,
becauser(Q) = Q + T, whereT is a point of orde¥. By applying Weil's reciprocity law ( 2.11),
it follows that the equation (5.6) becomes:
( fnp(Q+ R))%'”l
fn p(R)
wheref is such that divf) = (Q+R)+((Q)+R)+(@3(Q)+R)+...+ (" 1(Q)+R) - (Q+R) - (¢-1)(R).
Note that this divisor i&g-rational, sof ((P) — (0))%1 = 1. This concludes the proof. |

(Fye)
Tgnq

(P.Q) f((P) - (),

Lemma5.4. (a) Let¢ : E — E’ be a separable isogeny of degekéefined overFy, P an
¢-torsion on the curvde such thatg(P) is a ¢-torsion point onE’, and Q a point onE.
Suppose, moreover, that Kec E[Fq]. Then we have:

To(#(P), #(Q) = Te(P. Q.

(b) Lety : E — E’ be a separable isogeny of degregefined oveify, P an{¢’-torsion point
such that Kerp =< ¢/P > andQ a point on the curv&. Then we have:

To(8(P). #(Q) = Ter (P Q).

Proof. (a) We have

t
(@) (fegp) =€ Z (P+K)=(K)=¢ Z ((P) - (0)) + div {[ l_[ lkp ] ]’

KeKerg KeKerg KeKerg Vk+p

wherelk p is the straight line passing throughandP andvk . p is the vertical line passing through
K + P. It follows that for some poin§ on E

¢
Ik p(S)

f o = fd “F .

tatP) © 9(S) = T p(S) [Kgm VK+P(S)]

We obtain the desired formula by evaluating the equality above at two carehdlsen points
Q + RandR, and then by raising to the powg}l.
(b) This time we have

€/
!
@ (o) = ), (P+K)=(K)=C ) ((P)—(O))+div[[ [1 VK’P] ]

KeKerg KeKerg KeKerg

Since #Kep = ¢, we get

[7/
|
fe g 0 #(Q) = ff[',P(Q)( n kP(Q) ] .

KeKers Vk+P(Q)

We raise this equality to the powéi;—l and get the announced result. O
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Remark5.2 Actually the statement at (a) holds for all isogenies, as shown in TheoXedm|
of [15]. We kept our proof because a similar technique can be applieadte b). Of course, we
could also extend our result to all isogenies by using Lemma 5.3.

Proposition 5.6. Let E be an elliptic curve defined a finite fielg and assume th&[(~](Fy) is
isomorphic toZ/{™Z x Z/¢™Z (with n; > ny). Suppose that there ist&-torsion pointP such
that T, (P, P) is a primitive £"2-th root of unity. Then the-isogeny whose kernel is generated
by £271P is descending. Moreover, the curizedoes not lie above the first stability level of the
corresponding-volcano.

Proof. Considerl; : E — E; the isogeny whose kernel is generated/ty'P and suppose this
isogeny is ascending or horizontal. This meansEh§£™] is defined oveffy. TakeQ another"2-
torsion point onE, such that[¢™] =< P, Q > and denote by); = 11(Q). One can easily check
that the dual ol has kernel generated l#{2~1Q;. It follows that there is a poinP; € E1[£"]
such thaP = [1(P,). By Lemma 6.1 this means tha (P, P) € Hmo-1, Which is false. This proves
not only that the isogeny is descending, but also that the structure éftthrsion is diferent at
the level ofEz, SOE cannot be above the first stability level. O

Proposition 5.7. Let £ > 3 be a prime number and suppose B#Fq is a curve which lies in an
¢-volcano and on the first stability level. Suppdslg™](Fq) ~ Z/MZ x Z/¢™Z, ny > np. Then
there is at least on&-torsion point orR € E(Fg) whose pairindgTm (R, R) is a primitive £"2-th
root of unity.

Proof. Let P be an¢™-torsion point andQ be an¢™-torsion point such thatP, Q} generates
E[£°](Fg).
Case 1Suppose; > np > 2. Let

E-LE,

be a descending-isogeny and denote blp; and Q; the ¢*! and ¢™~1-torsion points gener-
ating E1[¢](Fp). Moreover, without loss of generality, we may assume th¢R®) = (P, and
11(Q) = Q1. If Tp-1(Q1, Q1) is @ primitive £2~1-th root of unity, T2 (Q, Q) is a primitive £™-th
root of unity by Lemma 6.1. If not, from the non-degeneration of the painvg deduce that
Tm-1(Q1, P1) is @ primitive £72--th root of unity, which means that,1(Q, ¢P1) is a£™2-th
primitive root of unity. By applying Lemma 6.1, we g€ (Q, P) € -1 at best. It follows that
Tm(Q, Q) € um by the non-degeneracy of the pairing.

Case 2.If mp = 1, then consider the volcano defined over the extensionTigldThere is ar?-
torsion pointQ € E(Fy) with Q = £Q. We obviously have’2|q — 1 and from Lemma 5.3, we get
T,2(P, P)! = T,(P,P). By applying Case 1, we get th@if(P, P) is a primitive£2-th root of unity,
soT,(P, P) is a primitive-th root of unity. m|

Two stability levels. Remember that in any irregular volcang(#E(Fg)) is even and the height
h of the volcano is greater than(#E(Fg)). Moreover, all curves at the top of the volcano have
E[¢°)(Fg) =~ Z/t™Z x Z/€™Z with ny = v,(#E(Fg)). The existence of a primitive self-pairing
of a £™-torsion point on any curve lying on the first stability level implies that the patyiab
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irregular zone m
first stability level — -

second stability level

AN A A AN

Figure 5.4: An irregular volcano

% is non-zero at every level from the first stability level up to the level max{ — 2ny, 0) (by
Lemma 6.1). We call this levehe second level of stabilityDn the second stability level there is
at least one point of ordef? with pairing equal to a primitivé-th root of unity. At every level
above the second stability level all polynomi#lg ~ may be zeré. Consider novE a curve on
the second stability level anld: E — E; an ascending isogeny. LBtbe a¢™-torsion point on
E and assume thd (P, P) € u;. We denote by e E(Fy)\E(Fq) the point such thatP = P.
By Lemma 5.3 we ge't'gn2+1(l5, P) is a primitive £2-th root of unity. It follows by Lemma 6.1 that
T2(1(P), 1(P)) is a primitive¢-th root of unity. We deduce th&g, .1 corresponding tdc; /F

is non-zero. Applying this reasoning repeatedly, we conclude thatvenyeurveE above the
second stability level there is an extension figlg such that the polynomi&g s associated
to the curve defined ovét,s is non-zero. When the second stability level of a volcano is 0, we
say that the volcano &lmost regular

Proposition 5.8. We use the notations and assumptions from Proposition 5.2. Furthermore, we
assume that for all curve8 lying at a fixed leveli in V the group structure oE[{~](Fy) is
Z/tMZxZ/€™Z, with ng > np. The value oNg 2, the number of zeros of the polynomial defined

at 5.3.2, is constant for all curves lying at levéh the volcano.

Proof. Let E; andE; be two curves lying at levelin the volcanoV. Then by Proposition 5.2
they both have endomorphism ring isomorphic to some ofer We denote byE/l 4 (Fg) the
set of elliptic curves defined ové with endomorphism ring isomorphic @q. Now by taking
into account the fact that the action G{Oq) on £/ 4 (Fy) is transitive, we consider an isogeny
¢ . E; — Ep of degreef;. By applying Proposition 3.2, we may assume tlfat{) = 1. Take now
P and Q two independent™-torsion points orE; and denote byPg, s the quadratic polyno-
mial corresponding to th&%-torsion onE; as in . We use Lemma 6.1 to comp@&&s(P), ¢(P)),
S(¢(P), #(Q)) andS(¢(Q), ¢(Q)) and deduce that a polynomi&k, - (a, b) on the curveE; com-
puted fromg(P) and¢(Q) is such that

P, (a,b) = Pe, (8, b).

2In all the examples we considered for this cBés always 0.
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This means thalNg, m and Ng,  coincide, which concludes the proof. Moreover, we have
showed that the value &ffor two curves lying on the same level of a volcano is the same.o

Proposition 5.9. Let E be an elliptic curve defined a finite fieR§ and letE[£*](Fq) be isomorphic
to Z/{™MZ x Z/€"Z with € > 3 andn; > ny > 1. SupposdNg . € {1, 2} and letP be a™-torsion
point with degenerate self-pairing. Then thésogeny whose kernel is generated 4% 1P is
either ascending or horizontal. Moreover, for &f§+torsion pointQ whose self-pairing is non-
degenerate, the isogeny with kernel spannee 6% 1Q > is descending.

Proof. Case 1.Supposelm(P,P) € ux, k > 1 and thatTm(Q, Q) € upw1\ux. Denote by

I1 : E — Ej the isogeny whose kernel is generated!y'P andl, : E — E; the isogeny whose
kernel is generated b§2~1Q. By repeatedly applying lemmas 5.3 and 6.1, we get the following
relations for points generating tii&~-torsion onE; andE:

Tror(1PL (P € prger, Tompa(E12(Q), A11(Q) € prgec2\pagecs
T a(012(P), C12(P) € ppes, Tynra(12(Q) 12(Q) € g \pags.

with the convention thate = 0 whenevere < 0. From the relations above, we deduce that on
the £-volcano havinge, E1 andE; as verticesE; andE; do not lie at the same level. Given the
fact that there are at leaét- 1 descending ration&tisogenies parting fronk and thatQ is any

of the ¢ — 1 (or more)¢™-torsion points with non-degenerate self-pairing, we concludelhiat
horizontal or ascending and thatis descending.

Case 2.Suppose now th& = 0. Note that the cas® = 1 was already treated in Proposition 5.6.
Otherwise, consider the cun defined oveif,. By Lemma 5.3 we havk = 1 for points on
E/Fy, so we may apply Case 1. O

Remark5.3. The statement at point (b) of Lemma 5.3 is not trueffee 2. The statements in
Propositions 5.6 and 5.8 are also truefcf 2. Note also that all statements in the prooiGase
1 of Proposition 5.9 are true fd@r= 2 also. The only case that is not clear is the one when0
andn; > 1. We did not find a proof for the statement in Proposition 5.7(fer 2, but in our
computations with MAGMA [68] we did not find any counterexamples either.

A special caself E is a curve lying under the first stability level and such that
E[¢](Fy) = Z/(™MZ x Z/£™Z,

with n; > ny, then it suffices to find a poinP; of orderf™ and the point’”l‘lPl generates the
kernel of an horizontal or ascending isogeRy has degenerate self-pairing).

Crater detection.Note that wher? is split in Og, there are two horizontal isogenies frdfrand
this is equivalent, by Propositions 5.8 and 5.9Ntg. = 2. Similarly, wherv is inert inOg, there
are neither ascending nor horizontal isogeniesiag. = 0. In these two cases, we easily detect
that the curveE is on the crater. These results are summarized in Table 5.1.

Remarks.4. The results presented in this section hold for all curves, regardless ehlhe of the
discriminant of the endomorphism ring. In particular, they hold for discrimisa3, —4.
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Table 5.1: Number of roots d?g . on the volcano

Ne | Types of isogenies Level
2—
2 -1 0
1 1";’1” i, 0<i<h-1
0 (+1] 0
+1 undecided > second stability leve

5.3.3 Numeric examples

In this section we give some examples in order to illustrate the results obtaineg metious
section. We do not sketch volcanoes entirely, but we give only a désgepath in each case. In
our tables the notatiora[b] stands for an equation of the tygé = x° + ax+ b. For each curve,
we give values of self-pairings for three points. Two of these pointemgéa the™-torsion, the
third one is a linear combination of the first two.

Examples.1 Let E be the elliptic curve whose Weierstrass equation is given by
y? = X3 + 521631768 + 248125891

defined overFig92187501 The D-torsion is entirely defined oveéf 992187501 Our computations
using pairings and ®lu’s formulae gave the following volcano:

N\

Example5.2 This example of 5-volcano that is not regular is taken from [34]. Theesiare
defined oveifspg1. The polynomiaPg, s is zero. Our computation showed that by consideEgg
overFspgps We get a non-zero polynomi&k, s and give the following volcano structure:

Example5.3 This is an example from [71] of a 2-volcano that is non-regular. Note dhaa
2-volcanoes, if two self-pairings are degenerate, then any polyndétaial is actually zero. We
therefore make use of Kohel's and Fouquet-Morain’s techniques to theldolcano until we
reach the stability level 2. Then we may use pairings aéll’'¥ formulae to descend to the floor.
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[ Level | Curve] Equation [ 7 ] {"-self-pairings | isogeny type]
P = (19133051988982844016)T 5 (P, P) € 115 \ti5t !
0 Eo | [521631762248125891] | 55 | Q= (4764109251792947402)T(Q, Q) € s -
R = (1833840623747120419)Ts5(R.R) € y15e -
P = (11939920461078004656)Tcs (P, P) € 155 \pige I
0 Es | [11545189851671760359] 55 | Q = (18889994641539567655)Tss(Q, Q) € uuss -
R = (1049479475786278403)Tss(R R) € st -
P = (1498339142899662653)Tx:(P, P) € pts2 D
1 E: | [130456951561617081] | 5% | Q = (537818240209505883)T5:(Q, Q) € 15\ tts2 !
R = (303596911620007624)Tes(R, R) € use\utcs !
P = (881997308908148660)T(P, P) = 1 D
2 E, | [9513745891320401943]| 58 | Q = (1032634348321607146)T5(Q, Q) € s\ uts2 -
R = (1027305622192491295Q)Tss(R, R) € pgs\ s >
// Eo
E2
| Level | Curve| Equation | (™ | {"-self-pairings | isogeny type|

P = (4036 3650),T5(P,P) = 1 undetermined
0 Eo | [13552505]| 5 Q =(38112838),T5(Q,Q) =1 undetermined
R=(147Q02065),T5(RR) =1 undetermined

P = (46754827),T5(P,P) € us\{1} !
1 E: | [36883542]| 5 | Q= (20054622),Ts5(Q,Q) € us\{1} !
R = (4681 3860), T5(R R) = 1 1

2 E, |[33324679]| - - -

5.3.4 Walking on the volcano: new algorithms

In our algorithms, we first need to choose an extension fielg} & guarantee that the kernels of
all required isogenies are spanned/iprsion points defined on this extension field. As explained
in Corollary 5.1, the degree of this extension field is the ordgmobdulof and it can be computed
very quickly after factoringy — 1. Once this is done, assuming that we are starting from a curve
below the second level of stability, we use Algorithms 9 and 10 to find all aktgor horizontal
isogenies from the initial curve. In order to walk a descending pathftices to choose any other
isogeny. Note that, in the subsequent steps of a descending path, irsdsevdaere the group
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EO———— E3

/\

/ E1 E2 l l
/E4
E5 | '.
| Level | Curve | Equation [ & ] {"-self-pairings | ¢-torsion |
P=(30),T(PP)=1 undetermined
0 Eo y? = X3 + 206x° + 144x 2 Q=(480),T2(Q,Q =1 undetermined
R=(0,0), T, (RR =1 undetermined
P=(510),T(PP)=1 undetermined
0 Ez | y?=x3+206x°+195x+78 | 2 Q=(240),T2(Q,Q =1 undetermined
R=(2330),T,(RR =1 undetermined
P=(450),T,(P.P) =1 undetermined
1 E1 | y2=x3+206x%+48x+224 | 2 Q=(1080),To(Q,Q) =1 | undetermined
R=(1550), T(RR) =1 undetermined
P=(100), To(PRP)=1 undetermined
1 Ex |y?=x3+206x%+138+150| 2 Q=(2120),T2(Q,Q) =1 | undetermined
R=(86,0),T2(RR) =1 undetermined
P =(1210), T2(P. P) € 112\(1} )
2 E4 y? = x3 +206x° + 221x + 33 | 2 Q=(3L0),T(Q.Q =1 T
R= (156 0), T2(R R) € u2\{1} l
3 Es y2 = x3 +206x% + 37x+ 66 | — - -

structure satisfies; > ny, it is not necessary to run Algorithm 10 as a whole. Indeed, since we

know that we are not on the crater, there is a single ascending isogeitysaspanned by™1P;.

In order to walk an ascending or horizontal path, iffises to choose one of the isogenies found
by Algorithm 10, taking care not to backtrack.

5.4 Complexities and #ficiency comparison

Before analyzing the complete algorithms, we first compare the costs of talsimgjle step on
a volcano by using the two methods existing in the literature: modular polynomidislassical
Velu's formulae. Suppose that we wish to take a step from a darvé/ith the modular poly-
nomial approach, we have to evaluate the polynom{a) = @,(X, j(E)) and find its roots in
Fq. Assuming that the modular polynomial (modulo the characteristiggpfis given as input
and using asymptotically fast algorithms to factgiX), the cost of a step in terms of arithmetic
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Algorithm 9 Computing the structure of th€°-torsion of E overFy
(assuming volcano height 1)

INPUT: A curveE defined oveify, a primel
OUTPUT: StructurezZ/f™Z x Z/¢™Z, generator®; andP,

10:
11:
12:
13:
14:
15:
16:
17:
18:

© N A WDNR

: Check thag = 1 (mod¢) (if not need to move to extension fieldbort)
Lett be the trace oE(Fy).
Checkqg+ 1—-t =0 (mod¢) (if not consider twist oabort)
Letd, = t? — 4q, let zbe the largest integer such tH&d, andh = 15]
Let n be the largest integer such thdg + 1 — t andN = q}ﬁ‘t
Take a random poirR; on E(Fg), letP; = N- Ry
Let n; be the smallest integer such tifatP; = 0
if Ny = nthen
return Structure 'Sm’ generatoP;
(E is on the floor, ascending isogeny with kert€r1P,))
end if
Take a random poirR; on E(Fg), letP, = N- Ry andnz = n—ng
Leta = log,mp, ((™P2) (mod M)
if  is undefinedhen
Goto 6 (£™2P, does not belong t&/"2P;))
end if
LetPy = Py —aP;
If WeilPairing(f”l‘lPl {"1P,) = 1 goto 6 (This checks linear independence)

return  Structure iszz= X 72, generatorsRy, Py).
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Algorithm 10 Finding the kernel of ascending or horizontal isogenies
(Assuming curve not on floor and below the second stability level)

INPUT: A curveE, its structures2- x -2 and generatorsy, P»).

("7 7

OUTPUT: The kernels of horizontéscending isogenies starting frden

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

: if Ny > ny then
The isogeny with kerngl¢™~1P;) is ascending or horizontal
To check whether there is another, continue the algorithm
end if
Let g be a primitivel-th root of unity inFq. Let Count= 0
: LetQq = fM2py
: Leta= T (Qq, Q1), b= Teme(Qq, P2) - Tr2 (P2, Q1) andc = Tz (P2, Pa2)
- if (& b,c) = (1,1,1) abort (Above the second stability level)
. repeat
Leta’ =a,b’ =bandc =c

Leta=a’,b=bfandc = cf
untl a=landb=1andc=1
LetLa = logy(&'), Ly = logy(b’) andLc = logy(c’) (mod ¢).
Let P(x,y) = LaX? + Lpxy + Lcy? (mod ¢)
if # has no roots moduléreturn No isogeny (implies single point crater)
if single root &1, Xo) return One isogeny with kerngl™ 1(x; Q1 + X2P2))
if P has two rootsxy, x2) and {1, y») return Two isogenies with kernel@1(x; Q1 + xoP5))
and(¢"™1(y,Qq + y2P2))
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Table 5.2: Number of steps performed on the volcano

Descent| AscentCrater walking
Kohel [61] 2h -
Fouquet and Morain [35] 3h th
lonica and Joux [49] 1 1

operations infq is O(¢? + M(¢) logq), where M(¢) denotes the operation count of multiplying
polynomials of degreé. In this formula, the first term corresponds to evaluatio®giX, j(Ei-1))
and the second term to root findthg

With Vélu's formulae, we need to take into account the fact that the reqéitedsion points
are not necessarily defined ov&y, but over an extension field @;. Letr denotes the smallest
integer such that the required points are all defined ByerwWe know that 1< r < £ — 1. Using
asymptotically éicient algorithms to perform arithmetic operationsf, multiplications inFq
costM(r) Fq-operations. Given afrtorsion pointP in E(Fy ), the cost of using ¥lu’s formulae is
O(¢) operations irfy. As a consequence, in termslgf operations, each isogeny coS&M(r))
operations. As a consequence, wiggs not too large and is close tof, using \elu formulae is
more expensive by a logarithmic factor.

Computing an ascending or horizontal path. With the classical algorithms, each step in an
ascending or horizontal path requires to@§¢) steps and test each by walking descending paths
of height bounded by. The cost of each descending pattOé(¢? + M(¢) logq)) and the total
cost isO(h(¢2 + ¢M(¢) logq)) (see [61,91]). Wherf >> loggq, this cost is dominated by the
evaluations of the polynomiab, at eachj-invariant. Thus, by walking in parallél + 1 paths
from the original curve, we can amortize the evaluatio®gfX, j) over manyj-invariants using
fast multipoint evaluation, see [74, Section 3.7] or [95], thus replaéiby ¢ M(¢)log¢ and
reducing the complexity of a step@(h¢ M(¢)(log £+log q)). However, this increases the memory
requirements.

With our modified algorithms, we need to find the structure of each curve, utengome
discrete logarithms id-groups, perform a small number of pairing computations (usually five)
and compute the roots @?g .. Except for the computation of discrete logarithms, it is clear
that all these additional operations are polynomiahirand logf and they take negligible time
in practice (see Section 5.4.2). Using generic algorithms, the discrete |logsirithstO( V)
operations, and this can be reduced toddxy storing a sorted table of precomputed logarithms.
After this is done, we have to compute at most two isogenies, ignoring the ahbabktracks.
Thus, the computation of one ascending or horizontal step is dominated logrigutation of
isogenies and cosB(¢M(r)).

For completeness, we also mention the complexity analysis of Algorithm 9. Tadtng
step here is the multiplication By of randomly chosen points. When we consider the curve over
an extension field, this costO(r log g) operations irFy, i.e. O(rM(r) log g) operations irFy.

Finally, comparing the two approaches on a regular volcano, we seewratire the less
favorable case, we gain a factocompared to the classical algorithms. More precisely, the two

SCompletely splittingf (X) to find all its roots would cosD(M(¢) log £ logq), but this is reduced t®(M(¢) log q)
because we only need a constant number of roots for each polynbiXial
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Table 5.3: Walking the volcano: Order of the cost per step

Descending path AscendingHorizontal
One step Many steps
[35,61] h(¢Z + M(&)logq) | (62 + M()logq) | h(¢® + ¢ M(£) logq)

Parallel evaluation - - he M(¢)(log ¢ + log Q)
Regular volcanoes Structure determination

Best case logq logq
Worst case ~ £/2 rM(r)logq rM(r)logq
Regular volcanoes Isogeny construction

Best case ¢ ¢
Worst case ~ £/2 rM(r) rM(r)
Irregular volcanoes

(worst case) No improvement

are comparable, when the heighis small and is close tof. In all the other cases, our modified
algorithms are morefigcient. This analysis is summarized in Table 5.3. For compaciDéss
are omitted from the table.

5.4.1 Irregular volcanoes

Consider a fixed value af and lets = vy(q— 1). First of all, note that all curves lying on irregular
volcanoes satisf§?S|q + 1 — t and¢?5+2|t? — 4q. For traces that satisfy only the first condition, we
obtain a regular volcano. We estimate the total number fém@int traces of elliptic curves lying

on¢-volcanoes by #s.t.£%5g+ 1 -t andt e [-2 VG, 2+/A)} ~ 4[;/3.

Next, we estimate traces of curves lying on irregular volcanoes by

#Hts1.25q+1-t, 025 t2 — 4g andt € [-2+/G, 2V} ~ {%.
Indeed, by writingg = 1 + y£3 andt = 2 + y£5 + u?S, and imposing the conditioffs+2|t?> — 4q,
we find thatt = to(y, x)(mod £25+2).

Thus, we estimate the probability of picking a curve whose volcano is nata'egamong
curves lying on volcanoes of height greater than Ol,—lzb)ﬂ'his is not negligible for small values of
¢. However, since our method also works everywhere on almost reguitzano, the probability
of finding a volcano where need to combine our modified algorithm with theicisdgorithms
is even lower. Furthermore, in some applications, it is possible to restriselegs to regular
volcanoes.

Remark5.5. This estimate is very crude because the numberftérdint curves for each value of
the trace is close to the Hurwitz class numbidq — t2) (see [91, Section 3.1]).
5.4.2 Practical examples

In order to demonstrate the potential of the modified algorithm, we presenkamomes in which
our algorithms walk the crater of ahvolcano for large values af. We have chosen values 6f
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for which the modular polynomial approach is expensive, in both time and nyefsee [88] for
precomputations of modular polynomials).

A favorable case. We consider the favorable case of a volcano of height 2, where alkttesn
sary(-torsion points are defined over the base figidwherep = 619074283342666852501391
is prime. We choosé = 100003.

Let E be the elliptic curve whose Weierstrass equation is

y? = X + 1989507135780946156783%% 32044133215969807107747

The groupE[{*] overF, has structur%;z—z. It is spanned by the point

P = (1106467197343152147985%21505339992224627932173)

Taking thet-isogenyl; with kernel(¢£3P), we obtain the curve
E1:y? = x>+ 476298723694969288644486 260540808216901292162091
with structure of the™-torsion% x Z and generators
P; = (2263004575299707560406®7694187789705800930332) and

Q1 = (3047827453580807270581,293904829837168032791973)

The ¢-isogenyl, with kernel(¢?P1) leads to the curve
E, : y? = x° + 2120759957630003865279G- 471086215466928725193841

on the volcano’s crater and with structufe x = and generators

P, = (54533300276080306757675%7548280448276783133614) and

Q2 = (40151536837100485640092P5420044066280025495795)

Using pairings on these points, we construct the polynomial:
P(x,y) = 97540%% + 68114x y + 381207,

having homogeneous rootsg, §) = (26568 1) and (724071). As a consequence, we have two
horizontal isogenies with kerne{g(26568P, + Q) and(£(72407P, + Q)). We can continue
and make a complete walk around the crater which containsfB&eft curves. Using a crude
implementation under Magma 2.15-15, a typical execution takes about 1&ddston a single
core of an Intel Core 2 Duo at@ GHz. Most of the time is taken by the computation @Ws
formulas (138.3 seconds) and the computation of discrete logarithms (tbrads3 which are not
tabulated in the implementation. The computation of pairings only takes 40 milliseconds

4This timing varies between executions. The reason that we first try anef®, if it backtracks on the crater, we
need to try the other one. On averag®, rbot is tried for each step, but this varies depending on the randoizesho
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A larger example. We have also implemented the computationfcet 1009 using an elliptic
curve with j-invariantj = 34098711889917 in the prime field definedy 953202937996763.
The ¢-torsion appears in a extension field of degree 84. #Fkelcano has height two and the
crater contains 19 curves. Our implementation walks the crater in 20 minutes pviecisely,
750 seconds are needed to generate the curves’ structures, 45Qpatedelu’s formulas, 28
seconds for the pairings and 2 seconds for the discrete logarithms.

5.5 Two volcano-based algorithms

In this section we present two applications of isogeny volcanoes: anitalygocomputing the
Hilbert polynomial and another one computing modular polynomials. We exptairtiese algo-
rithms could be modified in order to use our algorithms for walking the volcano.

5.5.1 Computing the Hilbert polynomial via isogeny volcanes

The algorithm for computing the Hilbert polynomial via isogeny volcanoespsagosed by Beld-
ing et al. [8] and optimized recently by Sutherland [91]. Ogf be an order of discriminari? in
a quadratic imaginary field. We consider only primes in the set

Py ={p>3prime: 4 =t>-V?D for somet,v e N*}.

This algorithm computes firdlp(X) mod p, for many prime numberp in £ and then uses the
Chinese Remainder Theorem to determityg A prime p € P splits in K, which means that
Hp(X) splits completely oveif, by Theorem 3.7. We denote W/l p(F,) the set of elliptic
curves having endomorphism ring isomorphicQg. ThenHp hash(D) roots, each of them
corresponding to thg-invariant of a curve inEfl p(Fp). Moreover, by Proposition 3.3, there is
a free transitive action of Qp) on E[[p(Fp). Consequently, Sutherland’s algorithm computes
Hp mod p by determining its roots and then forming the product of the correspondiegrlin
factors. If one element oE/l p(Fp) is known, we may use the action of @) to find the entire
setEll p(Fp). Supposep verifies the equation g = t2 — vD. We sketch here the steps of the
algorithm ( [91, Algorithm 1])

1. Search for a curve with j(E) € Ell¢(Fp).
2. Find an isogenous cun& with j(E’) € Elp(Fp).
3. EnumerateEll p(Fp) from j(E’) via the action of GQp).

4. ComputeHp mod p asHp(X) = [1jezry @) (X = I)-

The curve in step 1 is found by randomly testing curves Byeuntil a curve with traceis found
(there are some optimizations on the random search of a curve, but va getrinto the details).
We may then use algorithm 7 to find a curizé with endomorphism ring given b@p (step 2).
We then choose primés, ... ., £; such thatC(Op) is generated by ideals of norfn 1 <i <r and
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AN "> AN > AN > A
L N N N N [N
Figure 5.5: Four isogeny volcanoes of height 1

E’ lies on the crater of &-volcano, for any;. Consequently, we use algorith®? in step 3 to
enumerate all curves having endomorphism dlg

Since pairing-based algorithms for ascending and for walking on ther @egefaster than
previous methods, our intuition is that Sutherland’s algorithm may be optimizagsiog our
pairing-based algorithms to travel on the volcano.

5.5.2 Modular polynomials via isogeny volcanoes

Broker, Lauter and Sutherland [90] gave an algorithm using isogeny naésato compute the
modular equation. The idea is similar to the one used to compute the Hilbert polyriomia
Section 5.5.1. The algorithm comput®s modp for suficiently many values op, and then uses
the Chinese Remainder Theorem to compbyéX, Y) € Z[ X, Y].

We give a short outline of the algorithm using an example taken from [9§lr& 5.5.2 depicts
a set of fourr-volcanoes, each with two levels, the crater and the floor. Each vpdexhe crater
has( + 1 neighbours, which are roots @ (X, j) € Fp[X]. If there are at least + 2 suchj on
the craters, it sfices to computé + 2 polynomialsd,(X, j) and then to interpolate in order to get
O, € ]Fp[X, Y]

The curves on the crater of the 4 volcanoes are all roots of the claai@ydp(X), where
D is the discriminant of curves lying on the crater. We may then find a yadtHp and then
enumerate the other curves by using the actioG(dlp).

Similarly, the vertices on the floor are the rootshf, and we may use the action 6{O,2p)
to enumerate them. So we usélV's formulae to descend to the floor, we find a curve on the floor
and then use the action G{O,zp) to find the other curves on the floor. To identify children of a
common parent (siblings), we exploit the fact that the siblings lie in a cycté-isfogenies.

We give below a sketch of the algorithm that giverp and the discriminanD computesb,
mod p.

1. Find a root ofHp overFy,.

2. Enumerate the roofs of Hp and identify thef-isogeny cycles.
3. For eachj; find an¢-isogenoug on the floor.

4. Enumerate the roots &f 2 and identify thef?-isogeny cycles.
5. For eachjj compute®,(X, ji) = [1j;jgev(X = k)

6. Interpolated, € (Fy[Y])[ X] using thej; and the polynomial.(X, j;).
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We explain how this algorithm could be modified in order to use our pairingebalgorithms.
First of all, instead of precomputingp(X) and then factorizing this polynomial mawin step 1,
we could simply search of for a curve of tratcand then use algorithm 10 to ascend to the crater.
Note that we can easily recognize a curve on the crater, since the polyndtajadshave two
roots if and only if we have reached the crater.

All volcanoes are regular, hence we couléllys formulae to enumerate all curves lying on
craters and, at the same time, compute the siblings for each of these dihrigeis. easy since our
pairing-based algorithms can distinguish between points spanning kefinelgsaontal isogenies
and points spanning kernels of descendirigogenies. This method produces, for each cyrve
on the crater, the polynomidl,. In order to enumerate all the curves? (Fp) we also need a
way to switch from one volcano to another. We may use, for example, thenaxftit(Op). Note
that no identification of-cycles orf?-cycles is needed in this way and that each curvElif(Fp)
is only considered once.

Since evaluating complexities of these algorithms is an elaborated task, weptetemd this
method would give a faster algorithm. Further work is necessary to make stefreur approach
with pairings.

5.6 Conclusion

In this chapter, we have proposed a method which allows, in the regutarfgarisogeny volcano,
to determine, given a curvé and a¢-torsion pointP, the type of thef-isogeny whose kernel is
spanned byP. In addition, this method also permits, given a system of generators fai- the
torsion, to find the ascending isogeny (or horizontal isogenies) fontinally, our study of
volcanoes shows that it is possible to determine the level of a curve on kteneoby simply
computing a small number of pairings. In particular, we can easily determine dutve lies on
the crater of the volcano. We expect that our algorithms can be used tovienjw® performance
of several volcano-based algorithms, such as the computation of thetidi[Bé&it or modular [90]
polynomials.
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Chapter 6

Efficient Implementation of
Cryptographic Pairings

In this chapter, we study the implementation of cryptographic pairings on elliptices. We
show that an ficient implementation of the pairing depends on both the choice of the curve and
its parameters and on théieient representation of points on the elliptic curve. We start by pre-
senting in Section 6.2 our formulae for pairing computation in Jacobian cadedif50]. We
explain that for curves with even embedding degrees, pairing computatiosisdtficient when
points are represented as points on the twisted curve. Further, we stlmiyerphisms on curves
with small embedding degree. Section 6.3 gives a brief survegisiortion mapson ordinary
curves. Distortion maps are used in cryptography to construct noerdegte self-pairings. First,
we show that due to results obtained in our study of isogeny volcanoesipt€lb, it is possible

to construct curves with non-degenerate self-pairings without usitgrtiiss (Section 6.4). Sec-
ondly, we implicitly obtain subgroups on the elliptic curve which are invariadeuahe action of
endomorphisms. In Section 6.5 we show that in such subgroups, it is lgo&silise the action

of the endomorphism in order to compute the pairifiicently. Our method applies toairing
friendly curvesconstructed by the Cocks-Pinch method presented in Chapter 4.

6.1 Pairings in cryptography

A secure pairing-based cryptosystem needs to be implemented in ellipticsubgsoup$; and
Gg with a pairing

e:G1xGy —» H,

such that the discrete logarithm problem is computationaffiycdit in G1, G, and inH € FZK'

The best known algorithm for computing discrete logarithms on elliptic curviggi®ollard-rho
method [76, 79], which has complexi®(+/r), wherer is the order of the group&; and G..

Meanwhile, the best known algorithm for solving the discrete logarithmlenobin the multi-
plicative group of a finite field is the index calculus algorithm, which has syim®ential running
time [52,53]. Consequently, in order to achieve the same level of seculittlirthe elliptic curve
subgroups and in the finite field subgroup, we need to choagendich is significantly larger

93
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thanr. Itis therefore interesting to consider the ratio of these sizes:

klog q
logr

As the dficiency of the implementation will depend critically on the so-calledhlue

_logq
P = Yogr’

it is preferable to keep this value as small as possible and increase theof/aheeembedding
degreek, whenever we want a higher level of security the finite field. The follovdafinition is
given by Teske et al. [36].

Definition 6.1. Let E be a curve defined over a finite fiefd. We say thak is pairing friendlyif
the following two conditions hold:

(a) there is a prime dividing E(Fq) such thar > +/g;
(b) the embedding degree with respect ie less than (log)/8.

Teske et al. justify the bound on the sizeradh this definition by giving a result due to Luca
and Shparlinski [67], who showed that curves having small embeddigged are abundant if
r < y/gand rare ifr > /. The bound ork is based on the requirements foffdrent desired
security levels (see [36] for details).

In Chapter 4, we have presented the Cocks-Pinch method to construes euith small em-
bedding degree angvalue 2. Research in pairing-based cryptography during the pastdars,
has focussed on finding pairing-friendly curves whpselue is closer to 1. Up to now, a small
number of examples are known. Miyaji, Nakabayashi and Takano §IBid examples of curves
with embedding degrees8 6 andp ~ 1, but such curves are very rare. In an exhaustive search
for such curves, the value of the discriminant of the endomorphism ritigeourve grows very
quickly (see [57] and [67]). Barreto and Naehrig [7] gave an exaroplurves withp-value 1
and embedding degree 12. Other examples of families of curves with sraalle were found
by Kachisa et al. [56] for embedding degrees 16 and 18. The re&adeidsrefer to [36] for
a survey of all families of pairing friendly curves wigitvalue close to 1. However, note that
Vercauteren [36] showed recently that for some discriminants therecapedmary curves with
p-value smaller than 2.

Proposition 6.1. Let E be an elliptic curve oveFqy with a subgroup of prime order > 3 and
embedding degrele> 1 with respect ta. If E has a twisE’/Fq of degreek andr > 4+/q, thenE
is supersingular.

Proof. See [36, Prop. 7.1]. m|
In particular, this means that there are no ordinary curves with embeddgrgeal 2 ang-

value smaller than 2. Moreover, ordinary curves with discriminahtaind embedding degree 4
and those with discriminant3 and embedding degree 6 havealue at least 2.



95
6.2 Formulas for pairing computation

One of the mostfécient ways of computing pairings on an elliptic curve given by a Weierstrass
equation is to use Jacobian coordinates [60] [44]. A po]Z] in Jacobian coordinates rep-
resents thefine point X/Z2,Y/Z%) on the elliptic curve. We give formulae for the computation
of the doubling step of Algorithm 1, using formulae for point doubling on ellipticves in Jaco-
bian coordinates from [10]. The computation of the addition step is baseesaits in [3], with

the only dfterence that all our computations are mad&{rand denominator elimination is not
possible.

We first present the computation in a general context, without taking intouatche fact
that a part of the operations can be done in subfields. This approachésdonsidered when
implementing pairings on curves with embedding degree 1, such as the isglfp@n isogeny
volcanoes introduced in Chapter 5 or the ordinary curves havirgl for protocols requiring
composite order subgroups (see [18, 36]). This computation can beiagsfaoint for pairings on
curves with higher embedding degrees.

Finally, in Section 6.2.1, we give simplified computations on curves with even dufirige
degrees. In the remainder of this chapter, we denotedndm the costs of squaring and multi-
plication inFq and byS andM the costs of these operations in the extension figldif k > 1.
Sometimes, ifg is a sparse prime (such a generalized Mersenne prime), we may assume that
s/m = 0.8. However, when constructing pairing friendly curves, it iffidillt to obtain such
primes. Hence, we generally hasan ~ 1. Since inversions are expensive, we slightly modify
Algorithm 1 in order to perform only one inversion in the end. See Algoritim 1

Algorithm 11 Computing one inversion in Miller’s algorithm
Leti =[logy(r)], K« P, f1 < 1,fp 1
whilei > 1do
Compute equations dfandv arising in the doubling oK.
K « 2K andf; « f211(Q)v2(Q) and f, « f215(Q)v1(Q)
if thei-th bit of | is 1then
Compute equations dfandv arising in the addition oK andP.
K« P+Kandf; « fil1(Qv2(Q) and fo « folo(Q)v1(Q)
end if
Leti «i-1.
end while
f — fl/ f2
return f

The doubling step

We write the normalized functiorisandv that appear in Algorithm 11 ds=11/1, andv = vy /v.
In the double and add method, after initially settidg= P andf; = f, = 1, we have to do the
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Table 6.1: Operations of the doubling part of a Miller operation

A=W B« Xf, C—YZ D« C? (4s)

E— (X1+C)2-B-D, F«—3B+aA G« F? (29)
Xz —4E+G, Y3 —-8D+F -(2E-X3), Zz — (Y21 +Z1)’°-C-W;  (1Im+1s)
Wi —Z2 He (Zz+W))2-Was—A | «H-y (1Im+2s)
Je—F Ty, Tae=Wa-Xx—X3, L (Zz3+Z1)°-Ws-W,; (2m+1s)

ly 1 —-4C-2]

f]_ — fl2 . |1 -Z3 (2m+ls)
fo « f22T3|_ (2m+1s)

following evaluations for thé-th bit of r

K « 2K,
i« fA(QvAQ), (6.1)
fo « f2(Qwi(Q).

We compute K = (X3, Y3,2Z3) as
X3 = (3X%+2Z))%-8X1Y2,
Ys = (3XZ+azZ))(@X1Y? - X3) - 8Y],
7z = 2YiZs.

The normalized functionk andv, corresponding to the tangent line to the curvekaand the
vertical line through the pointKR, respectively, have the following equations:

I(x.y)
v(x.y)

11(%,Y)/I2 = (ZsZ3y — 2Y7 — (3X? + aZ))(Z%xq — X1))/(Z3Z3) (6.2)
V1(X,Y)/V2 = (Z5%q — X3)/Z5. (6.3)

We represent the poirk asK = [Xy, Y1,Z1, W1, T1], where [X1, Y1, Z1] are the Jacobian coor-
dinates of the point on the Weierstrass cumig, = Z2 and Ty = ZZxg — X;. If the intermedi-

ate storage is not expensive, then this representation is to be prefeeczlise it allows some
squaring-multiplication tradeffs and it also saves 2 operations. The operation count for the dou-
bling step presented in table 6.1 gives 8 12s+ la.

The mixed addition step

In the implementation of pairing-based protocols, it is often possible to chtbesgointP such
that its Z-coordinate is 1, in order to save some operations. The addition of two gints
[X1,Y1,Z1] and P = [ X, Yo, 1] is calledmixed addition In Algorithm 11 a mixed addition step
implies the following operations

K « K+P
fi « fil(Qv2(Q), (6.4)
fo « flx(Qvi(Q).
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Table 6.2: Operations of the addition part of a Miller operatiorkfor2

Be—Xo- Wy, D ((Ya+Z1)?-Ro—W;)- Wy, H—B-Xg, | «H?
E—4l,J—H-E L1« (D-2Y1), Ve X1-E, K~ (Y2+2Z3)°-Ro—T3
X3~ L2-J-2V; Yz Ly (V—X3)—2Y1-J
Zg(—(Zl+H)2—W1—|, W3<—Zz, T3<—W3-XQ—X3, I1<—223-yQ—K—2L1-(xQ—X2)
fi e f1-1q
fo — fp-273

(2m+2s)
(2m+1s)
(2m+19)
(8m+2s)
(1m)
(Im)

The result of the addition dk = [Xy, Y1,Z1, Wi, T1] andP = [Xo, Y2, 1,1, Xg — Xo] is K+ P =
[Xs, Y3,Z3, W3, T3] with

Xs = (Xo+ XoZ2)(X1 — XoZ2)? + (Y223 - Y1),

Yz = (YaZ3 - Y1) (Xa(Xa — X2Z2)? = X3) + Y1 (X1 — X2Z2)?,
Zy = Z1(%Z? - Xy),

W; = Z3,

T3 = W3XQ - X3.

The linesl andv have the following equations
| = 1/l = Zgy — YoZs — (2Y2Z3 — 2Y1)(Xq — X2)/Zs,
v = (Waxq — X3)/Ws.

We precomputds, = Y22 andA = xq — Xp. Efficient mixed addition formulas were given by
Aréne et al. [3]. We slightly modified their operation count in order to adaptite@eneral case.
Detailed operations are presented in table 6.2 and the total coshis- 5s.

6.2.1 The Case of Curves with Even Embedding Degree

Pairing computation for curves with embedding degree greater than ffasedit from the com-
putation presented in the previous section, due to the fact that many compsitat® done in
subfields ofF. For dficiency reasons, the poift can be chosen such the®) is the unique
subgroup of order in E(Fy). We may thus describe this subgroup as

G1 = E[r] n Ker(r - [1]). (6.5)

In order to get a non-degenerate pairing, we need to définas a subgroup of order in
E(Fg)\E(Fg). In this section we show that by taking

G2 = E[r] n Ker(r - [q]), (6.6)

we get a non-degenerate pairing, as well asfhoient implementation of Miller’s algorithm. The
following result and its proof are taken from [47].

Theorem 6.1. Let E be an ordinary elliptic curve ovéiy admitting a twist of degree. Assume
thatr > 6 satisfies |[#E(Fq) andr2||#E(IPqe). Then there is a unique twig of degreee such that
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r|#E’(Fq). Furthermore, if we denote by, the unique subgroup of ordenf E’ overFy and by
¢ . E’ — E the twisting isomorphism, the subgroGp described at equation (6.6) is given by

G2 = ¢(GY).

Proof. LetE; fori =0,...,e— 1 be the twists oE of degree dividinge. We first show that

e-1
HE(Fee) = ]_[ HE; (Fy).
i=0

For everyi, consider the twisting isomorphisg : E; — E. This isomorphism of curves gives an
isomorphism of endomorphism rings

®; : EndEj) — EndE)
f > giofog™

If we denote byrq; the Frobenius morphism df;, we observe thabi(rg;) = ¢i o mg; o q&i‘l =

@i o (¢i‘1)‘7 o mg. Since the degree of the twigf dividese, we conclude thap; o (¢i—1)‘7 is an
automorphism oE of degree dividingg, i.e. ae-th root of unity. Since we have an isomorphism
[l : ne — Aut(E), we can label the twists d; by ®j(rq;) = [£i]mg, With & ae-th root of unity.
Therefore we have

Ei(Fq) = Ker([¢i]mg — 1).

Moreover, we can factorg —-1as

e-1
n-1= (-1 [(&lmg - 1).
i=0

Sinceﬂg— 1is separable (as explained in Section 2.6) ada(F) = #Ker(ng— 1), we take degrees
of separability and getE{(Fqe) = ]‘[fiol #Ei(Fq). Sincer|#E(Fq) andr2||#E(1qu), it follows that
there is a twistE” of degreee such thatr|#E’(Fg). We denote by : E’ — E the twisting
isomorphism and b’ the unique subgroup of ordein E(Fg). Note thatE’(Fy) ~ Ker([¢]mng—1)
(for somee-th root of unity¢) and that Ker@§]rq — 1) is stable undery. We conclude that
G2 = ¢(GY). O

In the remainder of this section, we suppose that the embedding degremiarey thaE has a
twist of order 2 defined ovef .. From theorem 6.1 and by using the equations of twists given in
Section 2.8, we derive arfficient representation of points @. In the remainder of this section,
we consider a twist of degree 2 of the culvelefined ovefFy 2, whose cardinality is divisible by
r. It follows that the subgrou@; = (Q) c E(F) can be chosen such that tkeoordinates of all
its points lie inFy2 and they-coordinates are products of elementsgf. with vB, whereg is
not a square iifg2 and v is a fixed square root Bk

We look at the doubling step of the Miller operation detailed in equation (6.1%keRiis the
multiplicative order ofg modulor, (gf — 1)/r is a multiple ofg¥ — 1 for any proper divisok’ of
k. We observe that the ternhgQ), v2(Q) andvy(Q) in equations (6.2) and (6.3) can be ignored,



99

Table 6.3: Cost of one step in Miller’s algorithm for even embedding degree

Doubling Mixed addition
k=2 k>4
J [50], [3] 3m+10s+1a+ 1M + 1S (1+k)m+11s+la+1IM+1S (6+k)m+6s+1M
JY=x+b
e=2.6[23] (2k/e+2)m+7s+la+1IM+1S | (2k/e+2)m+7s+la+1IM+1S | (2k/e+9)m+2s+1M
T, ¥ =X +ax
e=24[23] (2k/e+2)m+8s+la+ IM+1S | (2k/e+2)m+8s+la+ IM+1S | (2k/e+12)m+4s+1M

because they lie in proper subfieldsigf and would give 1, after the final exponentiation step (the
computation of the reduced Tate pairing). Consequently, the doublingfplstitier’s algorithm

at equation (6.1) becomes

K « 2K,
fi « fA1(Q).

We represent the poitd asK = [X1, Y1, Z1, W1], where [Xy, Y1, Z1] are the Jacobian coordinates

of the pointK on the Weierstrass curve akd = Zf.
Fork = 2 we havexq € Fq, hence we compute the functibnas follows

|1(XQ, yq) = ZngyQ - 2Y12 - (3)(% + an)(W1XQ - X3).
Fork > 2, xq is in F2, hence the computation is slightlyfiirent

|1(XQ, yQ) = ZngyQ - ZYf - W1(3X]2_ + aVVf)XQ + X1(3X% + an)

We no longer detail the computations, which are similar to those in table 6.1. Quot gives
10s+3m+1la+ 1S+ 1M fork=2and 15+ (k+ 1)m + la+ 1S+ 1M if k > 2 (see also [50]).
Due to the fact that we ignore terms lying in proper subfieldsof the mixed addition step in

equation (6.4) is

K « K+P
fi « fli(Q).

The linel; is given by the equation
|1 = Z3yQ - Y223 — (2Y22f — 2Y1)Z§XQ + )(222(2Y22§> - 2Y1).

The operation count, detailed in [3], gives66m + km + 1M.

In Table 6.3 we summarize all these results, and we also give the operationhfoppairing
computation on curves allowing twists of higher degree (i.e. 4 and 6). Tinputation in these

special cases can be found in [23].
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6.3 Self-pairings and distortion maps

We say that an endomorphisprt E — E is adistortion mapon E with respect to a poinP on E
if (P) ¢ (P).
Example6.1L We consider the curve given by the equation

y2 =X +ax (6.7)

whereq = 3 (mod 4). The latter condition ensures thdtis not a square ifig. A distorsion map
for points (, y) defined ovefy is given byg(x,y) = (=X, iy), with i = —1.

The curve in Example 6.7 is supersingular. Verheul [94] showed thatiparsingular curves
all points have distortion maps.

In cryptography, special attention has been paid to distortion maps leetteaysenable the
construction of non-degenerate self-pairings. Indeed, in the cdke date pairing, ifT, (P, P) =
1, thenT. (P, ¢(P)) # 1 if #(P) ¢ (P). This is due to the non-degeneracy of the pairing. First
of all, this can be used in the implementation of protocols which require pairiithsGy = Go.
Secondly, this property can be used to solve the DDH hypothesis on sdere groups. Indeed,
given a 4-uple R, aP, bP, cP), we can decide whethab = ¢ (modr) by verifying if

Tr(aP. ¢(bP)) = T (P, ¢(cP)).

Since in this dissertation we focus on ordinary curves, we survey rasultgstortion maps on
these curves. The following result is due to Charles [24].

Theorem 6.2. Let E be an ordinary elliptic curve defined over a finite figlgand denote by,

the endomorphism ring d. O is an order in a quadratic imaginary field with maximal or@gr
and discriminantlk. Suppose is a prime such th&E[r] c Fq, but no point of order is defined
over a smaller extension field.

(@) Ifr|[Ok : 0], then there are no distortion maps.

(b) Ifr 1 [Ok : Oldk and
(i) risinertinOk, then there are distortion maps for every (ordesubgroup ofE|[r];
(ii) ris splitinOk, then all but two subgroups @&qr] have distortion maps.

(c) Ifr t [Ok : O] andr|dk, so that is ramified inOk, then all (except one) subgroupskiir]
have distortion maps.

Proof. It is easy to see that if|[Ox : O] there are no distortion maps, because the reduction
modulor of every endomorphism is the multiplication by a scalar. Suppose now thax : O].
We have

Ox/(r) = O/(r).

If r ¥ dg andr is inert in Ok, thenO/(r) = F,>. We takea € O such thatw (modr) does not
lie in F,. Then the action of on E[r] is irreducible ovelF,, since the characteristic equation is
irreducible. It follows that no subgroup of orders stabilized by, hencex is a distortion map
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for all points inE[r]. If r 1 dk andr is split in Ok, thenO/(r) = F[X]/(X — a)(X - b) = (Z/rZ)?
(wherea # b). The action of anyr € Ok corresponds t&X in F,(X)/(X—a)(X—b) and is conjugate
to a matrix of the form
vy 0
(53]

Distortion maps exist for all but two subgroupskjf]. Finally, if r is ramified,0/(r) = F,[X]/(X-
a)?. Consider the map € O that corresponds t¥ in the ringF,[X]/(X — @)°. Then the action of
a onE[r] is given by the matrix
1B
(o)

with 8 # 0. We conclude that there are distortion maps for all but one subgrob pf m|

Suppose now that the embedding dedterith respect ta is greater than 1. For any point
P € E(Fy), we define the trace map as

k-1
Tr(P) = ) #'(P).
i=0

This map was proposed as a distortion map in [16] and [17]. We considepawis P € G1
andQ € Gy, whereG1 andG» are the subgroups defined at equations (6.5) and (6.6). It is easy
to check that foR = aP + bQ, with ab # 0, thenTr(R) = kaP. This means that the trace is a
distortion map for all points of orderthat are neither ii&1, nor in G,. Verheul [94] shows that
there are no distortion maps for pointsin andGs,.

Theorem 6.3. Let E be an ordinary curve defined ovég and letP be a point oveE of prime
orderr # char{fg). Suppose the embedding degkeis greater than 1 and denote @ythe point
defined oveff, such thatr(Q) = qQ. Then there are no distorsion maps RoandQ.

Proof. Suppose there is a distortigrof (P). Then we have

¢(m(P)) = n(¢(P)) and ¢(x(P)) = 4(P). (6.8)

The first equality comes from the fact that the ring Edis commutative, while the second one
is due to the fact tha € E(F). It follows thatr(¢(P)) = ¢(P), hencep(P) is an eigenvector for
the eigenvalue 1 of. This means that(P) € (P). The proof forQ is similar. m|

The conclusion is that by choosing to implement the pairingex G,, we get éicient pairing
implementation and also work in subgroups for which the DDH problentiicdit.
6.4 Constructing non-degenerate self-pairings on ordinary curves

As explained in the previous section, in some pairing-based protocolsetkeaneon-degenerate
self-pairing

e:GxG—- H.
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On ordinary curves, a first way to construct such pairings is to usedhe6.2. One may choose
a large prime and an orde0 in a quadratic imaginary fiel. Suppose that the discriminant
D of O is such tha(%) = —1. We construct a curve with embedding degree 1 and discriminant
D by the complex multiplication method (for example using the Cocks Pinch methodhisin
case,E[r] ¢ E(Fq) and any endomorphism is a distortion map for all points of orden the
curve. Hence we can build non-degenerate self-pairings using thetidistdf D is small, we can
efficiently compute endomorphisms and use this method.

A second possibility is to use the trace map defined at (6.8) on curveskwitii, but the
implementation of the pairing is very expensive, since we use a subg@foupich is diferent
from G1 andG,. More precisely, all the operations during the pairing computation arenpeet
in Fy, since we do not have afiieient representation for points (&

Suppose now thatis a prime such thaE has embedding degree 1 with respeat end that
E[r] € E(Fq). Proposition 5.7 shows that is on the crater of a regular volcano and there is no
point of orderr? in E(Fg), there will be at least point of orderwith non-degenerate self-pairing
on E. The number of subgroups with non-degenerate self-pairings orva @umn fact given by
the shape of the crater. More precisely, we have

1. If risinert inOk, then all subgroups of orderhave non-degenerate self-pairing.
2. If ris split in Ok, then all but two subgroups have non-degenerate self-pairings.

3. If r is ramified inOk, then all (except one) subgroups of orddrave non-degenerate self-
pairings.

Note that our result is similar to the one given in theorem 6.2. We choasd the discriminard
such tha(?) = —1. We use the Cocks-Pinch method to construct curves with embeddingedegr
1 with respect ta and discriminanD. The algorithm will produce a prime number of the form
p = (4 + 4sr — D(vr)?)/4. If r is large enoughy will not be divisible byr and ther-volcano has
height 1. Since E(Fp) = p - 1, we haver?|[#E(F,,). Note that the curve constructed by the CM
method lies on the crater of the volcano, hence the structure oftthrsion is

E[r] ~Z/rZ X Z/rZ.

Since the volcano is regular, any point of ordem E will have non-degenerate self-pairing.
Example6.2 A toy example:

D = —4.5
r = 1048613

p = 19792606027842001

E : V" +xy=X +189402875237341 %+ 5474270604842005
P = (13679054837080486 : 14162470055178600Q : 1)

T(PP) = 11431087027967778 .

We have given a method to to find non-degenerate self-pairings onscuitte embedding
degree 1. Since our curves are such that the group of points ofrasiéefined oveFp, they have
p-value 2. Thus pairing implementation on these curves will be Ifgsemnt than implementation
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of self-pairings obtained using distortion maps on supersingular curidesw 2. Moreover, for
k > 1, hashing to points on the elliptic curve is possible due to the properties otrdberkus
endomorphism. Hence, we do not know whether it is possible to hash to paiotg curves with
embedding degree 1.

6.5 Speeding up pairing computation using isogenies

To our knowledge, the first time isogenies were proposed to speed lpgpeomputation was in
a paper by Barreto, Galbraith, O’HEigeartaigh and Scott [6]. Theydioized the Eta pairing and
showed how the Tate pairing can be calculated from it using a loop of otfiyHeasize of the
loop in Miller's algorithm. This idea was extended by Hess, Smart and Vieuin [47]. We
present the main result in [47], without giving the proof.

Theorem 6.4. Let E be an elliptic curve defined ovéy andr a large prime withr [#E(Fg). We
denote byk the embedding degree and bihe trace of the Frobenius.

(@) ForT =t-1,Q e Gy = E[r] nKer(r —[q]), andP € G1 = E[r] n Ker(r — [1]) we have
(i) fro(P) defines a bilinear pairing, which we céilie Ate pairing
(i) Let N =gcd(Tk—-1,0¢-1)andT*-1=LN. Then
4(Q.P)" = fro(P) @M,

wherec = YK3TK g = kd“! (modr). Forr f L, the Ate pairing is non-
degenerate.

(b) Assume thaE has a twist of degree and setm = gcdk, €) and f = k/m. We denote by
c= Yt TIM10gM = mgf ™Y modr. We have
(i) frrp(Q) defines a bilinear pairing, which we cétie twisted Eta pairing
(i) t:(P, Q)" = frs p(Q)X@ DN and the twisted Eta pairing is non-degeneratefi..
The loop in Miller’s algorithm for computing the Ate (twisted Eta) pairing has lerggt
(logt"). When the trace is small, this gives an algorithm that is morfiicient than the one

computing the Tate pairing. Many families of pairing friendly curves have stradk and give
efficient implementations of the Ate pairing (see [47] for details).

Notation 6.1. In the sequel we denote the correction of two poRt@andR, as follows:

IRy,
VR1+ Rz

COIMR, R, =

wherelg, r, is the line passing throudR andR; andvg, R, is the vertical line througR; + Ro.

Our starting idea is a method to exploffieiently computable endomorphisms in pairing com-
putation suggested by Scott [83], for a family of curves called NSS.abeis/es are defined over
Fq with g = 1 mod 3 and given by an equation of the foyfn= x3 + B. Since they havk = 2 and
p ~ 2, the Eta and Ate pairings will not bring any improvement to pairing computatiomever,
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these curves admit an endomorphigm (x,y) — (8%,Y), whereg is a non-trivial cube root of
unity. Its characteristic equationdg + ¢ + 1 = 0. If P is an eigenvalue af such that(P) = AP,
thenA verifies the equation

A+A1+1=cr

We obtain

[
f(Q) = fr21p(Q) = fipun)p(Q) = FEHQ) - farafap(Q) - [aPP

Va+1P

Since forP = (x,y), AP is given by f3x,y), we can easily computé, ,p(Q) and f, p(Q) at the
same time when running Miller's algorithm, by replacirngvith sx when computing doublings,
additions and line equations. Note that pairing computation on these cursdsebna recently
improved by Zhao and al. [96].

We apply similar techniques to curves with endomorphisms that verify a deasdic equa-
tion X2 + ax+ b = 0, with a,b small. In all cases, we use the Cocks-Pinch method to construct
curves such that there ista~ v which verifies1? + al + b = cr. This can be done by exhaustive
search onl. Thanks to the density of prime numbers, we are able to produce coupit¢svithin
seconds with MAGMA.

We obtain a new algorithm for pairing computation, whose loop is shorter ttaroftthe
algorithm computing the Tate pairing.

Lemma 6.1. Let E be an elliptic curve defined over a finite figig and¢ an endomorphism of
E whose degree is. Let P, Q be two points on the curng. Then for any integen the following
equality is true up to a constant:

A -1
f/l,¢(P)(¢(Q))=f,EP(Q)[ [] CO”P,K(Q)][ [ cormp,K(Q)]

KeKer¢\{Ps} KeKer¢\{P}

Proof. We have

$"(ho@) =4 ). (P+K)= > (P+K)-(1-1) > (K)

KeKerg KeKerg KeKerg

=1 D (P+K)=(K) = > ((AP+K) - (K))

KeKergp KeKerg

A
=1 Y (P-©)- > (/lP)—(O)+div{[ [ 'K’P]]

KeKergp KeKerg KeKer¢ Vk+P

: Ik 1P
—div 1_[ - ]_I COIM pK
Kekerg VK+1P

KeKer¢\{Ps}
—div[ 1—[ corrmK] .
KeKer¢\{P«}

Using the fact thap*(f,4p)) = figp) © ¢, We obtain the equality we have announced. m|

= div(fyp) + div
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In the sequel, we make use of the following relation which holds fanatl € Z and any point
P on the elliptic curve

fmn,F’ = fr?lp : fn,mP- (6-9)
This equality can be easily checked using divisors.

Theorem 6.5. Let E be an elliptic curve defined over a finite figd , r a prime number such
thatr [#E(Fy) andk the embedding degree with respecttoLet ¢ be an diciently computable
separable endomorphism Bf whose characteristic equationX$ + aX + b = 0. LetGy andG,
be the the subgroups of ordewhose elements are eigenvectorspadefined oveify and Fy,
respectively. Lefl be the eigenvalue aof on Gy, verifying A2 + a1 + b = cr, with r 4 bc. Then the
mapay(-,-) : G1 x G2 — IF":;,(/(lFak)r given by

A

a(P.Q = ff;a(bQ)fﬁtp(&s(Q»fa,ﬂp(bQ)fb,p(bQ)[ [T corex(@@)

KeKerg\{Pw}

-1
CO”AP,K@(Q))] COIT 2pa1p(DQ) 1 12p,a1ppP(DQ)
KeKerg\{Po}

is a bilinear non-degenerate pairing.

Proof. The following equality is obtained by repeatedly applying the equality at (6.9)
frrabp = (fip) - (fuap) - (£3p) - (faap) - (fop)
“COIM 2paap - | 12P1aipbp (6.10)

By applying Lemma 6.1, we obtain

A
fap(bQ = ff’,p@s(Q))[ [ corrp,K(a‘ﬁ(Q»J

KeKerg\{Ps}

-1
[ [ CO”&RK(&(Q))]

KeKerg\{Pw}

By replacing this term in equation (6.10), we derive thgtP, Q) is a power oft,(P, Q). Since
(bc,r) = 1, we conclude thad, defines a non-degenerate pairing@nx Go. O

If the value of1 is close toy/r anda andb are small, Theorem 6.5 gives affieient algorithm
to compute the Tate pairing (actually a small power of the Tate pairing). This @rigign 12.
The complexity of the new algorithm B(logabA).
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Algorithm 12 Our algorithm for pairing computation for curves with affigently computable
endomorphism

INPUT: An elliptic curveE, P, Q points onE and¢ such thap(P) = AP, Q' = ¢(Q).
OUTPUT: A power of the Tate pairind (P, Q).
. Leti =[log,()], K « P, f «1,g« 1
: whilei > 1do
Compute equation dfarising in the doubling oK
K « 2K andf « f2I(bQ) andg « ¢?l(Q)
if thei-th bit of 1 is 1then
Compute equation dfarising in the addition oK andP
K« P+Kandf « fl(bQ) andg « gl(Q’)
end if
Leti —«i-1
end while
ComputeA « fi+a
. ComputeB « ¢°
. ComputeC  (TTiexers(po) COMMaK(Q)) (Miekerg\ (P COMapk(Q))
: ComputeD « fa,p(bQ) fpp(bQ)

: F «— cormizpaip(bQ)li2psaippp(bQ)
: ReturnA-B-C-D-F

© NN R

R =
N B o

-1

Tl v
o 0N W

6.6 Computational costs
Suppose we use an endomorphignvhose characteristic equation is
$>+ap+b=0,

with a andb small. We also neglect the cost of computing the duad afQ, ¢(Q), becauseé can

be precomputed by &u’s formulae in Section 4.5 and is given by polynomials of small degree.
Note that in some protocol® is a fixed point, so all the precomputations on this point may be
done before the computation of the pairing.

We also note that the endomorphism is defined dgrbecause the curvE is ordinary.
Moreover, the points in Kef are eigenvectors for the Frobenius endomorphism. Indeed, since
EndE) is a commutative ring, we havi{r(K)) = n(¢(K)) = O, for all K € Ker ¢. It follows that
n(K) € Kerg¢. Thus the points of Kep are defined over an extension fieldifof degree smaller
thanb. Furthermore, if Kes is cyclic, we have

l_[ corrpk ($(Q)) | € F.

KeKer¢\{Ps}

Consequently, given that the degreea$ small, we assume that the number of operations needed
to compute the correctiof]k ckery corrpk (#(Q)) is negligible. Sincea andb are small, we also
assume that the costs of the exponentiation at line 12 and that of the compofdtioctions at

line 14 of Algorithm 12 are negligible.
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Table 6.4: Our method versus the Tate pairing

bit length ofr k=2 k>4andD # 4
Tate pairing| This work | Tate pairing| This work
160 bits 3040 2400 5120 4880

Since in practice we usually consider curves with even embedding degeegresent only
results for these curves. We assume that the curves havg@ergly computable endomorphism
and eigenvalues of sizgr. In our evaluation, we only counted the number of operations per-
formed in the doubling part of Miller's algorithm, because we supposettaidr have low
Hamming weight (which is possible if the curve is constructed with the CockshPirethod).

For operations in extension fields of degree 2, we use tower fields.xBorpe, to construct an
extension field of degree 4 we have

Fq C qu - ]Fq4.

With Karatsuba’s method the cost of an operation in the extension field oé€l@gs three times
the cost of the same operation in the base field, while with Toom-Cook a multiplicatian
extension field of degree 3 costs 5 multiplications in the base field. Using theli@s in Table 6.3
the total cost of the doubling step in Algorithm 12 and of the exponentiation&af.lins

(11s+ (1 +2km+2M + 25)logA + logAM if D # 3,4.

Our computations showed that our method gives better performances thdatéhpairing for
some families of ordinary curves with embedding degree 2, 3 and 4. Indsiag the complexity
estimations above and making the assumption ghatm, our algorithm is faster than the Tate
pairing if and only if

(12+ 2k)m + 5M > 2((12+ k)m + 2M).

A simple computation shows that this is true if and onlk i€ 4. In Table 6.4, we compare the
performances of our method to those of Miller's algorithm, for curves withertding degree 2
and 4 constructed via the Cocks-Pinch method. Note thak fer2, the Eta pairing algorithm
(and its variants) is not faster than the Tate pairing algorithm, bedause We assume that for
curves with embedding degree 4 the CM discriminant ishtbecause for such curves the Tate
and the twisted Ate pairing have comparable costs. Note thdd fer—4 the twisted Ate pairing
computation has complexi®(logt) and is thus faster than the Tate pairing and also faster than
our method ift is cardtully chosen of small size.

6.7 Conclusion

In this chapter we have presented diiceent implementation of Miller’'s algorithm on the Weier-
strass form of an elliptic curve. We have explained that by making use dktwig reduce the
costs of the pairing computation dy x G», whenG; andG, are generated by eigenvectors of
the Frobenius map. We have also shown that endomorphisms of small adegrde used to
speed up pairing computation for curves with small embedding degreeewdrdnop shortening
techniques do not work.
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Chapter 7

Pairings on Edwards curves

In 2007, H. Edwards found a new form for elliptic curves and showatidh this form the addition
law on the elliptic curve had a surprisingly simple, symmetric form. Little later, Beimsand
Lange introduced this addition in cryptography, by proving that it pravickry dficient formulae
for addition and doubling on elliptic curves. Moreover, this formulae weriéad, which meant
that they worked for both addition and doubling. The Edwards coorditvegee thus alsoftering
protection against side-channel attacks. This provided enough mativtationplement pairing
based protocols entirely in Edwards coordinates. Using isogenies waglvan the first formulae
for efficient computation of pairings in Edwards coordinates [50].

In Section 7.2, we present an algorithm for pairing computation in Edwaroislimates and
compare our complexities to those of algorithms computing pairings on Weiarstiages. Sec-
tion 7.3 briefly presents another recent algorithm computing pairings oramgdveurves. Sec-
tion 7.4 gives an algorithm which performfieient scalar multiplication on Edwards curves for
which the addition law is not defined for all points.

7.1 Edwards curves

H. Edwards gave a new normal form for elliptic curves defined ovelbadge number fields. More
precisely, he showed in [32] that every elliptic cutizadefined over an algebraic number field is
birationally equivalent over some extension of that field to a curve giyehdequation

X2 +y? = (1 + x3P). (7.1)

Bernstein and Lange stated a similar result in the context of finite fields [IBg following
theorem was given in [11].

Theorem 7.1. Fix a finite fieldFy with charfq) # 2 and letE be an elliptic curve oveFy. E is
birationally equivalent oveF, to a curveEq : x% +y? = 1 + dx?y? if and only if the groupE(Fg)
has an element of order 4.

In this dissertation, we call the cun& given by x? + y? = 1 + dx?y? an Edwards curve. In
this chapter, we denote ldyjthe parameter giving the equation of an Edwards curve.

109
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Suppose now thaE is an elliptic curve given by a Weierstrass equation, having a point of
order 4, that we denote B = (ug, v4) of E. We may assume, without loss of generality, tha0jo
is a point on the curve, so the Weierstrass equatidh isf

E:y? =X + @ + asX.

We may also assume, without restraining the generality, tRat 20, 0). This means that the
tangent line toE at P passes through (0). This gives 85 + 2apuj + asus = 2v3. Further, we
have 253 + 2a,U3 + 2a4U4 = ZV%. Subtracting one equation from another we giet usa4, hence

uz = a4. Moreovera, = (V3 — U3 — a4Us) /U3 = V3/uj — 2us. We defined = 1-4u3/v; and consider
the corresponding Edwards curkzg. We obtain the rational map

v E - Eq (7.2)
(Uv) = (XY) = (Vau/ugv, (U~ Us)/ (U + Ug)).

This map has a finite number of exceptional cases, i.e. points wiere 0 oru = —ug. Its
inverse is

y1:Eg —» E (7.3)
(xy) = (Ua(l+Yy)/(1-Y),va(l+Yy)/(1-y)x). (7.4)
This map has a finite number of exceptional cages 1 or x = 0. Hencey is a birational

equivalence betwee andEy.
Edwards showed that on an Edwards curve, the addition law has theifadlegmmetric form

X1Yo +Y1Xo  Y1Y2 — X1Xo ) (7.5)

X1, Y1), (X2, ¥2) = ’
(X1, Y1), (%2, ¥2) (1 + dxoxoy1ys 1 — dXXoy1yo

The neutral element of this addition law@= (0,1). For every poinP = (X,Y) the inverse
elementis-P = (—x,y). The curve has a 4-torsion subgroup defined &yekVe noteT, = (0, -1)
the point of order 2 ands = (1,0), —-T4 = (-1, 0) the two points of order 4. There are two
singular points on the Edwards cun@j = [0, 1, 0] andQ, = [1, 0, 0]. Resolving them produces
four points defined ovelfy( vd) on the desingularization of the curve (the reader is referred to [45]
for a definition of desingularization).

In [12], Bernstein and Lange showed that the Edwards addition lasengpletewhend is
not a square. This means it is defined for all pairs of input points on theid curve with no
exceptions for doublings, neutral element etc. Moreover, this additiomsl@dve same as the one
induced by the birational map described above, Pe+ P, = y~1(y(P1) + ¥(P>)), where the
first + stands for the addition law on the Edwards culBgeand the last stands for the standard
addition law on the curve.

Edwards curves in cryptography

Bernstein and Lange [12] showed that by using projective coorditatepresent points on the
Edwards curve, they obtained formulae faster than all addition and dgutdimulae known
at that time. A pointX,Y,Z] in projective Edwards coordinates corresponds to tfiee point
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Table 7.1: Performance evaluation: Edwards versus Jacobian

Edwards coordinates inverted Edwards coordinatesJacobian coordinates
addition 10m+1s+1d 9m+1s+1d 11m+5s
. Im+8s+la
doubling 3m+4s 3m+4s+1d or 3M+5s for a = —3
mixed addition 9m-+1s+1d 8m-+1s+1d 7m+4s

(X/Z,Y/Z) on the curved +y? = 1+dx2y?. Table 7.1 gives a cost comparison between operations
of addition, doubling and mixed addition on the Edwards curve and on ther$tfaies curve in
Jacobian coordinates. We assume that the Weierstrass curve is gaeetpyationy? = x3+ax+b,
with a,b € Fq. For Edwards curves, we present costs in projective Edwardslioabes and in
inverted Edwards coordinatd43]. In inverted Edwards coordinates, a poiKt Y, Z] stands for
(Z/X,2/Y) on the dfine Edwards curve. We denote bythe cost of a field multiplication, bg
the cost of a field squaring iRy and bya andd the costs of multiplication by the constamatand
d, respectively. Results are taken from [10].

Moreover the addition formulae at (7.5) are unified formulae, i.e. they ¥arkoth addition
and doubling, ffering protection against side-channel attacks (see also [12]).

7.2 Pairing computation in Edwards coordinates

Given that addition on the elliptic curve was faster on Edwards curvesahamrves in Weier-
strass form, it is natural that Edwards curves were proposed fangdiased cryptography. Ex-
amples of pairing friendly Edwards curves were given in [26] and [3].

Example7.1 The following example is given in [26]. Consid&r: y?> = x3 + x over Fq, with
g = 3 mod 4. This curve is supersingular and its corresponding Edwamgso?+y? = 1—(xy)?,
henced = —1. One may choose for instange= 2520 + 2363 _ 2360 _ 1  — 2160, 23 _ 1 or
q = 21582 21551_ 21326 _ 1 = 22564 2225_ 1 These curves have embedding degree 2.

Exampler.2 This example was given by Ane et al. [3] and is based on the construction from [40].
We consider the Edwards curisg defined oveify, with g andd given by:

g = 20516136637681296060935834328758873984153019622284508801
d = 11006613094214930568367451593188892082109313804598376626

This is an elliptic curve with discriminart7230 and embedding degree 6. It pas 1.22.

However, computing pairings on Edwards curvgently was proven to be a complex prob-
lem. The main diiculty when trying to express Miller's algorithm in Edwards coordinates was
that it was hard to find the equations of rational functions that needed twvdleated at each
addition step. On a curve in Weierstrass form, these equations corregpstrdight lines. For
curves in Edwards form matters are more complex. The natural appveasho use the map
¢ and compute the equations of these functions as pullbacks of lines on asW\srcurve.
This gave complicated equations, which resulted in a highlffizient algorithm. However, Das
and Sarkar [26] managed to simplify these equations in the case of syp#asiourves given
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in example 7.1 and obtained a fast algorithm. In this section we present pugagh to pairing
computation in Edwards curves, which uses an isogeny of small degree.

7.2.1 Anisogeny of degred

Let Eq denote an Edwards curve defined over some finite figladf odd characteristic. Let
us take a look at the action of the 4-torsion subgroup defined Byen a fixed point on the
Edwards curveR = (x,y) with xy # 0. A simple computation shows th&+ T4 = (y, —X),

R+ T, = (—x, —y) andR— T4 = (-V, X). We notice then that by letting = (xy)? ands = x/y—Yy/X,

the pair o, ) characterizes the poiit up to an addition with a 4-torsion point. This leads us
to consider the following morphism from the Edwards curve to a curvengdyethe equation
Esp:S?p=(1+dp?-4p

¢$:Eq — Egp (7.6)
() = (97~

We will study the arithmetic of the cunigs p, our objective being to establish Miller's equation
on this curve. By taking the pullback of this equation on the Edwards cuweejerive Miller's
equation on the Edwards curve. This yields all the tools needed to apply Mélgorithm on the
Edwards curve. o S

_ The equation oEsp in homogeneous coordinate, G, Z) is given byS?P = (Z + dP)?Z —
4PZ2. If we dehomogenize this equation by settdo 1, we get the Weierstrass equation of an
elliptic curve

C=7+2d-42 +dz (7.7)

We denote byOs, = [0, 1, 0] the point at infinity andl>sp = [1, 0, 0] which is a two torsion
point on the curveEsp. The following definition is simply another way to write the addition law
on an elliptic curve in, s) coordinates.

Definition 7.1. Let S, T € Egj, L the line connecting andT (tangent line toEsp if S = T),
andRthe third point of intersection df with E. LetL" be the vertical line througR (of equation
p = pr). ThenS + T is the point such that’ intersectEgp atRandS + T (the point symmetric
to Rwith respect to thg-axis).

Figure 7.2.1 illustrates this definition.
Note that we can extend the mapo the 4-torsion points by(O) = ¢(T2) = ¢(Ta) = ¢(-Ty) =
Osp.

Theorem 7.2. Let P = (X1, y1) andQ = (Xo, y»2) be two points on the Edwards curve aRd Q
their sum. The(P + Q) is the sum ofp(P) and¢(Q) in the addition law of definition 7.1.

Proof. Considerny : E — E4 the map defined in equation (7.2). By using Theorem 2.1 one can
easily see that oy is a morphism fronk to the elliptic curveEgp. As¢oy(0Q’) = Ogp (WhereQ’

is the point at infinity ofE), we deduce thap o ¢ is an isogeny. Moreover, the Edwards addition
law on Eq is the same as the addition law inducedybyit follows that the addition law induced
by ¢ is the same as the standard addition law on the elliptic curve, so it corresppahdsaddition

law described at definition 7.1. m]
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Figure 7.1: Addition law on th&s, curve

In the sequel we need to compute the pullback of certain functions on theEys. Before that,
we compute the degree ¢f

Proposition 7.1. The mapp : Eq — Es) is separable of degree 4.

Proof. Let P = (x,y) be a point on the Edwards curve. The doubling formula gives

b - 2xy Y -x2\ [ 2xy Y2 — X?
Co\L+d(xy)2 1-d(xy)?] \R+y22-(C+y3))’

If xy # O then by lettingp = (xy)? ands = x/y — y/X, we can write

P - 4pg1 - d?p?) 4p(1+dp)? - ps
- ((1—d2|02)2—4dp282’(l—d2p2)2+4dp232)'

This means that by defining

( 4pg1 - d?p?) 4p(1 +dp)? - ps )
(1- d2p2)2 — 4d P2’ (1- d2p2)2 + 4d 22 )’

(P, 9)

we get a rational map such thatp o 8 = [4] on E. It follows that degp divides 16. As the
inseparable degree degis a power of the characteristic &f, we deduce thap is a separable

map (we have supposed that clfg)(# 2). By puttings(P) = Q we easily getp=1(Q) = {P.P +
T, P+ T4, P — T4}. We conclude that degy= 4. O
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7.2.2 Miller's algorithm on the Edwards curve

Let P be anr-torsion point on the Edwards curve. We consider slightly modified furmtiéﬁ)n:

{0 = i(P)+ (P+Ta) + (P+T2) + (P—Ta) - ((iP) + (iP + Ta)
+(P + T2) + (IP = Ta)) — (i = 1)((O) + (T4) + (T2) + (=Ta)).

Then () = r((P) + (P + T4) + (P + T2) + (P = T4)) = r((O) + (T4) + (T2) + (~T4)), which means
that we can compute the Tate pairing up to a 4-th power:

T(P.Q)* = f9Q".

We also get the following Miller equation

@ _ @@
fi+j,P - fi,P fj,P v (7.8)

wherel /v is the function of divisor

div(/v) = ((iP)+ (iP+ Ta) + (iP + T2) + (iP — Tg))
+((JP) + (JP + Ta) + (jP + T2) + (jP — T4))
—(((+ DP) + (( + P+ Ta) + (( + )P+ T2) + ((i + )P — Ta)))
—((O) + (Ta) + (T2) + (= T4)).

Let P = ¢(P) and letls, andvs, be functions on th&s, curve such that divi{p) = (iP") +
(JP) + (=(i + ))P) = 2(T2sp) — (Osp) and div {sp) = ((i + J)P) + (= (i + [)P") - 2(T2sp).

We observe that we havg¢v = ¢*(Isp/Vsp) Up to constants iffg. It is easy to find the
equations of liness, andvs , that appear in the definition of the suRi + jP’, namelylg, is the
line connectingP’ and jP’, andvs, is the vertical line throughi (- j)P". As we will see in the
next section, we can compute their pullback via the maythout any significant computational
cost.

7.2.3 Pairing computation in Edwards coordinates

Just like in Chapter 6, we denote hy, s the costs of multiplication and squaring in the fi&g
and byM, Sthe costs of these operations in the extension figldWe take a look into the details
of the computation of a Miller iteration. We first detail the computation for the tilogistep, and
then the one for the mixed addition step.

Doubling step
We noteK = [X1, Y1, Z;]. Following [12], the doubling formulas forR = [ X3, Y3, Z3] are:

X3 = 2%Y1(2Z% - (X2 +Y?)),
Ys = (2 +Y3(Y2-X3,
Zz = (§+YDRZE- (& +YD).
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On the curveEs), letlsp be the tangent line to the curve@(K) = (p1, S1) andvs,, the vertical
line passing through(2K) = (ps, s3). These lines have the following equations:

lsp(s p) 2pZsi(s— s1) — pa(2d(1 + dpy) — (s + 4))(p — po),
Vsp(SP) = P-ps

Using the equation of the cunigs , and then the expressions feand p we get

lsp = 2pisu(s—s1) - (2d(1+dpy)pr— (L +dp)?)(p - p1)
= 2pZsi(s— s1) + (1—dpy)(1 + dpy)(p - pa)
= (xay1)?(XF — V) (2xay1(X/y — Y/X) — 20¢ - y3))
+(2 = X§ = YD) + Y2)((xy)? = (xay)?).

Consequently, making use of the Edwards curve equation, we get theifalequations of nor-
malized functions$ andv defined at equation (7.8)

(OF + Y7 - ZDOXG - YD (@XaYa(x/y - y/X)
—2(X2 = Y2)) + Zs(dZ2(xy)? — (X2 + Y2 - Z2))/
(X Y1(XE + Y2 - Z2) (X2 - Y3)),

(dZZ0xy)> = (X + Y5 - Z8))/ (X5 + Y5 - Z3).

1Y) = l1(x y)/l2

V(X Y) = Vi(X Y)/V2
We establish the following equation
Vo/la = 4Z3(YZ — X2)/2X1 Y1.
Therefore we may write the doubling part given in equation 6.1 as follows

K « 2K,
1« (%4,
5« ()%Qc.
We represent the poitt asK = [Xq, Y1, Z1, U1, V1, Wy, T1], where [X1, Y1, Z1] are the projective

coordinates of the poir on the Edwards curvé); = X2, V1 = Y2, Wy = Z2 andT; = dZ&(xy)*-
(X2+Y2-Z2). The operation count is presented in Table 7.2; the doubling part cosisif + 1d.

Mixed addition

Next, we take a look at the mixed addition step in a Miller iteration. We count the euofb
operations that must be executed when ad#ing [Xy, Y1, Z1] and P = [Xo, Yo, 1]. The result is
K + P = (X3, Y3, Z3) with

Xz = Zi(XoY1+ YoXa)(Z2 — d%oX1YoY1),
Z1(YoY1 — XoX1)(ZZ + dXoX1 Yo Y1),
(Z2 + dXoX1 YoY1)(ZZ — dXoX1 YoY1).

oK
TR



116

Table 7.2: Operations of the doubling part of the Miller operation
C« (Xl + Y1)2, D« U;+Vy, (lS)
E—~C-D, F«V;-Uj, H<2W; -D,
Xs3—E-H, Y3 D-F, Zg—D-H, U3« X3, V3 « Y3, W3 « Z2, (3s+3m)

|l «W;-F, Je—1-Y3, K«E-(X/y-y/X), L« J-(K-2F), (3m)
Tz —dWs- (xy)> = (Ur + V1 —Wy), P« 2Z3-T3, |1 <« L-P, (2m)
£ (F)2.11- (41) (2m+19)
£ (f®)2.1,.C (2m+1s)

On the curveEsp, we considells, the straight line passing throug(K) = (p1,s1) and
#(P) = (po, So) andvs the vertical line passing through the poifK) + ¢(P) = (ps, s3). We get

lsp(s;P) = (Po— P1)(S—S1) — (So—S1)(P— P1),
Vsp(SP) = p-ps

Replacingpo, p1, So, S1 by their expressions and multiplying the equation abovedy, j we have

lsp(s P) = ((xay)? — (Xoyo)?)(xaya(X/y — ¥/%) — (€ — y2))
—( - y& — x1y106 — V) (X¥)? — (Xay1)?).

We obtain normalized functionsandv with equations

0cy) =latey)lz = (0G+Y2 - Z2 - dZ(%Yo)) (xm(§ -3-0¢-¥))

Y.
vt )

(dZZ(xy)? — (X2 + Y2 = Z2)))
[(XaYa(XE + Y5 - Z§ - dZF(XoYo)?));
(dZ30Oxy)* - (X5 + Y5 = ZB)) /(X5 + Y5 - Z3).

V(X Y) = vi(X. Y)/v2
Therefore we may write the mixed addition part as follows

K « K+P
9 1P1(QwvAQ),
£  £Qvi(Q).

The steps of the computation are detailed in Table 7.3. We caun1dm + 1d. In the beginning,

we precompute expressions such XY, dXYo, (XoYo)? and% — Yo |n Table 7.4 we present
a comparison between costs of pairings computed in Edwards coordimatéiscse of pairings
computed in Jacobian coordinates.
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Table 7.3: Operations of the mixed addition step of a Miller operation

C— (X +Y1)?-Uy - Vy,D « C- (d%Yo) (Im+1s)
E « 2(X1 + Xo) - (Yo + Y1) = C = 2XoYo, (1m)
F « Z(Xl + Yo) . (Yl - Xo) - C + 2XoYo (1m)
Xz« 2;-E- (2W1 + D),Yg —Z1-F- (2W1 - D),23 — (2W1 - D) : (2W1 + D) (5m)
Us « X3, V3 < Y2, W3 « Z2, H « dW; - (XoY0)? (Im+3s)
J=C-(X/y-y/X), Ke U1+ Vi-Wi—H)-(J-2(U1 - V1)) (2m)
L<—C-(X0/Y0—YQ/X0), M <—T1-(2U1—2V1—L), (2m)
Tz — dWs- (xy)? = (Us+ V3 —-Ta), Iy « K- M, (1m)
|2<—C-(U1+V]_—W1—H), (1m)
4 ff) ‘1 (Us + Va — Wa), (2m)
9 — 1.1, Ts. (2m)

Table 7.4: Comparison of costs for the Miller operation in the general case

doubling mixed addition
Edwards coordinates 11s+ 8m + 1d | 4s+ 19m + 1d
Jacobian coordinates12s + 8m + la 6s+ 11m

The case of even embedding degree

For dficiency reasons, we take subgropsandG, on the Weierstrass equivalent form, as ex-
plained in Section 6.2.1

G1 = E[r]nKer(r—[1])
G, = E[r]nKer@-1[q).

We recall that the curv&y : X2 + y? = 1 + dx?y? is birationally equivalent to the curvg, via
the rational mag : E — Eq. We chooseé® € G; andQ € G, on theEq curve as explained
above and then take = y(P') andQ = y(Q)). It follows that the coordinates of elements(&%
are inFq. The subgrougQ) € Fy is such that its elements hayecoordinates in the quadratic
subextensiof¥2 andx-coordinates that can be written as products of elemeritgefwith \B,
for some element of Fy2.

Doubling step

We show that the computational cost of the doubling part in Miller's algorithsigaificantly
lower than in the general case because we can ignore terms that lie inex putyfield ofF.
These terms will become 1 after the final exponentiation. We can idp@medv, because they
depend only on the coordinates®fwhich lie inFgy. Since ky)? € Fy2 and hencey; (Q) € Fyoz,

it follows that we can also ignorg (Q). Hence the function evaluation step in the doubling part
of Miller’s algorithm becomes

£ (1)21(Q). (7.9)
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Note that multiplications byxy)? andx/y — y/x cost k/2)m each &/y — y/x is the product of
some element iy with vB). Also note that computing/y — y/x once at the beginning costs
one inversion irF.. In some protocol®) is a fixed point, so we can precompwig/ — y/X.

If k = 2, we actually havexy)? e Fq and we computé; as

li(xY) = ((X2+YZ=Z2)(X2 = Y2)) - 2X0Ya(x/y = y/%) = (X2 + Y2 - Z2)
(X2 = Y2) - 20X — Y2) — Z3 - (dZ2 - (xy)? — (X2 + Y2 - Z2)),

Fork > 2 some operations are donefg and others g, hence we compute as

h(xy) = (O +Y7-ZD)0E - YD) - XaYa(xly - y/X) = (% + YF - Z5)
(XF = Y9)) - 206 = Y3) = Z3 - dZ - (xy)* + Z3 - (X§ + Y§ - Z3),

Computations do not éfer much from those in Table 7.2 and we do not detail them. Results are
summarized in Table 7.5.

Table 7.5: Comparison of costs for the doubling step of the Miller operatioreindke ok even

k=2 k>4
Jacobian coordinates 10s+3m+1a+S+M | 1lls+(k+1m+la+S+M
DagSarkar Edwards coordinates 654 9M + S+ M i
(supersingular curves)
DagSarkar Edwar_ds inverted 654 9M + S+ M i
coordinates (supersingular curves)
Edwards coordinates 4s+9IM+1d+ S+ M 4s+(k+8m+1d+S+M

Mixed addition

Following a similar technique as the one for the doubling case, we obtain the axéibn step
for evenk

£ — (1")2,(Q). (7.10)

The detailed computations are similar to those in Table 7.3. Since comp%ting\% costs one

inversion inFg, in some cases it will be less expensive to work vi/'lth: (XoYo)l1 instead ofl.
For protocols in whiclQ is a fixed point, we may precompuie— % This would give an inversion
free algorithm. Results and performance comparison are summarized Table 7

Comparison

By looking at tables 7.5 and 7.6, one can see that in the case of curvewveritembedding degree
the cost of an implementation of Miller’s algorithm in Edwards coordinates wiliggntly more
expensive than an implementation in Jacobian coordinates. We also clperkaunances of our
method in inverted Edwards coordinates, but we did not obtain better reSutsinderline the
idea that, independently of the representation of curves and pointsrchioaa implementation
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Table 7.6: Comparison of costs for the mixed addition step of the Miller operatithre case ok
even

k=2 k>4
Jacobian coordinates 3s+1Im+ M 3s+ (k+9)m + 1M
DagSarkar Edwards coordinates 1s+ 18T + M i
(supersingular curves)
DagSarkar Edwar_ds inverted 1s+ 17m + M i
coordinates (supersingular curves)
Edwards coordinates 4s+15m+1d+M | 4s+ (k+ 14)m + 1d + 1M

of Miller’'s algorithm, it would be impossible to avoid the expensive computationpafates in
the Miller loop. These costM + 1S for the doubling step (equation (7.9)) anil Xor the mixed
addition (equation (7.10)). Significant speed up can be obtained by agimgs with parameter
with low Hamming weight. This will avoid performing the mixed addition step. In swages, our
proposal for an implementation in Edwards coordinates has performeocgmrable to those of
an implementation in Jacobian coordinates/if is close to 1.

Itis clear that when Edwards coordinates are preferred for the imptatienof a protocol for
certain reasons (scalar multiplication is faster, resistant to side chanrésjtta solution would
be to switch to Jacobian coordinates and to compute the pairing on the Waieffsina. Even
though pairing implementation is faster in Jacobian coordinates, this appndlhclost at least
one field inversion. Consequently, on restricted devices, it is prdéetatuse our approach and
avoid implementing inversions.

7.3 A recent approach to pairing computation in Edwards coordi-
nates

In [3], Aréne et al. provide a geometric interpretation for the addition law on Edwamdss
(actually the original contribution is given on twisted Edwards curvesttmge are beyond the
scope of this dissertation). L& andP, be two points on the Edwards curt®. DefinePs; =
P; + P, the sum ofP; andP». LetC be the conic passing throudhy, Q,, T2, P; andP,. The
equation ofC is of the form:

C: (2% +Y2) + cxyXY + cxzXZ = 0,

whereczz, cxy andcyz are elements df;. We also denote bl the vertical line througliPs and
by I, the vertical line througl®. The equations of these lines are

|1123Y—Y32 =0
|2:X = 0.

whereP3 = [X3, Y3, Z3]. Aréne et al. established the following equality on divisors

div(ﬁ) = (P1) + (P2) - (Py) - (O).
112
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Table 7.7: Comparison of costs for the mixed addition step of the Miller operatithe case of
evenk

doubling mixed addition
& [50] 4s+ (8+km+1d + 1S+ 1M | 4s+ (k+ 14)m + 1d + 1M
&3] 55+ 6m + 1S+ 1M (12+ K)m + 1M
J [50] [3] 11s+ (1+Kkm+ la+ 1S+ 1M 6s+(6+k)m+1M
Ty =x+b (2k/e+2)m+T7s+1a+IM+1S (2k/e+9)m+2s5+1M
e=26[23]
73
J é); > :[;3?" (2ker2)m+8silat IM+1S |  (2Ke+12)m+4s+1M

This gives the Miller equation on the Edwards curve and, consequentificient algorithm for
pairing computation. We present in Table 7.7 the cost of their algorithm, in tefrthe aumber
of operation in the doubling and the mixed addition steps of the Miller loop, in the abcurves
with even embedding degree. The clsel is not evaluated in their paper.

To sum up, the Algorithm in [3] for pairing computation in Edwards coordin&édaster than
then the method described in Section 7.2.3. However4f0.8m, a simple computation shows
that pairing computation is still fastest in Jacobian coordinates. Otherwissim is close to
1, Edwards coordinates are to be preferred. Moreover, in the ¢dasewes allowing twists of
degree 4 or 6, it is not known whether we can represent the poiriis &s points oveF e, in
order to save multiplications.

7.4 An algorithm for scalar multiplication on incomplete Edwards
curves

SupposeEy is an Edwards curve ovéy given by the equation
X2 +y? =1+ d(xy)%,

with d a square irFyq. As explained in Section 7.1, this curve is moimpletei.e. the Edwards
addition law is not complete. We denote dya square root of . We consider the map:

TZEd - Ed
a o
[xy,1] = [;’y’”- (7.11)

One can easily check thaf{ x, y, 1]) is a point on the Edwards curve. On special points we extend
this map as follows:

7[0,1,1]
7[1,0,1]

[1,0,0] and+[1,0,0] = [0, 1, 1]
[0,1,0] and+[0,1,0] = [1,0,1]

We show that the map is in fact a translation map by a point of order 2, with respect to the
addition law on the elliptic curve.
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Proposition 7.2. Let Eq be an Edwards curve defined over a finite figjdsuch that-1 andd - 1
are not square roots ify. The mapr : Eq — Eq4 defined by equation (7.11) has the following
properties

(a) GivenP;, andP, two points on the curv&y we have:
T(Pl + P2) = T(Pl) + P2
T(Pl) + T(Pz) = Pl + Pz.
(b) If Pis a point onEy, thent(r(P)) = P.
(c) ris atranslation by a point of order 2.

Proof. We denoteP; = (X1,y1) and P, = (Xo,¥2). By applying the formulae for the Edwards
addition law we have that the coordinatesr@®,) + P, are

(X1 X2 + Y1y2) a(X1y2 — Y1X2)
XiY1+ XoY2 T XaY1 — XoYo

Now by using the curve equation we get the following equalities:

(X2 + Yay2)(XaY2 + Y1Xe) = Xaya(% +Y3) + Xay2(%& +¥3) = xaya(L + d(xzy2)?) + XaYa(1 + d(x1y1)?)
X1y1 + XoY2 + dXaXoy1y2(Xay1 + X2Y2) = (Xay1 + XoY2)(1 + dxe X2y1Y2)
(Xay2 — YiXo)(Yiyz — XaXo) = XaY1(%5 +Y3) — Xoy2(X§ +¥3) = Xay1(1 + d(Xoy2)?) — Xaoy2(1 + d(xay1)?)
(Xay1 — X2y2)(1 — dxiX2y1y2).

It follows that the coordinates a{P1) + P, can also be written as

(@(1 +dxy1Xoy2) a(l- dX1Y1XZY2))
Xiy2 +y1Xe T Yy - XX )

We conclude that(P1) + P> = 7(P1 + P»). The second formula at (a) can be checked easily by
applying addition formulae. The equality at (b) is obvious. To pra)ewe observe that, iP;
andP; are two points on the Edwards curve, we have that

Y @(PL+ P2)) — ¢ H(x(P) = ¢ (P + P2) — y1(Py),

wherey 1 is the map defined in equation (7.3) and thstands for the addition law on the Weier-
strass equivalent curve. We conclude thas a translation for the addition law on the elliptic
curve. By applying the second equality at point (a), we deduce that ttésalation by a point of
order 2. m]

Remark7.1 Point (a) in Theorem 7.2 can also be proven by using Hisil and al.'s adddie
for Edwards curves [48]. Indeed, note that by applying addition féamin [48], we get that the
coordinates of the point in equation (7.12) are the coordinates of theyi®nt+ P»).
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Algorithm 13 Scalar multiplication on incomplete Edwards curves
INPUT: An Edwards curveéeq/Fq, with d a square root i, a pointP on E andA € Z.
OUTPUT: The pointaP.

1: Leti = [log,(1)], K « P, f « 1,1 « 0.

2: whilei > 1do

3. if 2K is definedthen

4: K « 2K

5.  endif

6: elseK « 7(K)+K;l « I+ 1
7. if thei-th bit of 1is 1then

8: if K+ Pis definedthen

9: K« K+ P.

10: end if

11: elseK « 7(K) + P; | « | + 1.
12.  endif

13: end while

14: if | mod 2 = 1 then

15: K « 7(K).

16: end if

17: return K.

The correctness of Algorithm 13 is transparent from Proposition 7.2.cbhditions that-1
andd — 1 are not squares ensure that whenever the Edwards adBitierP, is not defined, the
modified additiont(P1) + P, is defined (we no longer detail the computations). Hence Algo-
rithm 13 works for all points on the curve. The algorithm is based on tharseand-multiply
method, hence its complexity @&(log 1) in time. The cost of an addition of two points during the
process is of 18 + 1s+ 1d, if performed in projective coordinates. We now evaluate the cost of
performing the additiorn(P1) + P2, instead ofP; + P».

SupposeP; = (X1, Y1,Z1) and P, = (X, Yz, Zp) two points we want to add. In projective
coordinates, the formulae for computin@;) + P, are as follows

X3 = a(Z2Z5 + dXXaY1Y2)(Y1Y2 — X1 %)
Y3 = a(Z2Z5 - dXiXoY1Y2)(Xa Yz + Y1X2)
Z3 = Z1Zp(X1Y2 + Y1X2)(Y1Y2 — X1 X2)
This computation is performed as shown in Table 7.8. The operation coast9n + 1s+ 1d + 2«

for one addition. This is faster than addition in projective coordinates arfdsa as addition in
inverted Edwards coordinates.

Table 7.8: Complete addition for incomplete Edwards curves

A—Z1-2), BEAZ C—Xi- X, D=Y1-Ys (1s+3m)
E—dC-D, F—B-E G«B+E, Xg—a-G-(D-C), H—=(Xg+Y1)-(X2+Y2)-C-D  (3m)
Yse—a-F-H, Zz—A-H-(D-C) (3m)

We have given anfcient algorithm for scalar multiplication for Edwards curves whose addi-
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curves with twists ~__.----------
of degree 4,6 2

Edwards curves

Figure 7.2: A 2-volcano

tion law is incomplete. Other complete addition laws for incomplete Edwards cweresrecently
proposed by Bernstein and Lange [9].

7.5 Future work. Computing the Ate pairing on Edwards curves

Theorem 7.1 states that an elliptic curve is in Edwards form if the group tleestsisciated to it
has a subgroup of order 4. Galbraith [38] shows that for curves wigtiswf degree larger than
2, the curve and its twist cannot be simultaneously in Edwards form. Tharesca problem in
pairing computation, especially when we want to compute the Ate pairing defim@gx G;. As
explained in Section 6.2.1, the groGp on the elliptic curve in Weierstrass form is given by

#(G5),

whereG, is a subgroup of orderon the twisted curve. Hence most operations in pairing compu-
tation are performed oF., whereeis the degree of the twist.

In [23], Costello et al. present a solution to this problem: they supposdhhaivisted curve
is in Edwards form and show that the Ate pairing (actually a small power oAthepairing )
can be computed entirely on the twisted curve. Even though this solution al®tescompute a
pairing with a shorter loop, this approach has several important dr&sbBefore explaining the
disadvantages of the proposal in [23], we give a recent result oM $75].

Theorem 7.3. A complete Edwards curve lies on the floor of a 2-volcano.

This result implies that curves whose discriminants are fundamental acemptete Edwards
curves. In particular, curves withinvariants 0 and 1728 do not allow a complete Edwards addi-
tion law. Hence, the approach presented in [23] could only work on intEmgdwards curves.
Moreover, in a cryptographic implementation, one rarely needs to complytéhenpairing. In
most protocols, there is a scalar multiplication to perform on the curve,defwnputing the pair-
ing. The main reasons one might have for implementing protocols in Edwanddicates are that
the scalar multiplication is faster and that these coordindfes i@sistance to side-channel attacks
(see [12]). Obviously, we cannot perform the scalar multiplication on tlisted curve, because
it would be very expensive.

Using the two curves to exploit their respective advantages would be thlesiolation to this
problem. But how can we do that? Since the Edwards chgviées on the floor of its 2-volcano,
the isogeny : Eq — Egp described at Section 7.2.1 is of the ascending type. If the 2-volcano
had height 2, we could use this isogeny to switch from the Edwards cueveuove on the crater
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of the volcano. However, this approach implies performing some inversgidhs finite field. We
have found another isogeny of degree 4 from the Edwards curveuova m Weierstrass form,
whose equation gives a method to switch between the two representationstvaértorming
inversions. We define the following isogeny from an Edwards cuifyeo the curveEg, of
equationEy, : s* = d?p® + 2(d - 2)p* + p

¢ .Eqg — E/s,p
(xy) = y0¢ =y, (xy)?)

Suppose that/d € Fgq. Then we substitutes(p) for (s, %,/%). We obtain a new equation for the
curvekg

2(d-2) p
" T T e
The kernel ofy is the 4-torsion subgrouf®, T», T4, —T4}. It follows thaty is not a new isogeny,
the curvekg , being actually isomorphic t&sp.

Remark7.2 We have tried to use to give an algorithm computing a 4-th power of the Tate
pairing, using similar techniques to those in Section 7.2.3. Unfortunately, wee di#tained an
algorithm which is slower than the one in Section 7.2.3.

We believe that this isogeny may be the solution fitccently computing the Ate pairing in
Edwards coordinates on curves with discriminamtsand—3. Moreover, this could also represent
a solution to the problem of using twists of high degree to compute the Tate palfingher
investigation is needed to make sure we can actually employ the twists in thesthaigor

7.6 Conclusion

Efficiently implementing pairings on Edwards curves is ficlilt problem. Some questions in
this research area remain open. For example, it is not possible to implernértqgss using the
Ate pairing entirely in Edwards coordinates. Moreover, many families ofrgafriendly curves
cannot be given in Edwards form, because they do not fulfill the comd@iothe curve group
order.



Chapter 8

Conclusion

At a first glance, this thesis treats twdidrent subjects. The first one is a study of isogeny volca-
noes using pairings, while the second one refers to filident implementation of cryptographic
pairings using isogenies. In fact, the starting idea of our work is the folipwbservation. Given

P andQ two ¢-torsion points on the elliptic curve, the value of the paira@, Q) and an isogeny

| . E > E’, we have

e(@(P), #(Q) = ex(P, Q.

Part two of this dissertation relates this result to the isogeny &l4g§). To every curveE
in Ell¢(Fq) we associate a quadratic forRg .~ which is an invariant of the set of curves having
the same endomorphism ring Bs We show that the zeros of this quadratic form correspond to
points of order generating the kernel of horizontal or vertical isogenies ir/tisgeny volcano
of E. The remaining points of ordérgenerate the kernels of descending isogenies.

This discovery has important consequences on algorithms used to tratle¢ csogeny vol-
cano. First of all, by evaluating the number of zeros of the quadratic Ry, we give a method
to decide whether the cuniis on the crater of thé-volcano or not. Secondly, we give a method
to decide in advance, when taking a step on the volcano, whether this stepzsrital or de-
scending, ascending or descending. Our method is M@igient, because it involves only the
computation of a small number of pairings. The immediate consequence is thetverdound
very simple algorithms, allowing to travel on the graph from one point to anothe

In the third part, the approach is completelyfeiient. This time our goal is to make use of
the isogeny in order to speed up the computation of the pairing \&R€)). A first result is
obtained by considering endomorphisms of small degree for pairing fyielgptic curves. En-
domorphisms were already used before in pairing computation [83] [8F] fBowever, until now,
only endomorphisms with trivial kernel, such as the Frobenius endomangriautomorphisms,
were proposed. We propose endomorphisms having a kernel of srdatl drhis gives a small
correction factor in the computation of the pairing, but the cost of the cortipuitaf this fac-
tor is negligible. Our algorithm has better performances than Miller's algoritrmourves with
embedding degree 2 and 4.

The second contribution in this area is dhaéent algorithm to compute pairings on Edwards
curves. We used an isogeny of degree 4 between the Edwards agre@ather curve of genus 1
and derived formulae forficient pairing computation on the Edwards curve.
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8.1 Limitations of our methods and open problems

Isogeny volcanoesUnfortunately, on some volcanoes, our method for determining the direction
of an isogeny is very expensive in the upper part of the volcano,eatim/second stability level.
Given a curvekE lying on a level above the second stability level, all self-pairingg-tdrsion
points of E/Fq may be degenerate. Consequently, if we restrain to the volcano defieethev
base field, we cannot distinguish between a point spanning the kerael lodrizontal isogeny
from the point spanning the kernel of a descending isogeny, or the gmamining the kernel of
the ascending isogeny from the point spanning the kernel of the d#isgeisogeny. However,
we have shown that by considering the curve defined over an extefslidi¥,, with degree a
multiple of £, we find non-degenerate self-pairingsfetorsion points. The only problem is that
computing these pairings may be very expensive, and the algorithmsdleritleis way will be
highly inefficient. The question of how to predict directions of isogenies in the irregalerof
the volcano remains thus open. We only note that the non-degeneratgpaibiained over the
extension field?,« have values over the base fiélgl This rises the question whether it would be
possible to compute these pairings mofticently.

Isogeny volcanoes and cryptographyln Section 5.5.1, we presented a volcano-based algorithm
to compute the Hilbert polynomial. Apart from the theoretical importance of thispzitation,
advances in this area also have quickly found application in cryptograpteyest in algorithms
allowing to compute this polynomial has arisen because of the key role thisgmoighplays in
methods to construct pairing friendly curves.

As explained in section 6.1, some families of pairing friendly curves areraeey and finding
curves in such families depends drastically on our ability to comidgi(&X) for large discriminants
D. We explain this idea by an example. For MNT curves with embedding degf®etierland’s
computations [89] gave 500 discrimina@swith D < 102 which provide pairing friendly curves
at 80 bits security level (according to [36]).

Consequently, a logical continuation of the work in this thesis would be tat &laperland’s
algorithm to our methods and see whether this results into obtaining the clag®agdor larger
discriminants.

The same considerations are valid for the algorithm computing modular polynd®d)s
which are needed in cryptography since certain algorithms (such asf&chlgorithm) use pre-
computations of this polynomial.

Cryptographic non-degenerate self pairings.We explained in Chapter 6 that non-degenerate
self-pairings have many cryptographic applications. While on supeisingurves, constructing
such pairings is rather easy thanks to distortion maps, on ordinary cuatés's are more compli-
cated. In Section 6.4 we have given a method to construct ordinaryschaweng non-degenerate
self-pairings for all points of order. Our construction is the first construction of this kind which
does not use distortion maps.

The curves have embedding degree 1 anvdlue is approximately 2. Unfortunately, because
of the highp-value, we estimate that pairing computation is lefgient on these curves than on
supersingular curves with embedding degree 2. The questions of howlenimam these pairings
efficiently and how to hash to these curvésogently remain open.
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Pairing implementation using endomorphisms.In Chapter 6 we have given a method to use
endomorphisms to speed up pairing computation on curves with small discrimidnhave
surveyed many existing constructions of pairing friendly curves with snisdrichinant to see
whether our method applies to these constructions. More precisely, veenterested in finding
curves for which the size of the eigenvaluef the endomorphism is approximateljr. We have
found that our method works on curves constructed with the Cocks-Rietiod, which is very
flexible in choosing the value af Unfortunately, because of the high value of the paramster
these curves are far from being optimal for pairing based cryptograplfe raise the question
whether it would be possible to construct by complex multiplication curves pasigenvalues
A~ +/r and bettep-value.

Pairing on Edwards curves. We have given an isogeny of degree 4 from the Edwards curve to
a curve in Weierstrass form. F. Morain [75] showed recently that compldteards curves lie

on the floor of 2-volcanoes. This result implies that on a 4-volcano, ogeisy is ascending. In
the case of curves with discriminantt and—3 lying on a 2-volcano of height 2, this allows us
to transport points from the Edwards curve lying on the floor to a curve lgmthe crater. This
gives an inversion free algorithm to compute the Ate pairing on the Weiesstumge, by making
use of twists of degree 4 and 6. However, we do not know whether itssilple, by using the
isogeny or its dual, to find an algorithm which computes the Ate pairing (or a goatr of the

Ate pairing) entirely in the Edwards form.
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Réesume

Les couplages sont utiBs en cryptographie pour mener des attaques contre le logarithme discret
sur certaines courbes elliptiques, ainsi que pour la construction démastcryptographiques.
Depuis 2000, la cryptographiebase des couplages a connu un grand essor.

Dans cette thse, nous nous iatessons dans un premier tengbkimplémentation des cou-
plages en utilisant des isegies. Ces travaux incluent uneethode pour le calcul du couplage
sur des courbes elliptiques ayant des endomorphismes de peét 8kgrs proposons par ailleurs
un algorithme qui calcule le couplage sur la courbe d’Edwardsjde d’une iso@nie de dedr 4
entre la courbe d’Edwards et une autre courbe de genre 1.

Dans un deuxime temps, nous proposons les couplages petude des volcans d'iségies.

Les volcans d'isognies sont des graphes dont les noeuds sont des courbes elliptitpseafdes
sont des Il-isognies entre les courbes. En 1996, Kohel propose I'utilisation du paresupro-
fondeur de ces graphes dans un algorithme qui calcule 'anneauodhemghismes d’une courbe
elliptique. Fouquet et Morain (2001) ont projgog’autres algorithmes pour le parcours de ces
graphes. Cependant, jusquiesent, il nétait pas possible de gxdire la direction d’'un pas sur le
volcan; de fait, un grand nombre de pas succegsiis recessaire avant détkrminer la direction
prise. Nous introduisons uneathode qui permet de calculer, pour une courbe elliptique E, les
points d’ordre | qui engendrent les noyaux des &tgs descendantes, ascendantes ou horizon-
tales. Notre rathode, base sur le calcul de quelques couplages, ést dficace et donne, dans
beaucoup de cas, des algorithmes plus rapides quedtsdes existantes pour le parcours des
volcans d'iso@nies.

Abstract

Pairings are used in cryptography to attack the discrete logarithm probiesoroe curves and
also in building cryptosystems. Since 2000, pairing based cryptogragshlyden an active area of
research.

In this thesis, we first study algorithms for pairing computation combined witteiseg. We
give an algorithm for pairing computation using endomophisms of small degree@an #icient
implementation of pairings on an Edwards curve, by making use of an isofeegree 4 between
the Edwards curve and another genus one curve.

Secondly, we propose pairings in the study of isogeny volcanoesrgaglcanoes are graphs
whose vertices are elliptic curves and whose edges are I-isogeniesitiigoallowing to travel
on these graphs were developed by Kohel in his thesis (1996) anditatey Bouquet and Morain
(2001). However, up to now, no method was known, to predict, befaiega step on the volcano,
the direction of this step. To solve this issue, we develop a method to deternameadiiptic curve
the points of order | that generate kernels of descending, ascenuingpaizontal isogenies. Our
method, based on the computation of a few pairings, is véigient and gives, in most cases,
simple algorithms, allowing to either walk on the crater, descend from the dcatbe floor or
ascend from the floor to the crater.



